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Abstract

We consider the problem of estimating the conditional quantiles of an unknown distribution from data gathered on a
spatial domain. We propose a spatial quantile regression model with differential regularisation. The penalisation in-
volves a partial differential equation defined over the considered spatial domain, that can display a complex geometry.
Such regularisation permits, on one hand, to model complex anisotropy and non-stationarity patterns, possibly on the
basis of problem-specific knowledge, and, on the other hand, to comply with the complex conformation of the spatial
domain. We define an innovative functional Expectation-Maximisation algorithm, to estimate the unknown quantile
surface. We moreover describe a suitable discretisation of the estimation problem, and investigate the theoretical
properties of the resulting estimator. The performance of the proposed method is assessed by simulation studies, com-
paring with state-of-the-art techniques for spatial quantile regression. Finally, the considered model is applied to two
real data analyses, the first concerning rainfall measurements in Switzerland and the second concerning sea surface
conductivity data in the Gulf of Mexico.

Keywords: Differential penalisation, Finite elements, Functional data analysis, Nonparametric quantile smoothing,
Smoothing with roughness penalties
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1. Introduction

In this work, we are interested in modelling the heterogeneous effects of complex spatial phenomena on the
conditional quantiles of a response variable of interest, via nonparametric regression. Regression analysis is, in fact, a
powerful and versatile tool for analysing the conditional distribution of noisy data given a set of covariates. However,
it is generally recognised that the conditional mean is not the most suitable summary of location when samples
significantly deviate from the Gaussian assumption. In particular, heteroscedasticity, skewness, lepto- or platy-kurtic
tails are characteristics often present in real data, that can shadow the relationship between the response variable
and the covariates, as postulated by classical conditional regression models on the data mean. Possibly restrictive
parametric assumptions on the data generating mechanism could be a solution; for instance, generalised linear models
[48] replace the Gaussian distribution with a more appropriate law belonging to the exponential family. Quantile
regression models more generally characterise the conditional behaviour of the response variable, and are usually
distribution-free and based solely on local assumptions. Conditional quantiles have the additional benefits of being
invariant to monotone transformations of the data, and more robust to outlier contamination [36]. These reasons
motivated the spread of conditional quantile methods, since their introduction by [38]. Quantiles play a relevant role
in modern theoretical and applied statistical approaches, including, for instance, high-dimensional learning [70, 74],
conformal prediction [61], risk assessment [62], and environmental statistics [69]. Moreover, they deliver optimal
point estimates [15, 29] and classification [18].
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Fig. 1: Rainfall measurements at 467 locations in the Swiss territory.

In addition to univariate distributional characteristics of the response, geostatistical applications require taking into
account the spatial dependence induced by the topological nature of the data generating process. Flows and external
perturbations are well-known sources of complex structures of dependence in spatial data, whose impact can largely
differ across quantiles. In addition, the complex conformation of the sampling domain, and the possible presence
of boundary constraints, may introduce additional levels of complexity. In climate and oceanographic studies, for
instance, temperature, pressure, and precipitation data often manifest local anisotropy and non-stationarity, and are
influenced by wind or water streams, and by local characteristics of the geographical morphology. Moreover, such
data typically manifests heteroscedastic skewed distributions, with local changes in space and time. Modelling these
complex features is of prominent interest not only in environmental problems but also in various other fields, including
physical and life sciences, as well as engineering.

A real data example is provided in Fig. 1, which portrays 467 rainfall measurements (in 1/10 mm units) collected
in Switzerland on May 8, 1986 [14]. The data clearly manifest a strong southwest-northeast anisotropy, which might
be caused by the geographical characteristics of the region, and their interactions with the local dynamics of the
atmosphere. In addition, heteroscedastic noise and extreme values [14] introduce another source of variability that
must be properly modelled to provide a complete description of the data distribution.

A second example is shown in Fig. 2, where we consider replicated historical oceanographic data on the sea
surface electrical conductivity (in S/m scale), measured in the Gulf of Mexico around the Florida peninsula, from
1978 to 2017 [26, 83]. Data were derived from temperature, pressure and salinity observations, gathered by different
data sources and aggregated on a regular grid in space and on a monthly basis in time. The behaviour of the sea
surface characteristics in the area, such as conductivity, temperature and nutrient concentration, are strongly affected
by the presence of the Florida coastline barrier and by the Gulf Stream, which originates in the Gulf of Mexico and
transports a flow of warm water from the tropics to the North Atlantic Ocean. The presence of such non-stationary
steam constitutes a big challenge from a modelling point of view, but it also provides an important source of additional
information on the system.

In the spatial and quantile regression literature, many authors studied the problem of estimating nonparametric and
semiparametric regression models in one- and two-dimensional domains. For example, [40, 51] considered quantile
smoothing spline models with total variation regularisation, and they proposed a linear programming algorithm for
parameter estimation. [11] studied quantile regression with cubic smoothing spline, and estimated the parameters
with an interior point algorithm. [32] generalised the quantile smoothing approach to a bivariate setting, introducing a
tensor product basis expansion. [39] extended the total variation regularisation method to spatial regression quantiles
by combining the so-called penalised triogram basis expansion with a linear programming algorithm. Univariate and
bivariate quantile smoothing spline, based on linear programming and interior point methods, are implemented in the
R package quantreg [37]. Alternative approaches to non-linear quantile regression are the local linear estimator by
[31, 79], the reproducing kernel Hilbert space estimator by [45], and the non-linear mixed model for clustered data
by [27, 28]. More recently, [19] proposed a fast calibrated framework for estimating additive and mixed quantile
regression models, which is implemented in the R package qgam [20]. This leverages and extends the capabilities of
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Fig. 2: Sea surface conductivity data around the Florida peninsula. Left: pointwise average of the sea surface conductivity. Middle: pointwise
standard deviation of the sea surface conductivity. Right: Gulf stream velocity.

the popular R package mgcv [77], enabling a wide range of univariate and bivariate smoothers in a quantile regression
context, including thin plate spline smoothing [see, e.g., 72, 76] and soap film smoothing [78]. Soap film smoothing,
in particular, can handle data over complex domains. Other smoothers having similar features, though not in a quantile
regression framework, are the bivariate penalised spline approach by, e.g., [43, 58, 73].

We here propose a nonparametric quantile regression model for spatially referenced data. This model has a regular-
ising term involving a Partial Differential Equation (PDE, [17]) defined over the considered spatial sampling domain.
The proposed method generalises the univariate quantile cubic spline [11] to planar regions. Moreover, it extends to
conditional quantile estimation, of a spatially distributed response variable, the technique originally introduced for
spatial linear regression problems by [5, 64]; see, e.g., the review in [63]. The regularising PDE allows us to incorpo-
rate structured smoothing effects in the estimation of the conditional quantile surface, taking into account anisotropy,
unidirectional smoothing, and other complex and possibly non-stationary spatial effects, in a unified modelling frame-
work; moreover, being defined on the considered spatial domain, it permits to naturally comply with its geometry.
Such a PDE-driven approach also extends the Laplacian regularisation of soap film smoothing [78], while providing a
more flexible alternative to thin-plate-spline [72] and multivariate splines [10] in two-dimensional quantile smoothing
problems [see, e.g., 63, 64].

Unlike penalised smoothers for generalised linear models, the estimation and theoretical analysis of penalised
quantile regression estimators are intrinsically complicated by the non-differentiability of the quantile loss function.
This issue prevents the straightforward exploitation of standard methods based on the Taylor expansion, which must
be replaced by specifically tailored derivative-free approaches. The novelty of the proposed methodology is three-
fold. First, we introduce a broad class of flexible, anisotropic and nonstationary, quantile regression models, based
on a penalised loss criterion. In doing this, we trade off a goodness-of-fit measure and a roughness penalisation de-
pending on the PDE specification. Secondly, we propose an innovative parameter estimation algorithm, following
the Expectation-Maximisation (EM) scheme [13] under interpolation constraints. Such an approach allows to min-
imise the penalised quantile loss, directly overcoming the non-differentiability of the problem, without relying on
linear programming [39] or loss smoothing [19]. The infinite-dimensional solution of such an optimisation is then
discretised by means of finite element methods [see, e.g., 57]. Building upon this discretisation, we propose a new
constraint-adjusted Generalized Cross-Validation (GCV) criterion, for smoothing parameter selection in penalised
quantile regression problems, which accounts for the implicit identity constraints arising from the EM solution. The
proposed constrained EM algorithm and constrained adjusted GCV selection constitute non-standard approaches that
could also prove useful in more classical quantile regression settings. Finally, we provide a theoretical characterisation
of the finite-dimensional PDE quantile estimators, proving existence, consistency, and asymptotic normality.

The article is organized as follows. In Section 2, we introduce the spatial quantile regression model with PDE
regularisation, along with the associated infinite-dimensional estimation problem. In Section 3, we propose an appro-
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priate functional EM algorithm and characterise its solution at each iteration. In Section 4, we introduce the finite
element method to discretise the infinite-dimensional estimation problem. In Section 5, we study the large-sample
properties of the resulting finite-dimensional estimator, proving its consistency and asymptotic normality. In Section
6, we present two simulation studies in which we compare our method to state-of-the-art alternatives, under different
data generation scenarios. Finally, in Section 7, we employ our method to analyse the rainfall intensity in Switzerland
and the sea surface conductivity in the Gulf of Mexico. Concluding remarks are given in Section 8.

2. Spatial quantile regression model

Consider n spatial locations p1, . . . ,pn collected over the bounded regionΩ ⊂ R2, with regular boundary ∂Ω ∈ C2.
At each site pi we observe a realisation yi of a real random variable Yi, i ∈ {1, . . . , n}. We assume Yi has absolutely
continuous distribution with probability density function πyi |pi (y), cumulative density function Πyi |pi (y), and quantile
function Qyi |pi (α) = inf{y ∈ R : Πyi |pi (y) ≥ α}, for any probability level α ∈ (0, 1). We further assume the following
nonparametric spatial model for the α-quantile of Yi

Qyi |pi (α) = fα(pi), pi ∈ Ω, i ∈ {1, . . . , n}, (1)

where fα : Ω→ R is an unknown smooth field. Our aim is to estimate fα, taking advantage of the available problem-
specific information.

We propose to estimate the unknown spatial field fα by minimising the penalised loss functional

Jα( f ) =
1
n

n∑
i=1

ρα
(
yi − f (pi)

)
+
λ

2

∫
Ω

(
L f (p) − u(p)

)2
dp, (2)

where λ > 0 is a smoothing parameter, and ρα(x) = 1
2 |x| + (α − 1

2 )x is the so-called quantile check function, or
pinball loss [38]. The penalised objective functional (2) trades off an appropriate goodness-of-fit criterion, the sum
of quantile loss functions, and a regularisation criterion, the squared integral of the PDE misfit L f (p) − u(p) over the
spatial domain Ω, where L is a second-order differential operator and u a smooth squared-integrable function on Ω;
see Section 2.1. Such a regularisation term shrinks the estimate of the quantile field toward the solution space of the
considered PDE, and can be used to introduce structured smoothing effects, such as anisotropic and unidirectional
nonstationary smoothing effects, as detailed in Section 2.1

2.1. Differential regularisation and structured smoothing
We here consider second-order elliptic PDEs of the form L f (p) = u(p) in Ω, with squared integrable forcing term

u : Ω→ R and diffusion-transport-reaction operator L, defined as

L f (p) = −div(K∇ f (p)) + b · ∇ f (p) + c f (p), (3)

where K ∈ R2×2 denotes a symmetric positive definite diffusion tensor, b ∈ R2 is a transport vector and c ≥ 0 is a
scalar reaction term. Moreover, we denote by div(·) the divergence of a vector field and by ∇ the gradient of a scalar
field, so that

div(K∇ f (p)) =
2∑

i, j=1

Ki j
∂

∂pi

∂

∂p j
f (p), b · ∇ f (p) =

2∑
j=1

b j
∂

∂p j
f (p).

The PDE parameters, namely K, b and c, model respectively anisotropic diffusion, unidirectional smoothing and
pointwise shrinkage toward 0 [see, e.g., 63]. The forcing term instead describes possible source effects, which con-
stitute perturbations from the homogeneous state, corresponding to u = 0. Non-stationary effects in space can be
considered as well by letting K = K(p), b = b(p), c = c(p) and u = u(p) vary as smooth functions over the domain
Ω, as shown in [1, 5]. For instance, in Section 7, we illustrate a practical case study where a non-stationary transport
term is used to account for the Gulf Stream dynamics, while modelling the sea surface conductivity around the Florida
peninsula.

The simplest and most common form of differential regularisation can be obtained by considering the pure dif-
fusion equation ∆ f (p) = 0, where the Laplacian operator ∆ f (p) = ∂2 f (p)/∂p2

1 + ∂
2 f (p)/∂p2

2 measures of the local
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curvature of f . This choice corresponds to a PDE with coefficients K = I, b = 0, c = 0 and u = 0. The induced
penalisation functional

∫
Ω

(
∆ f (p)

)2dp may be seen as a generalisation of the univariate smoothing spline penalties to
bivariate smoothing problems [see, e.g., 58, 64, 78]. This relationship between PDE regularised regression and alter-
native smoothers, such as multivariate splines [10], thin-plate-spline [72] and soap film smoothing [78] are discussed
in, e.g., [63].

Additionally, we need to introduce some boundary conditions to complete the specification of the PDE, that is
B f (p) = γ(p) on ∂Ω, where B is an appropriate differential operator, and γ : ∂Ω → R is a smooth non-homogeneous
term on the boundary. Depending on the problem at hand, Dirichlet, Neumann, Robin, or mixed boundary conditions
can be used to model the boundary behaviour of the phenomenon under study; see, e.g., the work of [1, 4, 5] for the
use of such conditions on linear regression models with PDE regularisation. Specifically, we here consider Neumann
boundary conditions, which are characterised by the differential operator B f (p) = K∇ f (p) · ν(p) on ∂Ω, where ν
denotes the outward normal vector of ∂Ω.

To lighten the notation and improve the readability of the forthcoming mathematical expressions, hereafter we
drop the dependence on p in all the formulas involving differential and integral operators acting on f , or any other
spatial field. For instance, we write

∫
Ω

(L f − u)2 in place of
∫
Ω

(
L f (p) − u(p)

)2dp.

2.2. Infinite-dimensional estimation problem

We denote by Hd(Ω) the Sobolev space of order d, that is the space of functions in L2(Ω) having d weak derivatives
in L2(Ω). Formally,

Hd(Ω) =
{
f ∈ L2(Ω) : Dk f ∈ L2(Ω), ∀|k| ≤ d

}
,

where Dk f is the k-th weak derivative of f [17]. The appropriate functional embedding for the estimation problem in
(2) is the space Fγ, defined as

Fγ =
{
f ∈ H2(Ω) : B f = γ on ∂Ω

}
.

Because of the Sobolev embedding theorem, any function f ∈ Fγ is continuous, since Fγ ⊂ H2(Ω) ⊂ C0(Ω̄) for
Ω ⊂ R2, where C0(Ω̄) is the set of continuous functions over the closure Ω̄ = Ω ∪ ∂Ω. Therefore, assuming f ∈ Fγ,
the pointwise evaluation of f at the observed spatial locations in (2) is well-defined, as well as the differential operator
in (3). The estimation problem is thus specified as follows.

Problem 1. Find f̂α ∈ Fγ such that f̂α ∈ argmin f∈Fγ Jα( f ).

Let us denote by Vγ,α = { f̂α ∈ Fγ : Jα( f̂α) = inf f∈Fγ Jα( f )} the space collecting all the fields f̂α solving Problem
1. The existence ofVγ,α is guaranteed by the following proposition.

Proposition 1. The solution spaceVγ,α is a non-empty, closed, convex set. Moreover, any field f̂α ∈ Vγ,α is a global
minimum of the functional (2).

We defer all the derivations and proofs to the Appendix. Differently from the strictly convex optimisation criteria
discussed, e.g., by [5, 64] for simple linear models, or by [75] for generalised linear models, in the quantile regression
framework here considered, the solution to Problem 1 is not guaranteed to be unique for finite samples. However, it is
worth noting that all the estimators minimising (2) are global minimisers and, therefore, reach the same value of the
penalised loss functional (2). In the parametric quantile regression literature, this is a known property that naturally
arises by exploiting the alternative representation of Problem 1 in terms of linear programming. For details on the
parametric context, we refer the reader to [36, 38].

The elements belonging to Vγ,α can also be characterised by means of a first-order necessary condition. This
leverages on the convexity and continuity of the functional Jα( f ) without requiring any further regularity property,
such as uniform differentiability of the loss function. The main idea is to exploit the behaviour of directional deriva-
tives, i.e., the subgradient, of functional (2), in a neighbourhood of its minimum, and to use standard convex analysis
results to ensure optimality [see, e.g., 60]. Intuitively, any departure from the optimum must yield an increment of
the functional leading to a non-negative effect on its directional derivatives. This is formally stated in the following
proposition.
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Proposition 2. Let f̂α ∈ Vγ,α be a minimum of (2). Then, f̂α satisfies

−
1
n

n∑
i=1

ψ(pi) ρ̇α
(
yi − f̂α(pi),−ψ(pi)

)
≥ −λ

∫
Ω

(Lψ)(L f̂α − u),

for any ψ ∈ F0, where ρ̇α(v,w) is the directional derivative of ρα(·) calculated in v ∈ R along the direction w ∈ R,
which is defined as α − I(v < 0) if v , 0 and α − I(w < 0) if v = 0.

Proposition 2 characterises the elements of the solution space Vγ,α. However, it does not provide any direct way
to find an explicit solution to the minimisation of (2). The quantile estimator in Problem 1 must then be computed via
iterative algorithms, like the one proposed in the next section.

3. Functional EM algorithm

We here propose an innovative functional version of the EM algorithm [13, 49] in order to approximate optimisa-
tion Problem 1 by a sequence of simpler problems having a convenient variational representation. This provides, in
the limit, an approximate solution to the estimation of f̂α ∈ Vγ,α, because of the monotonic convergence property of
the EM algorithm.

3.1. Algorithm derivation
We here give a sketch of the derivation of our functional EM algorithm. First, we recall the result by [80], which

states the equivalence between the MLE of an Asymmetric Laplace model [41] and the minimum of the quantile
check function. Solving Problem 1 then corresponds to maximise the penalised log-likelihood functional under the
following specification:

Yi = f (pi) + εi, εi ∼ AL(α, 0, 1), i ∈ {1, . . . , n}, (4)

where AL(α, 0, 1) denotes the Asymmetric Laplace law with shape parameter α ∈ (0, 1), location 0 and scale 1 [see,
e.g., 41]. The working probability density function of εi is then given by πεi |pi (εi) = α(1 − α) exp{−ρα(εi)}, which
is such that Πεi |pi (0) =

∫ 0
−∞

πεi |pi (ε) dε = α. We take advantage of the location-scale mixture representation of the
Laplace distribution [41], which enables us to write the i-th error component in model (4) as a Gaussian random
variable with conditional distribution

εi|νi ∼ N
(

(1 − 2α)νi

α(1 − α)
,

2νi

α(1 − α)

)
, νi ∼ Exp(1), (5)

where N(µ, σ2) is the univariate Gaussian law with mean µ ∈ R and variance σ2 > 0, while Exp(1) is the Exponential
law with mean 1.

Combining the completed log-likelihood functional relative to model (4) and (5) with the PDE regularisation term
in (2), we obtain the penalised completed log-likelihood:

ℓα( f ; ν, y) =
n∑

i=1

ℓα( f ; νi, yi) −
λn
2

∫
Ω

(L f − u)2, (6)

where the i-th contribution of the completed log-likelihood is equal to

ℓα( f ; νi, yi) = −
1
2

log νi − νi −
α(1 − α)

4νi

{
yi − f (pi) −

(1 − 2α)
α(1 − α)

νi

}2
.

Provided that exp{ℓα( f ; yi)} ∝
∫ ∞

0 exp{ℓα( f ; νi, yi)} dνi [see, e.g., 41], the penalised Laplace log-likelihood (6) can be
maximised via an EM algorithm, iterating until convergence the Expectation (E) and Maximisation (M) steps. At the
(k + 1)-th iteration of the procedure, the parameter estimates are updated as follows:

E-step: ℓ̄(k)
α ( f ; y) = E(k){ℓα( f ; ν, y)}, M-step: f (k+1)

α = argmax
f∈Fγ

ℓ̄(k)
α ( f ; y).
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The expectation in the E-step is taken with respect to the conditional distribution of ν1, . . . , νn, given the observations
y1, . . . , yn, keeping fixed the values of the spatial field f (k)

α , obtained at the k-th iteration of the algorithm.
As shown by, e.g., [42, 71], a posteriori each latent factor νi is independently distributed as a Generalized Inverse

Gaussian random variable with known parameters. We can thus use the linearity of the expected value, exploit the
analytic integration of νi, and discard all the additive terms not depending on the unknown f , to obtain a closed-form
expression for the expected penalised log-likelihood functional ℓ̄(k)

α ( f ; y). Hence, at the (k + 1)-th iteration of the
algorithm, we have ℓ̄(k)

α ( f ; y) = −nJ(k)
α ( f ) + const, where J(k)

α ( f ) can be interpreted as a local quadratic approximation
of Jα( f ) calculated in a neighborhood of f (k)

α , that is

J(k)
α ( f ) =

1
2n

(z(k) − fn)⊤W(k)(z(k) − fn) +
λ

2

∫
Ω

(L f − u)2, (7)

where z(k) = y− (1− 2α)|y− f(k)
α,n| is a vector of working observations, W(k) = diag(w(k)) is a working weighting matrix

and 1/w(k) = 2|y − f(k)
α,n|. Hereafter we use the notation fn = ( f (p1), . . . , f (pn))⊤ to indicate the vector containing the

evaluation of any spatial field f at the n spatial locations p1, . . . ,pn.
It is worth noting that functional (7) in the M-step of the algorithm is well-defined only in the case where all ele-

ments of the vector 1/w(k) are non-zero. Otherwise, the calculation of W(k) might produce diagonal entries approach-
ing ∞. Moreover, the M-step still involves an optimisation over an infinite-dimensional space. However, differently
from functional (2) in Problem 1, functional (7) is convex and quadratic, and can thus be minimised by appropriately
extending the procedure discussed in [5] and [64] for simple linear regression settings. The infinite-weight issue and
the characterisation of the infinite-dimensional formulation of the M-step of the algorithm are the main topics of the
next section.

As a final remark, we observe that the value of the penalised objective functional (2) decreases at each iteration of
the EM algorithm, or at least it does not increase, yielding a stable monotonic convergence to a stationary point. Any
solution thus belongs to Vγ, thanks to the convexity and coercitivity of functional (2). See, e.g., [44, Chapters 9 and
12], for more details.

3.2. Constrained formulation

In the previous section, we introduced an infinite-weight problem: indeed, there exists the possibility that some
elements of 1/w(k) numerically approach zero. As a consequence, the corresponding diagonal entries of W(k) might
diverge, causing numerical instabilities in the calculation and optimisation of functional (7). Such a behaviour has
already been observed in the analysis of Bayesian support vector machines by [56]. As argued also in [56], values
of 1/w(k) numerically close to 0 do not indicate a pathological behaviour of the algorithm. Actually, they arise in
correspondence of support vector points, that are observations for which the complementary slackness conditions are
active constraints in the Karush–Kuhn–Tucker formulation of support vector machines [see, e.g., 8, Chapter 7]. See
Section 3 of [56] for more details. In the quantile regression context, we observe a similar phenomenon, that is related
to the activation of some implicit constraints that arise when Problem 1 is rephrased in terms of linear programming
[see, e.g., 36]. Intuitively, if 1/w(k)

i → 0, then the i-th squared pseudo-residual w(k)
i {z

(k)
i − f (pi)}2 will receive an infinite

weight since w(k)
i → ∞. This behaviour implicitly enforces the constraint z(k)

i − f (pi) = 0 to be satisfied. A way to solve
this issue, and overcome potential numerical instabilities, is to explicitly take into account the constraint induced by
1/w(k)

i = 0. To this end, we decouple the contribution of the unconstrained and constrained parts of the optimisation,
defining the partition z(k) =

{
z(k)

s , z
(k)
−s

}
, where z(k)

s =
{
z(k)

i : 1/w(k)
i = 0

}
and z(k)

−s =
{
z(k)

i : 1/w(k)
i > 0

}
. Under this setting,

the objective functional (7) becomes

J(k)
−s ( f ) =

1
2n

(z(k) − fn)⊤−sW
(k)
−s(z(k) − fn)−s +

λ

2

∫
Ω

(L f − u)2,

which is always well-defined. Moreover, we define the constraint (z(k) − fn)s = 0 and we suppress the α-index in
the objective functional to lighten the notation. Then, the M-step of the EM algorithm can be alternatively stated as
follows.

Problem 2. Find f̃α ∈ Fγ such that f̃α = argmin f∈Fγ J(k)
−s ( f ) subject to (z(k) − f̃n)s = 0.
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Because of the Lagrange multiplier theorem [see, e.g., 52, Chapter 13], searching a solution to Problem 2 is
equivalent to minimising the Lagrangian functional

L(k)
α ( f , η) = J(k)

−s ( f ) + η⊤(z(k) − fn)s/n, (8)

where η ∈ R|s| is a vector of Lagrange multipliers and |s| is the number of active constraints. Hence, we can directly
optimise (8) with respect to η and f , without imposing any explicit constraint.

In order to characterise the minimum of (8) in a variational formulation, we introduce the field g = L f −u ∈ L2(Ω),
which represents the misfit of the PDE. We define the bilinear forms R1(·, ·) and R0(·, ·) and the linear operator F(·) as
follows

R1(ϕ, ψ) =
∫
Ω

[
(K∇ϕ) · ∇ψ + (b · ∇ϕ)ψ + cϕψ

]
, R0(ϕ, ψ) =

∫
Ω

ϕψ, F(ϕ) =
∫
Ω

uϕ +
∫
∂Ω

γϕ, (9)

for any pair of functions ϕ, ψ ∈ H1(Ω). As we mention in Section 2, we here assume for simplicity Neumann boundary
conditions, but similar formulas arise when Dirichlet or Robin conditions are imposed; see, e.g., the works of [1, 4, 5]
for the linear regression case. Assuming that all these quantities are well-defined, the minimiser of the Lagrangian
functional (8) satisfies the following proposition.

Proposition 3. Let ( f̃α, η̃α) ∈ Fγ × R|s| be a minimum of L(k)
α ( f , η) in (8) and let g̃α = L f̃α − u ∈ H1(Ω). Then

( f̃α, g̃α, η̃α) is the solution of the following system of first-order equations

(ψn)⊤−sW
(k)
−s(f̃α,n)−s − (ψn)⊤s η̃α + λnR1(ψ, g̃α) = (ψn)⊤−sW

(k)
−sz(k)
−s , R1( f̃α, ϕ) − R0(g̃α, ϕ) = F(ϕ), (z(k) − f̃α,n)s = 0,

(10)
for any pair of test functions ϕ, ψ ∈ F0.

Such a variational formulation of Problem 2 is the cornerstone to the derivation of the finite element discretisation
we propose in Section 4. In order to lighten the notation hereafter we drop the index (k) associated with the iteration
counter of the algorithm.

4. Finite element discretisation

In order to tackle the infinite-dimensional problem as stated in the weak formulation (10), we study a numerical
solution within a proper finite-dimensional subspace. We consider a regular triangularisation Th of the original spatial
domain, with characteristic size h, where h is the maximum length of the triangle edges. In this way, Ω can be
represented by the union of all triangles in Th, leading to the approximated domain Ωh with polygonal boundary ∂Ωh.
The discretisation Th, also called mesh, is a fundamental tool in numerical analysis and engineering, that permits
to describe the geometry of possibly very complex domains, characterized by strong concavities, holes, or a curved
nature.

4.1. Finite element basis expansion
Denote by Pr(τ) the space of polynomial functions of order r over the triangle τ ∈ Th and define by F r

γ,h ⊂

H1(Ωh) ∩C0(Ω̄h) the finite-dimensional subspace

F r
γ,h =

{
fh ∈ C0(Ω̄h) : fh|τ ∈ Pr(τ) ∀τ ∈ Th, B fh = γh on ∂Ωh

}
.

where γh is the local r-th order polynomial interpolation of γ. Starting from the triangular discretisation Th, we can
thus define locally supported polynomial functions that provide a basis ψ1, . . . , ψNh for F r

γ,h. If we consider piecewise
linear functions, the elements of the basis expansion ψ1, . . . , ψNh have a one-to-one correspondence with the nodes of
the mesh ξ1, . . . , ξNh

, that are the vertices of the triangles. The evaluation of the i-th basis on the j-th node is given by
ψi(ξ j) = δi j, where δi j is the Kronecker delta with δi j = 1 if i = j and δi j = 0 if i , j, for any i, j ∈ {1, . . . ,Nh}. It turns
out that any surface fh ∈ F 1

γ,h is uniquely determined by its values at the nodes:

fh(p) =
Nh∑
j=1

fh(ξ j)ψ j(p) = f⊤ψ(p),
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where ψ(p) = (ψ1(p), . . . , ψNh (p))⊤ is the basis vector, evaluated at the point p ∈ Ω, while f = ( fh(ξ1), . . . , fh(ξNh
))⊤ is

the coefficient vector of the basis expansion. It is worth highlighting that the mesh can be constructed independently of
the n data locations p1, . . . ,pn. For instance, it is possible to consider a regular mesh, also when the data locations are
not uniformly distributed over the spatial domain Ω. In practical applications of the method, we consider rich meshes,
having a resolution fine enough to permit an accurate description of global and local characteristics of the underlying
spatial signal. Consequently, we often use discretisations where some triangles do not contain any observation, as
illustrated in Fig. 9. Notice that this does not invalidate the method and the well-posedness of the estimation problem
holds also in this case; see Proposition 4 and Corollary 1 in Section 4.2. We refer the reader to [57] for a comprehensive
introduction to finite element methods and numerical discretisation of partial differential problems.

4.2. Finite-dimensional estimator
Let Ψ be the matrix evaluation of the Nh basis functions at the n data locations:

Ψ =


ψ(p1)⊤

...
ψ(pn)⊤

 =

ψ1(p1) · · · ψNh (p1)
...

...
ψ1(pn) · · · ψNh (pn)

 ,
so that, for any fh ∈ F 1

γ,h, we have fn = Ψf. Let R1 be the Nh × Nh matrix evaluation of the bilinear form R1(·, ·)
over the finite element basis: R1 =

∫
Ωh

[
(∇ψ)K(∇ψ)⊤ + (∇ψ)(bψ⊤) + cψψ⊤

]
, where ∇ψ is the Jacobian matrix of the

vector field ψ. Similarly, we define the mass matrix R0 =
∫
Ωh
ψψ⊤, being the discretisation of R0(·, ·). The vectors

u =
∫
Ωh

uhψ and γ =
∫
∂Ωh

γhψ are used to build a discretisation of F(·). The finite element approximation of the system
(10) in Proposition 3 is presented in the following proposition.

Proposition 4. The finite element estimator (f̃α, g̃α, η̃α) ∈ RNh × RNh × R|s| is the solution of the linear system Ψ
⊤
−sW−sΨ−s λnR⊤1 Ψ⊤s
λnR1 −λnR0 O
Ψs O O


 f̃α

g̃α
η̃α

 =
 Ψ

⊤
−sW−sz−s

λn(u + γ)
zs

 . (11)

Set A = Ψ⊤−sW−sΨ−s + λnR⊤1 R−1
0 R1. Note that A is non-singular under minimal regularity conditions [4]. Set

B = ΨsA−1Ψ⊤s and d = Ψ⊤−sW−sz−s + λnR⊤1 R−1
0 (u + γ).

Corollary 1. The minimiser (f̃α, g̃α, η̃α) that solves the linear system (11) exists unique. Moreover, it has the closed-
form solution

f̃α = A−1d + A−1Ψ⊤s B−1(zs −ΨsA−1d),

g̃α = R−1
0 (R1 f̃α − u − γ),

η̃α = B−1(zs −ΨsA−1d).

(12)

Remark 1 (Projection onto the constrained space). It is worth noting that A−1d is the solution of the unconstrained
optimisation problem min

{
J(k)
−s

(
f⊤ψ

)
: f ∈ RNh

}
= min

{
J(k)
−s ( fh) : fh ∈ F 1

γ,h
}
. The constrained estimator f̃α is then

obtained by projecting the unconstrained solution A−1d onto the constrained space
{
f ∈ RNh : zs −Ψsf = 0

}
.

Remark 2 (Convergence to the global solution). Because of the monotonic convergence of the EM algorithm [44,
Chapters 9 and 12], in the limit, k → ∞, the finite element estimator f̃α,h = f̃⊤αψ converges to f̂α,h = f̂⊤αψ, which is the
minimiser of Jα( fh) for fh ∈ F 1

γ,h.

Remark 3 (Inclusion of covariates). The above results, and in particular Propositions 3 and 4, may be easily gener-
alised to accommodate for additive and semiparametric models when also a set of fixed covariates is available.

Remark 4 (Computational complexity). In (11), the computation of the system vector and matrix, and the numeri-
cal solution of the system require, respectively, O(nNδ/2

h ), O(nNδ
h) and O(N1+δ

h ) floating point operations, where the
coefficient δ ∈ [0, 2] is determined by the degree of sparsity of the matrices Ψ, R0 and R1. In applications, the local
support of the finite element basis ψ1, . . . , ψNh guarantees for the system (11) high levels of sparsity, leading to an
overall computational complexity approaching the lower bound O(n) + O(Nh), with δ tending to 0. Refer to [2] for
detailed discussions and extensive simulations on numerical aspects of spatial regression with PDE regularisation.
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4.3. Smoothing parameter selection
A classical issue in penalised nonparametric regression modelling is the selection of the smoothing parameter λ,

which controls the amount of regularisation enforced in the estimates. Common selection methods proposed in the
quantile regression literature rely on approximate Generalized Cross-Validation (GCV) minimization [53, 54, 67, 82],
likelihood maximisation [50, 59], iterative Laplace approximation [28] and Bayesian belief updating [19].

In this work, we select the value of λ that minimises the approximated GCV score. We rely on the definition of
approximate GCV for quantile regression problems used by [45] and [82], which built over the original proposal of
[54]. In our case, the quantile GCV takes the form

GCV(λ) =
n∑

i=1

ρα
(
yi − f̂α,h(pi)

)
n − dfα

, (13)

where dfα denotes a measure of the effective degrees of freedom induced by the smoother f̂α,h. Notice that the GCV
score (13) depends on the smoothing parameter through f̂α,h ≡ f̂α,h(λ) and dfα ≡ dfα(λ), which are implicit functions
of λ.

In order to derive a closed-form expression for the effective degrees of freedom, as defined by [54], we first need
to provide a convenient representation for the estimated surface at the n observed locations, f̂α,n. To this purpose, in
Proposition 5 we show that, at the end of the optimisation, the discrete quantile estimator f̂α in (12) can be written
as a linear transformation of the pseudo-data vector z. Then, we explore the linearity of f̂α.n to derive the explicit
expression of the equivalent degrees of freedom.

Define the matrix S =
[
S−s, Ss

]
, where S−s = Ψ(I − A−1Ψ⊤s B−1Ψs)A−1Ψ⊤−sW−s and Ss = ΨA−1Ψ⊤s B−1, and the

vector r = λnΨA−1Ψ⊤s B−1ΨsA−1R⊤1 R−1
0 (u + γ).

Proposition 5. The discrete quantile estimator at the n observed locations, f̂α,n, is a linear smoother of the pseudo-
data vector, z, and can be written as

f̂α,n = S z + r = S−sz−s + Sszs + r, (14)

Moreover, the effective degrees of freedom of f̂α,n are

dfα = tr(S) = |s| + tr
{
A−1(I −Ψ⊤s B−1ΨsA−1)(Ψ⊤−sW−sΨ−s)

}
. (15)

Remark 5 (Unconstrained solution). The latter formulation generalises the definition of degrees of freedom for
penalised linear smoothers by [72] to penalised linear smoothers subject to equality constraints. Indeed, if no active
constraints were present, the set {i ∈ N : 1/wi = 0, 1 ≤ i ≤ n} would be empty and, therefore, we would obtain dfα =
tr
{
A−1(Ψ⊤WΨ)

}
, which is the standard definition of effective degrees of freedom for penalised weighted regression

problems.

Remark 6 (Numerical implementation). Note that |s| ≤ Nh, and, typically, |s| ≪ Nh. Hence, we can efficiently
compute the effective degrees of freedom, dfα, defining U = A−1Ψ⊤s and V = A−1(Ψ⊤−sW−sΨ−s) and using the identity
dfα = |s| + tr(V) − tr

{
U(ΨsU)−1U⊤(Ψ⊤−sW−sΨ−s)

}
. The computation of U via sparse solvers is of order O(|s|N1+δ

h ),
with δ ∈ [0, 2]. The inversion of ΨsU requires only O(|s|3) operations. Finally, we can directly approximate tr(V) in
O(N1+δ

h ) operations by using stochastic estimators of the trace without explicitly forming V; see [2] for more details.

5. Large sample properties

We here study the asymptotic properties of the quantile estimator discussed in Section 4. We denote by fα ∈ Fγ
the true α-quantile field of Yi given pi, and we define gα = L fα − u ∈ L2(Ω) as the misfit of the PDE relative to fα.
We denote by fα and gα the evaluation vectors of fα and gα at the mesh knots ξ1, . . . , ξNh

. Furthermore, we define the
Nh × Nh matrices

D0,n = α(1 − α)
1
n

n∑
i=1

ψ(pi)ψ(pi)⊤, D1,n =
1
n

n∑
i=1

πi ψ(pi)ψ(pi)⊤,

where the subscript n highlights the dependence on the sample size, while the constants πi = πyi |pi

(
f⊤αψ(pi)

)
, i ∈

{1, . . . , n}, define a sequence of weighting values depending on the true underlying distribution of Yi given pi.
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Assuming that the number of bases Nh and the triangulation Th are fixed, a sufficient set of regularity conditions
that guarantee the convergence of the discretised estimator to its asymptotic distribution is the following.

Assumption 1. There exist positive constants π− and π+, such that 0 < π− < πy|p
(
f⊤αψ(p)

)
< π+ < ∞ for any p ∈ Ω.

Assumption 2. There exists n∗ such that for n > n∗, Ψ is a full-rank matrix.

Assumption 3. There exist positive definite matrices D0 and D1 such that D0,n → D0 and D1,n → D1 as n→ ∞.

Assumption 1 ensures the existence of a well-behaved asymptotic estimator, preventing the interpolated quantile
field f⊤αψ lying in a region with almost null probability mass. Such a condition is easily verified for any non-degenerate
continuous distribution over each point of the domain Ω. Assumption 2, along with Assumption 1, gives a sufficient
condition for the non-singularity of the matrices D0,n and D1,n. For example, Assumption 2 is satisfied when the
knots of the triangulation are a subset of the data locations; it is also satisfied when, for n > n∗, there is at least one
observation in the support of each basis function ψ1, . . . , ψNh . Finally, Assumption 3 guarantees the existence of a
non-singular limit for the matrices D0,n and D1,n. Assumptions 1, 2, and 3 are standard requirements in the asymptotic
analysis of quantile estimator [see, e.g., 36]. It is worth highlighting that the above assumptions are not necessary to
guarantee the existence and well-posedness of the estimator in finite-sample problems, but only serve for asymptotic
analysis. Under Assumptions 1, 2 and 3, we can now study the convergence of the finite-element estimator f̂α toward
fα conditionally on the mesh knots ξ1, . . . , ξNh

.

Theorem 1. Set λ = λn = O(n−1/2) with
√

n λn → λ̄ and define µ = −λ̄D−1
1 R⊤1 gα and Σ = D−1

1 D0 D−1
1 . Then, under

Assumptions 1, 2 and 3, the α-quantile estimator f̂α is such that

√
n(f̂α − fα)

d
−→ NNh (µ,Σ) and MSE(f̂α) = O(λ2 + n−1 + λn−1) = O(n−1).

Additionally, if λ = λn = o(n−1/2),
√

n E(f̂α − fα)→ 0.

Theorem 1 establishes the asymptotic normality of the finite-dimensional estimator f̂α and it shows that the MSE
of f̂α reaches the optimal rate of convergence for parametric estimators. Such result can be used to perform Wald-type
inference on fα(p) = f⊤αψ(p), with the caveat discussed in Section 8.

6. Simulation studies

In this section, we present the results of two simulation studies, in order to assess the performance of the proposed
method and to compare it with alternative existing approaches.

We consider heteroscedastic data generating models, defined as

Yi ∼ N(µi, σ
2
i ), µi = µ(pi), σi = σ(pi), pi ∈ Ω, (16)

with i ∈ {1, . . . , n}, and where µ : Ω → R is the spatial mean surface, and σ : Ω → R+ is the standard deviation
surface. In the first simulation, we consider three combinations of mean and standard deviation surfaces defined over
a non-trivial horseshoe domain. In the second simulation setup, we consider an anisotropic specification of the mean
and standard deviation fields, defined upon a simple square domain.

In each scenario, we independently simulate 100 datasets with 500 observations each, according to the generative
model (16). We then estimate 5 quantile surfaces, corresponding to levels α ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. We compare
the following methods:

1. SQR-PDE: the proposed spatial quantile regression with the second order differential regularisation
∫
Ω

(
div(K∇ f )

)2

and homogeneous Neumann boundary conditions;

2. SOAP: quantile version of the soap film smoothing by [19] and [78];

3. H-SOAP: quantile soap film smoothing with location-scale calibration for the heteroscedasticity by [19];

4. TPS: quantile version of thin plate spline smoothing by [19] and [76];
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Fig. 3: First simulation setup (Section 6.1). Horseshoe domain for the first simulation study. First row: data locations, triangular discretisation of
the domain and mean surface. Second row: standard deviation surfaces corresponding to three simulation settings A, B and C.

5. H-TPS: quantile thin plate spline smoothing with location-scale calibration for the heteroscedasticity by [19];

6. QSS: quantile smoothing splines with total variation regularisation by [39].

SQR-PDE is implemented using the R parkage fdaPDE [3]; SOAP, H-SOAP, TPS and H-TPS are all implemented in
the R package qgam [20]; QSS is implemented in the R package quantreg [37].

The methods are compared in terms of Root Mean Squared Error (RMSE), computed as RMSE =
{ ∫
Ω

( fα −
f̂α)2/|Ω|

}1/2, where the integral is approximated by a sum over a fine regular grid that covers the domain Ω, and |Ω| is
the area of Ω.

6.1. First simulation setup: field over irregular domain

In the first simulation, the data is generated according to the heteroscedastic Gaussian model (16) defined over the
horseshoe domain proposed by [58]; see Fig. 3. For the mean surface µ(·) we consider the test function proposed by
[78], shown in the bottom left panel of Fig. 3. We moreover consider three different standard deviation surfaces, σa(·),
σb(·), and σc(·), shown in the right panels of Fig. 3; this corresponds to three different scenarios A, B, and C, which
enable us to explore both symmetric and asymmetric heteroscedasticity schemes. Heterogeneous heteroscedastic
patterns can indeed lead to quantile estimation problems with different levels of complexity.

We estimate the quantile fields using the methods mentioned before. Since no anisotropy or flows are appreciable
in the synthetic data, we consider SQR-PDE model with regularisation of the isotropic Laplacian, i.e., K = I.

Fig. 4 shows results in terms of RMSE for the three scenarios (A, B and C) and the five quantile levels (10%,
25%, 50%, 75%, 90%). Fig. 5 displays the estimated 10% quantile field for all the considered estimating methods
but H-SOAP and H-TPS, in one replication of the simulation experiments under setting C. We excluded H-SOAP and
H-TPS from Fig. 5, since they always provide estimated surfaces very similar to SOAP and TPS, respectively, and
indeed they also reach similar RMSE values, as displayed in Fig. 4. The proposed SQR-PDE has the best performance
in terms of RMSE, as shown in Fig. 4. The second best model is quantile soap film smoothing. Both these methods
outperform quantile thin-plate-spline and quantile smoothing splines in terms of precision. This effect is due to proper
management of the domain constraints by the proposed SQR-PDE and by quantile soap film smoothing. Quantile
thin-plate splines and quantile smoothing splines, instead, smooth the quantile surface not only within the domain but
also across boundaries, causing undesired artefacts in a neighbourhood of the interior boundary, as it is displayed in
Fig. 5.

As for the average execution time, SQR-PDE, TPS and H-TPS take around 1 second per replicate, while SOAP,
H-SOAP and QSS require about 10 seconds. These times include both estimation and smoothing parameter selection.
Further numerical experiments, not reported here for the sake of space, suggest a scalable behaviour of the computa-
tional time of SQR-PDE as the sample size increases. All the computations are performed on a Dell XPS 15 laptop
with 4.7 gigahertz processor and 32 gigabytes of random access memory.
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Fig. 4: First simulation setup (Section 6.1). Boxplots of the RMSE over 100 replicates of the estimated spatial quantile fields. Each column
corresponds to a different quantile level (10%, 25%, 50%, 75%, 90%). Each row corresponds to a simulation setting (A, B, C).
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Fig. 5: First simulation setup (Section 6.1). Estimated 10% quantile fields over the horseshoe domain from simulation setting C.
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Fig. 6: Second simulation setup (Section 6.2). First row: mean surfaces. Second row: standard deviation surfaces. From left to right: scenarios A,
B and C.

6.2. Second simulation setup: anisotropic field over regular domain

In the second simulation, we generate both the mean µ(·) and the standard deviation σ(·) as Gaussian random
fields with anisotropic covariance function over the square domain Ω = [0, 1]2. In particular, we consider a Matérn
covariance function with marginal variance τ2 > 0, covariance range ρ > 0, and smoothing parameter ν > 0, given by
C(di j; τ, ρ, ν) = τ2(21−ν/Γ(ν))

(
2
√
ν di j/ρ

)νKν
(
2
√
ν di j/ρ

)
, where d2

i j = (pi−p j)⊤D (pi−p j) is the squared Mahalanobis
distance between pi and p j calculated with respect to the anisotropy tensor D ∈ R2×2, which determines the direction
and intensity of the anisotropy. For the mean surface, we set τ2 = 1, ρ = 0.3, and ν = 2. For the standard deviation
surface, we set τ2 = 0.3, ρ = 0.6, and ν = 2. The anisotropic tensor is specified according to the form: Di j = 1 if
i = j and Di j = ϕ if i , j, where the parameter ϕ ∈ (−1,+1) controls the direction and intensity of the anisotropic
effect. Specifically, we consider three scenarios, A, B and C, with an increasing level of anisotropy, namely ϕA = 0,
ϕB = −0.3, ϕC = −0.6.

We use the function RFsimulate of the R package RandomFields [65] to simulate the mean and standard devi-
ation fields on a fine grid covering Ω; see Fig. 6. Estimation of quantile fields is performed with the same methods
considered in the first simulation setup. In particular, for SQR-PDE, we consider two specifications for the differential
regularisation:

7. SQR-PDE(I): spatial quantile regression with Laplacian regularisation, i.e., K = I;
8. SQR-PDE(K): spatial quantile regression with anisotropic regularisation, i.e. K , I.

In order to determine the optimal diffusion tensor K for SQR-PDE(K), we use the parameter cascading algorithm
proposed by [6] in the context of spatial smoothing with anisotropic PDE regularisation. The complete estimation
procedure for the anisotropic quantile model involves two steps. In the first step, we estimate the diffusion tensor K
by minimising a squared error loss criterion [6] using the R package fdaPDE [3]. At this stage of the procedure, no
quantile regression is considered, assuming that the anisotropic effect is homogeneous over the mean and all quantile
surfaces. In the second step, we estimate the quantile field using the anisotropic penalty induced by the tensor K,
estimated in the first step.

Fig. 7 shows the RMSE of the various methods for the three considered scenarios (A, B and C) and different
quantile levels (10%, 25%, 50%, 75%, 90%). As anisotropy increases, SQR-PDE models improve their performances
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Fig. 7: Second simulation setup (Section 6.2). Boxplots of the RMSE over 100 replicates of the estimated spatial quantile fields. Each column
corresponds to a quantile level (10%, 25%, 50%, 75%, 90%). Each row corresponds to a simulation setting (A, B, C).
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Fig. 8: Second simulation setup (Section 6.2). Estimated 90% quantile fields from simulation setting C.

compared with other methods. In scenario A, where no anisotropy is present, both anisotropic and isotropic SQR-
PDE perform similarly to other methods, with SOAP and TPS providing the best estimates. When some moderate
anisotropic effects are present, like in scenario B, the RMSE of SQR-PDE improves and becomes comparable or better
than SOAP and TPS. Moreover, in this scenario, anisotropic SQR-PDE always reaches a lower error than isotropic
SQR-PDE. Such an effect is more evident when the anisotropy is stronger, like in scenario C. Here, anisotropic SQR-
PDE outperforms all other methods.

As highlighted by this simulation study, the possibility to use different regularising terms, possibly estimated
from data, is an important modelling feature and may have a relevant impact on the model fit, especially when the
phenomenon under study presents non-trivial spatial characteristics. In Section 7 we adopt an anisotropic SQR-PDE
model for the analysis of real data, that are characterised by strongly anisotropy and a heteroscedastic locally skewed
spatial distribution.

7. Real data applications

7.1. Switzerland rainfall data

We apply the proposed spatial quantile regression method to the Switzerland rainfall data, illustrated in Fig. 1
and 9, collecting 467 rainfall measurements (in 1/10 mm units) recorded on May 8, 1986. This dataset has already
been analysed in, e.g., [6], [14] and [21]. In these works the authors estimated the underlying spatial field employ-
ing several geostatistical approaches, taking into account the macroscopic southwest-northeast directional anisotropy
characterising the spatial mean of the underlying data-generating process. These works are restricted to mean field
estimation. In our work, we instead explore quantile levels, therefore obtaining additional insights, and highlighting
areas of exceedingly high or low precipitation.

Indeed, meteorological data can not be solely characterised by a spatially varying mean. Precipitation, tempera-
ture, pressure, humidity, and possibly other climatic variables, often have distributions manifesting heteroscedasticity
and local skewness, as well as fat tails and extreme values. This is the case also for the Switzerland rainfall data,
for which we can observe a highly heteroscedastic spatial distribution, where regions showing higher precipitation
levels also have higher variability. For the sake of illustration, we first replicate the analysis proposed by [6], which
developed an anisotropic spatial linear regression model based on a PDE regularisation term, indicated as SR-PDE,

16



0 10 20 30 40 50
Rainfall (mm)

Rainfall measurements in Switzerland

−0.8

−0.4

0.0

0.4

0.0 0.5 1.0 1.5 2.0 2.5
Fitted values

R
es

id
ua

ls

Residual vs fitted values

−0.8

−0.4

0.0

0.4

−2 0 2
Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

Residual QQ plot

Fig. 9: Top: Switzerland rainfall data and triangular discretisation of the domain. Coloured dots indicate the measurement locations. The color
of the dots is proportional to the rainfall intensity. Top right: residual versus fitted value plot. Bottom right: normal quantile-quantile plot of the
residuals. The fitted values and the residuals are obtained by using the anisotropic spatial regression model by [6].

to estimate the mean field. The results are shown in Fig. 9. We observe an increase in the residual variability as the
estimated mean grows, which indeed provides evidence against the usual hypothesis of homoscedastic errors. Fur-
thermore, the normal quantile-quantile plot of the residuals highlights some deviations from the hypothesis of normal
errors, with tails heavier than the Gaussian. Similar interpretations also arise when adopting different models for the
underlying spatial field, like spatial regression based on kriging, radial basis expansions, and neural networks, among
others. See [14] for a detailed discussion on the usage of these and other methods in the analysis of the Switzerland
rainfall data.

The local specification of the proposed quantile regression makes it appropriate in the presence of heteroscedas-
ticity. Furthermore, it is clear that our interest lies more in the tails of the distribution, which might severely differ
from shifted mean surfaces, due to heteroscedasticity.

We model the Switzerland rainfall data by the proposed spatial quantile regression with stationary anisotropic reg-
ularisation given by

∫
Ω

(
div(K∇ f )

)2. Specifically, as described in Section 6.2, we use a two-step procedure where we
first estimate the anisotropic diffusion tensor K, as in [6], and we then use such diffusion tensor to estimate the spatial
field fα, for different quantile levels. We argue that an anisotropic diffusion tensor common to all quantile surfaces is
appropriate: indeed, there is no empirical evidence to suggest a heterogeneous effect of the spatial anisotropy over the
probability distribution of the rainfall, i.e., over different quantiles.

Fig. 10 shows the estimated mean and quantile surfaces at different quantile levels. In addition to a clear anisotropic
effect on the mean and quantile surfaces, some interesting differences can be observed when comparing mean and
quantile surfaces. The shape of the estimated quantile surfaces differs from that of the mean surface and it differs
across quantiles, with deviations that are particularly evident over some localised regions. This indicates that some
regions might experience more heterogeneous patterns of rainfall than others, and more extreme events, even in the
presence of similar mean rainfall. The median surface is very smooth when compared to the mean surface. This is
an indication that there exist local outliers and skewness, that make the mean surface less smooth than it should be.
The mean surface might also be misleading, for instance suggesting excessively low precipitations in certain areas.
Surfaces corresponding to percentiles more in the tails of the distribution are less smooth, as could be reasonably
expected, capturing local changes in the tail of the distribution and identifying areas where more extreme events shall
be expected. The 90% percentile, for instance, is characterised by several spikes in correspondence to regions mani-
festing a high mean level of precipitations, a further indication of the fact that limiting the analysis to the mean surface
might indeed be rather misleading.
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Fig. 10: The estimated mean (SR-PDE) and α-quantile (SQR-PDE) fields for the Switzerland rainfall data.

7.2. Sea surface conductivity in the Gulf of Mexico

In this second application, we consider historical data on the sea surface conductivity in the Gulf of Mexico around
the Florida peninsula from 1978 to 2017 [26, 83], displayed in Fig. 11. The dataset collects 1545 aggregated measure-
ments obtained from several data sources, and organised on a quarter-degree latitude-longitude grid in space and on a
seasonal basis in time. The conductivity is obtained as a derived quantity based on temperature, pressure and salinity
collected at sea surface level by buoy sensors, ship-mounted thermosalinographs, as well as satellite observations.
As a consequence, the conductivity profiles can only be calculated over space-time locations for which temperature,
pressure and salinity are all available, resulting in a non-uniform distribution in space of the data locations, as shown
in Fig. 11.

The analysis of the conductivity profile is fundamental for the study of ocean electrodynamics and for the inter-
pretation of ocean electric and magnetic fields. In this application, we aim at estimating the median conductivity field
around the Florida peninsula, also providing spatial indicators of variability and skewness, based on robust quantile
estimators obtained via the proposed SQR-PDE method.

In addition to the conductivity data, we also have information on the direction and intensity of the Gulf Stream
velocity, shown in the right panel of Fig. 2. The non-stationary dynamics of the Gulf Stream have a well-known
impact on the spatial distribution of the sea temperature, salinity and nutrients in the Gulf of Mexico. Thus, we want
to leverage such additional information to improve the estimation of the conductivity field over the considered region.

In order to provide a suitable model for the sea surface conductivity measurements, say yi, we assume for each
quantile field the following additive decomposition: Qyi |xi,pi (α) = x⊤i βα + fα(pi), where xi is a vector of dummy
variables indicating the season of the i-th observation, βα is a quantile-specific vector of regression coefficients, and
fα is a quantile-specific spatial field. Additionally, we specify a non-stationary differential regularisation based on the
diffusion-advection equation −∆ f (p) + b(p) · ∇ f (p) = 0 p ∈ Ω,

∂ν f (p) = 0 p ∈ ∂Ω,
(17)

where b(p) is a non-stationary transport term proportional to the Gulf stream velocity, and ∂ν f is the outward normal
derivative of f on the boundary. Specifically, we set b(p) = ηv(p), where v(·) is the stream velocity field shown in the
right panel of Fig. 2, and η ≥ 0 is a scalar parameter controlling the relative weight of the transport term v · ∇ f relative
to the diffusion term −∆ f .
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Fig. 11: Historical sea surface conductivity data in the Gulf of Mexico around the Florida peninsula. The data are aggregated on a seasonal basis
in time and on a quarter latitude-longitude grid in space, where each panel corresponds to a season.
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Fig. 12: Results obtained for the sea surface conductivity application. From left to right: triangular mesh, estimated median, quartile range and
quantile skewness fields as defined in (18).

In order to build a finite element approximation of the quantile field fα, we discretise the considered domain using
the triangular mesh shown in the left panel of Fig. 12. Then, analogously to the two-step procedure discussed in
Section 6.2, we use the parameter cascading algorithm by [6] to determine the optimal value of η. Doing so, we obtain
the estimate η̂ = 2.7181, which suggests that the relative importance of the transport term is higher than the isotropic
diffusion term in the PDE specification (17). Given such a non-stationary diffusion-transport PDE, we estimate βα
and fα using a generalisation of the EM algorithm proposed in Section 3, that accounts for the presence of a vector of
fixed effect covariates.

We study the spatial distribution of the sea conductivity over the domain by estimating three quantile surfaces,
corresponding to α = 0.1, 0.5, 0.9. Based on such estimates, we derive the following quantile-based fields

Median(p) = f̂0.5(p), Range(p) = f̂0.9(p) − f̂0.1(p), Skewness(p) = f̂0.9(p) − 2 f̂0.5(p) + f̂0.1(p), (18)

which provide robust measures of pointwise location, variability and skewness, respectively. We show the obtained
fields in Fig. 12. Two high-level conductivity regions are detected: the first one is localised along the southwest
coastline of the Florida peninsula, where the water stream flowing out from the Gulf of Mexico encounters the Florida
boundary before entering into the Atlantic Ocean; the second one follows the south-north direction induced by the
Gulf stream. The lowest conductivity is measured along the northeast Florida coastline, which is also characterised by
high variability and a relatively calm water flow. More generally, comparing the left and central panels in Fig. 12, we
observe that lower conductivity levels along the coastline are associated with higher variability. The lowest variability
is observed in the southwest regions of the domain. This is due to the fact that only a few observations are available in
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that area, leading the estimated quantiles to converge toward the median solution. The estimated skewness field in the
right panel of Fig. 12 varies around zero without manifesting evident spatial patterns, which suggests that the spatial
distribution of the data is almost symmetric over the domain.

8. Discussion and future works

In the present work we described a new spatial quantile regression model with PDE regularisation. We proposed
an innovative functional EM algorithm, and we proved the theoretical properties of the resulting estimator.

The proposed method has very good performances, as shown by simulation studies and by the analysis of real
data concerning rainfall measurements and sea surface conductivity. The considered scenarios highlight the impor-
tance of accounting for complex domain structures, for deviation from isotropic stationary fields, and for spatially
heterogeneous characteristics of the distribution, such as heteroscedasticity or skewness. The proposed method offers
increasingly large advantages with respect to the available alternatives as the data complexity increases, in terms of
domain shape or field characteristics, such as anisotropy.

A remarkable benefit of our model formulation is its generality, which permits us to naturally accommodate
several extensions, different sampling schemes, and PDE models. For instance, data recorded over areal regions can
be handled by extending the proposal made by [5] in the context of spatial linear models. Data observed in space and
time, as well as spatially varying functional data, could be handled by considering space-time PDEs, as shown by [1]
and [7] in spatial linear regression settings. Another fascinating possibility is to adapt our PDE-based spatial quantile
regression model to data lying on a curved domain. In this context the necessary theoretical background is provided by
the works of [16, 46] for spatial linear regression over two-dimensional Riemannian manifolds, which could naturally
be integrated into our quantile regression framework, permitting, for instance, the application of SQR-PDE to data
observed over the globe. Such an extension might also be of significant interest for applications in mechanical and
space engineering, as well as in life sciences.

A second relevant research direction is concerned with the joint modelling of multiple quantiles. Inspired by
the recent works of [24, 25, 66] on varying coefficient modelling, we might extend our methodology in order to
jointly estimate a whole family of quantile fields, as smooth functions of the confidence level α. In this context, the
heteroscedastic quantile model by [32] and the constrained quantile curves by [9] provide two remarkable examples
of non-crossing approaches that are worth investigating and possibly extending to the proposed spatial regression with
PDE regularisation.

Another research area, which deserves relevant attention, involves finite-sample inference. Indeed, as mentioned
in Section 5, Theorem 1 justifies asymptotic Wald-type inference. Wald-type approaches, however, may lead to
under-conservative inference in finite-sample scenarios [see, e.g., 23, 47]. This issue has classically stimulated the
development of various alternative inference approaches for nonparametric and semiparametric regression under linear
and generalized linear settings [see, e.g., 30, 81]. For spatial linear regression with differential regularisation, [12, 21,
22] discuss a nonparametric inference strategy, based on innovative resampling approaches, which provides valid
inference also in finite sample. Such ideas constitute promising avenues to be explored also in quantile regression
settings.

Appendix

Proof of Proposition 1: We first recall that any continuous convex function defined over a convex domain attains its
minimum values within its domain [see, e.g., 44, Proposition 6.5.1]. Then, proving the first statement in Proposition
1 is equivalent to showing that Fγ is a closed, convex space, and Jα( f ) is a continuous, convex functional.

The closure and convexity of Fγ(Ω) = { f ∈ H2(Ω) : B f = γ on ∂Ω} follows from the vector space structure of
H2(Ω) and from the linearity of the differential operator B, that is B{ϕ f+(1−ϕ)g} = ϕB f+(1−ϕ)Bg = ϕγ+(1−ϕ)γ = γ,
for all ϕ ∈ [0, 1]. The continuity and convexity of Jα( f ) follow from the continuity and convexity of the quantile loss
ρα{yi − f (pi)} [see, e.g., 38] and the regularisation term

∫
Ω

(L f − u)2 [see, e.g., 4].
Finally, we prove thatVγ,α(Ω) is a closed, convex set. To do so, we define the sublevel set of Jα( f ) by

Vγ,α(Ω, t) =
{
f ∈ Fγ(Ω) : Jα( f ) ≤ t

}
,
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for any t such thatVγ(Ω, t) is non-empty. Let f , g ∈ Vγ,α(Ω, t) and consider the convex combination

Jα{ϕ f + (1 − ϕ)g} ≤ ϕJα( f ) + (1 − ϕ)Jα(g) ≤ ϕt + (1 − ϕ)t = t, ∀ ϕ ∈ [0, 1].

This implies the closure and convexity ofVγ,α(Ω, t) for any t since Jα( f ) is a continuous functional. The closure and
convexity ofVγ,α(Ω) immediately follows by noting that

Vγ,α(Ω) =
{
f ∈ Fγ(Ω) : Jα( f̂α) = inf Jα( f )

}
= Vγ

(
Ω, inf Jα( f )

)
.

This concludes the proof.

Proof of Proposition 2: Let f̂α ∈ Vγ,α be a minimiser of functional (2). For any t ≥ 0 and ψ ∈ F0, we have
Jα( f̂α) ≤ Jα( f̂α + tψ). Hence, taking the limit for t ↓ 0, we get that the Gateaux directional derivative of Jα( f̂α) along
the direction ψ must be non-negative:

∂ψJ( f̂α) =
∂

∂t
J( f̂α + tψ)

∣∣∣∣∣
t=0
= lim

t↓0

J( f̂α + tψ) − J( f̂α)
t

≥ 0.

Whenever Jα(·) is a differentiable functional, the above condition collapses into the first order equation ∂ψJα( f̂α) = 0
for any ψ ∈ F0. This is the case, for instance, for generalised linear models with PDE regularisation [75].

Considering the explicit functional form of Jα(·) and applying the above condition on the Gateaux derivative of
Jα(·), we obtain

∂ψJα( f̂α) =
1
n

n∑
i=1

∂ψρα(yi − f̂α(pi)) +
λ

2
∂ψ

∫
Ω

(L f̂α − u)2 ≥ 0.

As shown by, e.g., [4], the directional derivative for the penalty term is given by ∂ψ
∫
Ω

(L f̂α − u)2 = 2
∫
Ω

(Lψ)(L f̂α − u).
On the other hand, the directional derivative for the quantile loss term [36] is ∂ψρα

(
yi − f̂α(pi)

)
= −ψ(pi) ρ̇α

(
yi −

f̂α(pi),−ψ(pi)
)
, where ρ̇α

(
yi − f̂ (pi),−ψ(pi)

)
is the directional derivative of ρα(·) calculated in yi − f̂α(pi) along the

direction −ψ(pi). Substituting these expressions in the above inequality we obtain the final result. This concludes the
proof.

Proof of Proposition 3: Let ( f̃α, η̃α) ∈ Fγ×R|s| be a minimiser ofLα( f , η). Then, because of the Lagrange multiplier
theorem, ( f̃α, η̃α) must satisfy the first order conditions (∂/∂η)Lα( f̃α, η̃α) = 0 and (∂/∂t)Lα( f̃α + tψ, η̃α)

∣∣∣
t=0 = 0, for all

ψ ∈ F0. The first equation just enforces the constraints, being

∂

∂η
L( f̃α, η̃α) =

1
n
∂

∂η

{
η⊤(z − f̃α,n)s

} ∣∣∣∣
η=η̃α
=

1
n

(z − f̃α,n)s = 0.

The second equation requires that the Gateaux directional derivatives of Lα( f , η) with respect to f get nullified in all
the possible directions ψ ∈ F0.

Observing that Lα( f , η) is quadratic in f , taking the directional derivative and equating to zero, we obtain the
first-order variational equation

(ψn)⊤−sW−s (f̃α,n)−s + λn
∫
Ω

(Lψ)(L f̃α) = (ψn)⊤−sW−s z−s + (ψn)⊤−sη̃α + λn
∫
Ω

(Lψ)u, (19)

which must hold for any ψ ∈ F0. We denote by G(ψ, f̃α) and F( f̃α) the left and right sides of the above equation (19),
respectively; in this way, we can write the first order condition in the equivalent form

G(ψ, f̃α) = F(ψ), ∀ψ ∈ F0(Ω). (20)

If the parameters of the PDE are such that, for any u ∈ L2(Ω), there exists a unique solution f of the PDE L f = u,
which, moreover, satisfies f ∈ H2(Ω) [4, Assumption 2], then G(·, ·) is a symmetric, continuous, coercive bilinear
map, and F(·) is a continuous linear operator [4, Theorem 2]. As a consequence, thanks to the Lax-Milgram lemma
[see, e.g., 57, Section 3.4.1], there exists a unique solution f̃α ∈ Fγ to equation (20).
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The proof is concluded by noting that the Euler-Lagrange equation (19) is equivalent to the system

(ψn)⊤−sW−s (f̃α,n)−s + λn
∫
Ω

(Lψ)g̃α = (ψn)⊤−sW−s z−s + (ψn)⊤−sη̃α,

∫
Ω

(L f̃α)ϕ −
∫
Ω

g̃αϕ =
∫
Ω

uϕ,

for any pair of test functions ψ, ϕ ∈ F0(Ω), where g̃α = L f̃α−u. Hence, we can integrate by parts and use the definition
of R1(·, ·), R0(·, ·) and F(·) in (10) in order to recognise the weak variational formulation in Proposition 3.

Proof of Proposition 4: From Proposition 3, any solution ( f̃α,h, g̃α,h, η̃α) in the finite element space must satisfy the
system of equations in (10). Thanks to the finite element discretisation, we have (ψn)−s = Ψ−sψ, (f̃α,n)−s = Ψ−s f̃α,
(f̃α,n)s = Ψs f̃α, R0(ψh, g̃α,h) = ψ⊤R⊤0 g̃α, R1( f̃α,h, ϕh) = f̃⊤α R⊤0 ϕ, F(ϕh) = (u + γ)⊤ϕ. Therefore, the above system can be
written as

ψ⊤Ψ⊤−sW−sΨ−s f̃α − ψ⊤Ψ⊤s η̃α + λnψ⊤R⊤1 g̃α = ψ⊤Ψ⊤−sW−sz−s, f̃⊤α R⊤1 ϕ − g̃⊤αR0ϕ = (u + γ)⊤ϕ, (z −Ψs f̃α) = 0,

for any pair of vectors ψ,ϕ ∈ RNh . Since any function fh ∈ Fγ,h is uniquely determined by its values on the nodes, i.e.,
by its coefficient vector, solving the above system is equivalent to finding (f̃α, g̃α, η̃α) ∈ RNh ×RNh ×R|s| solving linear
system (11). This concludes the proof.

Proof of Corollary 1: Let us start by considering the finite element system (11) in Proposition 4. Solving the second
equation with respect to g̃α, we have

g̃α = R−1
0 (R1 f̃α − u − γ) = R−1

0 R1 f̃α − R−1
0 (u + γ).

If we substitute the expression for g̃α in the first equation in (11), we get

(Ψ⊤−sW−sΨ−s + λnR⊤1 R−1
0 R1) f̃α = Ψ⊤−sW−sz−s + λn R⊤1 R−1

0 (u + γ) −Ψ⊤s η̃α.

Then, using the definition of A and d and solving for f̃α, we obtain f̃α = A−1(d −Ψ⊤s η̃α). By plugging this expression
for f̃α in (11) and solving for η̃α, we get ΨsA−1(d −Ψ⊤s η̃α) = zs, which implies

η̃α = (ΨsA−1Ψ⊤s )−1(ΨsA−1d − zs).

Finally, we use the definition of B and we substitute the above expression for η̃α in f̃α = A−1(d −Ψ⊤s η̃α):

f̃α = A−1(d −Ψ⊤s η̃α) = A−1{d −Ψ⊤s B−1(ΨsA−1d − zs)
}
= A−1d + A−1Ψ⊤s B−1(zs −ΨsA−1d).

This concludes the proof.

Proof of Proposition 5: The linear predictor is obtained by pre-multiplying the coefficient vector f̂α by its design
matrix Ψ, namely

f̂α,n = Ψf̂α = ΨA−1d +ΨA−1Ψ⊤s B−1(zs −ΨsA−1d) = ΨA−1(I −Ψ⊤s B−1ΨsA−1)d +ΨA−1Ψ⊤s B−1zs.

Define C = I −Ψ⊤s B−1ΨsA−1 and recall that d = Ψ⊤−sW−sz−s + λnR−1
0 (u + γ), then

f̂α,n = ΨA−1C
{
Ψ⊤−sW−sz−s + λnR−1

0 (u + γ)
}
+ΨA−1Ψ⊤s B−1zs

= ΨA−1CΨ⊤−sW−s︸              ︷︷              ︸
S−s

z−s +ΨA−1Ψ⊤s B−1︸          ︷︷          ︸
Ss

zs + λnΨA−1CR⊤1 R−1
0 (u + γ)︸                          ︷︷                          ︸

r
.

Therefore, the smoothing matrix S =
[
S−s, Ss

]
may be defined according to a block-structure, separating the con-

strained and unconstrained smoothing factors, so that S z = S−sz−s + Sszs.
According to [54, 68], the effective degrees of freedom of the linear smoother f̂α,n are defined as dfα = tr(S).

Notice that the diagonal block of S corresponding to index set s is given by Ss,s = ΨsA−1Ψ⊤s B−1 and, similarly,
S−s,−s = Ψ−sA−1CΨ⊤−sW−s. Then, thanks to the block-structure of S and the cyclic permutation property of the trace,
we have

tr(S) = tr
(
Ψ−sA−1CΨ⊤−sW−s

)
+ tr

(
ΨsA−1Ψ⊤s B−1) = tr(A−1CΨ⊤−sW−sΨ−s) + tr

(
ΨsA−1Ψ⊤s B−1)

= tr
(
A−1CΨ⊤−sW−sΨ−s

)
+ tr

(
BB−1) = tr

(
A−1CΨ⊤−sW−sΨ−s

)
+ |s|.

This concludes the proof.
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Proof of Theorem 1: Let Jα(f) = Jα( fh) be the finite element discretisation of the objective functional in (2) with
fh = f⊤ψ ∈ F 1

γ,h, which is given by Jα(f) = (1/n)
∑n

i=1 ρα
(
yi − ψ

⊤
i f

)
+ (λ/2)P(f), where P(f) ≡ P( fh) =

∫
Ωh

(L fh − uh)2

denotes the discretisation of the differential penalisation term and corresponds to P(f) = (R1f−u−γ)⊤R−1
0 (R1f−u−γ).

Following the convexity argument proposed by, e.g., [34, 35, 55] in the context of parametric linear quantile
regression, we introduce the quantile residual εi = yi − ψ

⊤
i fα and the reparametrisation δ =

√
n (f − fα), so that

yi −ψ
⊤
i f = εi −ψ

⊤
i δ/
√

n. Notice that ψ⊤fα is the finite element interpolation of fα on the mesh knots. Similarly, ψ⊤gα
is the interpolation of gα and, thanks to the second identity in (12), we have gα = R−1

0 (R1fα − u−γ). Furthermore, we
define the reparametrised scaled objective functional

nJα(δ/
√

n + fα) = S α(δ) +
λ

2
nP(δ/

√
n + fα) =

n∑
i=1

{
ρα

(
εi − ψ

⊤
i δ/
√

n
)
− ρα(εi)

}
+
λ

2
nP

(
δ/
√

n + fα
)
.

It is easy to verify that minimising Jα(·) with respect to δ is equivalent to minimising Jα(·) with respect to f, and the
solution corresponds to δ̂α =

√
n (f̂α−fα). Therefore, we can study the asymptotic properties of δ̂α to infer the limiting

behaviour of f̂α.
We consider the Knight’s identity [34], which permits us to represent S α(δ) using the additive decomposition

S α(δ) = S ′α(δ) + S ′′α (δ) =
1
√

n

n∑
i=1

(ψ⊤i δ)
{
α − I(εi < 0)

}
+

n∑
i=1

∫ ψ⊤i δ/
√

n

0

{
I(εi < t) − α

}
dt.

We will now study the asymptotic behaviour of S ′α(δ) and S ′′α (δ) to find a convenient limiting representation of S α(δ).
First, observing that I(εi < 0), i ∈ {1, . . . , n}, is a sequence of independent Bernoulli random variables with success
probability α, we have

E{S ′α(δ)} =
1
√

n

n∑
i=1

(ψ⊤i δ)
{
α − Πεi |pi (0)

}
= 0, Var{S ′α(δ)} = α(1 − α)

1
n

n∑
i=1

(ψ⊤i δ)2 = δ⊤D0,nδ.

Therefore, using the central limit theorem, we get S ′α(δ) = δ⊤ηn + op(1), where ηn ∼ NNh (0,D0,n). The second term
has expected value

E{S ′′α (δ)} =
n∑

i=1

E
∫ ψ⊤i δ/

√
n

0

{
I(εi < t) − α

}
dt =

n∑
i=1

∫ ψ⊤i δ/
√

n

0

{
Πεi |pi (t) − α

}
dt.

By a second order Taylor expansion around δ = 0, we obtain

E{S ′′α (δ)} =
1

2n

n∑
i=1

πεi |pi (0)(ψ⊤i δ)2 +
1

n3/2

n∑
i=1

O(|ψ⊤i δ|
3) =

1
2
δ⊤D1,nδ + O

(
∥δ∥3/

√
n
)
,

where, thanks to Assumption 1, πi = πεi |pi (0) = πyi |pi (ψ
⊤
i fα) is bounded away from 0 and ∞ for any i ∈ {1, . . . , n} and

the residual term O
(
∥δ∥3/

√
n
)

converges to 0 for any value of δ. As shown in, e.g., [34, 36, 55] the variance of S ′′α (δ)
can be upper-bounded by

Var{S ′′α (δ)} ≤
1
√

n
max

i=1,...,n
|ψ⊤i δ|E{S

′′
α (δ)} ≤

1
√

n
sup
p∈Ω
|ψ(p)| ∥δ∥E{S ′′α (δ)} = O(n−1/2),

thus S ′′α (δ) converges in probability to its mean and can be represented as S ′′α (δ) = δ⊤D1,nδ/2 + op(1).
We now consider the non-stochastic penalty term, which is given by

nP(δ/
√

n + fα) = n
{
R1(δ/

√
n + fα) − (u + γ)

}⊤R−1
0

{
R1(δ/

√
n + fα) − (u + γ)

}
= n

{
δ⊤R⊤1 R−1

0 R1δ/n + 2δ⊤R⊤1 R−1
0 (R1fα − u − γ)/

√
n
}
+ n g⊤αR0gα

= δ⊤R⊤1 R−1
0 R1δ + 2

√
n δ⊤R⊤1 gα + n g⊤αR0gα,
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where n g⊤αR0gα is a constant term not depending on δ.
Thanks to the asymptotic expansions of S ′α(δ) and S ′′α (δ) and to the equivalent reformulation of the penalty term

nP(δ/
√

n + fα), for n sufficiently large, we can write

nJα(δ/
√

n + fα) = (1/2) δ⊤D1,nδ − δ
⊤ηn + (λ/2) δ⊤R⊤1 R−1

0 R1δ + λ
√

n δ⊤R⊤1 gα + op(1)

= (1/2) δ⊤
(
D1,n + λR⊤1 R−1

0 R1
)
δ − δ⊤

(
ηn − λ

√
n R⊤1 gα

)
+ op(1).

Assumption 2 guarantees, for n large enough, that the matrix D1,n is positive definite, so that nJα(δ/
√

n+ fα) is strictly
convex in δ and has a unique asymptotic minimiser δ̂α. Then, the asymptotic estimator δ̂α may be obtained as the
solution to the first-order equation

(
D1,n + λR⊤1 R−1

0 R1
)
δ =

(
ηn − λ

√
n R⊤1 gα

)
+ op(1), that is

δ̂α =
(
D1,n + λR⊤1 R−1

0 R1
)−1(ηn − λ

√
n R⊤1 gα

)
+ op(1).

As a consequence [33], δ̂α has an asymptotically normal distribution with mean and variance

E(δ̂α) = −λ
√

n
(
D1,n + λR⊤1 R−1

0 R1
)−1R⊤1 gα + o(1),

Var(δ̂α) =
(
D1,n + λR⊤1 R−1

0 R1
)−1 D0,n

(
D1,n + λR⊤1 R−1

0 R1
)−1 + o(1).

(21)

To obtain a non-exploding bias for the estimator f̂α, we require that
√

nλ → λ̄ for some finite value λ̄ > 0, which
implies λ → 0. Under this condition, the large-sample bias and variance of the estimator f̂α are Bias(f̂α) = E(δ̂α)/

√
n

and Var(f̂α) = Var(δ̂α)/n. Following [21], we expand the bias term with a second-order Taylor approximation around
λ = 0, which leads to

Bias(f̂α) = −λ
{
D−1

1,n − λD−1
1,n (R⊤1 R−1

0 R1)D−1
1,n + O(λ2)

}
R⊤1 gα + o(n−1/2),

that is, Bias(f̂α) = O(λ) + o(n−1/2). In the same way, the variance can be expanded as

Var(f̂α) =
{
D−1

1,nD0,nD−1
1,n − 2λD−1

1,n(R⊤1 R−1
0 R1) (D−1

1,nD0,nD−1
1,n) + O(λ2)

}
+ o(n−1),

which leads to Var(f̂α) = O(n−1) + O(λn−1). Considering the Taylor expansions of Bias(f̂α) and Var(f̂α), using the
asymptotic linearity of the estimator, and setting λ

√
n→ λ̄, the asymptotic distribution of f̂α can be written as

√
n (f̂α − fα)

d
−→ NNh

(
− λ̄D−1

1 R⊤1 gα, D−1
1 D0 D−1

1
)
.

If we further assume that λ = o(n−1/2), that is λ̄ = 0, the estimator
√

n (f̂α − fα) is asymptotically unbiased.
Finally, we prove the consistency of the estimator f̂α by studying the limiting behaviour of the Mean Squared Error

(MSE) and leveraging the results obtained for Bias(f̂α) and Var(f̂α):

MSE(f̂α) = Var(f̂α) + Biasn(f̂α) Bias(f̂α)⊤ = O(λ2) + O(n−1) + O(λn−1).

Then, the proof is concluded by noting that, for any λ = O(n−1/2), we obtain a convergent MSE with limiting rate
O(n−1).
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