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Abstract

We consider the problem of the steady flow of an ideal heavy fluid around a
submerged beam. The problem is obtained from the free-boundary problem
of the flow past a submerged obstacle in the limit of bodies of vanishing
thickness. We introduce a special Sobolev space formulation of the problem
in term of a perturbed stream function and prove its unique solvability for
every value of the unperturbed flow velocity, with the possible exception of
a discrete set depending on the geometry of the domain. The asymptotic
properties of the solutions are discussed.

1. Introduction.

A classical problem in hydrodynamics is the study of the plane stationary flow
of a heavy fluid over submerged obstacles. Assuming the usual hypotheses,
i.e., irrotational and divergence-free flow, non viscous fluid and negligible
surface tension, the velocity field can be described by a complex function,
holomorphic in the domain occupied by the fluid; such a domain has rigid
boundaries, where the ”no-flow condition” is imposed, and a free boundary
where, in addition, the non linear dynamical condition (Bernoulli condition)
holds. When no obstacle is contained in the fluid, the only rigid boundary is
a horizontal bottom and we have the well-known steady water-wave problem.
Although substantial progress has been achieved in the rigorous treatment
of the latter problem (even in the three-dimensional case) [1], little is known
about the interaction of water waves with submerged or semi-submerged
rigid bodies. There are some results concerning steady flows under localized
pressure perturbations on the free surface, which may simulate the action of
a surface-piercing obstacle [2], [3]; more recently, exact solvability has been
proved for the complementary physical problem of the ship waves generated
by the uniform horizontal motion of a thin semi-submerged body [4]. In the
case of a completely submerged cylinder, exact solutions have been found in
[5] only for supercritical flow velocities (see below).
Nevertheless, most of the mathematical treatment of the problem deals with
linearized versions, whose solutions are called linear water waves [6]. Even
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in dimension two, one of the still open questions in the linear theory is to
determine whether the problem for a given obstacle in a current is uniquely
solvable for all values of the flux velocity. A positive answer is known for
special geometries [7], [8], but there are examples of non trivial, finite energy
solutions of the homogeneous problem (trapped modes) in the presence of
multiple obstacles and in the case of a submerged hollow [9]. In general, the
connection between unique solvability and the geometry of the obstacles is
not completely understood.
The standard approach to solvability of the linear problem relies on integral
equation techniques, which apply when the boundaries of the obstacles are
sufficiently regular, including piecewise smooth contours with corner points
(but no cusps) that are quite usual in the applications. Recently, an alter-
native variational approach has been proposed, which is suitable for a large
set of obstacles (particularly when the perturbed flow has finite energy [10])
including the limit case of a surface beam [11].
The aim of this paper is to apply the same technique to the problem for a
submerged horizontal beam, which cannot be treated by standard integral
equation methods as in the case of a body with smooth boundary [12]. The
interest in this problem is that it is obtained from the exact, free-boundary
problem with an obstacle of thickness of order ε, in the limit ε → 0; thus, the
study of this limit case is a crucial step in treating the non linear problem of
the flow past a thin submerged body by local methods, following the same
pattern which led us to prove the solvability of the problem for a surface-
piercing body [4].
Our main conclusion is that the linearized problem for a flow with (unper-
turbed) velocity c and with an assigned value of the circulation around the
obstacle is uniquely solvable, with the possible exception of a discrete set of
values of c depending on the depth of the fluid and on the length and position
of the beam. We also describe the asymptotic form of the solution at infinity
downstream.

2. The problem.

We consider a horizontal beam contained in a strip

Σ ≡ {x ∈ R; −H < y < 0},

whose upper and lower boundary consists of a plane surface F = R × {0}
(which will be improperly called free boundary) and of a flat bottom B =
R × {−H}; the beam is represented by a segment I = (−x0, x0) × {−b},
where x0 > 0 and 0 < b < H; finally, we define the strip with a cut

S = Σ\I.
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As mentioned above, we can consider the beam I as the limit, for ε → 0, of
a thin, rigid body represented by the domain

{(x, y) ∈ Σ : −x0 < x < x0, −b + εf−(x) < y < −b + εf+(x)},

where f± ∈ C1([−x0, x0]) (see fig.1 below).

y=−b+εf+(x)

y=−b+εf
−

(x)

y = 0 −x0 x0

ci

y = −H

S

I

F

Fig. 1.

We assume that the body is surrounded by a steady flow with (unperturbed)
field velocity ci at upstream infinity and we denote by ε(ui+vj) the perturbed
velocity field; moreover, for a zero circulation flow one can define a potential
φ such that ∇φ = ui + vj. Then, we obtain in the limit ε → 0, the following
linear system (see [5]):

∆φ = 0 in S (2.1)

φxx + νφy = 0 on F (2.2)

∂yφ± = K± on I (2.3)

φy = 0 on B, (2.4)

where ν = g/c2 (g is the acceleration of gravity) ∂yφ± are the limit values of
∂yφ = v respectively on the upper and lower side of the beam and

K± = cf ′
± (2.5)

by the no-flow condition. The problem is completed by the asymptotic con-
ditions

lim
x→−∞

∇φ(x, y) = 0 (uniformly in y), (2.6)

sup
(x,y)∈S\A

|∇φ(x, y)| < ∞, (2.7)

where A is any neighborhood of I.
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The problem (2.1)-(2.4) (for any ν > 0 and regular enough K±) with the
asymptotic conditions (2.6), (2.7), is called the Neumann-Kelvin problem
(for a beam); this problem has been widely studied in the literature, since its
solution also represents the potential of the linear ship waves generated by a
body moving in a fluid with uniform motion [6]. However, in two dimensions
one can provide an alternative description of the problem by considering
the stream function ψ (harmonic conjugate of the potential φ) satisfying
ψx = v, −ψy = u. We recall that the function ψ is determined (except for
an arbitrary constant) by the velocity field of an incompressible fluid (such
that ux + vy = 0) whenever the flux

∮

C
{v dx − u dy} through a closed curve

C surrounding the obstacle is vanishing. In the case of a beam, by shrinking
C to a segment we get

∫

I

(v+ − v−)dx = 0, (2.8)

where v± are the limit values of v respectively on the upper and lower side
of the beam; as expected, (2.8) holds for a solution satisfying the ”no-flow”
condition (i.e. with boundary data of the form (2.5), see below). It follows
that the stream function can be defined also in the more general case of
flows with non zero circulation around the obstacle. We also remark that
the stream function was recently employed to provide new variational for-
mulations for nonlinear steady water waves with vorticity [13]. Moreover, as
we now show, the linear problem for the function ψ has the advantage that
the second order boundary condition (for the potential) on the free surface is
replaced by a first order condition (Steklov condition). For, by the definition
of ψ and observing that both F and B are connected sets, it follows by (2.2)
that ψy − νψ is constant on F and by (2.4) that ψ is constant on B; by suit-
ably choosing the arbitrary constant in the definition of ψ, we may assume
ψ = 0 on B. Then, since limx→−∞ ψy = 0 (by (2.6)) we also get ψ → 0 for
x → −∞ (uniformly in y) so that ψy − νψ = 0 on F . Finally, on the two
sides of the beam we may assign to ψ a pair of Dirichlet boundary data which
correspond to condition (2.3) (see below). Summing up the discussion, we
have the problem:

Problem Pν : For every ν > 0, find ψ satisfying

∆ψ = 0 in S (2.9)

ψ± = K± on I (2.10)

ψy − νψ = 0 on F (2.11)

ψ = 0 on B, (2.12)
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lim
x→−∞

∇ψ(x, y) = 0 (uniformly in y), (2.13)

sup
(x,y)∈S\A

|∇ψ(x, y)| < ∞, (2.14)

where A is any neighborhood of I. By the definition of ψ and by (2.3) the
boundary data K± in condition (2.10) have to satisfy

K′
± = v± = K±; (2.15)

hence, by (2.8) we obtain (for absolutely continuous K±)

(K+ −K−)(x0) = (K+ −K−)(−x0) (2.16)

Note that by assuming K± of the form (2.5), one can satisfy both (2.15) and
(2.16) by taking K± = cf±, as the obstacle’s profile described by f± must be
a closed curve.

Remark. From the previous discussion, it is clear that the Dirichlet data in
condition (2.10) are not uniquely determined by condition (2.3). In fact, we
can add to K± two constant γ± without changing (2.15) and (2.16); however,
if we look for regular enough (H1) solutions in S, the two constants are no
longer independent (see equation (3.4) below). As we will discuss later, the
value of the undetermined constant can be related to the circulation of the
velocity field generated by ψ.

§3. Variational formulation for finite energy solutions.

We are concerned with unique solvability of problem Pν for any value of the
positive parameter ν (equivalently, for any velocity of the unperturbed flux
at upstream infinity). As it is known, a critical value of this parameter is
ν = 1/H; in fact, when ν < 1/H (supercritical flow) it can be proved that
the problem is uniquely solvable and that every solution is exponentially
vanishing at infinity (this corresponds to the case of a solitary wave in the
water wave problem). This result relies on a variational formulation of the
problem, which can also applied to other types of obstacles in a supercritical
stream [10]; on the contrary, there are no results on the resolubility of the
problem for ν > 1/H (subcritical flow). In fact, the standard methods men-
tioned in the introduction, which (partially) solve the problem in the case
of smooth obstacles, are not suitable for a beam; thus, it seems reasonable
to consider the extension of the variational approach to the subcritical flow.
In this case, however, the perturbed flow will not vanish (in general) at in-
finity downstream, since steady periodic water waves are known to exist in
the subcritical regime; therefore, the solution will not belong to a functional
space with finite Dirichlet norm. Nevertheless, as it was shown in the case of
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semi-submerged obstacles [8], one can search weak solutions of finite energy
belonging to some subspace of the Sobolev space H1(S); subsequently, by a
suitable regularization procedure, one uniquely associates to a given varia-
tional solution a solution of problem Pν . In this section, we introduce the
variational formulation of the problem and discuss its solvability on suitable
subsets of H1(S). As we will see, the value ν = 1/b (where b is the depth of
the beam) is also critical in the proof of solvability.
To begin with, we take into account condition (2.12) by defining the subspace
of the functions with vanishing trace on B:

H1
B(S) := {ψ ∈ H1(S), ψ|B = 0}. (3.1)

We now show that the functions in H1
B(S) satisfy the Poincarè inequality;

hence, the Sobolev norm on H1
B is equivalent to the Dirichlet norm :

‖ψ‖2 =

∫

S

|∇ψ|2dxdy. (3.2)

Proposition 3.1 For any ψ ∈ H1
B(S) there holds

∫

S

|ψ|2dxdy ≤ C

∫

S

|∇ψ|2dxdy, (3.3)

for some positive constant C.

Proof: Fix R > x0 and consider the restrictions of ψ to

SR = S ∩ {(x, y), |x| < R}

and to S\SR. In the latter (unbounded) region the bound

∫

S\SR

|ψ|2dxdy ≤ C

∫

S\SR

|∇ψ|2dxdy

is directly verified by elementary estimates on smooth functions vanishing
at the edge of a strip and by standard density arguments; moreover, we
can divide SR into two bounded and Lipschitz domains (e.g., the rectangle
R0 = (−x0, x0)× (−H,−b) and its complement in SR) such that ψ vanishes
on some part of their boundaries with positive one-dimensional measure.
Since the Poincaré inequality holds for such functions and domains [14, ch.4
§7], the bound (3.3) follows.•
In order to properly define a weak formulation of the problem in H1

B(S),
we must take into account the trace properties of H1 functions in a domain
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with a cut. In fact, if we look for solutions in H1(S) satisfying the boundary
condition (2.10), it is necessary to assume K± ∈ H1/2(I), together with
certain compatibility conditions for the data in the neighborhood of the end
points of the beam (±x0,−b) [15]; in the case of continuous data K±, these
conditions simply become

K+(±x0) = K−(±x0), (3.4)

which obviously imply the previous zero flux condition (2.16). Note further
that assuming the no-flow data (2.5) in (2.15) we can choose K± = cf±+γ in
(2.10), where γ is an arbitrary constant. For, in that case the compatibility
conditions become f+(x0) = f−(x0), f+(−x0) = f−(−x0); as previously
remarked, this simply means that boundary of the obstacle (before shrinking
it to a beam, see the previous section) is a closed curve.

We can now state the variational form of problem Pν :
Find ψ ∈ H1

B(S) satisfying ψ± = K± on the two sides of I and such that

∫

S

∇ψ∇v dxdy − ν

∫

F

ψv dx = 0, (3.5)

for every v ∈ H1
B(S), with v± = 0.

By our previous assumptions on the boundary data, there exists ψ0 ∈ H1
B

satisfying the boundary conditions (2.10); then, we can write ψ = ψ1 + ψ0,
where ψ1 vanishes on I and satisfies

∫

S

∇ψ1∇v dxdy − ν

∫

F

ψ1v dx = −
∫

S

∇ψ0∇v dxdy + ν

∫

F

ψ0v dx, (3.6)

for every v ∈ H1
B(S), with v± = 0. It is readily verified that the bilinear

form and the linear functional in equation (3.6) are continuous on H1
B(S) for

every value of the parameter ν; on the contrary, coercivity depends critically
on ν. To see this in detail, let us define as before

Sx0 = S ∩ {(x, y), |x| < x0},

and let Q0 = (−x0, x0) × (−b, 0); note that Sx0 = R0 ∪ Q0, where R0 was
defined in the proof of proposition 3.1.
Then, by Hölder inequality, it readily verified that every v ∈ H1

B satisfies the
following bound:

ν

∫

F\[−x0,x0]

|v|2dx ≤ νH

∫

|x|>x0

dx

∫ 0

−H

dy|vy(x, y)|2
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≤ νH

∫

S\Sx0

|∇v|2dxdy,

that is
∫

S\Sx0

|∇v|2dxdy − ν

∫

F\[−x0,x0]

|v|2dx ≥ (1 − νH)

∫

S\Sx0

|∇v|2dxdy. (3.7)

Similarly, if v vanishes on the upper side of I:

∫

Q0

|∇v|2dxdy − ν

∫ x0

−x0

|v|2dx ≥ (1 − νb)

∫

Q0

|∇v|2dxdy. (3.8)

By the previous estimates, we are led to consider three disjoint intervals of
values for the parameter ν : 0 < ν < 1/H, 1/H < ν < 1/b and ν > 1/b.
Actually, if ν belongs to the first interval, we get 1 − νb > 1 − νH > 0 in
(3.7), (3.8), so that we can use both the estimates to achieve coercivity of
the bilinear form (3.6). In the second interval we have 1 − νH < 0, so that
we loose the coercivity estimate in S\Sx0 ; finally, in the last interval both
the coefficients at the right hand sides of (3.7), (3.8) become negative.
As previously remarked, when ν < 1/H one easily gets (via the Lax-Milgram
theorem) a unique variational solution ψ ∈ H1

B(S); then, by standard me-
thods, one shows that ψ is harmonic in S, smooth outside any neighborhood
of the beam and exponentially vanishing at infinity [11]. We will now focus
on the remaining two cases.

§4. Weak solutions for 1/H < ν < 1/b.

We first remark that for every ν > 1/H there are two independent solutions
of the ”free problem”, i.e., ∆ψ = 0 in the strip Σ defined in section 2, ψ = 0
on B and ψy = νψ on F ; they are given by

S0(x, y) = sin(ν0x) sinh(ν0(y + H));

C0(x, y) = cos(ν0x) sinh(ν0(y + H)),
(4.1)

where ν0 is the positive solution of

tanh(ν0H) =
ν0

ν
. (4.2)

It is convenient to define, for a fixed ξ ∈ R, two linear combinations of these
functions, namely

Φ0(x, y; ξ) = cos(ν0ξ)S0(x, y) + sin(ν0ξ)C0(x, y);

Ψ0(x, y; ξ) = cos(ν0ξ)S0(x, y) − sin(ν0ξ)C0(x, y).
(4.3)
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Let us fix a point (ξ, 0) ∈ F , with |ξ| ≥ x0 and let ψ be a function harmonic
in S\Sx0 , satisfying the conditions (2.11), (2.12) and vanishing at infinity;
by applying Green’s theorem to ψ and to the second of (4.3) we get

∫

∂Qξ

(

ψ∂nΨ0 − Ψ0∂nψ
)

= 0,

where Qξ denotes the half strip (ξ,+∞) × (−H, 0) if ξ > x0 and the half
strip (−∞, ξ) × (−H, 0) if ξ < −x0.
Developing the calculations (see also [8] §2.1) we get the formula

∫ 0

−H

sinh[ν0(y + H)]ψ(ξ, y) dy = 0, ∀ |ξ| ≥ x0. (4.4)

By integration by parts we have

cosh(ν0H)ψ(x, 0) =

∫ 0

−H

cosh ν0(y + H)ψy(ξ, y)dy. (4.5)

By squaring both members of (4.5), integrating on F and using Cauchy-
Schwarz inequality taking account of (4.2), we get

ν

∫

F\[−x0,x0]

|ψ|2

≤ ν

cosh2(ν0H)

∫

R\[−x0,x0]

{

∫ 0

−H

cosh2(ν0(y + H))dy

∫ 0

−H

|ψy(x, y)|2dy

}

≤ 1

2

(

1 +
2ν0H

sinh(2ν0H)

)

||∇ψ||2L2(S\Sx0 ). (4.6)

Notice that the constant appearing at the right hand side is strictly less
than 1 for every ν0 > 0.
Formula (4.6) and the form (3.6) of the variational problem suggest the
definition of the following linear closed subspace of H1

B(S):

U∗ =
{

ψ ∈ H1
B(S) : ψ|I = 0,

∫ 0

−H

sinh[ν0(y + H)]ψ(x, y) dy = 0 ∀ |x| ≥ x0.
}

(4.7)
Now, the bound (4.6) can be exploited to obtain a new coercivity estimate
on U∗ which replaces (3.7). Then, one can prove the following
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Theorem 4.1 : Let 1/H < ν < 1/b and let K± ∈ H1/2(I) be continuous
functions satisfying (3.4). Then, there is ψ ∈ H1

B(S) which satisfies the
boundary conditions (2.10), (2.12) (in the sense of the traces of H1 functions)
and such that (3.5) holds ∀ v ∈ U∗. Moreover, ψ is uniquely determined if
one requires the additional condition (4.4).

Proof : We write ψ = ψ1 + ψ0 as before equation (3.6), where ψ0 ∈ H1
B

satisfies the boundary conditions (2.10) and ψ1|I = 0. We first show that ψ0

can be chosen to satisfy (4.4); actually, for every ψ0 we may define

ψ̃0(x, y) = ψ0(x, y) −
∫ 0

−H

ψ0(x, s) sinh[ν0(s + H)χ0(y)dy,

where χ0 is a smooth function such that supp χ0 ⊂ (−H,−b) ∪ (−b, 0) and

∫

sinh[ν0(y + H)]χ0(y)dy = 1.

Then, ψ̃0 belongs to H1
B(S), satisfies (4.4) (for every ξ ∈ R) and the same

boundary conditions as ψ0 (in the sequel, we still denote by ψ0 such a func-
tion).
The problem is now reduced to find ψ1 ∈ U∗ satisfying (3.6) for every v ∈ U∗.
We claim that the bilinear form at the left hand side of (3.6) is coercive on
U∗; in fact, every v ∈ U∗ satisfies (4.6), so that, by (3.8) and by the definition
(3.2) of the norm, we get

∫

S

|∇v|2dxdy − ν

∫

F

|v|2dx =

=

∫

S\Sx0

|∇v|2dxdy − ν

∫

F\[−x0,x0]

|v|2dx +

∫

Sx0

|∇v|2dxdy − ν

∫ x0

−x0

|v|2dx

≥ 1

2

(

1− 2ν0H

sinh(2ν0H)

)

‖∇v‖2
L2(S\Sx0)

+ (1− νb)‖∇v‖2
L2(Sx0)

≥ α‖v‖2, (4.8)

where

α = min
{

1 − νb,
1

2

(

1 − 2ν0H

sinh(2ν0H)

)}

> 0.

Hence, our claim follows. Then, (3.6) has the unique solution ψ1 ∈ U∗, so
that ψ = ψ1 + ψ0 satisfies (3.5) (for every v ∈ U∗), (4.4) and the boundary

conditions. It remains to prove uniqueness; if ψ̂ is another solution satisfying
(4.4) and the same boundary conditions as ψ, it follows that ψ−ψ̂ is a solution

in U∗ of the variational equation (3.5), so that ψ − ψ̂ = 0 by coercivity.•
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§5. Weak solutions for ν > 1/b.

In this case, we have to introduce further restrictions on the test functions in
the variational equation in order to achieve an additional coercivity estimate
for |x| ≤ x0 similar to (4.8). To this aim, we proceed as in the previous
section and consider an a priori relation valid for any harmonic function ψ
in the rectangle Q0 = (−x0, x0) × (−b, 0), which satisfies the first of (2.10)
and (2.11).
Let us now define the functions

S1(x, y) = sin(ν1x) sinh(ν1(y + b));

C1(x, y) = cos(ν1x) sinh(ν1(y + b)),
(5.1)

where ν1 is the positive solution of

tanh(ν1b) =
ν1

ν
. (5.2)

As before, we define the two linear combinations

Φ1(x, y; ξ) = cos(ν1ξ)S1(x, y) + sin(ν1ξ)C1(x, y);

Ψ1(x, y; ξ) = cos(ν1ξ)S1(x, y) − sin(ν1ξ)C1(x, y).
(5.3)

Then, for any fixed point (ξ, 0) ∈ F , with |ξ| ≤ x0 we apply Green’s theorem
to ψ and Ψ1 in the rectangle (ξ, x0)× (−b, 0); by elementary calculations we
get (see also [9], Lemma 2.3)

∫ 0

−b

ψ(ξ, y) sinh[ν1(y + b)]dy = H(ξ), (5.4)

where

H(ξ) =

∫ x0

ξ

K+(x) sin[ν1(ξ − x)]dx + α cos(ν1ξ) + β sin(ν1ξ) (5.5)

and α, β are suitable constants.

Now, for any given H ∈ H1(−x0, x0) we define the subset

WH ⊂ H1
B

of the functions ψ satisfying (5.4) for every ξ ∈ [−x0, x0] and (4.4) for |ξ| ≥
x0. Note that, being the intersection of closed hyperplanes in H1

B , WH is a
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closed and convex subset. If H = 0, the homogeneous conditions (5.4) and
(4.4) define a subspace W0; we further define the subspace

V∗ = {v ∈ W0, v|I = 0}. (5.6)

Clearly, we have V∗ ⊂ U∗ (see (4.7)). We can now state

Theorem 5.1 : Let ν > 1/b and let K± ∈ H1/2(I) be continuous functions
satisfying (3.4). Then, for every given H ∈ H1(−x0, x0), there is a unique
ψ ∈ WH satisfying the boundary conditions (2.10), (2.12) (in the sense of
the traces of H1 functions) and such that (3.5) holds ∀ v ∈ V∗.

Remark : We stress that, in order to uniquely determine the weak solution
ψ of the previous theorem, we need a supplementary condition specified by
the function H in (5.4); clearly, if we require that ψ is harmonic in Q0, it is
necessary to choose H as in (5.5). However, even in this case we are left with
two undetermined constants α, β. In particular, we have a two-dimensional
subspace of weak solutions of the problem with homogenous boundary data
(see below).

Proof of theorem 5.1 : We write again ψ = ψ1 + ψ0, where ψ0 ∈ H1
B

satisfies the boundary conditions (2.10) and ψ1|I = 0. We now show that
we can choose ψ0 ∈ WH. Let χ0, χ1, be smooth functions with suppχ0 ∈
(−H,−b), suppχ1 ∈ (−b, 0) and such that

∫

sinh[ν0(y + H)]χ0(y)dy =

∫

sinh[ν1(y + b)]χ1(y)dy = 1,

∫

sinh[ν0(y + H)]χ1(y)dy = 0,

where ν0, ν1 satisfy respectively (4.2) and (5.2); moreover, let H̃ ∈ H1(R) be
any extension of H. Then, for every ψ0 ∈ H1

B we define

ψ̃0(x, y) = ψ0(x, y) −
[

∫ 0

−H

ψ0(x, s) sinh[ν0(s + H)]ds
]

χ0(y)

+
[

H̃(x) −
∫ 0

−b

ψ0(x, s) sinh[ν1(s + b)]ds
]

χ1(y).

It is readily verified that ψ̃0 belongs to WH and satisfies the same boundary
conditions as ψ0 (again, we redefine ψ̃0 → ψ0).
We now have to find ψ1 ∈ V∗ satisfying (3.6) for every v ∈ V∗. By recalling the
discussion of the previous section, it is straightforward to check the coercivity
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of the left hand side of (3.6) in V∗; actually, by the same calculations that
led from (4.4) to (4.5), we also get

cosh(ν1b)v(x, 0) =

∫ 0

−b

cosh[ν1(y + b)]vy(x, y)dy,

for |x| ≤ x0. By squaring both members, integrating on (−x0, x0) and using
Cauchy-Schwarz inequality we obtain

ν

∫ x0

−x0

|v|2dx ≤ 1

2

(

1 +
2ν1b

sinh(2ν1b)

)

||∇v||2L2(Q0)
,

for every v ∈ V∗. By this bound, by (4.6) and by splitting the integrals as in
the second line of (4.8) we now find

∫

S

|∇v|2dxdy − ν

∫

F

|v|2dx ≥

≥ 1

2

(

1− 2ν0H

sinh(2ν0H)

)

‖∇v‖2
L2(S\Sx0)

+
1

2

(

1− 2ν1H1

sinh(2ν1b)

)

‖∇v‖2
L2(Sx0)

(5.7)

and we conclude that coercivity holds with the constant

α =
1

2

(

1 − 2ν1b

sinh(2ν1H1)

)

> 0.

(Note that, by (4.2) and (5.2) we have ν0H > ν1b). Then, (3.6) is uniquely
solvable in V∗ and ψ = ψ1 +ψ0 ∈ WH satisfies (3.5) for every v ∈ V∗ and the
boundary conditions. Uniqueness follows as in theorem 4.8.•
§6. Properties of the variational solutions.

We now investigate the properties of the solutions given by theorems 4.1 and
5.1 of the previous sections. As we will see, a weak solution is represented
by a function which (in general) is not harmonic in the domain S; this is
not surprising, since we already stressed that for ν > 1/H a solution of
problem Pν does not vanish at downstream infinity. The subsequent theorems
characterize the variational solutions in the two regimes 1/H < ν < 1/b and
ν > 1/b.

Theorem 6.1: Assume that 1/H < ν < 1/b and let ψ ∈ H1
B(S) be defined

by theorem 4.1. Then, ψ satisfies the boundary conditions of problem Pν

and there exist real constants λ+, λ− such that

∆ψ(x, y) = [λ+δ(x − x0) + λ−δ(x + x0)] sinh[ν0(y + H)], (6.1)
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for (x, y) ∈ S, where δ denotes the Dirac delta function. Moreover, if

ψ̂ ∈ H1
B(S) solves (6.1) with (possibly different) constants λ̂± and satisfies

the same boundary conditions as ψ, then ψ̂ = ψ (and therefore λ̂± = λ±).

Proof. Let ϕ0 be a smooth function with support in S and such that

∫ 0

−H

ϕ0(±x0, y) sinh[ν0(y + H)]dy = 0. (6.2)

Furthermore, we set

φ0(x) = c−1
0

∫ 0

−H

ϕ0(x, y) sinh[ν0(y + H)]dy, (6.3)

where

c0 =

∫ 0

−H

sinh2[ν0(y + H)]dy =
H

2

( sinh(2ν0H)

2ν0H
− 1

)

.

Define now

v(x, y) =

{

ϕ0(x, y), if |x| ≤ x0,
ϕ0(x, y) − φ0(x) sinh[ν0(y + H)], if |x| ≥ x0.

(6.4)

Then, v ∈ U∗ (see (4.7)) and by inserting it in the variational equation (3.5)
we find, after suitable integrations by parts (see theorem 6.2 below)

∫

S

∇ψ∇ϕ0 dxdy = 0, (6.5)

By (6.5) we have that ψ is (weakly) harmonic for x 6= ±x0 in S; then, equa-
tion (6.1) is obtained by splitting the test functions space as a direct sum
of the subspace of the functions satisfying (6.2) with its (two-dimensional)
supplementary subspace (see also theorem 6.2 below). The boundary condi-
tions now follow by the same arguments used in [9, theorem 3.1]. Finally, it

can be checked that ψ̂ − ψ ∈ U∗ and satisfies the variational equation (3.5)

in U∗; then, we get ψ̂ = ψ by coercivity.

Theorem 6.2: Assume that ν > 1/b and let ψ ∈ WH be defined by theorem
5.1, where H is given by (5.5) with arbitrary constants α, β. Then, ψ satisfies
the boundary conditions of problem Pν and there exist real constants λ+,
λ−, µ+, µ− such that

∆ψ(x, y) = [λ+δ(x − x0) + λ−δ(x + x0)] sinh[ν0(y + H)]

+[µ+δ(x − x0) + µ−δ(x + x0)] sinh[ν1(y + b)]χ[−b,0](y), (6.6)
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for (x, y) ∈ S, where χ[−b,0](y) denotes the characteristic function of the

interval [−b, 0]. Moreover, if ψ̂ solves (6.6) with (possibly different) constants

λ̂±, µ̂± and satisfies the same boundary conditions and the same additional
condition (5.4) as ψ, then ψ̂ = ψ (and therefore λ̂± = λ±, µ̂± = µ±).

Proof. We provide a detailed proof of equation (6.6); then, the checking of
the boundary conditions and of uniqueness will follow as in theorem 6.1.
Let us now denote by ϕ0 a smooth function with support in S, satisfying
(6.2) and the additional conditions

∫ 0

−b

ϕ0(±x0, y) sinh[ν1(y + b)]dy = 0. (6.7)

We further set

φ1(x) = c−1
1

∫ 0

−b

ϕ0(x, y) sinh[ν1(y + b)]dy, (6.8)

where

c1 =

∫ 0

−b

sinh2[ν1(y + b)]dy =
b

2

( sinh(2ν1b)

2ν1b
− 1

)

and define

v(x, y) =

{

ϕ0(x, y) − φ1(x) sinh[ν1(y + b)]χ[−b,0](y), if |x| ≤ x0,
ϕ0(x, y) − φ0(x) sinh[ν0(y + H)], if |x| ≥ x0.

(6.9)

We readily check that v ∈ V∗ (see (5.6)); by inserting (6.9) in the variational
equation (3.5) we find,

∫

S

∇ψ∇ϕ0 dxdy =

∫ x0

−x0

∫ 0

−b

{

ψx(x, y)φ′
1(x) sinh[ν1(y+b)]+ψy(x, y)φ1(x)ν1 cosh[ν1(y+b)]

}

dxdy

+

∫

|x|≥x0

∫ 0

−H

{

ψx(x, y)φ′
0(x) sinh[ν0(y + H)]

+ψy(x, y)φ0(x)ν0 cosh[ν0(y + H)]
}

dxdy

−ν sinh(ν1b)

∫ x0

−x0

ψ(x, 0)φ1(x)dx − ν sinh(ν0H)

∫

|x|≥x0

ψ(x, 0)φ0(x)dx.
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Furthermore, by recalling (4.4), (5.4) and (5.5) and integrating by parts the
terms with the derivative ψy taking account of the boundary conditions, we
get

∫

S

∇ψ∇ϕ0 dxdy =

∫ x0

−x0

{φ′
1(x)H′(x) − φ1(x)ν1[(K+(x) + ν1H(x)]}dx,

where we also used (4.2) and (5.2) to cancel the integrals on the upper boun-
dary. Finally, by recalling that φ1(±x0) = 0 we have

∫

S

∇ψ∇ϕ0 dxdy = −
∫ x0

−x0

{φ0(x)[H′′(x) + ν2
1H(x) + ν1K+(x)]}dx

By (5.5) we readily verify that H′′(x) + ν2
1H(x) = −ν1K+(x); hence, we still

obtain (6.5) for every ϕ0 satisfying (6.2) and (6.7). In order to prove (6.6)
let us fix two pair of test functions η±

i , i = 0, 1 such that

supp η+
i ⊂ {(x, y) ∈ S, x > −x0}, supp η−

i ⊂ {(x, y) ∈ S, x < x0}

and satisfying

∫ 0

−H

η±
i (±x0, y) sinh[ν0(y + H)]dy = δi,0,

∫ 0

−b

η±
i (±x0, y) sinh[ν1(y + b)]dy = δi,1.

Furthermore, for any ϕ ∈ D(S) we define

γ±
0 =

∫ 0

−H

ϕ(±x0, y) sinh[ν0(y + H)]dy,

γ±
1 =

∫ 0

−b

ϕ(±x0, y) sinh[ν1(y + b)]dy.

Then, the function

ϕ0(x, y) = ϕ(x, y) −
1

∑

i=0

{γ+
i η+

i (x, y) + γ−
i η−

i (x, y)}

satisfies (6.2) and (6.7) so that, by (6.5),

∫

S

∇ψ∇ϕdxdy =
1

∑

i=0

{

γ+
i

∫

S

∇ψ∇η+
i (x, y) + γ−

i

∫

S

∇ψ∇η−
i (x, y)

}

. (6.10)
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Thus, by the definition of γ±
i we obtain (6.6) with

λ± =

∫

S

∇ψ∇η±
0 , µ± =

∫

S

∇ψ∇η±
1 .

§7. Regularization and solvability of the problem.

As we clarified in the previous section, a variational solution is not in general
a solution of problem Pν , since it is not harmonic in S. Roughly speaking, this
is because the weak solution does not include the ”oscillating parts” of the
stream function which appear downstream the beam for ν > 1/H (with wave
number given by (4.2)) and also between the beam and the free surface when
ν > 1/b (with wave number given by (5.2)). In this section, we ”regularize”
the weak solutions described in theorems 6.1 and 6.2 (respectively, in the two
regimes 1/H < ν < 1/b and ν > 1/b) by adding suitable oscillating terms
satisfying the homogeneous boundary conditions (2.10)-(2.12) in such a way
to obtain (unique) solutions of problem Pν .
We first outline the case 1/H < ν < 1/b, as its regularization is very similar
to the existing ones for a surface beam [4], [11] and for a surface-piercing
body [8]. The first step is to modify the weak solution ψ in order to ob-
tain a function harmonic through S : let us set Φ̃0(x, y) = Φ0(x, y;x0) and
Ψ̃0(x, y) = Ψ0(x, y;x0), where Φ0, Ψ0, are defined by (4.3). By elementary
calculations, the function

ψ̃ =







ψ + λ
−

ν0
Φ̃0 if x < −x0,

ψ if |x| ≤ x0,

ψ − λ+

ν0
Ψ̃0 if x > x0,

(7.1)

is harmonic in S and satisfies the same boundary conditions as ψ; we remark,
however, that ψ̃ is not a solution to problem Pν (unless λ− = 0) since it
oscillates both at +∞ and −∞ and therefore does not satisfy the asymptotic
condition (2.13). In order to get rid of the unwanted waves at −∞, we
exploit the properties of two variational solutions, denoted by ψs and ψc,
satisfying special conditions on the beam : ψs and ψc are the two (uniquely
determined) functions given by theorem 4.1, where :

for ψs we take K± = sin(ν0x);

for ψc we take K± = cos(ν0x).
(7.2)

By the symmetry properties of this data and by uniqueness, we have
ψs(−x, y) = −ψs(x, y) and ψc(−x, y) = ψc(x, y); as a consequence, ψs and
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ψc satisfy (6.1) with λ+ = −λ− ≡ λs and λ+ = λ− ≡ λc, respectively. For
special values of the parameter ν0, the functions ψs,c, and the coefficients
λs,c are explicitly known; for, by defining

S̃0(x, y) =
sinh(ν0(y + H))

sinh[ν0(H − b)]
sin(ν0x), C̃0(x, y) =

sinh(ν0(y + H))

sinh[ν0(H − b)]
cos(ν0x),

we have, for ν0x0 = nπ, n = 1, 2, ... :

ψs(x, y) = S̃0(x, y) for |x| ≤ x0, ψs = 0 for |x| > x0; (7.3)

with λs = (−1)n+1ν0/ sinh[ν0(H − b)]. Similarly, if ν0x0 = (n − 1/2)π, we
have

ψc(x, y) = C̃0(x, y) for |x| ≤ x0, ψc = 0 for |x| > x0, (7.4)

with λc = (−1)n+1ν0/ sinh[ν0(H − b)].
Let us now modify ψs and ψc as in (7.1) with the correspondent coefficients
λs, λc, in order to obtain functions ψ̃s,c harmonic through S. Finally, we set

ζs
0 = ψ̃s − S̃0, ζc

0 = ψ̃c − C̃0. (7.5)

The harmonic functions ζs
0 and ζc

0 satisfy conditions (2.9)-(2.12) of problem
Pν with vanishing boundary data; furthermore, they have the same symme-
try properties as ψs and ψc respectively, and oscillate at both directions at
infinity. Hence, by a suitable combination of them, we may suppress the
oscillations at −∞ of ψ̃ in (7.1). Let us define

ω = ψ̃ + aζs
0 + bζc

0 (7.6)

and choose the coefficients a and b in such a way that ω satisfies (2.13); then,
ω will be the required solution of problem Pν . By writing the asymptotic
expression of ω for x → −∞ (which can be derived from (7.1) and (7.5) taking
account that the variational parts, ψ and ψs,c, are exponentially vanishing)
and imposing that the coefficients of the oscillatory terms vanish, we get the
system

{
[

λs cos(ν0x0) + ν0

sinh[ν0(H−b)]

]

a − λc cos(ν0x0)b = λ− cos(ν0x0),

λs sin(ν0x0)a −
[

λc sin(ν0x0) − ν0

sinh[ν0(H−b)]

]

b = λ− sin(ν0x0).
(7.7)

This gives

a =
λ−

4 cos(ν0x0); b =
λ−

4 sin(ν0x0), (7.8)
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where
4 =

ν0

sinh[ν0(H − b)]
+ λs cos(ν0x0) − λc sin(ν0x0). (7.9)

With this choice, the asymptotic expression of ω for x → +∞ writes

ω = O(e−µ1|x|) + AS0 + BC0, (7.10)

where µ1 is the least positive solution of tan(µH) = µ
ν and characterize

the decay at infinity of the variational solution [11]. The coefficients of the
oscillating terms can be easily calculated from (7.5), (7.6) and (7.8).
We remark that, in the special case ν0x0 = nπ (ν0x0 = (n − 1/2)π), the
function ζs ( ζc) identically vanishes. Moreover, we will show below that

4 = J0
sinh[ν0(H−b)]

c0
sin(ν0x0) cos(ν0x0), (7.11)

where J0 > 0 for every ν0 > 0, i.e. for every ν > 1/H (see also [10, propo-
sition 4.8]); nevertheless, the solution (7.6) as well as the coefficients A and
B have well defined limits for ν0x0 → mπ

2 . The calculations are the same as
in the case of the beam [4, proposition A.2] (see also [8], section 2.2). The
conclusion of this discussion is :

Theorem 7.1: For 1/H < ν < 1/b, there is a unique solution ω to problem
Pν which, for x → +∞, satisfies (7.10), with suitably defined A and B.
The assertion of uniqueness follows exactly in the same way as it was done
for the surface beam ([4, theorem 3.2]).

We now discuss the case ν > 1/b, whose regularization requires a more careful
analysis. In fact, if ψ is a weak solution as in theorem 6.2, we now see that
the function ψ̃ defined by (7.1) is no longer harmonic but it satisfies

∆ψ̃(x, y) = [µ+δ(x − x0) + µ−δ(x + x0)] sinh[ν1(y + b)]χ[−b,0](y). (7.12)

On the other hand, we know that a variational solution is not uniquely de-
termined by the boundary data, but it depends on two arbitrary constants
(see (5.4), (5.5)); clearly, the same is true for ψ̃. Thus, it is natural to ask
whether such constants can be determined by requiring µ± = 0 in the above
equation.
To begin with, we still denote by ψs, ψc the two weak solutions, given by the-
orem (5.1), which satisfy (7.2) and the additional condition (5.4) respectively
in the form :

∫ 0

−b

ψs(ξ, y) sinh[ν1(y + b)]dy =
ν1

ν2
0 − ν2

1

sin(ν0ξ),

∫ 0

−b

ψc(ξ, y) sinh[ν1(y + b)]dy =
ν1

ν2
0 − ν2

1

cos(ν0ξ),

(7.13)
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for every ξ ∈ [−x0, x0]. We remark that the right hand sides of (7.13) are
obtained from (5.5) by inserting K± given by (7.2) and with a suitable choice
of the coefficients α, β. It is readily verified that ψs and ψc maintain the
previous symmetry properties with respect to x; hence, they satisfy (6.6)
respectively with λ+ = −λ− ≡ λs, µ+ = −µ− ≡ µs and λ+ = λ− ≡ λc,
µ+ = µ− ≡ µc. Moreover, by direct computations it follows that (7.3), (7.4),
still hold respectively for ν0x0 = nπ and ν0x0 = (n − 1/2)π, with the same
values of λs,c and with µs,c = 0.
By recalling the remark following theorem 5.1, we can now consider another
pair of special solutions of the variational problem, denoted by χs, χc, with
homogeneous boundary data and such that

∫ 0

−b

χs(ξ, y) sinh[ν1(y + b)]dy = sin(ν1ξ),

∫ 0

−b

χc(ξ, y) sinh[ν1(y + b)]dy = cos(ν1ξ),

(7.14)

for every ξ ∈ [−x0, x0]. The following properties are easily verified:
χs(−x, y) = −χs(x, y), χc(−x, y) = χc(x, y); then, χs and χc satisfy (6.6)
with λ+ = −λ− ≡ ξs, µ+ = −µ− ≡ υs and λ+ = λ− ≡ ξc, µ+ = µ− ≡ υc,
respectively. For special values of the parameter ν1, the functions χs,c, and
the coefficients ξs,c, υs,c are explicitly known; in fact, by setting

S̃1(x, y) =
sinh(ν1(y + b))

c1
sin(ν1x), C̃1(x, y) =

sinh(ν1(y + b))

c1
cos(ν1x),

where the constant c1 was defined after (6.8), we have for ν1x0 = nπ, n =
1, 2, ... :

χs(x, y) = S̃1(x, y)χ[−b,0](y) for |x| ≤ x0, χs = 0 for |x| > x0;
(7.15)

with ξs = 0 and υs = (−1)n+1ν1/c1. Similarly, if ν1x0 = (n−1/2)π, we have

χc(x, y) = C̃1(x, y)χ[−b,0](y) for |x| ≤ x0, χc = 0 for |x| > x0,
(7.16)

with ξc = 0 and υc = (−1)n+1ν1/c1.
Let us now define as before in (7.1) the functions ψ̃s, ψ̃c, χ̃s, χ̃c; furthermore,
let ζs

0 , ζc
0 be given as in (7.5) and set :

ζs
1 = χ̃s; ζc

1 = χ̃c.

Clearly, ζs
0 , ζc

0 and ζs
1 , ζc

1 satisfy the homogeneous boundary conditions of
problem Pν and the equation (7.12) respectively with µ± = ±µs, µ± = µc
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and µ± = ±υs, µ± = υc. Then, if ψ is a weak solution given by theorem 6.2
and ψ̃ is defined as in (7.1), we set

ω = ψ̃ + a0ζ
s
0 + b0ζ

c
0 + a1ζ

s
1 + b1ζ

c
1. (7.17)

We want to choose the four constants a0, a1, b0, b1, in such a way to satisfy
the two requirements :

i) ω is harmonic in S,
ii) ω satisfy the asymptotic condition (2.13).

In that case, the function ω will be a solution to problem Pν .
Let us now write explicitly the two conditions i) and ii); to this aim, we
define the following coefficients:

Λs
c = λs cos(ν0x0) +

ν0

sinh[ν0(H − b)]
; Λc

c = −λc cos(ν0x0);

Λs
s = λs sin(ν0x0); Λc

s = −λc sin(ν0x0) +
ν0

sinh[ν0(H − b)]
.

Ξs
c = ξs cos(ν0x0); Ξc

c = −ξc cos(ν0x0);

Ξs
s = ξs sin(ν0x0); ,Ξc

s = −ξc sin(ν0x0). (7.18)

Then, by explicit calculations and taking account of the asymptotic expres-
sion of ω as in (7.7), we get:











µs a0 + µc b0 + υs a1 + υc b1 = −µ+

−µs a0 + µc b0 − υs a1 + υc b1 = −µ−

Λs
c a0 + Λc

c b0 + Ξs
c a1 + Ξc

c b1 = λ− cos(ν0x0),
Λs

s a0 + Λc
s b0 + Ξs

s a1 + Ξc
s b1 = λ− sin(ν0x0).

(7.19)

The system (7.19) is uniquely solvable if and only if

∣

∣

∣

∣

∣

∣

∣

µs µc υs υc

−µs µc −υs υc

Λs
c Λc

c Ξs
c Ξc

c

Λs
s Λc

s Ξs
s Ξc

s

∣

∣

∣

∣

∣

∣

∣

6= 0.

By elementary calculations and by the definitions (7.18), we get

µcυsξc sin(ν0x0) − µsυcξs cos(ν0x0) + υsυc∆ 6= 0, (7.20)

where ∆ is given by (7.9). In order to write condition (7.20) in a more explicit
form, we exploit some features of the coefficients at the left hand side :
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Proposition 7.2 : The following relations hold

µs = −Is sin(ν0x0); µc = −Ic cos(ν0x0);

ξs = Is sinh[ν0(H−b)]

c0
sin(ν1x0); ξc = Ic sinh[ν0(H−b)]

c0
cos(ν1x0);

υs = −ν1

c1
cos(ν1x0) − Js

b sin(ν1x0); υc =
ν1

c1
sin(ν1x0) − Jc

b cos(ν1x0);

4 = J0
sinh[ν0(H−b)]

c0
sin(ν0x0) cos(ν0x0),

where J0 = Js − Jc > 0, Js
b > Jc

b > 0, (Is)2 ≤ JsJs
b , (Ic)2 ≤ JcJc

b ;
the quantities Js, Jc, Js

b , Jc
b are quadratic functionals respectively of ψs, ψc,

χs, χc, while Is, Ic are bilinear forms of the arguments ψs, χs and ψc, χc.
All the above terms depend analytically on ν.

The proof is given in appendix; we only remark here that the above expres-
sions are compatible with the values previously calculated from the explicit
solutions (7.3), (7.4) and (7.15), (7.16).

By proposition 7.2 and by elementary calculations, we can write (7.20) in
the form

sin(ν0x0) cos(ν0x0)[P cos2(ν1x0)+Q sin2(ν1x0)+R sin(ν1x0) cos(ν1x0)] 6= 0,
(7.21)

where
P =

ν1

c1
[(Ic)2 + J0J

c
b ], Q =

ν1

c1
[(Is)2 − J0J

s
b ],

R = (Ic)2Js
b − (Is)2Jc

b + J0

[

Js
b Jc

b −
(ν1

c1

)2
]

.

Thus, the system (7.19) is uniquely solvable if ν0x0 6= kπ/2 (k ∈ N) and
whenever the factor in the square brackets of (7.21) does not vanish. Unfor-
tunately, it is not clear how to write the latter condition in an explicit form;
moreover, one should check whether the solution (7.17) could also be defined
by a suitable limit procedure (as described before theorem 7.1) when ν0 (ν1)
approaches the roots of the left hand side of (7.21).
We will not pursue here this analysis, but we observe that the left hand side
of (7.21) is an analytic function (of the parameter ν) which is not identically
vanishing (take ν such that ν1x0 = nπ); thus, by recalling theorem 7.1 we
get:

Theorem 7.3: There is a unique solution ω to problem Pν for every value
of ν, with the possible exception of a sequence of singular values ν(n) → +∞,
with ν(n) > 1/b for every n. For x → +∞ the solution satisfies (7.10).
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§8. Final remarks and open problems.

We have studied a plane problem describing the linearized steady flow around
a ”thin” submerged obstacle in a heavy ideal fluid. We proved unique solv-
ability for every value of the unperturbed flow velocity c with the possible
exception of a discrete set in the interval 0 < c <

√
gb, where b is the ob-

stacle’s depth. This set must be a subset of the sequence {cn}∞n=1, cn → 0,
where ν(n) = g/c2

n are the zero points of the left hand side of (7.21). We
stress that the coefficients in (7.21) only depend on the geometric data of the
problem, that is the half width of the beam x0, its depth b and the depth H
of the channel’s bottom.
It remains an open question to verify if a given cn is a true singular value
of the problem or if one can recover unique solvability by a suitable limiting
procedure as in the case

√
gb < c <

√
gH. Another interesting (and related)

issue is the connection between the solutions of problem Pν and those of the
problem (2.1)-(2.7) for the velocity potential (see the remark at the end of
section 2). In this context, we note that if ψ solves Pν with boundary data
K± = 1 in condition (2.10) then the corresponding velocity field satisfies the
homogeneous condition ψx = v = 0 on the beam. We conjecture that this
solution represents a kind of vortex flow with non trivial circulation around
the beam and therefore is not represented by a potential field; actually, the
conjecture is verified for a supercritical flow since in that case the circulation
∮

C
{u dx + v dy} through a closed curve C surrounding the beam is given by

−
∫

I

{u+ − u−}dx =

∫

I

{(∂yψ)+ − (∂yψ)−}dx

=

∫

I

ψ{(∂yψ)+ − (∂yψ)−}dx =

∫

S

|∇ψ|2 dxdy − ν

∫

F

|ψ|2 dx > 0,

where in the last line we used the boundary conditions and the divergence
theorem. The strict positivity of the last term follows by νH < 1 and by

the Hölder inequality applied to the identity ψ(x, 0) =
∫ 0

−H
ψy(x, s)ds, which

holds for every x ∈ R since ψ is constant along the beam.
In the case νH > 1 we cannot apply the previous argument, but we expect
that the solution ψ still has non trivial circulation at least for the regular val-
ues of the parameter ν; if not, the (well defined) harmonic conjugate φ would
be a non trivial solution of the homogeneous problem (2.1)-(2.7). From the
above discussion it follows in particular that in order to uniquely determine
the velocity field of a (linearized) stationary flow around a submerged body,
it is necessary to fix the value of the circulation around the obstacle itself.
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Appendix.

Proof of proposition 7.2 :

By the expression of ∆ψs,c, ∆χs,c, we have :

ψs,c
x (x+

0 , y)−ψs,c
x (x−

0 , y) = λs,c sinh[ν0(y+H)]+µs,c sinh[ν1(y+b)]χ[−b,0](y);

χs,c
x (x+

0 , y)−χs,c
x (x−

0 , y) = ξs,c sinh[ν0(y +H)]+υs,c sinh[ν1(y + b)]χ[−b,0](y).
(A.1)

Now, the explicit forms of ψs,c and of χs,c, respectively for ν0x0 = nπ/2 and
for ν1x0 = nπ/2, n = 1, 2, ... (see section 7) justify the following definitions:

ψs(x, y) =

{

sin(ν0x0)ψ̂
s(x, y) + S̃0(x, y) for |x| ≤ x0,

sin(ν0x0)ψ̌
s(x, y) for |x| ≥ x0.

ψc(x, y) =

{

cos(ν0x0)ψ̂
c(x, y) + C̃0(x, y) for |x| ≤ x0,

cos(ν0x0)ψ̌
c(x, y) for |x| ≥ x0.

χs(x, y) =

{

sin(ν1x0)χ̂
s(x, y) + S̃1(x, y)χ[−b,0](y) for |x| ≤ x0,

sin(ν1x0)χ̌
s(x, y) for |x| ≥ x0.

χc(x, y) =

{

cos(ν1x0)χ̂
c(x, y) + C̃1(x, y)χ[−b,0](y) for |x| ≤ x0,

cos(ν1x0)χ̌
c(x, y) for |x| ≥ x0,

(A.2)

where S̃0, C̃0, S̃1, C̃1, were defined in section 7. Clearly, the functions at
the right hand sides of (A.2) are harmonic in Sx0 and in S\Sx0 respectively;
moreover, they satisfy homogenous boundary conditions on F , B and I.
Finally, ψ̌s,c(x, y) and χ̌s,c(x, y) verify (4.4), while the functions ψ̂s,c(x, y),
χ̂s,c(x, y) satisfy the homogeneous condition (5.4), that is :

∫ 0

−b

ψ̂s,c(x, y) sinh[ν1(y + b)]dy = 0,

∫ 0

−b

χ̂s,c(x, y) sinh[ν1(y + b)]dy = 0,

(A.3)

for |x| ≤ x0. In fact, the first line is obtained by (7.13) and by the identity

∫ 0

−b

sinh[ν0(y + H)] sinh[ν1(y + b)]dy = sinh[ν0(H − b)]
ν1

ν2
0 − ν2

1

,

which follows by explicit calculations using (4.2) and (5.2). The second
equation follows from (7.14) and by the definition of c1.
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Then, by (4.4), (7.13) and (7.14), we get the following relations

∫ 0

−H

[ψs,c
x (x+

0 , y) − ψs,c
x (x−

0 , y)]ψ̂s,c(x0, y)dy = − c0

sinh[ν0(H − b)]
λs,c;

∫ 0

−H

[χs,c
x (x+

0 , y) − χs,c
x (x−

0 , y)]χ̌s,c(x0, y)dy = υs,c;

∫ 0

−H

[ψs,c
x (x+

0 , y) − ψs,c
x (x−

0 , y)]χ̌s,c(x0, y)dy = µs,c;

∫ 0

−H

[χs,c
x (x+

0 , y) − χs,c
x (x−

0 , y)]ψ̂s,c(x0, y)dy = − c0

sinh[ν0(H − b)]
ξs,c;

We now transform the left hand sides taking into account (A.2), (A.3) and
integrating by parts:

∫ 0

−H

[ψs
x(x+

0 , y) − ψs
x(x−

0 , y)]ψ̂s(x0, y)dy

=
ν0c0

sinh2[ν0(H − b)]
cos(ν0x0) − Js sin(ν0x0),

where

Js = −
[

∫ 0

−H

ψ̌s
x(x+

0 , y)ψ̌s(x0, y)dy −
∫ 0

−H

[ψ̂s
x(x−

0 , y)]ψ̂s(x0, y)dy
]

=
1

2

[

∫

S\Sx0

|∇ψ̌s|2dxdy − ν

∫

|x|≥x0

|ψ̌s|2dx

]

+
1

2

[

∫

Sx0

|∇ψ̂s|2dxdy − ν

∫ x0

−x0

|ψ̂s|2dx

]

Similarly
∫ 0

−H

[ψc
x(x+

0 , y) − ψc
x(x−

0 , y)]ψ̂c(x0, y)dy

= − ν0c0

sinh2[ν0(H − b)]
sin(ν0x0) − Jc cos(ν0x0),

where

Jc =
1

2

[

∫

S\Sx0

|∇ψ̌c|2dxdy − ν

∫

|x|≥x0

|ψ̌c|2dx

]
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+
1

2

[

∫

Sx0

|∇ψ̂c|2dxdy − ν

∫ x0

−x0

|ψ̂c|2dx

]

By coercivity and by the Dirichlet principle we have (see [8], Lemma 2.4)

Js > Jc > 0.

Moreover,
∫ 0

−H

[χs
x(x+

0 , y) − χs
x(x−

0 , y)]χ̌s(x0, y)dy = −ν1

c1
cos(ν1x0) − Js

b sin(ν1x0)

∫ 0

−H

[χc
x(x+

0 , y) − χc
x(x−

0 , y)]χ̌c(x0, y)dy =
ν1

c1
sin(ν1x0) − Jc

b cos(ν1x0),

where

Js,c
b =

1

2

[

∫

S\Sx0

|∇χ̌s,c|2dxdy − ν

∫

|x|≥x0

|χ̌s,c|2dx

]

+
1

2

[

∫

Sx0

|∇χ̂s,c|2dxdy − ν

∫ x0

−x0

|χ̂s,c|2dx

]

We still have the inequalities

Js
b > Jc

b > 0.

Furthermore:
∫ 0

−H

[ψs
x(x+

0 , y) − ψs
x(x−

0 , y)]χ̌s(x0, y)dy = −Is sin(ν0x0),

∫ 0

−H

[ψc
x(x+

0 , y) − ψc
x(x−

0 , y)]χ̌c(x0, y)dy = −Ic cos(ν0x0),

where

Is,c =
1

2

[

∫

S\Sx0

∇ψ̌s,c · ∇χ̌s,cdxdy − ν

∫

|x|≥x0

ψ̌s,cχ̌s,cdx

]

+
1

2

[

∫

Sx0

∇ψ̂s,c∇χ̂s,cdxdy − ν

∫ x0

−x0

ψ̂s,cχ̂s,cdx

]

Similarly,
∫ 0

−H

[χs
x(x+

0 , y) − χs
x(x−

0 , y)]ψ̂s(x0, y)dy = −Is sin(ν1x0),

∫ 0

−H

[χc
x(x+

0 , y) − χc
x(x−

0 , y)]ψ̂c(x0, y)dy = −Ic cos(ν1x0).

Finally, the bounds (Is)2 ≤ JsJs
b , (Ic)2 ≤ JcJc

b follows by the positivity of
the previous quadratic forms and by elementary calculations.
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