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Abstract

In this paper we present a non Markovian version of quantum trajectory theory, based
on the stochastic Schrödinger equation with stochastic coefficients. In this framework we
can describe measurements in continuous time combined with measurement based feedback.
Indeed, realistic descriptions of a feedback loop have to include delay and thus need a non
Markovian theory. As an application we consider a two-level atom stimulated by a laser.
We introduce closed loop control too, via the stimulating laser, with the aim to enhance the
“squeezing” of the emitted light, and other typical quantum properties. Let us stress the
change of point of view with respect to the usual applications of control theory. Here the
“system” is the two-level atom, but we do not want to control its state, to bring the atom to
a final target state. Our aim is to control the “Mandel Q-parameter” and the spectrum of
the emitted light; in particular the spectrum is not a property at a single time, but involves
a long interval of times (a Fourier transform of the autocorrelation function of the observed
output is needed).

1 Quantum trajectories and control

Stochastic wave function methods for the description of open quantum systems are now
widely used [1–5] and are often referred to as quantum trajectory theory. These approaches are
very important for numerical simulations and allow the continuous measurement description
of detection schemes in quantum optics, namely direct, homodyne and heterodyne photo-
detection [6–9]. In the Markovian case, the stochastic differential equations of the quantum
trajectory theory can be deduced by purely quantum evolution equations, involving quantum
fields and quantum stochastic calculus, and can be interpreted in terms of measurements
in continuous time because they can be related to positive operator valued measures and
instruments, which are the objects representing observables and state changes in the modern
axiomatic formulation of quantum mechanics [8, 10–13].

The whole quantum trajectory theory is well developed in the Markovian case, but to
include memory effects is more and more important. Different generalizations have been
developed, but often without a measurement interpretation [14, 15]. A way to include non
Markovian effects is to start from the stochastic Schrödinger equation (SSE) and to generalize
it by allowing for stochastic coefficients. This can be done without violating the axiomatic
formulation of quantum mechanics and a non Markovian quantum trajectory theory can be
developed in a mathematically consistent way [16]. Some applications to systems affected
by coloured noises and monitored with continuity have been developed [17,18].

In quantum optical systems, even when the Markov approximation for the reduced dy-
namics is well justified, memory can enter into play when imperfections in the stimulating
lasers are taken into account [19] and when feedback loops are introduced to control the
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system [4,20–25]. The so called closed loop control is based on the continuous monitoring of
the system and, so, it fits well in the theory of measurements in continuous time. In some
approximation, one can consider an instantaneous and very singular feedback and in this
case the usual Markov framework is sufficient; however, more realistic descriptions of the
feedback loop, including delay, need a non Markovian theory [9, 21, 22,24,25].

In this paper we present the non Markovian version of the theory of quantum measure-
ments in continuous time, based on the SSE and the stochastic master equation (SME). We
show how to get the physical probabilities for the output of the observation and its mo-
ments. In quantum optical systems the moments of the stochastic output are connected to
the Mandel Q-parameter and to the spectrum of the emitted light (homodyne and hetero-
dyne spectra) and allow for the study of typical quantum properties of the emitted light,
such as squeezing [9, 26, 27]. The theory allows for the introduction of coloured noises, but
our emphasis will be on the possibility of modeling a non perfectly monochromatic and co-
herent stimulating laser and of modeling a measurement based feedback. To illustrate these
concepts we shall use a prototype model, a two-level atom stimulated by a laser, which is
known to have a rich spectrum and to emit squeezed light under particular conditions. We
shall introduce closed loop control, via the stimulating laser, with the aim to control the
squeezing in the observed spectrum, not to control the state of the system. Let us stress the
change of point of view with respect to the usual applications of control theory. Here the
“system” is the two-level atom, but we do not want to control its state, as to bring the atom
to a final target state. Our aim is to control the properties of the emitted light; moreover,
we want to control the spectrum, which is not a property at a single time, but involves a
long interval of times (a Fourier transform in time is needed).

2 The stochastic Schrödinger equation and the stochastic

master equation

The best way to introduce memory in quantum evolutions is to start from a dynamical equa-
tion in the Hilbert space; this approach automatically guarantees the complete positivity
of the evolution of the state (statistical operator) of the system. Moreover, to consider the
linear version of the SSE allows to construct the instruments related to the continuous mon-
itoring even in the non Markov case [16–18]. We shall introduce first several mathematical
objects, from the linear SSE (1) to the instruments (11), and later, thanks to these latter,
we shall give a consistent physical interpretation of the whole construction.

Let H be a separable complex Hilbert space, the Hilbert space of the quantum system of
interest, and let us denote by L(H) the space of the bounded operators on H, by T(H) ⊂
L(H) the trace class and by S(H) ⊂ T(H) the convex set of the statistical operators.

2.1 The linear SSE and the reference probability

Let us consider a reference probability space (Ω,F,Q) with a filtration of σ-algebras(Ft)t
satisfying the usual hypotheses, i.e. A ∈ F with Q(A) = 0 implies A ∈ F0, and Ft =

⋂

T>t FT .
In this probability space we have d continuous standard Wiener processes B1, . . . , Bd and
d′ Poisson processes N1, . . . , Nd′ . Under the reference probability Q, all these processes are
independent and are adapted, with increments independent from the past, with respect to
the given filtration. Every Poisson process Nk is taken with trajectories continuous from the
right and with limits from the left (càdlàg); let λk > 0 be the intensity of Nk.

We assume also to have a set of stochastic processes Li(t), Rk(t), H(t) with values in
L(H), such that H(t)∗ = H(t) and t 7→ Li(t), t 7→ Rk(t), t 7→ H(t) are adapted processes
with trajectories continuous from the left and with limits from the right (càglàd, continuity
in the strong operator topology). We assume also

∫ T

0

(

‖H(t)‖+
∑

i

‖Li(t)‖2 +
∑

k

‖Rk(t)‖2
)

dt ≤ M(T ) < +∞, ∀T > 0,
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where M(T ) is independent of ω.

Then, we introduce the linear SSE (a simplified version of the SSE introduced in Ref. 16)

dφ(t) =

[

−iH(t)− 1

2

d
∑

i=1

Li(t)
∗Li(t)−

1

2

d′

∑

k=1

Rk(t)
∗Rk(t) +

λ

2

]

φ(t−)dt

+

d
∑

i=1

Li(t)φ(t−) dBi(t) +

d′

∑

k=1

(

Rk(t)√
λk

− 1

)

φ(t−) dNk(t), (1)

with initial condition φ(0) = φ0 ∈ H, ‖φ0‖2 = 1, and where λ :=
∑d′

k=0 λk. Equation (1) is an
Itô-type stochastic differential equation admitting a unique strong solution [16, Proposition
2.1].

Here only bounded coefficients are considered, in order not to have mathematical com-
plications, but generalizations to unbounded coefficients are of physical interest. Note that
the filtration (Ft) can be taken bigger than the natural filtration generated by the processes
Bi and Nk, so that the processes Li, Rk, H can depend also on some other external noises.

By normalizing the random vector φ(t) one gets a norm-one Hilbert space process which
turns out to satisfy a non linear stochastic equation (under a new probability); it is this non
linear equation which is usually called SSE. It is this equation which gives the starting point
for powerful numerical simulations, but we skip it here as it is not essential to introduce the
continuous measurements.

2.2 The linear stochastic master equation

The SSE (1) can be translated into a stochastic equation for trace class operators. By
stochastic calculus we compute the stochastic differential of |φ(t)〉〈φ(t)|; in this way we get a
closed linear equation, whose initial condition can be generalized to any pure or mixed state.
This is the linear stochastic master equation (SME) [16, Propositions 3.2 and 3.4]:

dσ(t) = L(t)[σ(t−)]dt+
d

∑

i=1

(

Li(t)σ(t−) + σ(t−)Li(t)
∗
)

dBi(t)

+
d′

∑

k=1

(

1

λk

Rk(t)σ(t−)Rk(t)
∗ − σ(t−)

)

(

dNk(t)− λkdt
)

, (2)

σ(0) = ρ0 ∈ S(H); the operator L(t) is the stochastic Liouvillian

L(t)[τ ] := −i [H(t), τ ]− 1

2

d
∑

i=1

{Li(t)
∗Li(t), τ} −

1

2

d′

∑

k=1

{Rk(t)
∗Rk(t), τ}

+

d
∑

i=1

Li(t)τLi(t)
∗ +

d′

∑

k=1

Rk(t)τRk(t)
∗. (3)

The SME (2) admits a unique strong solution. Typically, the solution σ(t) is not Markovian
as L(t) depends on the past.

The propagator. In the following we shall need the fundamental solution, or propag-
ator, A(t, s) of Eq. (2), i.e. the random linear map on T(H) defined by σ(s) 7→ σ(t). By
construction A(t, s) is completely positive, A(t, t) = 1 and A(t, s) ◦ A(s, r) = A(t, r) for
0 ≤ r ≤ s ≤ t.

3



2.3 The new probability

Let us fix a non random state z ∈ S(H) and define the stochastic processes

p(t) := Tr{σ(t)}, ρ(t, ω) :=

{

p(t, ω)−1σ(t, ω) if p(t, ω) 6= 0,

z if p(t, ω) = 0,
(4)

mi(t) := 2ReTr {Li(t)ρ(t−)} , i = 1, . . . , d, (5a)

ik(t) := Tr {Rk(t)
∗Rk(t)ρ(t−)}2 , k = 1, . . . , d′. (5b)

By taking the trace of (2), we have that p(t) satisfies the Doléans equation

dp(t) = p(t−)







d
∑

i=1

mi(t)dBi(t) +

d′

∑

k=1

(

ik(t)

λk

− 1

)

(

dNk(t)− λkdt
)







(6)

with p(0) = 0 and where the coefficients mi(t) and ik(t) depend on the initial condition ρ0
in (2). The solution of (6) can be written as

p(t) = ‖φ(0)‖2 exp
{ d
∑

i=1

∫ t

0

[

mi(s)dBi(s)−
1

2
mi(s)

2ds

]

−
d′

∑

k=0

∫ t

0

(ik(s)− λk) ds

}

∏

0<r≤t

(

1 +

d′

∑

k=0

(

ik(r)

λk

− 1

)

∆Nk(r)

)

, (7)

where ∆Nk(r) = Nk(r)−Nk(r−).

The new probability. The key property of quantum trajectory theory is that Eq. (6)
implies that p(t) is a mean-one Q-martingale [16, Theorem 2.4, Section 3.1]. This allows to
define the new probabilities

PT
ρ0
(F ) :=

∫

F

p(T, ω)Q(dω) = EQ[p(T )1F ], ∀F ∈ FT . (8)

Due to the martingale property of p(t), the probabilities PT
ρ0

are consistent, in the sense that
Pt
ρ0
(F ) = Ps

ρ0
(F ) for F ∈ Fs, t ≥ s ≥ 0.

It is possible to show that the stochastic state ρ(t) defined by (4) satisfies a non linear
SME under the new probability PT

ρ0
[16, Remark 3.6].

The Girsanov transformation. The new probabilities PT
ρ0

modify the distribution
of the processes Bi and Nk. A very important property is that a Girsanov-type theorem
holds [16, Proposition 2.5, Remarks 2.6 and 3.5]. Under PT

ρ0
, in the time interval [0, T ], the

processes

Wj(t) := Bj(t)−
∫ t

0

mj(s)ds, j = 1, . . . , d, (9)

are independent Wiener processes, while N1, . . . , Nd′ become simple regular càdlàg counting
process of stochastic intensities i1, . . . , id′ .

From this result we have immediately

d

dt
EPT

ρ0
[Bi(t)] = EPT

ρ0
[mi(t)] = 2ReEQ [Tr {Li(t)σ(t−)}] ,

d

dt
EPT

ρ0
[Nk(t)] = EPT

ρ0
[ik(t)] = EQ [Tr {Rk(t)

∗Rk(t)σ(t−)}] .
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2.4 The continuous measurement process

Let us introduce now the real processes

Jℓ(t) :=
d

∑

j=1

∫ t

0

aℓj(t− s) dBj(s) + eℓ(t), ℓ = 1, . . . ,mI , (10a)

Ih(t) :=
d′

∑

k=0

∫

(0,t]

nhk(t− s) dNk(s) + wk(t), h = 1, . . . ,mJ , (10b)

where the integral kernels aℓj(t − s) and nhk(t − s) are deterministic, and where eℓ(t) and
wk(t) can be stochastic processes. Even more general expressions than the ones in Eqs. (10)
could be considered. What is important is the natural filtration generated by the processes
(10) which we denote by (Et). We assume Et ⊆ Ft, ∀t ≥ 0.

2.4.1 Instruments and a posteriori states

Now, for t ≥ 0, let us define the map-valued measure It [16, Remark 4.2]:

It(E)[̺] =

∫

E

A(t, 0, ω)[̺] dQ(ω), ∀E ∈ Et, ∀̺ ∈ T(H). (11)

Such a measure has the properties: (i) ∀E ∈ Et, It(E) is a completely positive linear
map on T(H), (ii) ∀̺ ∈ T(H), ∀a ∈ L(H), Tr {aIt(·)[̺]} is σ-additive, (iii) ∀̺ ∈ T(H),
Tr {It(Ω)[̺]} = Tr {̺}. Such a map-valued measure It is called an instrument with value
space (Ω,Et) and it can be consistently interpreted as a quantum mechanical measurement
on the system H of the processes Jℓ(s) and Ih(s) in the time interval [0, t]; the instrument
gives both the probability distribution of the output and the state changes conditional on
the observation.

According to the physical interpretation of the notion of instrument, the probability of
the event E ∈ Et, when the pre-measurement state is ρ0, is given by

Tr {It(E)[ρ0]} = EQ [1E Tr {σ(t)}] = Pt
ρ0
(E) (12)

and this shows that the physical probability for the observation of the output up to time t
is indeed the one introduced in Eq. (8) restricted to Et.

Then, Eq. (10) can be interpreted as the effect of the measuring apparatus which pro-
cesses the ideal outputs Bi(t) and Nk(t) by detector response functions aℓj and nhk, and
which degrades the outputs by adding some more noises eℓ(t) and wk(t) due to the phys-
ical realization of the apparatus itself. In the final part of this section we shall see how to
compute some relevant properties of the outputs under the physical probability.

Moreover, let us take the conditional expectation on Et of the random state ρ(t) defined
by (4):

ρ̂(t) := EPt
ρ0
[ρ(t)|Et] ≡

EQ[σ(t)|Et]

Tr {EQ[σ(t)|Et]}
. (13)

The interpretation is that ρ̂(t) is the conditional state one attributes to the system at time t
having observed the trajectory of the output up to time t. Indeed ρ̂(t) is Et-measurable, thus
depending only on the trajectories of the output in [0, t], and, moreover, one can directly
check that [16, Remark 4.4]

∫

E

ρ̂(t, ω)Pt
ρ0
(dω) = It(E)[ρ0], ∀E ∈ Et. (14)

The state ρ̂(t) is the a posteriori state at time t.
When t goes from 0 to T , the family of instruments It gives a consistent description of a

continuous measurement performed on the system.
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In the extreme case Et = Ft, which occurs for example when Ft is generated by the the
processes Bi and Nk and just these processes are the observed output, we get ρ̂(t) = ρ(t).
Therefore the evolution of the a posteriori state is completely defined by the non linear
SME satisfied by ρ(t), or, equivalently, by the SME (2) for σ(t), or even, as pure states are
mapped to pure states, by the SSE (1) for φ(t). The randomness of the coefficients Li(t),
Rk(t) and H(t), which typically prevents σ(t) from being Markovian, allows us to model non
Markovian features of the dynamic due both to some classical noises and to measurement
based feedback loops.

When Et $ Ft, the a posteriori state ρ̂(t) has a non Markovian evolution which typically
does not even satisfies a differential equation. In this case the SSE (1) and the SME (2)
have to be interpreted as an ideal unravelling of the physical evolution of ρ̂(t) which allows
to consistently define it, by (2) and (13), and allows to compute, at least numerically, all the
quantities of physical interest (that is to define the instruments It).

2.4.2 A priori states

When the output of the continuous measurement is not taken into account, the state of the
system at time t is given by the mean state

η(t) := EPt
ρ0
[ρ̂(t)] = EQ[σ(t)] = EQ[A(t, 0)[ρ0]] = It(Ω)[ρ0].

The state η(t) is the a priori state at time t. Note that EQ[A(t, 0)[·]] is a completely pos-
itive, trace preserving, linear map, i.e. a quantum channel in the terminology of quantum
information.

From the SME (2) we get η̇(t) = EQ

[

L(t)[σ(t)]
]

, which is not a closed differential equation
when L(t) is stochastic, contrarily to the Markov case [9, Section 3.5]. By the projection
operator technique a closed integro-differential equation for the a priori state η(t) could be
obtained [18] (an evolution equation with memory), but this equation is too involved to be
of practical use. Again (1) and (2) are an unravelling of a non Markovian evolution.

2.4.3 Spectra and moments

In quantum optics, the typical output current of an homodyne or heterodyne detector is
of the form (10a) with aℓj(t) = δℓjF (t) (F is the detector response function). The output
current is a stochastic process and its spectrum is given by the classical notion [28]. If Jℓ
is at least asymptotically stationary and the limit in (15) exists at least in the sense of
distributions in µ, then, the spectrum of Jℓ is defined by

Sℓ(µ) = lim
T→+∞

1

T
EPT

ρ0





∣

∣

∣

∣

∣

∫ T

0

e−iµtJℓ(t)dt

∣

∣

∣

∣

∣

2


 . (15)

In the pure case of no extra noise, eℓ(t) = 0, and of a detector response function going to a
Dirac delta, that is in the pure case Jℓ = Ḃℓ, the spectrum becomes

Sℓ(µ) = lim
T→+∞

1

T
EPT

ρ0





∣

∣

∣

∣

∣

∫ T

0

e−iµtdBℓ(t)

∣

∣

∣

∣

∣

2


 . (16)

The spectrum depends on the distribution of the current Jℓ(t), which is the output of a
continuous measurement on the system performed by the detection of its emitted light.
Thus, Sℓ gives informations both on the monitored system and on the fluorescence light. For
example, Sℓ < 1 reveals squeezing of the emitted light.

An expression for the autocorrelation function needed in the computation of the spectrum
can be obtained by generalizing the techniques used in the Markovian case [9, Section 4.5].
When the Liouville operator (3) and Bℓ are independent (which implies that Bℓ is not used
for the feedback), we get

∂2

∂t∂s
EPT

ρ0
[Bℓ(t)Bℓ(s)] = δ(t− s) + bℓ(t, s) + bℓ(s, t), (17a)
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bℓ(t, s) = 1(0,+∞)(t− s) EQ

[

Tr

{

(Lℓ(t) + Lℓ(t)
∗)

×A(t−, s) [Lℓ(s)σ(s−) + σ(s−)Lℓ(s)
∗]

}]

. (17b)

Let us set nℓ(t) = EPt
ρ0

[mℓ(t)] and assume that the limit n∞ := limt→+∞ nℓ(t) exists.

Then, we obtain the decomposition of the spectrum in the elastic part and the inelastic one
(the spectrum of the fluctuations)

SJ(µ) = Sel(µ) + Sinel(µ), Sel(µ) = 2π n 2
∞ δ(µ), (18a)

Sinel(µ) = 1 + lim
T→+∞

2

T

∫ T

0

dt

∫ t

0

ds cosµ(t− s) dℓ(t, s), (18b)

dℓ(t, s) := bℓ(t, s)− 1(0,+∞)(t− s)n∞nℓ(t) = 1(0,+∞)(t− s)

× EQ [Tr {(Lℓ(t) + Lℓ(t)
∗)A(t−, s) [Lℓ(s)σ(s−) + σ(s−)Lℓ(s)

∗ − n∞σ(s−)]}] .

2.4.4 Mandel Q-parameter

When we consider direct detection in quantum optics, in the ideal case of noiseless counter,
the output of the measurement is one of the counting processes, say Nk. In this case a typical
quantity is the Mandel Q-parameter, defined by

Qk(t; t0) :=
VarPT

ρ0
[Nk(t0 + t)−Nk(t0)]

EPT
ρ0
[Nk(t0 + t)−Nk(t0)]

− 1.

In the case of a Poisson process this parameter is zero; in quantum optics, in the case of
positive Q parameter one speaks of super-Poissonian light and of sub-Poissonian light in the
other case. Sub-Poissonian light is considered an indication of non-classical effects.

In quantum trajectory theory, one can find expressions for the moments also in the
counting case and we get

Qk(t; t0) =
Vk(t; t0)

Mk(t; t0)
−Mk(t; t0), Vk(t; t0) := EPT

ρ0

[

(

Nk(t0 + t)−Nk(t0)
)2
]

,

Mk(t; t0) := EPT
ρ0
[Nk(t0 + t)−Nk(t0)] =

∫ t0+t

t0

dsEQ [Tr {Rk(s)
∗Rk(s)σ(s−)}] .

When Rk(s)
∗Rk(s)A(s−, r) is Q-independent from Nk(r), which happens when Nk is not

used for feedback, we get

Vk(t; t0) = 2

∫ t0+t

t0

ds

∫ s

t0

drEQ [Tr {Rk(s)
∗Rk(s)A(s−, r) [Rk(r)σ(r−)Rk(r)

∗]}] .

3 An example: the two-level atom

As an application of the theory we consider a two-level atom stimulated by a laser; it is an
ideal example, but is sufficiently rich and flexible to illustrate the possibilities of the theory.
The Hilbert space is C2 and the Hamiltonian part of the dynamics is given by

H(t) = H0 +Hf (t), H0 =
ω0

2
σz, ω0 > 0, Hf (t) = f(t)σ− + f(t)σ+,

where σz, σ± are the usual Pauli matrices. The function f is the laser wave, which can be
noisy and can be controlled by the experimenter.

Let us complete the model by choosing the noise-driven terms in the SME (2), which
we call channels in the sequel. We consider two diffusive channels realized by heterodyne or
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homodyne detectors of the emitted light with local oscillators represented by the functions
hj :

d = 2, Lj(t) = hj(t)αjσ−, |hj(t)| = 1, αj ∈ C.

The observation of the light in the diffusive channel 1 will be used to control the stimulating
laser light. The light in the diffusive channel 2 is only observed; indeed, we are interested
in controlling the properties of this part of the emitted light by controlling the atom via the
stimulating laser.

In the case of homodyne detection the local oscillator is feeded by the light produced by

the stimulating laser and we have hj(t) = e−iǫj f(t)
|f(t)| .

In the case of heterodyne detection the local oscillator is feeded by an independent laser.
For this light we use the so called phase diffusion model, hj(t) = exp {−iǫj − iνjt− ik−jB−j(t)},
where B−1 and B−2 are extra noises. The function hj represents a nearly monochromatic
wave with a Lorentzian spectrum centred on νj .

We introduce also four jump channels:

d′ = 4, Rk(t) = Rk, βk ∈ C, γ > 0, n̄ ≥ 0,

2
∑

i=1

|αi|2 +
2

∑

k=1

|βk|2 = γ,

Rk = βkσ−, k = 1, 2, 3 R4 = β4σ+, |β3|2 = |β4|2 = γn̄.

The jump channels 1 and 2 are electromagnetic channels: channel 1 represents the emitted
light reaching a photo-counter (direct detection), while channel 2 represents the lost light,
which is not observed. The output of channel 1 could be used again as a possible signal
for closed loop control, but we use it here only to see properties of direct detection. The
counting channels 3 and 4 are used only to introduce dissipation due to a thermal bath; these
channels are not connected to observation.

The stimulating laser light can be noisy and can be controlled by the output of the
diffusive channel 1. In mathematical terms, f can be an adapted functional of B0 (extra-
noise) and B1 (feedback of the diffusive channel 1).

For this model we need a probability space (Ω,F,Q) where B−2, . . . , B2 are Wiener
processes, N1, . . . , N4 are Poisson processes and they are all independent. According to the
notations of Section 2, the filtration (Ft) is generated by all these processes, while (Et) is
generated by B1, B2 and N1.

From Eq. (3) and the assumptions of the model we get the random Liouville operator

L(t)[τ ] = −i [H0 +Hf (t), τ ] + γσ−τσ+ − γ

2
{P+, τ}+ γn̄ (σ−τσ+ + σ+τσ− − τ) . (19)

Note that the whole randomness is in the wave f(t) and it is due purely to noise in the laser
light and to feedback, but this is enough to have a non Markovian model.

In principle the quantities of interest could be computed by starting from simulations
of the non linear SSE of the model. However, in order to have an analytically computable
spectrum and to have an idea of the possible behaviours of the model, we take a very simple
form for f . We assume the laser to be not perfectly monochromatic and we describe this
again by a phase diffusion term; moreover, we take the feedback to act as a very simple phase
modulation:

f(t) =
Ω

2
e−iu(t), u(t) = ϑ+ ωt+ k0B0(t) + k1B1(t), (20)

Ω ≥ 0, ω ≥ 0, k0, k1 ∈ R, ϑ ∈ (−π, π].

3.1 Control of the homodyne spectrum

According to Eqs. (18), to compute the spectrum of the light in channel 2 we need to compute
first the quantities n2(t) and d2(t, s). The best way is to make a unitary transformation and
to define

Λ(t, s)[τ ] := e
i

2
u(t)σzA(t, s)

[

e−
i

2
u(s)σzτe

i

2
u(s)σz

]

e−
i

2
u(t)σz ,
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ξ(t) := e
i

2
u(t)σzσ(t)e−

i

2
u(t)σz = Λ(t, 0)

[

e
i

2
ϑσzρ0e

− i

2
ϑσz

]

. (21)

By using (2), (20) and computing the stochastic differential of ξ(t) and we obtain

dξ(t) = L̂[ξ(t−)]dt+
2

∑

i=0

Di(t)[ξ(t−)]dBi(t)

+

4
∑

k=1

(

1

λk

Rkξ(t−)Rk
∗ − ξ(t−)

)

(

dNk(t)− λkdt
)

, (22)

L̂(t)[τ ] = − i

2
[∆ωσz +Ωσx, τ ] + γσ−τσ+ − γ

2
{P+, τ}+

k0
2 + k1

2

4
(σzτσz − τ)

+
i

2

[

σz, g1(t)σ−τ + g1(t)τσ+

]

+ γn̄ (σ−τσ+ + σ+τσ− − τ) , (23)

D0[τ ] =
i

2
k0[σz, τ ], D1(t)[τ ] = g1(t)σ−τ + g1(t)τσ+ +

i

2
k1[σz, τ ],

D2(t)[τ ] = g2(t)σ−τ + g2(t)τσ+, gi(t) = αi e
iu(t) hi(t), ∆ω = ω0 − ω.

Then, we get

n2(t) = EPT
ρ0

[m2(t)] = 2ReEQ [Tr {L2(t)σ(t−)}] = EQ [Tr {D2(t) [ξ(t−)]}] ,

d2(t, s) = 1(0,+∞)(t− s)EQ [Tr {D2(t) [Λ(t−, s) [D2(s) [ξ(s−)]− n∞ξ(s−)]]}] .

3.1.1 Homodyning in channels 1 and 2

In the case of homodyning we have gj(t) = |αj | e−iϑj , j = 1, 2, which gives D1, D2, L̂ non

random and independent of time, so that EQ[Λ(t, s)] = eL̂(t−s). By Bloch equation techniques
we can compute the homodyne spectrum (18) of the light in channel 2 [9, Part II]. The final
result is

Sel(µ) = 2π |α2|2 v2δ(µ), v := cosϑ2 d1 + sinϑ2 d2, (24)

Sinel(µ) = 1 +
(

cosϑ2 sinϑ2 0
) 2 |α2|2
A2 + µ2



A





cosϑ2(1 + d3)
sinϑ2(1 + d3)

−v



+ v~u



 , (25)

A =





Γ
2 ∆ω −k1 |α1| sinϑ1

−∆ω Γ
2 Ω+ k1 |α1| cosϑ1

0 −Ω (2n̄+ 1) γ



 , ~u =





−k1 |α1| sinϑ1

k1 |α1| cosϑ1

γ



 , (26)

~d = −A−1~u, Γ = (2n̄+ 1) γ + k0
2 + k1

2. (27)

Now we can study the dependence of this spectrum on our parameters, feedback included,
and learn how to control the emitted light. By certain choices of the parameters one can
obtain Sinel(µ) < 1, which is interpreted as squeezing of the light in the channel 2. By using
quantum fields and quantum stochastic calculus it is possible to prove that the Heisenberg
uncertainty principle implies that the product of Sinel(µ), computed for a certain value ϑ2,
times the same quantity for ϑ2 + π/2 is always not less than 1 [26].

As an example, we take k0 = 0, γ = 1, n̄ = 0, |α1|2 = |α2|2 = 0.45 and we use the other
parameters to enhance the squeezing of the fluorescence light: we fix a value for µ and then
we minimize Sinel(µ) over the other parameters. For Ω = 1.6150, ∆ω = 1.3833, k1 = 0.3213,
ϑ1 = −1.9307, ϑ2 = −0.1540 we get a minimum in µ = 2 of Sinel(2) = 0.8621. With the

same parameters the coefficient of the delta-spike in the elastic part is 2π |α2|2 v2 = 1.4214.
Similarly, for Ω = 3.1708, ∆ω = 2.5576, k1 = 0.3249, ϑ1 = −1.7863, ϑ2 = −0.0760 there
is a minimum in µ = 4 of Sinel(4) = 0.8572 and 2π |α2|2 v2 = 1.5356. These values are
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Figure 1: Squeezing control. Sinel(µ) with and without feedback for γ = 1, k0 = n̄ = 0,
|α1|2 = |α2|2 = 0.45 and: (solid line) k1 = 0.3213, ϑ1 = −1.9307, ϑ2 = −0.1540, ∆ω = 1.3833,
Ω = 1.6150; (dotted line) k1 = 0, ϑ2 = −0.1784, ∆ω = 1.4937, Ω = 1.4360.

very similar to the ones found in [9, p. 244], where a very different scheme of feedback was
considered (the instantaneous and singular feedback à la Wiseman-Milburn [21]). In Figure
1 we plot the inelastic spectrum in function of x = µ for a case with feedback and a case
without feedback. The parameters are optimized to have the largest minimum in µ = 2.

In Figure 2 we plot the previous case with feedback, taken with three different choices of
ϑ2 in order to see the dependence on ϑ2, which changes the field quadrature under monitoring.

Finally, in Figure 3 we take an high value of Ω and no feedback, k1 = 0. For these para-
meters, in heterodyne detection, one sees the three-pecked structure of the Mollow spectrum.
But here we are in homodyne detection and one sees as the Mollow triplet is built up by the
contributions of the various values of ϑ2.

3.2 Control of direct detection

We maintain the same feedback as before, but now we study the Mandel Q-parameter of the
direct detection N1. We consider only the stationary regime at long times and we take

Q1(t) = lim
t0→+∞

Q1(t; t0) = lim
t0→+∞

(

V1(t; t0)

M1(t; t0)
−M1(t; t0)

)

.

By using again Bloch equation techniques to compute the expressions of Section 2.2.4.4, we
get

lim
t0→+∞

M1(t; t0) =
t

2
|β1|2 (1 + d3) ,

10
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Figure 2: Effect of Heisenberg uncertainty on Sinel(µ). The parameters are γ = 1, k0 = n̄ = 0,
|α1|2 = |α2|2 = 0.45, k1 = 0.3213, ϑ1 = −1.9307, ∆ω = 1.3833, Ω = 1.6150 and: (solid line)
ϑ2 = −0.1540; (dotted line) ϑ2 =

π

4
− 0.1540; (dashed line) ϑ2 =

π

2
− 0.1540.

Q1(t) = |β1|2
[(

1− e−At

At
− 1

)

A−1
(

~d+ ~e
)

]

3

.

where ~d, A are defined in Eqs. (26), (27) and ~eT = (0, 0, 1)T. By taking a long time interval
we get

Q1 := lim
t→+∞

Q1(t) = − |β1|2
[

A−1
(

~d+ ~e
)]

3
.

According to the choice of the parameters we can obtain a sub-Poissonian or a super-
Poissonian Q-parameter: k0 = 0, γ = 1, n̄ = 0, |β1|2 = 0.45,

• ∆ω = 0, k1 = 1.0126, Ω = 1.0063, ϑ1 = π: Q1 = −0.5094;

• ∆ω = 0, k1 = 0, Ω = 0.7071: Q1 = −0.3375;

• ∆ω = 2, k1 = 2.8515, Ω = 2.3516, ϑ1 = 2.6914: Q1 = −0.4356;

• ∆ω = 2, k1 = 0, Ω = 2.9155: Q1 = 0.0860.

Moreover, one can see numerically that in the case of no feedback, k1 = 0, and ∆ω = 2, we
have Q1 > 0 for all Ω > 0. So, in this case feedback control is essential to get sub-Poissonian
light. Finally, no relation appears between Q1 < 0 and squeezing; with the parameters
which give squeezing we have Q1 = 0.0602 (for Ω = 1.6150, k1 = 0.3213, ϑ1 = −1.9307,
∆ω = 1.3833) and Q1 = 0.09508 (for Ω = 3.1708, k1 = 0.3249, ϑ1 = −1.7863, ∆ω = 2.5576).
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