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Abstract

A variety of different vascular stent designs are currently available on
the market, featuring different geometries, manufacturing materials,
and physical characteristics. Here, we propose a framework for design-
ing innovative stents that replicate and enhance the mechanical prop-
erties of existing devices. The framework includes a SIMP-based topol-
ogy optimization formulation, assisted by the homogenization theory
to constrain the mechanical response, along with a minimum length
scale requirement to ensure manufacturability to the designed devices.
The optimization problem, discretized on a sequence of computational
meshes anisotropically adapted, generates a 2D stent unit cell, which
can be automatically converted into a 3D digital version of the device.
This virtual prototype is validated through in silico testing via a ra-
dial crimping simulation to assess the stent insertion into the catheter,
prior to implantation. The results prove that the proposed framework
can identify stent designs that are competitive with respect to existing
devices in terms of relevant clinical requirements, such as foreshorten-
ing, radial stiffness and surface contact area.

Keywords: Stent design; Topology optimization; Homogenization;
Finite elements; Anisotropic adapted mesh; Virtual prototyping.
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1 Introduction

Vascular stents are minimally invasive medical devices commonly used to
treat diseased blood vessels. These cylindrical hollow structures are first
crimped to a reduced diameter and then deployed inside blood vessels at
the site of vascular obstruction to provide structural support to the vessel
wall and prevent lumen narrowing. A variety of stent designs are currently
available on the market, featuring different shapes, sizes and materials, de-
pending on the specific pathology and implantation site. Stents can be di-
vided into two main categories: balloon-expandable and self-expandable de-
vices. Self-expandable stents, typically made of super-elastic nickel-titanium
(NiTi), are manufactured slightly larger than the vessel diameter and elasti-
cally return to their original shape after being crimped and released from a
catheter. In contrast, balloon-expandable stents, usually made of stainless-
steel, cobalt or platinum chromium alloy, are manufactured in a crimped
state and expanded to the vessel wall using balloon inflation. To facilitate de-
livery and placement, both balloon- and self-expandable stents are designed
with a narrow profile in their compressed (i.e., crimped) state [1, 2, 3, 4].

The alternating arrangement of material and void areas in stent ge-
ometry has been proven to influence the biomechanical behavior of the
device [3, 4, 5, 6, 7, 8, 9], affecting factors such as the contact area be-
tween the device and vessel wall, radial stiffness, foreshortening, and blood
flow disturbances, which can potentially impact clinical outcomes. Specif-
ically, the contact area and the blood flow alterations are associated with
the onset of post-interventional adverse events, such as in-stent restenosis
and stent thrombosis [10, 11]. Radial stiffness reflects the stent capability
of scaffolding the vessel without damage [12, 13, 3], while foreshortening
affects how accurately the device covers the full length of a vascular le-
sion during implantation [12, 13, 3]. As a result, analyzing the mechanical
properties of a stent provides insights into the safety and successful out-
come of the stenting procedure. In this regard, computational methods,
particularly in silico models, have emerged as powerful tools for virtually
characterizing and optimizing stent design, and are becoming increasingly
important in the medical device industry by supporting the design pro-
cess [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

Among the most prominent computational methods for the optimal de-
sign of structures that optimally respond to external stimuli, topology opti-
mization (TO) has gained massive momentum [28]. In this context, TO has
proved effective in designing innovative stents with optimized mechanical
and fluid dynamics performance. For example, the identification of opti-
mal designs of vascular stents has been approached using the TO module
of commercial software [29], as well as through a nonlinear elasticity-guided
TO approach [30]. Similarly, TO has been applied to the design of auxetic
self-expandable stents [31, 32]. More recently, a TO-based design and verifi-
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Figure 1: Pipeline of the proposed method: starting from the analysis of
an existing stent unit cell (left panel), an inverse homogenization topology
optimization is settled (center panel) with a view to the generation of a stent
virtual prototype (right panel).

cation pipeline has been proposed in [33], while, in [34], the Cosserat theory
has been used for optimizing a polymeric stent.
Unlike these contributions, where the optimization process focuses on de-
signing new stents from scratch, the present study proposes an Analyze-
To-Optimize inverse homogenization TO problem in a finite element frame-
work, enriched by an anisotropic mesh adaptation procedure. Specifically,
we characterize existing self-expandable stents in terms of the associated
mechanical properties. Subsequently, we reproduce and/or enhance such
features by generating innovative devices starting from the design of the
associated unit cells, which are also suited to a manufacturing phase. This
framework follows a digital twinning approach [35], with the ultimate goal
of providing a virtual prototype of a newly designed device that can be used
for inspection and for in silico tests with a view to further characterization
and validation.

The paper is structured as follows. In Sect. 2, we present the mathemati-
cal tools to characterize an existing self-expandable stent and formulate a TO
framework to design innovative manufacturable devices using an Analyze-
To-Optimize approach. In Sect. 3, we focus on the numerical discretization
of the optimization problem, which proves to provide stent unit cells that
are either consistent or innovative when compared with existing unit cell
layouts. In Sect. 4, we detail how to generate the 3D devices starting from
the optimized planar unit cells by discussing the geometric and mechanical
properties of the stent geometries with a view to virtual prototyping. Fi-
nally, in the last section, we conclude by outlining potential future directions
for the design of innovative stents.
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2 Mathematical formulation for stent design

We propose a computational pipeline, as illustrated in Fig. 1, which begins
with the analysis of an existing stent design and concludes with the genera-
tion of a new device with competitive mechanical properties. In this section,
we firstly present the mathematical models necessary to characterize stents
in terms of the corresponding homogenized stiffness tensor, foreshortening,
and radial stiffness (left panel). Subsequently, we formulate an optimization
problem aimed at designing stent geometries that replicate (and possibly
improve) the observed mechanical properties (center panel). The 3D vir-
tual prototype generation and the associated testing (right panel) will be
addressed in Sect. 3.

2.1 Stent analysis

A generic vascular stent can be conceptualized as a periodic repetition of
a single unit cell along the radial and axial directions of a hollow cylinder
(Fig. 2, left). By assuming that the stent thickness is negligible with respect
to the axial and radial dimensions, it is possible to characterize the mechan-
ical performance of the whole stent by analyzing the planar unit cell alone,
in accordance with homogenization theory [33, 36].

Figure 2: Schematic representation of the generic vascular stent (left) and
of the planar unit cell (right).

2.1.1 Direct homogenization

In order to provide a characterization of the stent from the mechanical view-
point, we resort to the homogenization theory. In general, we denote by Ω
the macroscopic domain in R2, with coordinates (x1, x2), obtained by the
periodic repetition of the unit cell Y ⊂ R2, consisting of a specific mate-
rial/void layout. The repetition period δ is assumed to be small compared
to the size of Ω. As reference physical model, we adopt the linear elastic-
ity setting, such that the static equilibrium of Ω is governed by the partial
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differential equation (PDE)

−∇ · σ(u) = b, (1)

where u = (u1, u2)
T : Ω → R2 is the vector of the displacement;

σ(u) = Eε(u) =
1

2
E
[
∇u+ (∇u)T

]
(2)

denotes the stress field, with

σ =

σ11
σ22
σ12

 , ε(u) =

 ε11
ε22
2ε12

 , E =

E1111 E1122 E1112

E2211 E2222 E2212

E1211 E1222 E1212

 (3)

the stress, strain vectors and the stiffness tensor in Voigt notation, respec-
tively; b models the body forces, here selected as the null vector. In partic-
ular, the stiffness tensor depends on the properties of the selected material.
For instance, in case of an isotropic medium, E can be defined in terms of
the Young’s modulus, Ξ, and the Poisson’s ratio, ν, of the material, being

E =

λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 , (4)

with λ = Ξν/[(1 + ν)(1 − 2ν)], and µ = Ξ/[2(1 + ν)] the material Lamè
coefficients. We observe that the stiffness tensor depends on the spatial
coordinates due to the void/solid alternation in the unit cell and to the
δ-periodicity of Y . To address this complexity, the theory of homogeniza-
tion considers a multiscale approach through an asymptotic analysis for δ
approaching 0 [37, 38]. Thus, the microscopic heterogeneities become in-
creasingly negligible and the properties of the macroscopic structure are
characterized by the homogenized stiffness tensor, EH , whose components
are given by

EH
ijkl(u

∗,ij ,u∗,kl) =
1

|Y |

∫
Y
[σ(u0,ij)−σ(u∗,ij)] : [ε(u0,kl)−ε(u∗,kl)]dY, (5)

where : denotes the standard tensorial inner product, u∗,mn, with mn =
ij, kl ∈ {11, 22, 12}, denotes the microscopic mechanical response to the
independent test displacements u0,11 = (x1, 0)

T , u0,22 = (0, x2)
T , and

u0,12 = (x2, 0)
T . In particular, u∗,mn coincides with the solution to the

variational problem: for mn ∈ {11, 22, 12}, find u∗,mn ∈ VP , such that∫
Y
σ(u∗,mn) : ε(v)dY =

∫
Y
σ(u0,mn) : ε(v)dY ∀v ∈ VP , (6)

where VP is the periodic Sobolev space [H1
P (Y )]2 of the vector-valued func-

tions in H1(Y ) satisfying periodic conditions on the boundary ∂Y (we refer
to [39] for all the details).
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2.1.2 Stent foreshortening and radial stiffness evaluation

Although the homogenized tensor EH can be employed to characterize the
macroscopic properties of the vascular stent, it is not straightforward to link
the tensor components to mechanical properties of clinical interest. Here,
we are interested in analyzing the stent response under radial compression
to establish the relationships between EH and the foreshortening f (i.e., the
length reduction during deployment), to evaluate the correct placement of
the deployed device within the vessel, as well as between EH and the radial
stiffness Kr (i.e., the resistance to radial force), which is responsible for the
scaffolding function of the stent. To this aim, we consider the typical stent
geometry characterized by thickness t, radius r0, length at rest l0, where t is
assumed to be small with respect to r0 and l0. These hypotheses, combined
with the typical radial loading scenario, lead us to consider the stent in a
plane stress state. We adopt a cylindrical coordinate system as illustrated in
Figure 2, left panel. Furthermore, we assume EH to be orthotropic, as the
stent is supposed to be uniformly compressed in the radial direction during
the crimping phase. Hence, the homogenized variant of the stress-strain
relation (3) simplifies toσ11

σ22

σ12

 =

EH
1111 EH

1122 0

EH
2211 EH

2222 0

0 0 EH
1212


 ε11

ε22

2ε12

 . (7)

For an infinitesimal strain, we introduce the compatibility equations [40]

ε11 =
∂u1
∂x1

ε22 =
1

x3

∂u2
∂x2

+
u3
x3

2ε12 =
∂u1
∂x2

+
∂u2
∂x1

,

(8)

where u3 denotes the radial displacement and x3 the radial coordinate. If
the axial symmetry is maintained, the above system of equations simplifies
to 

ε11 =
∂u1
∂x1

ε22 =
u3
x3

2ε12 =
∂u2
∂x1

.

As loading scenario, we prescribe a constant radial displacement, u∗3, which
changes the initial length l0 into the final value l, so that

ε11 =
l − l0
l0

, ε22 =
u∗3
r0

, σ11 = 0. (9)
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From (7) and (9)3, it follows

σ11 = EH
1111ε11 + EH

1122ε22 = 0, (10)

which leads to

ε11 = −EH
1122

EH
1111

ε22. (11)

This equation, together with (9)1,2, provides the following measure of the
foreshortening as a function of the components of EH , being

f :=
l − l0
l0

=
EH

1122

EH
1111

u∗3
r0

= fmu∗3
r0

, (12)

where fm = EH
1122/E

H
1111 coincides with the microscopic foreshortening due

to the unit cell geometry.
We can proceed similarly for the radial stiffness. Starting from the definition
of radial force F3 = 2πF2, where F2 = σ22l0t is the hoop force [41, 42], and
thanks to (7), we have

σ22 = EH
2211ε11 + EH

2222ε22,

which, together with (9)2, (11), and the definition of F2, leads to

Kr :=
F3

u∗3
=

2πl0t

r0

(
EH

2222 −
(EH

1122)
2

EH
1111

)
=

2πl0t

r0
Km

r , (13)

with Km
r = EH

2222 − (EH
1122)

2/EH
1111 the microscopic radial stiffness due to

the unit cell geometry. For a more detailed derivation and analysis, we refer
to [36].

2.2 Stent unit cell design via topology optimization

With reference to the second panel of Fig. 1, we present an efficient method
to design unit cells that constitute innovative stents characterized by spe-
cific engineering properties. The main goal of this approach is to analyze
an existing unit cell stent design, Yobs, to retrieve its mechanical features
using relations (12)-(13), and to provide alternative unit cells with similar
or enhanced mechanical properties.
To this end, we employ a topology optimization (TO) framework. TO en-
ables the distribution of material inside a domain D ⊂ Rd, with d = 2, 3,
by modifying the associated topology (i.e., creating, moving or deleting the
structural boundaries), provided that certain constraints on the optimiza-
tion procedure are satisfied [43]. Several mathematical methods can be
adopted to address a TO problem, mainly diversified for the mathematical
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tool used to track the material/void interface. Level set and density-based
approaches are majorly used for the mathematical rigor and ease of imple-
mentation [44, 45]. In this study, we adopt a density-based TO approach,
which can be generally expressed as

min
ρ∈S

J(w1(ρ), . . . ,wN (ρ); ρ) :


ai,ρ(wi(ρ),v) = fi,ρ(v) ∀v ∈ V

cj ≤ cj(w1(ρ), . . . ,wN (ρ); ρ) ≤ c̄j

ρ ≤ ρ ≤ 1,

(14)

with i = 1, . . . , N , and j = 1, . . . ,M , where ρ is the density variable that de-
scribes the material/void distribution, being ρ ≃ 1 in the regions occupied by
full material and ρ ≃ ρ for the areas of void, with ρ ≪ 1 a positive value that
guarantees the well-posedness of formulation (14), and S = H1(D; [ρ, 1])1;
functions wi(ρ) are the state variables belonging to a suitable function space
V , for i = 1, . . . , N ; J(·; ρ) is the objective functional that drives the op-
timization, possibly depending on the state variables and on the density.
As for the constraints in (14), the first N relations are the state equations
in weak form that models the physics underlying the minimization process,
with ai,ρ(·, ·) and fi,ρ(·) the bilinear and linear forms, respectively, and v
the test function in V ; the inequality constraints introduce a lower and an
upper control through values cj and c̄j , respectively, on the design and/or
physical quantities of interest cj(·, ρ), with j = 1, . . . ,M ; finally, the last
box constraint imposes the admissible range for ρ.
The dependency of the forms ai,ρ(·, ·) and fi,ρ(·) on the density variable ρ
may vary with the chosen TO model. In this study, we consider the Solid
Isotropic Material with Penalization (SIMP) approach, where standard ma-
terial Lamé coefficients are modified by a power law penalization, namely
multiplied by ρp, with p > 0 the penalization exponent [45]. This modeling
has the objective to suppress intermediate density values, thus favoring a
final quasi-binary configuration, with ρ ≃ 1 or ρ ≃ ρ almost everywhere, for
a sharp definition of the structure topology.

2.2.1 Inverse homogenization TO to control structural properties

The density-based TO formulation (14) is now framed in an inverse ho-
mogenization setting in order to design engineered stent unit cells. In de-
tail, we consider the 2D unit cell geometry as the design domain, namely
D = Y ⊂ R2. Moreover, with reference to [10, 11] where the contact area be-
tween the stent and the vessel is identified as a risk factor for tissue ingrowth,
in-stent restenosis and thrombosis, we choose to drive the TO problem by

1A priori, S could coincide with the space L∞(D; [ρ, 1]). We opt for a higher regular
space with a view to the optimization discrete setting.
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minimizing the volume fraction in Y occupied by the full material, i.e.,

J(ρ) = M =
1

|Y |

∫
Y
ρdY, (15)

with ρ ∈ SP = H1
P (Y ). Concerning the state variables in (14), following [45,

38, 46], we set w1(ρ) = u∗,11, w2(ρ) = u∗,22, and w3(ρ) = u∗,12, solutions
to the problems: for ij ∈ {11, 22, 12}, find u∗,ij ∈ VP such that∫

Y
ρpσ(u∗,ij) : ε(v)dY,=

∫
Y
ρpσ(u0,ij) : ε(v)dY ∀v ∈ VP , (16)

which correspond to the SIMP-modified version of (6) and identify the bi-
linear and linear forms in (14). Here, we drop the dependence of u∗,ij on
the density ρ to simplify the notation.
In order to achieve prescribed homogenized properties of interest, we con-
trol the values of the 6 homogenized stiffness components, by identifying the
constrained quantities in (14) with

c1(u
∗,11,u∗,11; ρ) = EH

1111,ρ(u
∗,11,u∗,11),

c2(u
∗,22,u∗,22; ρ) = EH

2222,ρ(u
∗,22,u∗,22),

c3(u
∗,12,u∗,12; ρ) = EH

1212,ρ(u
∗,12,u∗,12),

c4(u
∗,11,u∗,22; ρ) = EH

1122,ρ(u
∗,11,u∗,22),

c5(u
∗,11,u∗,12; ρ) = EH

1112,ρ(u
∗,11,u∗,12),

c6(u
∗,22,u∗,12; ρ) = EH

2212,ρ(u
∗,22,u∗,12),

where the components EH
ijkl,ρ, for ij, kl in {11, 22, 12}, are the density-

weighted versions of (5), given by

EH
ijkl,ρ(u

∗,ij ,u∗,kl) =
1

|Y |

∫
Y
ρp[σ(u0,ij)− σ(u∗,ij)] : [ε(u0,kl)− ε(u∗,kl)]dY.

(17)
The associated lower and upper bounds are selected as

c1 = (1− γ)EH
1111,obs c̄1 = (1 + γ)EH

1111,obs,

c2 = (1− γ)EH
2222,obs c̄2 = (1 + γ)EH

2222,obs,

c3 = (1− γ)EH
1212,obs c̄3 = (1 + γ)EH

1212,obs,

c4 = (1− γ)EH
1122,obs c̄4 = (1 + γ)EH

1122,obs,

c5 = −Emin c̄5 = Emin,

c6 = −Emin c̄6 = Emin,

where EH
ijkl,obs is the generic stiffness tensor component computed by (5)

when associated with design Y = Yobs, γ ∈ [0, 1] tunes the width of the
admissible range of variation for the constraints, and Emin > 0 is a constant
sufficiently small used to enforce the homogenized tensor to be orthotropic.
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2.2.2 A length scale control for manufacturability

The minimization of the functional in (15) a priori would lead towards the
erosion of the layout. However, designs characterized by thin stent struts
are unfeasible from the point of view of the physical manufacturing of the
device. Indeed, stent manufacturing traditionally resorts to laser-cutting
technologies that cannot deliver devices whose strut size is below a certain
threshold. Therefore, a manufacturing constraint must be imposed to con-
trol the strut length scale. This requirement is recurrent and consolidated
in the literature [47, 48].
Here, we adopt the formulation in [48], where the density ρ is substituted
by the physical field ¯̃ρ obtained by filtering procedures. First, we solve the
smoothing Helmholtz-type differential equation

−r2H∆ρ̃+ ρ̃ = ρ in Y

∂ρ̃

∂n
= 0 on ∂Y,

(18)

where rH is related to the threshold for the minimum strut size, Smin,2D,
through the relation Smin,2D = 4

√
3 rH [49].

Subsequently, the smoothed density ρ̃ is mapped into a (quasi) black-and-
white configuration by the Heaviside-like transformation

¯̃ρ =


1

2

[
e−β(1−2ρ̃) − (1− 2ρ̃)e−β

]
if 0 ≤ ρ̃ ≤ 1

2

1

2

[
1− e−β(2ρ̃−1) − (1− 2ρ̃)e−β

]
+

1

2
if

1

2
≤ ρ̃ ≤ 1,

(19)

where β > 0 tunes the steepness of the filtering, regulating the severity of
the transition from 0 to 1 across the intermediate densities.

Thus, the TO formulation in (14) is particularized to the Analyze-To-
Optimize for Manufacturable Stents (ATOMS) formulation, which reads as:

10



min
ρ∈SP

M(¯̃ρ) :



∫
Ω

¯̃ρpσ(u∗,11) : ε(v)dΩ,=

∫
Ω

¯̃ρpσ(u0,11) : ε(v)dΩ ∀v ∈ VP∫
Ω

¯̃ρpσ(u∗,22) : ε(v)dΩ,=

∫
Ω

¯̃ρpσ(u0,22) : ε(v)dΩ ∀v ∈ VP∫
Ω

¯̃ρpσ(u∗,12) : ε(v)dΩ,=

∫
Ω

¯̃ρpσ(u0,12) : ε(v)dΩ ∀v ∈ VP

(1− γ)EH
1111,obs ≤ EH

1111, ¯̃ρ
(u∗,11,u∗,11) ≤ (1 + γ)EH

1111,obs

(1− γ)EH
2222,obs ≤ EH

2222, ¯̃ρ
(u∗,22,u∗,22) ≤ (1 + γ)EH

2222,obs

(1− γ)EH
1212,obs ≤ EH

1212, ¯̃ρ
(u∗,12,u∗,12) ≤ (1 + γ)EH

1212,obs

(1− γ)EH
1122,obs ≤ EH

1122, ¯̃ρ
(u∗,11,u∗,22) ≤ (1 + γ)EH

1122,obs

−Emin ≤ EH
1112, ¯̃ρ

(u∗,11,u∗,12) ≤ Emin

−Emin ≤ EH
2212, ¯̃ρ

(u∗,22,u∗,12) ≤ Emin

ρ ≤ ¯̃ρ ≤ 1,
(20)

with M(¯̃ρ) as in (15) and ¯̃ρ defined through (18) and (19). ATOMS formu-
lation will be instrumental to the proposal of new stent designs.

3 ATOMS to replicate and enhance existing unit
cells performance

In this section, we detail the numerical setting used to provide the discrete
counterpart of (20). This formulation, along with the stent property char-
acterization in Sect. 2.1.2, allows us to reproduce as well as to upgrade the
performance of existing stent unit cells.

3.1 A customized discretization for ATOMS

Generic TO settings like (14) are typically discretized and solved by resorting
to diverse numerical optimization methods. For instance, it is common to
approximate the state equations and variables, and the density function in a
finite element (FE) setting, and then to employ iterative large-scale optimiz-
ers, such as the Methods of Moving Asymptotes (MMA) [50] or the Interior
Point OPTimizer (IPOPT) [51]. The choice of the computational mesh as-
sociated with the FE discretization plays a crucial role in the optimization
process [52, 45]. In particular, a too coarse grid can result in designs with
poor boundary quality, requiring invasive post-processing, while a too re-
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fined mesh increases computational costs. To address these challenges, the
authors in [53] introduce the SIMPATY algorithm for the SIMP-based TO of
structures. SIMPATY alternates the optimizer iterations with an anisotropic
mesh adaptation procedure, thus generating highly refined designs at an af-
fordable computational effort. As an improvement of the basic algorithm,
in [54, 55], SIMPATY is enriched with a control on the mesh anisotropy to
crowd elongated elements in correspondence of the material boundary, while
resorting to isotropic triangles inside the structure. Stretched elements allow
sharply resolving the boundary layers at the material/void interface, while
equilateral triangles avoid to bias the FE mechanical analysis [56]. In the
context of the design of engineered metamaterials, a combination of SIM-
PATY with inverse homogenization is formalized into the microSIMPATY
algorithm. MicroSIMPATY has proved to inherit the high accuracy and
reliability properties of SIMPATY, thus justifying the successful application
to diverse multi-objective and multi-physics frameworks [46, 57, 58, 59, 33]
and to ATOMS formulation.

To this aim, we define the mesh, Th = {K}, that tessellates the domain
through triangles, we introduce the discrete spaces

Sh
P = V 1

h ∩ SP , V h
P = [V 1

h ]
2 ∩ VP ,

and the associated discrete density, state, and test functions

¯̃ρh ∈ Sh
P , u∗,ij

h ,vh ∈ V h
P ,

respectively, for ij = {11, 22, 12}, where

V 1
h = {vh ∈ C0(Ȳ ) : vh|K ∈ P1(K) ∀K ∈ Th}

is the continuous affine FE space, with P1(K) the space of polynomials of
degree 1 in K.
The minimization process in (20) is carried out through an iterative loop
consisting of two main phases.
As a first step, we compute the discrete solutions, u∗,ij

h , to the state equa-
tions on Th. These quantities are provided as an input to an optimizer
together with the objective functional, M, the two-sided constraints and
the associated derivatives with respect to ρ, to yield the optimized physical
density.
In the second phase of ATOMS, the optimized ¯̃ρh is used to update the
computational mesh into a new grid suited to track the material/void inter-
face of the current layout, with a view to the next optimization step. For
this purpose, we follow [60], where the authors drive an anisotropic mesh
adaptation procedure through the generalization of the Zienkiewicz-Zhu er-
ror estimator [61, 62] to an anisotropic environment. The estimator controls
the H1-seminorm of the discretization error associated with a target quan-
tity, here identified with the density ¯̃ρ. Specifically, the global anisotropic
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error estimator for the seminorm | ¯̃ρ− ¯̃ρh|H1(Y ) is defined by

η2 =
∑
K∈Th

η2K ,

with

η2K =
1

λ1,Kλ2,K

2∑
i=1

λ2
i,K

(
rTi,KG∆K

(E (¯̃ρh)) ri,K
)
, (21)

the elementwise error estimator. In particular, according to the anisotropic
setting in [63, 60], quantities λi,K and ri,K coincide with the length and the
direction of the semi-axes of the ellipse circumscribed to the generic element
K, with i = 1, 2 and λ1,K ≥ λ2,K > 0, and do characterize the size (through
lengths λi,K), the shape (through the aspect ratio sK = λ1,K/λ2,K ≥ 1) and
the orientation (through directions ri,K) of K; E (¯̃ρh) = R(¯̃ρh)−∇ ¯̃ρh is the
recovered error that surrogates ∇ ¯̃ρ−∇ ¯̃ρh, with

R(¯̃ρh)(x) = |∆K |−1
∑

T∈∆K

|T | ∇ ¯̃ρh

∣∣∣
T
(x) x ∈ K,

the so-called recovered gradient and ∆K = {T ∈ Th : T ∩K ̸= ∅} the patch
of elements associated with K; G∆K

(E (¯̃ρh)) is the symmetric positive
semidefinite matrix, with components

[G∆K
(E (¯̃ρh))]ij =

∑
T∈∆K

∫
T
(E (¯̃ρh))i (E (¯̃ρh))j dT i, j = 1, 2,

and (E (¯̃ρh))k the k-th component of the recovered error, for k = 1, 2.
Different strategies are available in the reference literature to commute η
into practical information to generate the new adapted mesh. We adopt
the metric-based approach in [64], where the new grid is built in order to
ensure a certain accuracy, tolη, on the error | ¯̃ρ− ¯̃ρh|H1(Y ), while minimizing
the mesh cardinality, #Th, and equidistributing the error throughout the
adapted grid. As derived in [64], the lengths, λA

i,K , and the directions, rAi,K ,
identifying the new adapted mesh are given by

λA
1,K = g

−1/2
2,K

(
tol2η

2#ThCK

)1/2

, rA1,K = g2,K ,

λA
2,K = g

−1/2
1,K

(
tol2η

2#ThCK

)1/2

, rA2,K = g1,K ,

(22)

with CK a computable constant and where {gi,K ,gi,K}2i=1 are the eigenpairs
associated with matrix G∆K

(E(¯̃ρh))/|∆K |.
Successively, the spacing in (22) is preserved only near the material/void
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boundary, while a uniform isotropic tessellation of size hiso is used to dis-
cretize the material portion of the design domain. As numerically proved
in [55, 54, 33], this hybrid meshing strategy guarantees a sharp description
of the layout and the reliability of the mechanical analysis.

Algorithm 1 formalizes the two phases of ATOMS procedure. The while

Algorithm 1 ATOMS

1: Input: tolJ , tolη, tolM , kmax, ¯̃ρ
(0)
h , T (0)

h , p, ρ, γ, EH
1111,obs, E

H
2222,obs,

EH
1212,obs, E

H
1122,obs, Emin, rH , β, hiso

2: Set k = 0, errM = 1 + tolM ;

3: while errM > tolM and k < kmax do

4: ¯̃ρ
(k+1)
h = Optimize(¯̃ρ

(k)
h , T (k)

h , p,Q,∇ρQ, . . .

5: ρ, γ, EH
1111,obs, E

H
2222,obs, E

H
1212,obs, E

H
1122,obs, Emin, . . .

6: rH , β, tolJ);

7: T (k+1)
h = AdaptMesh(¯̃ρ

(k+1)
h , T (k)

h , tolη, hiso);

8: ¯̃ρ
(k+1)
h = Project(T (k+1)

h , T (k)
h , ¯̃ρ

(k+1)
h );

9: errM = |#T (k+1)
h −#T (k)

h |/#T (k)
h ;

10: k = k+ 1;

11: end while

12: τ = ¯̃ρ
(k)
h ;

13: EH
τ = Homogenize(τ);

14: Output: τ , EH
τ

loop alternates between the two phases described above until a maximum
number, kmax, of iterations is reached or the mesh cardinality stagnates.

During the optimization, starting from the current configuration (¯̃ρ
(k)
h and

T (k)
h ), routine Optimize in lines 4-6 is fed with all the data involved by the

minimization in (20), namely, the SIMP penalization exponent; the objective
functional and the constrained quantities, cumulatively indicated by

Q = (M, EH
1111, ¯̃ρ, E

H
2222, ¯̃ρ, E

H
1212, ¯̃ρ, E

H
1122, ¯̃ρ, E

H
1112, ¯̃ρ, E

H
2212, ¯̃ρ)

and the associated derivative with respect to ρ, ∇ρQ (we refer to [65], where
a Lagrangian approach is employed to compute such a quantity); the data
required to define the two-sided inequalities; the parameters tuning the fil-
tering procedures; the tolerance, tolJ , used for the stopping criterion to
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halt the routine.
Successively, the mesh adaptation procedure is performed to deliver the hy-
brid domain tessellation, merging anisotropic mesh adaptation with a uni-
form isotropic discretization. This task is accomplished in line 7 through

routine AdaptMesh whose inputs are the optimized physical density, ¯̃ρ
(k+1)
h ,

with the associated mesh, along with the tolerance, tolη, and the size, hiso,
for the isotropic tessellation guiding the generation of the adapted mesh.
Lines 8-9 are pivotal to the next iteration, by projecting the optimized den-
sity onto the new adapted mesh and evaluating the relative variation in mesh
cardinality with a view to the stagnation stopping criterion.

The algorithm ultimately delivers the optimized physical density, τ = ¯̃ρ
(k)
h ,

and the corresponding homogenized stiffness tensor, EH
τ , computed through

routine Homogenize in line 13 that implements (17) for ρ = τ .
In the numerical assessment of Sect. 3.2, Algorithm 1 is implemented

in a FreeFEM-based in-house code. In particular, the Optimize routine
coincides with the IPOPT large scale optimizer [51], while the AdaptMesh

module takes advantage of the built-in mesh generator, available in the
platform [66].

3.2 Design and comparative analysis of optimized stent unit
cells

In this section, we utilize Algorithm 1 to design innovative stent unit cells,
starting from three layouts in Fig. 3, named Y D1

obs , Y
D2
obs , Y

EVFX
obs . These unit

cells are inspired by existing designs. In particular, Y D1
obs and Y D2

obs are the
geometries validated in [33], where the struts are slightly inflated to account
for a minimum length scale. Unit cell Y EVFX

obs is inspired by the Everflex stent
(EV3, Medtronic, Dublin, Ireland). If we manufacture the three layouts in
Fig. 3 with an isotropic material characterized by Ξ = 60 and ν = 0.33, the
corresponding homogenized stiffness tensor, contact area, microscopic radial
stiffness and foreshortening are2

Figure 3: Stent unit cells Y D1
obs , Y

D2
obs , Y

EVFX
obs (left-right).

2In the design phase, following [33], we consider adimensional quantities. We assign
consistent units of measure in Sect. 4 to embed the virtual prototypes in real-world sce-
narios.
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EH
Y D1
obs

=

 2.547 2.566 0.071
2.566 2.745 0.075
0.071 0.075 0.514

 ,
MY D1

obs
= 0.163,

Km
r = 0.161, fm = 1.000,

EH
Y D2
obs

=

 1.888 1.912 −1.366
1.912 2.015 −1.403

−1.366 −1.403 1.048

 ,
MY D2

obs
= 0.132,

Km
r = 0.078, fm = 1.010,

EH
Y EVFX
obs

=

 9.317 0.750 0.000
0.750 0.065 0.000
0.000 0.000 0.536

 ,
MY EVFX

obs
= 0.190,

Km
r = 0.005, fm = 0.080.

(23)
We remark that Y D1

obs features similar stiffness components along the x1- and
x2-directions and a quasi-orthotropic behavior. Layout Y D2

obs exhibits compa-
rable stiffness values along the Cartesian direction, but lacks orthotropicity.
Design Y EVFX

obs is characterized by a marked difference in components EH
1111

and EH
2222, the latter being smaller by two orders of magnitude. Concern-

ing Km
r and fm, it is possible to observe that the first two designs are

characterized by high microscopic foreshortening and moderate microscopic
radial stiffness, while the Everflex-inspired design shows negligible micro-
scopic foreshortening and small microscopic radial stiffness. Finally, all the
contact areas are below 20%, so that the considered stents are lightweight.

For the three unit cell designs, we aim to reproduce the homogenized
stiffness tensor components in (23), except for the ones responsible for or-
thotropicity, (consistency test) and to enhance a mechanical property of
interest – fm or Km

r – with respect to the reference values in (23) (enhance-
ment test). To this aim, we resort to ATOMS algorithm, by setting

tolJ = 5e− 16, tolη = 1e− 4, tolM = 5e− 3, kmax = 30, ¯̃ρ
(0)
h = 0.3,

p = 4, ρ = 1e− 4, Emin = 1e− 3, rH = 8 · 20/[88(4
√
3)], hiso = 10/150,

as input parameters for all the test cases, while we specify the initial mesh
and the upper and lower bounds for the constrained components for each
run. Moreover, we increase β from 1 to 20 throughout the optimizer itera-
tions. We observe that the value selected for rH and the range of variation
adopted for β allow to guarantee a realistic minimum length scale of the
stent struts Smin,2D = 20/88, up to a safety factor here set to 8 (see Sect. 4).

3.3 Design τD1

For the first numerical assessment, domain Y is chosen as a 10× 10 square,

initially discretized through a triangular structured tessellation, T (0)
h , com-

prising 11250 elements. The values for EH
1111,obs, E

H
2222,obs, E

H
1212,obs, E

H
1122,obs

coincide with those in the first row of (23) associated with Y D1
obs .
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Consistency test By setting γ = 0.15, we obtain the topology, τD1, in
Fig. 4 (top row, left panel) after 26 iterations. The associated homoge-
nized stiffness tensor, the contact area, the microscopic radial stiffness and
foreshortening are

EH
τD1

=

 2.195 2.175 −0.003
2.175 2.330 −0.003

−0.003 −0.003 0.517

 ,
MτD1 = 0.157,

Km
r = 0.174, fm = 0.990.

(24)
The obtained values for the stiffness tensor components align with the cor-

Figure 4: Design τD1: consistency (top) and enhancement (bottom) test
results in terms of optimized unit cell (left), adapted computational mesh
(center), and 3× 3 planar periodic pattern (right).

responding values in (23). Consequently, foreshortening and radial stiffness
are comparable to those of Y D1

obs , exhibiting a negligible decrement and in-
crement for fm and Km

r , respectively. On the contrary, the mass fraction
of τD1 (and, thus, the contact area) is reduced when compared with Y D1

obs

mass. This outcome is highly relevant for clinical applications, suggesting
that there is room for improvement in the devices currently in use by ex-
ploiting ATOMS formulation.
The corresponding adapted mesh is presented in the top row, center panel of
Fig. 4. This tessellation features 14660 triangles, with a maximum stretching
factor equal to smax

K = 364.60. Such large element elongation is particularly
evident along the structure boundary. Conversely, small isotropic triangles
can be observed inside the structure, according to the isotropic size imposed
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through hiso. This fine tessellation is responsible for the accurate approxi-
mate values in (24).
Finally, the periodic repetition of τD1 on the plane yields the pattern in the
right panel of the top row.

Enhancement test For the enhancement of the analyzed design Y D1
obs , we

aim to reduce the microscopic foreshortening. With this goal, with reference
to (12), we change the constraint for EH

1122, ¯̃ρ
in (20) into

(1− 3γ)EH
1122,obs ≤ EH

1122, ¯̃ρ(u
∗,11,u∗,22) ≤ EH

1122,obs,

pushing the component towards a lower value, keeping γ = 0.15,
The optimized layout, named τD1,E, is obtained in 25 iterations and is shown
in Fig. 4 (bottom row, left panel). The new topology is characterized by the
following quantitative results

EH
τD1,E

=

 2.156 1.475 0.000
1.475 2.325 −0.001
0.000 −0.001 0.431

 ,
MτD1,E = 0.146,

Km
r = 1.316, fm = 0.680.

The stiffness tensor components are consistent with the bounds imposed
in the design constraints. Compared to Y D1

obs , the unit cell yielded by Al-
gorithm 1 is characterized by a smaller contact area and a 32% reduction
in foreshortening, at the expense of an increased radial stiffness due to the
smaller value for (EH

1122)
2/EH

1111 in (13) (from a geometrical viewpoint, the
presence of the vertical strut in τD1,E is likely responsible for the higher ra-
dial stiffness).
The adapted mesh in the bottom row, center panel of Fig. 4, consists of
14326 elements and presents a major triangle elongation near the boundary
of the struts, with smax

K = 489.68.

3.4 Design τD2

Analogously as in the previous test case, domain Y in (20) is chosen as a
10 × 10 square, consistent with the aspect ratio of the unit cell Y D2

obs . This

domain is tessellated with the mesh T (0)
h in Section 3.4. The values for

EH
1111,obs, EH

2222,obs, EH
1212,obs, EH

1122,obs are reported in the second row of

(23) corresponding to Y D2
obs .

Consistency test The consistency run is performed by selecting γ = 0.15.
The execution ends in 29 iterations, resulting in the unit cell displayed in
Fig. 5 (top row, left panel). The obtained topology, τD2, is relatively simple
and exhibits an asymmetric geometry. The output mechanical properties
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are

EH
τD2

=

1.600 1.633 0.000
1.633 1.709 0.001
0.000 0.001 0.929

 ,
MτD2 = 0.120,

Km
r = 0.0423, fm = 1.020.

Cross-comparing the stiffness tensor component values with the correspond-

Figure 5: Design τD2: consistency (top) and enhancement (bottom) test
results in terms of optimized unit cell (left), adapted computational mesh
(center), and 3× 3 planar periodic pattern (right).

ing ones in EH
Y D2
obs

, we observe that all the constrained quantities are compli-

ant with the imposed bounds. Moreover, the imposition of orthotropicity
guarantees that the resulting layout has vanishing components EH

1112,τD2
and

EH
2212,τD2

, thus overcoming the anomalous behavior observed in EH
Y D2
obs

.

As far as fm and Km
r are concerned, we can notice that τD2 is consistent

with Y D2
obs in terms of foreshortening up to a 1% mismatch. Vice versa, the

radial stiffness characterizing τD2 is lower than the one in the original design
due to the nonlinear relation among the stiffness tensor components in (13).

The computational mesh that assists the design phase is shown in the
top row, center panel of Fig. 5. This anisotropic grid is composed of 11906
elements and is characterized by isotropic triangles inside the unit cell topol-
ogy and by stretched elements aligned with the structure struts. Due to the
marked directionality of the straight diagonal components, the mesh ele-
ments reach a value of 985.73 for the maximum aspect ratio smax

K . In the
right panel, we show the 3 × 3 periodic repetition of τD2, which highlights
the asymmetry of the layout.
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Enhancement test We exploit the ATOMS framework to design a stent
unit cell that guarantees the mechanical properties of Y D2

obs , except for the
radial stiffness that we aim to reduce. For this purpose, after setting γ =
0.15, we modify the second two-sided inequality in (20) with

(1− 3γ)EH
2222,obs ≤ EH

2222, ¯̃ρ(u
∗,22,u∗,22) ≤ EH

2222,obs.

to favor low values for EH
2222, ¯̃ρ

, resulting in a lower radial stiffness, according

to (13).
Algorithm 1 exits after 28 iterations, yielding the layout, τD2,E, the adapted
mesh and the repeated pattern in the bottom row of Fig. 5, from left to
right, respectively. The new design is perfectly X-shaped, correcting the
asymmetry shown in the top row. The corresponding mechanical properties
are provided by

EH
τD2,E

=

1.709 1.617 0.002
1.617 1.560 0.000
0.002 0.000 0.991

 ,
MτD2,E = 0.119,

Km
r = 0.030, fm = 0.946,

which demonstrate the capability of ATOMS to produce an enhanced version
of Y D2

obs , while satisfying all imposed constraints. Specifically, the radial force
is markedly reduced, achieving a decrease of 62%, while the components of
the stiffness tensor remain within the admissible range. Moreover, the fore-
shortening is only slightly affected by the prescriptions in the enhancement
scenario, showing a 5% difference. Most importantly, the contact area is
noticeably reduced with respect to the original layout, endowing the new
design with a lower post-intervention risk.
From a computational perspective, the design of τD2,E is supported by an
adapted mesh that tunes shape, size and orientation along the material/void
interface, while modifying only the size within the interior of the layout, re-
sulting in a total of 11, 752 elements. As observed in τD2, the presence of
straight diagonal struts emphasizes the anisotropy of the tessellation, which
reaches a maximum value smax

K = 997.36.

3.5 Design τEVFX

The last test case is devoted to replicate and enhance the mechanical prop-
erties of the Everflex-based design. Unit cell Y EVFX

obs is rectangular with an
aspect ratio equal to 1.6. For this reason, we choose Y as the rectangular

domain (0, 16) × (0, 10), discretized with an initial structured mesh, T (0)
h ,

composed of 18000 isotropic elements. To drive the ATOMS procedure, we
assign the values for EH

1111,obs, E
H
2222,obs, E

H
1212,obs, E

H
1122,obs as those in the

third row of (23).
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Consistency test The consistency check is performed by setting γ = 0.25,
allowing for a larger design space compared to the setting used in Sects. 3.3-
3.4. This choice is carried out to assess the robustness of ATOMS with
respect to parameter γ and to manage the more complex scenario associated
with the Everflex, thus avoiding non-feasible sets of constraints. After 24
iterations, we obtain the result in the top row, left panel of Fig. 6, along
with the matching adapted grid and the pattern repetition (center and right
panel, respectively). The layout concentrates stiffness along the x1-direction,
featuring a substantial quasi-horizontal block of material, while keeping the
vertical joints as light as possible. This observation is compliant with the
characteristics of Y EVFX

obs and is reflected in the homogenized stiffness tensor,
the contact area, and the microscopic radial stiffness and foreshortening of
τEVFX, given by

EH
τEVFX

=

 6.858 0.546 −0.002
0.546 0.081 0.000

−0.002 0.000 0.383

 ,
MτEVFX = 0.178,

Km
r = 0.038, fm = 0.080.

Although the high difference imposed between the stiffness tensor com-

Figure 6: Design τEVFX: consistency (top) and enhancement (bottom) test
results in terms of optimized unit cell (left), adapted computational mesh
(center), and 3× 3 planar periodic pattern (right).

ponents along the x1- and x2-direction is significant, the resulting values
for EH

1111, ¯̃ρ
and EH

2222, ¯̃ρ
are fully compliant with the prescriptions. The fore-

shortening exactly matches the value for fm (23), while the radial stiffness is
larger. Regarding the mass fraction, the optimized design effectively lowers
the contact area, consequently lowering the risk of adverse clinical compli-
cations. These favorable properties are achieved at a reasonable computa-
tional cost thanks to the use of an anisotropic adapted mesh. In particular,
the final grid consists of 24236 triangles, with the most elongated elements
(smax

K = 956.32) aligned with the directional features of the design.
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Enhancement test Enhancing the Everflex commercial stent is a chal-
lenging objective. By noticing that the original design Y EVFX

obs features a
very low radial stiffness when compared with layouts Y D1

obs and Y D2
obs in (23),

we challenge Algorithm 1 to design a new unit cell characterized by a larger
value for Km

r . For this purpose, we set γ = 0.20 and we modify the con-
straint for EH

2222, ¯̃ρ
as

(1 + γ)EH
2222,obs ≤ EH

2222, ¯̃ρ(u
∗,22,u∗,22) ≤ (1 + 2γ)EH

2222,obs,

thus pushing the optimizer to reach a greater stiffness component along the
x2-direction. The resulting layout is reported in the bottom row, left panel
of Fig. 6, where a main horizontal bar is vertically connected by means of
two asymmetric polygons. The corresponding quantitative results, given by

EH
τEVFX,E

=

 7.448 0.599 −0.001
0.599 0.091 0.000

−0.001 0.000 0.428

 ,
MτEVFX,E = 0.173,

Km
r = 0.043, fm = 0.080,

highlight the expected behavior, with a predominant stiffness component
along the x1-direction, a reduced value for the vertical one, and the pre-
scribed orthotropic characteristics. Moreover, the contact area is reduced,
in accordance with the minimization of the objective functional, the fore-
shortening remains unchanged, while the radial stiffness is increased, align-
ing with the enhancement goal.
The mesh in the center panel further corroborates the strengths of the adap-
tive approach, by proposing a tessellation tailored to the evolving design at
hand. This grid is composed of 24720 triangles with a maximum elongation
given by 1012.01. Finally, the repetition of the pattern is shown in the right
panel of Fig. 6.

4 Generation and testing of 3D stent virtual pro-
totypes

To prepare the device for clinical use, a digital twin approach enables the
precise generation and testing of 3D stent virtual prototypes. This frame-
work allows the simulation of realistic physiological conditions, facilitating in
silico iterations for optimizing the stent design, performance, and safety [35].
In the sequel, we describe the procedure adopted to generate the 3D virtual
stent geometry. Then, we present the approach to evaluate the performance
of the preliminary digital twin in response to the radial crimping mechanical
test (see the third panel in Fig. 1).

4.1 From the 2D unit cell to the 3D stent device

3D models of vascular stents are generated from the 2D unit cells delivered
by Algorithm 1 (see Fig. 7, panel (a) for an example of a stent virtual
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prototype). The construction of the 3D stent model is implemented with
Hypermesh software (Altair Engineering, Troy, MI, USA) and follows the
procedure outlined in [33]. As a first step, the 2D layout is scaled to match
the size of unit cells in existing devices. Next, the cell is projected onto
a cylindrical surface with a 7 mm diameter, and then repeated 10 times
circumferentially and 5 times axially. These repetitions minimize boundary
effects in structural mechanics, aligning with standard values in literature
for laser-cut stents. Finally, the surface lattice is extruded along the negative
radial direction to achieve a constant strut thickness of 0.2 mm, typical for
stents [67, 3, 16, 18, 19]. The chosen geometric characterization of the 3D
stent model makes the values for rH and Smin,2D in Sect. 3.2 physically
meaningful, here corresponding to the minimum strut size Smin,3D = 50 µm
in the physical domain, which meets standard requirements for laser-cutting
technologies.

Figure 7: 3D stent geometry reconstruction through axial and radial repe-
titions (panel (a)), Crimping test: device at rest (top) and in crimped state
(bottom) (panel (b)).

The generation of the 3D device from the 2D unit cell layout benefits
from the modeling and computational advantages of operating on a 2D plane
rather than on a 3D surface. In [36], it has been confirmed that this simpli-
fied approach, combined with the extrusion step to produce the 3D structure,
does not compromise the reliability of the mechanical analysis compared to
a fully 3D setting. In addition, this 2D-to-3D design paradigm is coherent
with the laser-cutting manufacturing that assembles 2D components in 3D
shapes, through techniques like bending, folding, or stacking.

Further good properties of ATOMS algorithm are inherited from the 3D
virtual device generation, such as:

• Innovation: the enhancement tests prove that ATOMS allows us to
push the limits of stent design towards more ambitious properties with
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respect to the devices consolidated on the market. This good property
has been already observed in other application contexts (see, e.g., [65]);

• Automatization: the user is relieved from an intensive parameter tun-
ing during the design process. Parameters tolη and hiso are essentially
the only values that need to be specified for Algorithm 1 to generate
the final layout;

• Limited post-processing: the use of elongated elements in correspon-
dence with the material/void interface (see Fig. 8, center panel) leads
to the sharp detection of the structure boundaries. This feature avoids
any smoothing post-processing operation when creating the 3D .stl

file for mechanical analysis and manufacturing;

• Manufacturability: the use of adapted anisotropic meshes allows for
the creation of structures with small minimum strut size, unattain-
able on uniform meshes with a similar cardinality. This capability
helps meet stringent minimum length scale constraints in the actual
3D manufacturing process (see Fig. 8, right panel, where the circle
diameter d = 0.376 is compliant with the minimal strut size Smin,2D);

• Free-form: the combination of SIMP with anisotropic mesh adaptation
leads to out-of-the-box topologies, as shown, for instance, in [53, 55,
65, 57]. In the design of stents, this feature leads to the proposal of
breakthrough devices when compared with those currently in use.

the optimized layout meets the manufacturability criteria more easily.
In fact, the resolution of the computational mesh can affect the impo-
sition of the minimum length scale, since a too coarse grid may lead to
excessively thick structures. Conversely, the use of unstructured and
adapted elements helps to meet manufacturability requirements (see
Fig. 8, right panel, where the circle inscribed in the stent strut exceeds
the imposed minimal size);

Figure 8: Post-processing and manufacturability for ATOMS - Design τD1:
optimized layout for the consistency test (left), corresponding zoom of the
mesh (center) and of the density field where the circle associated with the
strut size is red-highlighted.
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4.2 Analysis of the virtual stent device through the crimping
test

Consistently with the loading scenario in Sect. 2.1.2, we virtually perform a
radial crimping at body temperature [33]. This setting mimics the loading
conditions experienced by vascular stents when crimped to be inserted into
a catheter, prior to deployment in the vessel [12, 13].

The mechanical analysis of the digital prototype is performed by exploit-
ing a FE model implemented with Hypermesh (Altair Engineering, Troy,
MI, USA) in conjunction with Abaqus/Explicit (Dassault Systèmes Simulia
Corp., Johnston, RI, USA). The stent is discretized using C3D8R hexahedral
elements with reduced integration, considering 8 and 10 elements across the
strut width and thickness, respectively according to [33, 68]. The crimping
catheter is modeled as a rigid cylindrical surface with a diameter of 7.5 mm
and discretized using rigid surface elements (SFM3D4R) [69].
We remark that a nonlinear FE analysis is required to accurately capture
the mechanical response of the stent during the crimping test although the
optimized 2D unit cells are generated assuming linear elastic material behav-
ior [33]. Indeed, nonlinearities have to be considered since the stent structure
experiences high deformations, is prone to buckling, and the self-expandable
stent constitutive material, NiTi, exhibits super-elasticity properties. The
mechanical behavior of NiTi is described using the super-elastic constitutive
model developed by F. Auricchio and R.L. Taylor [70], with material pa-
rameters derived from the computational study on self-expandable femoral
stents in [71].

As initial condition, we apply a uniform temperature field of 37°C to
all nodes of the stent. Thereafter, the crimping cylinder is compressed by
applying a radial displacement to its nodes, which reduces the diameter from
7.5 mm to 2.3 mm (corresponding to a 7 Fr catheter), and the nodes on the
left boundary are constrained in the axial direction (see Fig. 7 (b)). Contact
between the stent and the crimping cylinder, and self-contacts between the
stent struts are modeled by assuming a friction coefficient equal to 0.1 and a
hard-contact pressure-overclosure relationship [33]. Furthermore, we ensure
that the overall kinetic energy remains negligible when compared to the total
internal strain energy, in order to conduct a quasi-static analysis [72].

Figure 9 illustrates the strain of the six devices tested virtually under
radial crimping conditions at the minimum crimping diameter. It emerges
that Design τD1, in both the consistency and enhanced versions, as well as
the consistency version of Design τEVFX, fails to achieve full closure, as the
peak value of the maximum principal strain exceeds the allowable limit of
the material (NiTi elongation at break is assumed to be 18% [33]), as shown
in Fig. 9 (a), (b), (e). In contrast, the consistency and enhanced versions
of Design τD2, as well as the enhanced version of Design τEVFX, successfully
close at the minimum crimping diameter without exhibiting material failure.
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Specifically, the peak values of maximum principal strain at the minimum
diameter remain below the material elongation limit at break, with values
equal to 16%, 13%, and 12% for the two versions of Design τD2 and the
enhanced layout of Design τEVFX, respectively (see Fig. 9 (c), (d), (f)).

Figure 9: Analysis of the virtual stent device: contour plot of maximum
principal strain under radial crimping conditions for the 3D virtual proto-
types of Design τD1 (a)-(b), Design τD2 (c)-(d) and Design τEVFX (e)-(f),
for the consistency (left column) and the enhanced (right column) configu-
ration. Half stent of each design is represented in section.

5 Conclusions

In this work, we proposed the ATOMS formulation to generate innovative
vascular stent designs that replicate or improve the mechanical performance
of existing devices used as a baseline. The mathematical formulation re-
lies on a SIMP-based TO procedure enriched with homogenization theory
to appropriately constrain the mechanical response of the designed stent,
combined with a minimum length scale filtering scheme to ensure manufac-
turability.
The computational design framework is automated through the adoption
of anisotropic adapted meshes. Specifically, integrating a TO formulation
with a mesh adaptation procedure has proven crucial for delivering reliable
results while minimizing computational costs. This approach facilitates the
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seamless generation of a 3D virtual stent. In line with the concept of a
digital twin [35], we virtually simulated the crimping of the stent into the
catheter, mimicking the procedure typically performed to prepare the device
for clinical use.

The numerical results demonstrated that the ATOMS framework is ro-
bust across various observed geometries characterized by different unit cell
shapes and homogenized stiffness tensor components. Moreover, selecting
the mass fraction (namely, the contact area between the device and the
vessel) of the stent unit cell as the objective functional ensures that the
final layouts are less prone to post-intervention complications. The radial
crimping test conducted on the virtual prototypes allowed us to differenti-
ate between the stent designs that cannot be successfully inserted into the
catheter and the devices that can be virtually crimped without compromis-
ing material integrity.

The proposed procedure is a promising attempt in the creation of a
computational platform for the analysis and enhancement of vascular stent
designs. Its scope can be broadened, for instance, by implementing other in
silico tests in a modular fashion, or by targeting other biomedical applica-
tions. Moreover, we aim at employing reduced order modeling techniques
for the in silico test campaigns, to ensure a real-time response of the de-
vice to various mechanical stimuli, thus granting ATOMS the potential of
functioning as a comprehensive digital twin.
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[51] A. Wächter, L. T. Biegler, On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,
Math. Program. 1, Ser. A (106) (2006) 25–57.

[52] O. Sigmund, J. Petersson, Numerical instabilities in topology opti-
mization: a survey on procedures dealing with checkerboards, mesh-
dependencies and local minima, Struct. Multidisc. Optim. 16 (1) (1998)
68–75.

[53] S. Micheletti, S. Perotto, L. Soli, Topology optimization driven by
anisotropic mesh adaptation: towards a free-form design, Comput.
Struct. 214 (2019) 60 – 72.

[54] N. Ferro, S. Micheletti, S. Perotto, An optimization algorithm for au-
tomatic structural design, Comput. Methods Appl. Mech. Engrg. 372
(2020) 113335.

[55] D. Cortellessa, N. Ferro, S. Perotto, S. Micheletti, Enhancing level
set-based topology optimization with anisotropic graded meshes, Appl.
Math. Comput. 447 (2023) 127903.

[56] S.-W. Cheng, T. K. Dey, J. R. Shewchuk, Delaunay mesh genera-
tion, Chapman & Hall/CRC Computer and Information Science Series,
Chapman & Hall/CRC, Boca Raton, FL, 2013.

[57] M. Gavazzoni, N. Ferro, S. Perotto, S. Foletti, Multi-physics inverse
homogenization for the design of innovative cellular materials: Appli-
cation to thermo-elastic problems, Math. Comput. Appl. 27 (1) (2022)
15.

[58] N. Ferro, S. Perotto, M. Gavazzoni, A new fluid-based strategy for
the connection of non-matching lattice materials, Struct. Multidiscip.
Optim. 65 (10) (2022) 287, 15.

32



[59] D. di Cristofaro, C. Galimberti, D. Bianchi, R. Ferrante, N. Ferro,
M. Mannisi, S. Perotto, Adaptive topology optimization for innova-
tive 3D printed metamaterials, in: Proceedings of WCCM-ECCOMAS
2020 Conference - Modeling and Analysis of Real World and Industry
Applications, Vol. 1200, 2021.

[60] S. Micheletti, S. Perotto, Anisotropic adaptation via a Zienkiewicz-Zhu
error estimator for 2D elliptic problems, in: G. Kreiss, P. Lötstedt,
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