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Abstract

This paper analyzes the dynamics of higher education dropouts through an innovative approach that
integrates recurrent events modeling and point process theory with functional data analysis. We propose
a novel methodology that extends existing frameworks to accommodate hierarchical data structures,
demonstrating its potential through a simulation study. Using administrative data from student careers at
Politecnico di Milano, we explore dropout patterns during the first year across different bachelor’s degree
programs and schools. Specifically, we employ Cox-based recurrent event models, treating dropouts as
repeated occurrences within both programs and schools. Additionally, we apply functional modeling of
recurrent events and multilevel principal component analysis to disentangle latent effects associated with
degree programs and schools, identifying critical periods of dropout risk and providing valuable insights
for institutions seeking to implement strategies aimed at reducing dropout rates.

Keywords: students dropout, recurrent events, multilevel principal component analysis, functional
data analysis

1 Introduction

The higher education system is worldwide affected by high dropout rates. In this context, “dropout”
refers to students leaving the university world without completing their degree. From the perspective
of a single university, dropout occurs when a student exits their academic program before earning the
final qualification (Tinto, 1982). Despite efforts by European governments to expand access to higher
education, ensuring successful degree completion remains a challenge, and dropout rates persist at around
30% across OECD member countries (OECD, 2019). In Italy, this issue is particularly pronounced,
with a significant proportion of students discontinuing their studies, often within the first two years of
enrollment. More than half of those who begin higher education fail to complete their degrees (Aina
et al., 2018). Indeed, the percentage of adults with a higher education degree in Italy is below the OECD
average (OECD, 2019; Cannistrà, 2024). These high dropout rates not only lower the average skill levels
of the workforce (Atzeni et al., 2022), but they are also linked to a growing wage-skill gap (Katz and
Murphy, 1992).

From an institutional perspective, high dropout rates represent a waste of resources. In fact, the
long-term returns — both in terms of human capital development and the credentials awarded — are
lost when students exit without completing their degrees, despite the considerable investments made by
universities in teaching, recruitment, and student support. As a result, reducing and analyzing university
dropout rates has become a critical challenge for higher education institutions.

What makes managing this issue even more complex is the significant variation in dropout behavior
across degree programs and schools. Even within the same university, dropout patterns differ widely
across academic disciplines. For instance, some programs may experience higher dropout rates during
early semesters due to difficult coursework, while others might see students leave later in their stud-
ies, near graduation. Additionally, dropout rates can vary between schools within the same univesity,
influenced by factors such as faculty engagement, availability of student support services, and workload.

In this paper, we analyze administrative data from Politecnico di Milano (PoliMi) to examine dropout
patterns across its bachelor’s degree programs. PoliMi comprises four distinct schools: Architecture,
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Design and Engineering, further divided into the School of Civil, Environmental, and Land Management
Engineering and the School of Industrial and Information Engineering, offering 23 different undergraduate
programs, referred to as degree courses or simply courses. Our focus is on understanding dropout rates
across these programs, exploring how they vary by both degree program and school over the first-year
span.

Our approach builds on methodologies that integrate recurrent events modelling, point process theory,
and functional data analysis, extending the techniques proposed by Baraldo et al. (2013) and Spreafico
and Ieva (2021). In these studies, hospital readmissions and drug consumption over time are analyzed
to predict outcomes related to heart failure telemonitoring in the former and time-to-death in the latter.
We extend and generalize this framework to account for the hierarchical structure of the data (Pinheiro
and Bates, 2000), enabling a more detailed exploration of dropout dynamics across different academic
units. Specifically, the analysis comprises two phases. In the first phase, we utilize historical dropout
data to fit a counting process model (Daley and Vere-Jones, 2002), enabling us to compute the realized
trajectories of the cumulative hazard process (compensators) underlying the dropout counting process.
While many alternatives are available for the modelization of recurrent events (Amorim and Cai, 2015),
such as extensions of Cox models (see, for instance, the Prentice, Williams and Peterson model (Prentice
et al., 1981), Wei, Lin and Weissfeld model (Wei et al., 1989), frailty models (Therneau et al., 2000)),
models for the mean number of events or their occurrence rate (Lin et al., 2000; Diao et al., 2014),
multi-state models (Andersen and Keiding, 2002), and virtual (effective) age models (Kijima et al., 1988;
Peña and Hollander, 2004; Beutner, 2023), we employ the Andersen-Gill (AG) model (Andersen and Gill,
1982). This choice follows Spreafico and Ieva (2021), the most recent research in this context. The AG
model extends the Cox proportional hazards model by incorporating the increments in event counts over
time, assuming that correlations between event times can be explained by prior occurrences, as well as
through the specification of appropriate time-varying covariates, such as the count of previous occurrences
(Amorim and Cai, 2015). This allows us to represent these events as non-stationary stochastic counting
processes that may depend on specific characteristics or labels, referred to as marks (Daley and Vere-
Jones, 2002; Spreafico and Ieva, 2021). At this stage, the longitudinal trajectory of instantaneous dropout
risk over time within a degree program is treated as a function, and functional data analysis techniques
(Ramsay and Silverman, 2005) are employed to extract insights from repeated dropout events as two-level
functional covariates. These covariates are derived through dimensionality reduction using Multilevel
Functional Principal Component Analysis (MFPCA) (Di et al., 2009; Cui et al., 2023), preserving most
of the historical information while effectively managing variability across two levels. In this first phase,
our aims are twofold: (i) to reconstruct the dropout curve by modeling dropout intensity as a counting
process, capturing the temporal dynamics of dropout risk in terms of cumulative hazard for each degree
program, and (ii) to decompose this dropout curve into contributions from both the degree program and
school levels using MFPCA, highlighting how different academic units influence the evolution of dropout
risk. In the second phase, we adopt a predictive framework to investigate how these covariates influence
the subsequent risk of dropout among students, incorporating information specific to the dropout risk
associated with each faculty or school. The aim of this second phase is to assess the predictive value of
the extracted functional covariates in forecasting future dropout events at the student level.

Previous studies focused on PoliMi data have addressed various aspects of student dropout prediction
and quantification (Cannistrà et al., 2022; Romani, 2023; Diaz Lema et al., 2024; Masci et al., 2024),
with some of them specifically examining the impact of grouping factors — such as degree programs —
on the time to dropout within the first few semesters of enrollment up to the full three years of bachelor
degree. The tools commonly employed in this context include shared frailty Cox proportional hazard
models (Cook et al., 2007; Kleinbaum and Klein, 1996), where the frailty term represents a constant
factor shared among clusters (e.g., degree programs), which affects the baseline hazard multiplicatively,
accounting for unobserved heterogeneity within clusters and allowing for a more detailed understanding
of the dropout risk across different academic programs. Our study extends previous research by offering
a more refined analysis of dropout behaviour over time, specifically examining how dropout dynamics
evolve both within and between degree programs and schools. A key advancement is the incorporation of
the dropout history into the predictive framework which, unlike the shared frailty model that simplifies
this information into a single measure, allows for a more detailed and interpretable analysis of dropout
patterns, offering institutions tools for developing targeted strategies aimed at reducing dropout rates.
In this perspective, two key elements of novelty need to be highlighted. First, we introduce the use
of FMPCA to decompose the dropout curve constructed from the compensator function. This novel
application allows us to separate the contributions of different academic units (e.g., programs and schools)
to the overall dropout dynamics, providing a richer understanding of how these hierarchical factors
influence dropout risk over time. Second, and more importantly, our approach represents a completely
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new perspective in the dropout literature, where most studies focus on classification-based predictive
models or, in more sophisticated cases, time-to-event models, almost exclusively at the student level (see,
for instance, Arulampalam et al. (2004); Plank et al. (2008); Min et al. (2011); Gury (2011); Vallejos and
Steel (2017); Patacsil (2020), and Masci et al. (2024) for a discussion). In contrast, our approach models
dropout dynamics at the degree course level, capturing historical temporal patterns that can later be
included for predictions at student level.

The paper is structured as follows. In Section 2 we introduce the PoliMi dataset, detailing the cohort
selection and study design. Section 3 outlines the employed methodology, providing a recap of the frame-
work and extending it within a multilevel context. Section 4 reports on a simulation study that illustrates
the application of the proposed methodology within the multilevel framework. Section 5 presents the
results obtained from applying the proposed methodology to the PoliMi case study. Discussion and
concluding remarks are provided in Section 6.

2 Dataset

The data employed in this study were obtained from the administrative records of PoliMi, which collect
the academic progress of students enrolled in bachelor’s degree programs (Mussida and Lanzi, 2022).
These records encompass various aspects of students’ academic careers, including enrollment and end-
of-study dates, any changes in their enrolled degree programs, and eventually incidents of dropout.
Additionally, information regarding the student’s history of passed and attempted exams at different
time points (semesters) is contained, including credits earned within the European Credit Transfer and
Accumulation System (ECTS) and weighted Grade Point Average (GPA). In this section, we delineate
the cohort selection criteria for our study (Subsections 2.1) alongside the study design (Subsection 2.2).

2.1 Cohort selection

For our analysis, we focus on bachelor’s students enrolled in academic years 2016/2017 and 2017/2018,
who maintained a consistent degree program throughout their academic paths. We assume that students
enrolled in the 2017/2018 academic year were only marginally impacted by Covid-19, which occurred
during the last semester of their final year.

We exclude students who graduated in under 1000 days (the minimum duration for a bachelor’s
degree at PoliMi) and omit fully remote or single-cycle degree programs, as the analysis focuses solely
on traditional bachelor’s degrees.

In the first phase of the analysis, we utilize data from students with career start ay = ‘2016’ to
construct the compensators. For these students, we track the dropout events occurring within each
course and school during the first three semesters since enrollment. In the second phase, we shift to the
2017 cohort, using data from the end of the first semester and historical information to enhance dropout
risk predictions. Table 1 provides an overview of the key variables used in the second phase, organized
into four categories:

• Variables measured at enrollment capture essential demographic and background characteristics.
These include geographic origin (origins, i.e., whether a student lives onsite, offsite, or commutes
to Milan), gender (gender), and age at enrollment (age19, which identifies students older than
19). Socio-economic status is approximated by the university fee bracket (income), which classifies
students based on their family’s financial situation into categories such as low, medium, high, or
those receiving grants. Educational background is represented by the type of high school attended
(highschool type). Lastly, the PoliMi admission test score (admission score) reflects academic
readiness at the time of university entry, although students may take this test up to a year prior to
their actual enrollment.

• Variables measured at the end of the first semester focus on academic progress, particularly the
number of credits earned (ECTS1sem), a key predictor of dropout risk.

• Grouping factors include the undergraduate program (course) and broader organizational structure
(school).

• The outcome variable (dropout3y) indicates whether a student dropped out within three years,
after the first semester.
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Variable Description Type

Measured at enrollment

- studentID Student’s unique identifier (anonymized) Categorical {1,2,...}
- origins Student’s geographic origins Categorical {OnSite, Commuter, Offsite}
- gender Student’s gender Categorical {Male, Female}
- highschool type Type of attended high school Categorical {Scientific,

Classical, Others, Technical}
- income University fee brakcet Categorical

{Medium, Grant, High, Low}
- age19 Equals 1 if student’s age at enrollment > 19 Categorical {0,1}
- admission score PoliMi entrance test’s admission score Real number [60, 100]
- career start ay Student’s enrollment year Categorical {2016, 2017}
Measured at end of 1st semester

- ECTS1sem ECTS gained by end of 1st semester Natural number > 0

Grouping factors

- course Undergraduate program Categorical {P01, P02,..., P23}
- school A larger organizational unit grouping courses Categorical {sA, sB, sC, sD}
Outcome

- dropout3y Equals 1 if after 1st semester Categorical {0, 1}
a student drops within 3 years, 0 otherwise

Note: in categorical variables, the first reported class represents the reference level.

Table 1: Overview of the variables considered in the analysis.

2.2 Study design

We label as dropouts the students who dropped out between the end of the first and sixth semester (follow-
up), while as censored all the other students that dropped out after three years from the enrollment, who
graduated or who had an active career at the end of the third year.

With focus on students enrolled in career start ay= ‘2016’, we include a three-semesters observation
period, denoted by S = [T0, T1] with T0 = ‘career start ay/10/01’ and T1 = ‘career start ay +
2/03/01’. The date of October 1st is chosen to exclude students who dropped out within the first
two weeks, potentially due to waiting for other university entrance test results1, to ensure they do not
affect the analysis. During this period, dropouts of students enrolled in the chosen career start ay are
monitored and analyzed based on various grouping factors (course and school).

Following this, the focus is moved to the cohort of students with career start ay = ‘2017’, par-
ticularly at the end of the first semester, and the primary outcome of interest is the binary variable
dropout3y indicating whether a student dropped out within three years from enrollment. To predict
this outcome, we use data collected at enrollment, at the end of the first semester, and at the level of
grouping factors. The choice is based on previous studies’ results (Masci et al., 2024), which indicate
that the optimal prediction window occurs within the first few semesters, as the inclusion of data from
later semesters provides minimal improvement in accuracy. Moreover, incorporating hierarchical infor-
mation has been shown to enhance predictive performance, with the number of credits earned by the
end of the first semester serving as a particularly strong predictor. Furthermore, the model incorporates
information derived from the analysis of the previous academic year’s data, adding valuable historical
context to enhance predictive accuracy.

3 Methodology

In this section, we present the methodology in three consequent steps: recap on model formulation for
recurrent events and compensators reconstruction (Subsection 3.1), compensators decomposition through
multilevel principal component analysis (Section 3.2) and the development of a predictive model for the
dropout status within three years including retrieved information (Section 3.3). The core methodological
contribution of this work regards the extension to the multilevel setting of the decomposition of recurrent
events in counting processes.

1At PoliMi, lectures typically begin in mid-September.
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3.1 Recap on the model formulation for recurrent events and compen-
sators reconstruction

Let Nij(t), with t ∈ [0, T ], denote the stochastic process counting the dropout events observed up to
time t, where j = 1, ..., Ji indexes the course-level (lower-level) units and i = 1, ..., I indexes the school-
level (higher-level) units, or clusters, with the total number of lower-level units given by

∑I
i=1 Ji = n

(Cook et al., 2007). The process Nij(t) is adapted to the filtration {Ft,ij}t∈[0,T ], that is the history of
realizations of the process itself. Assuming Nij(t) is a class D submartingale, the Doob-Meyer (D-M)
decomposition theorem (Meyer, 1962) states that Mij(t) = Nij(t) − Λij(t) is a zero-mean, uniformly
integrable martingale. Here, Λij(t) =

∫ t

0
λij(s)ds is the unique predictable non-decreasing cadlag2 and

integrable compensator (or cumulative hazard process), with λij(t) being the intensity process (or hazard
function).

Building on the formulation for marked point processes described in Spreafico and Ieva (2021) and
extending it to a multilevel context, the events, whose cumulative number up to a given time t are recorded
by the counting process Nij(t), can be further associated to additional random variables (marks) ωij

that provide further details about these events, such as the size or magnitude related to the jumps in
the counting process (Last and Brandt, 1995; Daley et al., 2003). In this framework, the conditional
intensity function also depends on the mark ωij . Assuming conditional independence of jump times
and marks, the following relationship holds λij(t,ωij) = λij,g(t) · fij(ωij), where λij,g(t) is the ground
intensity process of the counting process and fij is the multivariate density of the marks ωij . Proper
modeling of compensators and particularly of λij(t,ωij), allows for an accurate reconstruction of Nij(t),
as Mij(t) represents the residual of the process in the D-M decomposition.

Several models for λij(t) are available in the literature on counting processes (Aalen et al., 2008;
Andersen et al., 2012; Peña and Hollander, 2004). Employing the model introduced by (Andersen and
Gill, 1982), under the assumption that fij(ωij) depends on zij(t) (that are some time-dependent features
related to the marks ωij), we get

λij(t,ωij) = Yij(t) λ0(t) exp{βTxij(t)} exp{θT zij(t)}

= Yij(t) λ0(t) exp{βTxij(t) + θT zij(t)} (1)

where xij(t) are the (time-dependent) column vectors of covariates of the jth unit in ith cluster, λ0(t) is
the baseline hazard function, Yij takes the role of the censoring variable (i.e. assumes value 1 when unit
j in cluster i is under observation), β and θ are Q- and P -dimensional column vectors of coefficient and
T stands for the transpose. In particular, following Spreafico and Ieva (2021), the mark density fij(ωij)
is incorporated into the model through the exponential term involving zij(t), which parametrizes the
influence of the marks on the process. β and θ are estimated in the model fitting by partial likelihood
maximization (Andersen and Gill, 1982), while the baseline cumulative hazard Λ0(t) =

∫ t

0
λ0(s)ds can be

estimated through Breslow estimator (Breslow, 1975) as a step-function Λ̂0(t) and then smoothed into
Λ̃0(t) as described in Baraldo et al. (2013).

Let now [t
(ij)
k , t

(ij)
k+1] for k = 0, ..., Nij(T ) be the intervals whose extremes are the jump times for each

unit j in cluster i, being t
(ij)
0 = 0 and t

(ij)

Nij(T )+1 = T . Then Λij(t) =
∫ t

0
λij(s,ωij)ds can be estimated

by approximation as follows (see computation in Appendix A):

Λ̂ij(t) =

Nij(t
−)∑

k=0

exp(β̂
T
xij(t

(ij)
k ) + θ̂

T
zij(t

(ij)
k ))

[
Λ̃0(t

(ij)
k+1 ∧ t)− Λ̃0(t

(ij)
k )

]
. (2)

where a∧b = min{a, b}, Nij(t
−) represents the number of occurrences that have happened strictly before

time t, and β̂ and θ̂ are the estimated vectors of coefficients.

3.2 Multilevel functional principal component analysis for compen-
sators decomposition

After reconstructing compensators through a marked point process formulation for recurrent events,
Λ̂ij(t) can be regarded as functional data objects, allowing the application of functional data analysis
techniques (Ramsay and Silverman, 2005).

Given the high-dimensional nature of these data and the hierarchical setting, we aim to decompose
functional variability and reduce dimensionality, while getting insights. To achieve this, we apply MFPCA

2i.e., right-continuous with left limits.
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(Di et al., 2009; Cui et al., 2023). MFPCA integrates classical FPCA (Ramsay and Silverman, 2005),
which selects only the relevant components of an appropriate orthonormal basis expansion, with standard
multilevel mixed models. This approach effectively decomposes the observed data according to two levels
of functional variation. Specifically, from the one-way functional ANOVA (Di et al., 2009) follows that

Λ̂ij(t) = µ(t) + Zi(t) +Wij(t) + ϵij(t) (3)

= µ(t) +

∞∑
k=1

ξikϕ
(1)
k (t) +

∞∑
l=1

ζijlϕ
(2)
l (t) + ϵij(t) (4)

where, in Eq. (3), µ(t) is a fixed functional effect, Zi(t) and Wij(t) are mean 0 stochastic processes
(uncorrelated between each other) and ϵij is observed only when functional data are observed with errors.

Eq. (4) follows from Karhunen-Loève (KL) expansion (Karhunen, 1947; Loeve, 1948), where ϕ
(1)
k (t)

and ϕ
(2)
l (t) are respectively level 1 (i.e., cluster level) and level 2 (i.e., unit level) eigenfunctions (fixed

functional effects), and ξik and ζijl are respectively level 1 and 2 principal component scores (zero mean
random variables, uncorrelated between each other). Moreover, one may truncate the decomposition by
pre-specifying at both levels the Percentage of Variance Explained (PVE) as explained in Di et al. (2009),
resulting into

Λ̂ij(t) ≃ µ(t) +

K∑
k=1

ξikϕ
(1)
k (t) +

L∑
l=1

ζijlϕ
(2)
l (t) + ϵij(t) (5)

being K and L the number of principal components finally identified respectively at level 1 (cluster) and
level 2 (unit). Other interesting indicators defined in Di et al. (2009) are the total explained variance
between-clusters and within-clusters, and the proportion of variability explained by level 1.

3.3 Logistic regression model with functional compensators

The compensators decomposition in previous sections allows to extract dropout information focusing on
the observation period S = [0, T ], where the units are at course-level j, clustered within school-level
i. As a last step, we include this functional information into a logistic regression model which considers
another cohort, where the units are now at studentID-level h, for h = 1, ..., Hij , nested within level
j (course-level) again nested within level i (school-level), so that ntot =

∑I
i=1

∑Ji
j=1 Hij is the total

number of units. Let Yijh ∼ Bernoulli(pijh) be the binary variable indicating the output dropout3y.
Then

logit(pijh) = γTwijh +

∫
S

Λij(s)α(s)ds

≃ γTwijh +

∫
S

[ K∑
k=1

ξikϕ
(1)
k (s) +

L∑
l=1

ζijlϕ
(2)
l (s)

]
α(s)ds

= γTwijh +

K∑
k=1

ξikα
(1)
k +

L∑
l=1

ζijlα
(2)
l (6)

for i = 1, ..., I, j = 1, ..., Ji and h = 1, ...Hij where γ is a q-dimensional vector of parameters to be
estimated, wijh is a vector of covariates available at unit level h, α : S → R is a functional parameter
and logit(x) := ln

(
x

1−x

)
. The second line follows from Eq. (5) and last equality is given by rewriting

α(s) according to different representations into the two different orthonormal bases ϕ
(1)
k and ϕ

(2)
l , thanks

to the orthonormality property; the subscripts are added in order to distinguish the two projections.

4 Simulation Study

In this section, we aim to demonstrate the effectiveness of the methodology described above, in particular
in Sections 3.1 and 3.2. After simulating unit-level intensities with shapes based on specific similarities
within clusters and generating the Non-Homogeneous Poisson Processes (NHPPs) from these intensi-
ties, we show that compensators reconstruction using AG models effectively recovers the within-cluster
similarities.

Specifically, in Subsection 4.1, we begin by simulating intensities λij(t) following a similar method-
ology to Cui et al. (2023); Di et al. (2009). We employ a one-way functional ANOVA model to capture

6



similarities within clusters and integrate Λij(t) =
∫ t

0
λij(u)du to obtain compensator-like shapes, trans-

lating the intensity functions into cumulative hazard functions, and we simulate event times from the
λij(t). In Subsection 4.2.1, we fit AG models to the simulated event data, and reconstruct the compen-
sators Λ̂ij(t). Finally, in Subsection 4.2.2 we evaluate the consistency of the information captured by
MFPCA before and after NHPPs extraction. We aim to show that cumulative hazard reconstruction
using AG models preserves the essential information captured by the MFPCA.

4.1 Data Generating Process

Let λij(t) be an intensity function measured over a continuous variable t ∈ [0, 1] for observation j within
cluster i, for j = 1, . . . , Ji and i = 1, . . . , I, generated by a modified one-way functional ANOVA model
(Morris et al., 2003) as follows:

λij(t) := µ(t) + 2 · i ·
( K∑

k=1

ξik ϕ
(1)
k (t) +

L∑
l=1

ζijl ϕ
(2)
l (t) + ϵij(t)

)
(7)

where µ(t) = 200, ξik ∼ N (0, λ
(1)
k ), ζijl ∼ N (0, λ

(2)
l ) and ϵij ∼ N (0, σ2).

For our data generation, we draw inspiration from the simulation study described in Section 4 of Di
et al. (2009), introducing a few modifications to make the generation of the intensities more suitable
for our specific context. Firstly, we include a constant µ(t) to increase the frequency of events in the
NHPP generated by λij(t). Additionally, we scale level 1 and 2 components by a cluster-dependent
constant, enhancing the differentiation between-groups and, consequently, the cumulative intensities.
Lastly, we assign a higher standard deviation to the true eigenvalues at level 1 compared to level 2,
further distinguishing clusters and reducing within-cluster variability.

The decision to simulate the intensities rather than directly simulating the cumulative hazard function
stems from the specific characteristics required for the cumulative hazard (increasing monotonicity and
ensuring that Λij(0) = 0). Simulating scores from a normal distribution while maintaining these proper-
ties is not possible. Therefore, we opt to simulate the intensities to ensure these essential characteristics
are preserved.

We assume I = 20 clusters, J = 4 units and K = L = 4. The chosen value of the eigenvalues
are λ

(1)
k = 0.9k−1 for k = 1, ...,K and λ

(2)
l = 0.2l−1 for l = 1, ..., L, while the chosen value of the

eigenfunctions, chosen following Di et al. (2009); Cui et al. (2023), are

{ϕ(1)
1 (t), ϕ

(1)
2 (t), ϕ

(1)
3 (t), ϕ

(1)
4 (t)} = {

√
2 sin(2πt),

√
2 cos(2πt),

√
2 sin(4πt),

√
2 cos(4πt)} (8)

{ϕ(2)
1 (t), ϕ

(2)
2 (t), ϕ

(2)
3 (t), ϕ

(2)
4 (t)} = {1,

√
3 (2t− 1),

√
5 (6t2 − 6t+ 1),

√
7 (20t3 − 30t2 + 12t− 1)} (9)

at levels 1 and 2, respectively. Moreover, we assume µ(t) = 100 and σ = 0 (no noise). Afterwards, we
compute the cumulative hazard function as Λij(t) =

∫ t

0
λij(u)du. In Figure 1, we illustrate the simulated

intensities and cumulative hazards.
Following Pasupathy (2010), through the thinning method we simulate event times for a NHPP over

[0, 1], where the process is characterized by the time-varying intensity function λij(t).

4.2 Results

4.2.1 Compensators estimation

At this point, we apply the pipeline described in Section 3.1, where in the AG model in Eq. (1) we
employ the number of events recorded up to that time interval for unit j in cluster i as a time-dependent
covariate.

The baseline cumulative hazard, Λ̂0(t), along with Λ̃0(t) is estimated. Additionally, Λ̂ij(t) is derived
according to Eq. (2). These functions are depicted in Figure 2. By visual inspection, we observe some
information loss due to the stochastic nature of NHPPs in the simulation of event times. Nonetheless,
cluster behaviours remain distinguishable and can still be effectively recognised and characterized.

4.2.2 Multilevel functional principal component analysis

As final step of our simulation study, we implement the decomposition described in Section 3.2. We
recall that in Eq. (7) we simulate intensities λij(t) employing the eigenfunctions in Eq. (8-9). However,
our primary interest lies in Λij(t). Therefore, we first decompose Λij(t) using Eq. (5). At this stage,

7



100

200

300

0.00 0.25 0.50 0.75 1.00

t

λ i
j(t

)

Cluster 14 17 20 Others

(i) λij(t)

0

50

100

150

200

0.00 0.25 0.50 0.75 1.00

t

Λ
ij(t

)

Cluster 14 17 20 Others

(ii) Λij(t) =
∫ t

0
λij(u)du

Figure 1: Simulated intensities λij(t) (i) and cumulative hazards Λij(t) (ii), with clusters 14, 17, and 18
highlighted using different colors and line types due to their outlying shapes, which stand out from the
general patterns observed in other clusters.
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Figure 3: First two eigenfunctions at levels 1 and 2 (left and right panels, respectively), computed from
simulated Λij(t) represented in Figure 1 (ii).
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Figure 4: First two eigenfunctions at levels 1 and 2 (left and right panels, respectively), computed from
reconstructed Λ̂ij(t) represented in Figure 2 (ii).

we obtain 4 functional principal components at level 1 and 2 at level 2. To determine the number
of principal components at both levels, we set the PVE to 0.99, following the default setting in the
mfpca.face function from Cui et al. (2023). In Figure 3, we show results of MFPCA on functional
compensators related to the first and second principal components, respectively for levels 1 and 2.

On the other hand, after the simulation of the NHPP as described in previous section and having
computed Λ̂ij(t) according to Eq. (2), we apply the same multilevel functional decomposition to Λ̂ij(t).
Here, we obtain 3 functional principal components at level 1 and 2 at level 2 and of degree course, the
magnitude of the eigenvalues reduce. However, if we analyse the eigenfunctions reported in Figure 4,
similar pattern can be observed, both for levels 1 and 2.

In general, we observe that the reconstructed compensators closely match the original simulated
shapes, despite some information loss due to the sampling and fitting processes. Results indicate that
cumulative hazard reconstruction using AG models preserves the essential information captured by MF-
PCA and could be further enriched by incorporating additional application-specific covariates. This
demonstrates that for a NHPP with cluster-similar intensities, the cumulative hazard reconstruction us-
ing AG models effectively retrieves the simulated shapes, retaining the crucial information captured by
MFPCA prior to process extraction.

5 Case Study

We apply the proposed methodology to a case study involving the administrative dataset of PoliMi.
First, we present the compensators reconstruction and decomposition at degree course and school

levels (Subsection 5.1), then effectively implement a predictive model at studentID-level (Subsection
5.2).

5.1 Compensators reconstruction and decomposition

For the analysis of dropouts as a marked point process, after cohort selection described in Subsection
2.1 and having filtered the data to focus on a specified academic year (in our case, career start ay

= ‘2016’), we establish start and stop dates for each dropout event that happened on distinct days
and enumerate the cumulative occurred dropout distinct days (enum), as well as the number of events
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(dropout count) standardized by the number of students enrolled in that course, that will perform as the
mark of the counting process. Afterwards, these covariates are employed for the AG model for recurrent
events describing the dropouts.

Compensators are then reconstructed as described in Eq. (2). In Figure 5, we display the baseline
cumulative hazard and the reconstructed compensators, on two different scales. The behavior of the
curves is notable: there is a steep increase in dropout counts at the beginning and end of the first
year, particularly pronounced for specific degree courses. This pattern can be explained by several
factors. Early in the first year, high dropout rates are often observed as students realize that the degree
course they have chosen does not meet their expectations, leading them to switch programs or drop out.
Additionally, many dropouts may occur by the end of the first year because students find the coursework
too challenging or the degree program not aligned with their career aspirations. This combination of
early and end-of-year dropouts contributes to the distinct peaks observed in the cumulative hazard curves.
Notable is the case of a degree course in school sC.

Afterwards, the compensators are decomposed as in Eq. (4). The number of principal components
for both levels is chosen by setting a proportion of variance explained equal to 0.99. As a result, two
principal components are retained for both levels. At the higher hierarchical level (denoted as level 1,

corresponding to the school), the eigenvalues obtained are λ̂
(1)
1 = 74.747 and λ̂

(1)
2 = 0.434, while at

the lower hierarchical level (level 2, corresponding to the course), the eigenvalues are λ̂
(2)
1 = 67.236 and

λ̂
(2)
2 = 1.130.
Figure 6 illustrates the first and second eigenfunctions for each of the two levels. To improve inter-

pretability, as suggested in Ramsay and Silverman (2005), Figure 7 shows the mean compensator functions
µ̂(t) (solid black line) along with perturbation curves (red dashed lines for positive perturbations and
blue dot-dashed lines for negative) representing the eigenfunctions within one standard deviation (i.e.,
the square roots of the eigenvalues) from the mean, based on the MFPCA performed on Λ̂ij(t).

The distribution of dropouts over time reveals distinct patterns across schools and degree courses,
each associated with varying dropout risks. Notably, our analysis, as a novel contribution to the existing
literature, successfully disentangles the effects of schools from those of degree programs. The first princi-
pal components at both hierarchical levels capture deviations in dropout intensity relative to the average.
Specifically, schools and degree courses with a high score on the first principal component (represented
by the red dashed lines) are likely to experience a higher-than-average dropout rate, while those with a
low score (blue dot-dashed lines) are likely to see fewer dropouts than average. Interestingly, the dropout
patterns differ between the school and course levels: at the school level, there is a smoother increase in
dropouts toward the end of the first year (second semester), likely due to fewer fluctuations compared to
the course level, where more variation is observed.

The second principal components, though associated with less explained variance, highlight additional
temporal contrasts. At the school level, institutions with a high score (red dashed curve) tend to
experience fewer dropouts during the first two semesters but more dropouts in the third semester. This
pattern is similarly observed at the course level, though with greater oscillations, suggesting that some
noise may also be captured. Overall, these oscillations indicate more complex dropout dynamics at the
course level, where factors influencing dropouts fluctuate more over time.

5.2 Predictive model

At this stage of the analysis, we are able to include the information derived from compensators into a
predictive model (Subsection 5.2.1).

Before doing so, we first outline some data preprocessing steps necessary for preparing the dataset.
We start by filtering the data to focus on career start ay = ‘2017’. To ensure consistency across
observations, aligning with previous studies Masci et al. (2024); Ragni et al. (2024), we create the
dichotomic variable age19 to denote whether students were above the age of 19 (1 if above 19, 0 otherwise).
We compute the cumulative number of CFUs obtained by each student by the end of the first semester,
in the variable ECTS1sem. The outcome variable dropout3y equals 1 if after first semester a student drops
within three years, 0 otherwise. Following preprocessing, our dataset consists of 5666 students, of which
872 dropped out. Descriptive statistics for the over-described covariates after data pre-processing, are
reported in Table 2, according to the dropout status. It is interesting to notice that, as expected, all
numerical variables are higher when no dropout happens.
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Variable dropout3y=0 dropout3y=1

Type Name Mean (sd) Mean (sd)

Numerical
admission score 67.00 (11.46) 63.61 (11.62)
ECTS1sem 49.79 (14.74) 10.38 (15.39)

Category N (Frequency) N (Frequency)

Categorical

origins

OnSite* 1033 (21.55%) 232 (26.61%)
Commuter 3427 (71.49%) 583 (66.86%)
Offsite 334 (6.96%) 57 (6.53%)

gender
Male* 3200 (66.75%) 670 (76.83%)
Female 31594 (33.25%) 202 (23.17%)

highschool type

Scientific* 3181 (66.36%) 542 (62.15%)
Classical 327 (6.82%) 55 (6.31%)
Others 607 (12.66%) 90 (10.32%)
Technical 679 (14.16%) 185 (21.22%)

income

Medium* 988 (20.61%) 125 (14.33%)
Grant 1404 (29.29%) 287 (32.91%)
High 1771 (36.94%) 378 (43.35%)
Low 631 (13.16%) 82 (9.41%)

age19
0* 4276 (89.19%) 671 (76.95%)
1 518 (10.81%) 201 (23.05%)

* Reference category.

Table 2: Descriptive statistics for considered covariates after data pre-processing for
career start ay=‘2017’, according to the dropout status by the end of the third year.

12



5.2.1 Logistic regression model with functional compensators

We aim to model the probability of student dropout within 3 years after the first semester (dropout3y),
using covariates at the studentID-level and functional principal component scores derived from the
cumulative hazard of historical dropouts over time.

We consider two principal components (K = 2) at the school level, and one principal component (L =
1) at the course level, as there is low explained variability and high oscillations in the second component
that could negatively affect model performance due to noise amplification. The binary outcome variable
Yijh indicating whether a student h within course j and school i drops out within 3 years is modeled as
Yijh ∼ Bernoulli(pijh), linear predictor given by

logit(pijh) = γTwijh +

K∑
k=1

ξikα
(1)
k +

L∑
l=1

ζijlα
(2)
l

for i = 1, ..., I, j = 1, ..., Ji and h = 1, ...Hij . The vector of covariates wijh at the studentID-level
includes demographic and academic information that could influence dropout risk, i.e., origins, gender,
highschool type, income, age19, admission score, ECTS1sem. The choice of these variables is guided
by previous literature, see for instance Masci et al. (2024). Obtained results for the estimated coefficients
are reported in Table 3.

Parameter Estimate Std. Error p-value

γ̂0 (Intercept) 0.589 0.029 0.000
γ̂1 (origins - Commuter) 0.022 0.008 0.008
γ̂2 (origins - Offsite) -0.018 0.015 0.244
γ̂3 (gender – Female) 0.025 0.008 0.002
γ̂4 (highschool type – Classical) -0.000 0.014 0.988
γ̂5 (highschool type – Others) 0.008 0.012 0.467
γ̂6 (highschool type – Technical) -0.002 0.010 0.812
γ̂7 (income – Grant) -0.014 0.010 0.172
γ̂8 (income – High) 0.004 0.009 0.674
γ̂9 (income – Low) -0.025 0.012 0.046
γ̂10 (age19 – 1) 0.007 0.011 0.498
γ̂11 (admission score) 0.001 0.000 0.000
γ̂12 (ECTS1sem) -0.012 0.000 0.000

α̂
(1)
1 (ξi1 - school-level score 1) 0.002 0.029 0.049

α̂
(1)
2 (ξi2 - school-level score 2) -0.070 0.001 0.000

α̂
(2)
1 (ζij1 - course-level score 1) 0.001 0.020 0.083

Table 3: Estimates, standard errors, and p-values for the logistic regression model with functional compen-
sators.

It is interesting to notice that coefficients related to the obtained scores at school-level are significant
and, specifically, the one related to the first principal component is positive, indicating that the probability
of dropping out within the 3 years is increased if the school in which a student is enrolled has an high
score on the first principal component, and this result is coherent with the plot in Figure 7 (i). On the
other hand, the coefficient related to the the second principal component at the school-level is negative
and statistically significant, indicating that students in schools with higher dropouts with respect to
the average in the first year and lower than average in the third semester have higher probability to
dropout. At the course-level, the first principal component is again positively associated with dropout
risk, meaning students enrolled in courses where the dropout trend is above the average are linked to an
increased probability of students dropping out.

Regarding the other covariates, ECTS1sem (credits earned in the first semester) is highly significant
and negatively associated with dropout probability. This implies that students who pass more credits in
their first semester have a lower risk of dropping out within three years. This result is in line with previous
research, such as Masci et al. (2024) which highlights the strong predictive power of first-semester credits
over later academic performance in determining dropout risk. The influence of first-semester credits is
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particularly pronounced, as passing more credits early on seems to provide a greater protective effect
against dropout.

For the remaining covariates, the results are largely consistent with expectations, although many
are not statistically significant. For example, the coefficients related to income and highschool type

align with prior studies, but they lack statistical significance in this specific model. One exception is the
variable admission score, which is statistically significant but reveals an unexpected positive association
with dropout probability. Typically, one would expect that a higher admission score is related with a
reduced risk of dropout, as it often indicates greater preparedness for higher education. However, at
PoliMi, students are permitted to take the admission test as early as their fourth year of secondary
education. At this stage, they may not have fully developed the necessary competencies or maturity
required for success in a university setting. Consequently, students who achieve high admission scores
at this early stage may still struggle academically once enrolled, potentially increasing their likelihood
of dropping out. This surprising result is the focus of ongoing study at PoliMi, as we aim to better
understand the underlying factors contributing to this unexpected association.

In terms of model performance, the model achieves an AIC (Akaike, 1998; Bozdogan, 1987) of 808.68,
and excellent predictive power, with an AUC (Hanley and McNeil, 1982) of 0.9425 and an accuracy of
0.92. Sensitivity (0.954) and precision (0.951) are both high, indicating that the model is very good
at correctly identifying students who are at risk of dropping out. Specificity (0.732), though slightly
lower, still indicates a reasonable ability to identify students who are not at risk. These performance
metrics suggest that the model is well-calibrated for predicting dropout risk, with a particular strength
in identifying students at higher risk.

If we fit the same model but exclude the compensators’ information, we obtain an AIC of 823.85 and
an AUC of 0.9418. This indicates that the model provides a better fit when compensator information
is included. On the other hand, while a mixed-effects model can account for unobserved heterogeneity,
it primarily introduces scaling factors and may not be as suitable in our case. It lacks the capacity to
capture the intricate temporal dynamics that our compensator-based approach, combined with multilevel
functional principal component analysis, effectively models over time. Also, the authors in Baraldo
et al. (2013) compared such models, demonstrating that mixed-effects models do not offer superior
performance.

6 Discussion

Addressing student dropouts is a critical concern for universities, both academically and financially.
Each dropout represents an inefficient use of institutional resources allocated to recruitment, teaching,
and student support. Reducing dropout rates directly impacts both financial stability and the overall
effectiveness of educational systems.

One of the complexities in tackling this issue lies in the heterogeneous nature of dropout behaviour
across degree programs and schools. Different academic disciplines present unique challenges - some
programs may experience high dropout rates early on due to demanding foundational courses, while
others see increased dropouts as students’ careers progress. Similarly, the dropout patterns can vary
considerably across schools within the same university, influenced by factors such as faculty engagement
and available student support.

In this paper, we present a novel approach to modelling dropout behaviour by examining occurrences
over time within both degree programs and schools. Our work has two main goals: (i) to estimate the
dropout trends over time and examine its variability across different degree programs and schools, and (ii)
to leverage this information in a predictive framework at the student level. To achieve these objectives,
we utilize Cox-based regression for recurrent events to capture the temporal dynamics and underlying
structure of dropout trends. In this initial phase, we employ an AG model, as supported by existing
literature (Spreafico and Ieva, 2021). However, it is important to note that other modeling choices,
such as those proposed by Baraldo et al. (2013), which build on Peña et al. (2007), are also possible.
Selecting the appropriate model can be challenging; consequently, this first step of the analysis could be
replicated using alternative modeling approaches, allowing for further exploration and validation of our
findings. By decomposing dropout patterns within programs and schools through multilevel functional
principal component analysis, we provide a detailed view of critical time periods when dropout rates tend
to spike. This approach offers both visual and quantitative insights into when students are most at risk
of leaving their studies, allowing institutions to identify vulnerable cohorts and periods. Furthermore,
by capturing these temporal trends, we gain a deeper understanding of how dropout behaviour varies
across disciplines.

14



Our predictive model adds significant value by incorporating historical dropout data on current
dropout behaviour. By integrating information from previous cohorts, our approach allows universi-
ties to more accurately forecast future dropout risks and target proactive interventions. This enables
educational institutions to identify at-risk students earlier in their academic journeys, based on a combi-
nation of baseline characteristics such as academic performance in first semester, socioeconomic status,
and previous schools attended. With this information, universities can implement more personalized sup-
port strategies aimed at reducing dropouts, such as tutoring classes, thus improving student retention
and overall success.

While our model presents promising results, there are several limitations and areas for further devel-
opment. First, this is a preliminary analysis, and the results should be validated across multiple academic
years to ensure robustness. Cross-validation techniques could be employed to improve the stability and
generalizability of the model outcomes. Additionally, the impact of external factors like the Covid-19
pandemic - which may have fundamentally altered student engagement and retention - should be incor-
porated into future analyses. Understanding how the pandemic influenced dropout patterns could further
refine our predictions. Furthermore, our analysis focuses on the first three semesters, a period selected
because highly predictive of dropout risk. Since the compensator must be integrated over historical data,
extending the observation period beyond this point did not yield significant improvements in the analysis;
however, this remains an area for further evaluation in future research. Indeed, while considering this
period in the compensators reconstruction allows capturing early dropouts at course and school levels,
future extensions could consider the entire three-year duration of undergraduate programs to provide a
more comprehensive understanding of student retention. Incorporating time-to-event data would allow
us to model dropout risk more accurately over time, addressing both whether and when students are
likely to drop out.
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A Compensators reconstruction

The realizations of each compensator Λij(t) for each unit j in cluster i, employing result in Eq. (1) can
be expressed as follows:

Λij(t) =

∫ t

0

Yij(s)λ0(s) exp(β
Txij(s) + θT zij(s))ds

=

Nij(t
−)∑

k=0

∫ t
(ij)
k+1

∧t

t
(ij)
k

λ0(s) exp(βTxij(s) + θT zij(s))ds

≃
Nij(t

−)∑
k=0

exp(βTxij(t
(ij)
k ) + θT zij(t

(ij)
k ))

∫ t
(ij)
k+1

∧t

t
(ij)
k

λ0(s)ds

=

Nij(t
−)∑

k=0

exp(βTxij(t
(ij)
k ) + θT zij(t

(ij)
k ))

[
Λ̃0(t

(ij)
k+1 ∧ t)− Λ̃0(t

(ij)
k )

]
where a∧b = min{a, b}, Nij(t

−) represents the number of occurrences that have happened strictly before
time t, and β̂ and θ̂ are the estimated vectors of coefficients.
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Cannistrà, M., C. Masci, F. Ieva, T. Agasisti, and A. M. Paganoni (2022). Early-predicting dropout of
university students: an application of innovative multilevel machine learning and statistical techniques.
Studies in Higher Education 47 (9), 1935–1956.
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