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Abstract

Among several recently proposed data-driven Reduced Order Models (ROMs), the coupling of Proper Or-
thogonal Decomposition (POD) and deep learning-based ROMs (DL-ROMs) has proved to be a successful
strategy to construct non-intrusive, highly accurate, surrogates for the real time solution of parametric
nonlinear time-dependent PDEs. Inexpensive to evaluate, POD-DL-ROMs are also relatively fast to train,
thanks to their limited complexity. However, POD-DL-ROMs account for the physical laws governing the
problem at hand only through the training data, that are usually obtained through a full order model (FOM)
relying on a high-fidelity discretization of the underlying equations. Moreover, the accuracy of POD-DL-
ROMs strongly depends on the amount of available data. In this paper, we consider a major extension of
POD-DL-ROMs by enforcing the fulfillment of the governing physical laws in the training process – that
is, by making them physics-informed – to compensate for possible scarce and/or unavailable data and im-
prove the overall reliability. To do that, we first complement POD-DL-ROMs with a trunk net architecture,
endowing them with the ability to compute the problem’s solution at every point in the spatial domain,
and ultimately enabling a seamless computation of the physics-based loss by means of the strong continu-
ous formulation. Then, we introduce an efficient training strategy that limits the notorious computational
burden entailed by a physics-informed training phase. In particular, we take advantage of the few available
data to develop a low-cost pre-training procedure; then, we fine-tune the architecture in order to further
improve the prediction reliability. Accuracy and efficiency of the resulting pre-trained physics-informed DL-
ROMs (PTPI-DL-ROMs) are then assessed on a set of test cases ranging from non-affinely parametrized
advection-diffusion-reaction equations, to nonlinear problems like the Navier-Stokes equations for fluid flows.

1. Introduction

Mathematical models expressed in terms of nonlinear partial differential equations (PDEs) are ubiquitous
in Applied Sciences and Engineering, enabling scientists to describe complex patterns or phenomena arising
in a wealth of contexts, including Fluid Dynamics, Structural Mechanics, and Computational Biology, to
mention a few examples. Despite providing accurate approximations to these problems, high-fidelity, full-
order models (FOMs) are often computationally prohibitive. For instance, finite element-based FOMs usually
entail spatial discretizations of the problem domain regulated by very small mesh sizes h > 0, thus yielding
algebraic problems whose dimension Nh can easily reach millions of unknowns scaling with the number of
vertices {xi}Nh

i=1. The computational burden is even higher in a parametric setting, where the problem’s
solution also depends on a vector µ ∈ P ⊂ RNh of input parameters, in addition to the spatial coordinates
and, possibly, the time variable t ∈ T = [0, T ] – with T > 0. In several situations, we wish to explore the
entire solution manifold SNh

= {u(µ, t) = [u(xi,µ, t)]
Nh
i=1 ∈ RNh : (µ, t) ∈ P ×T } to address either real-time

simulations or multi-query problems (like, e.g., uncertainty quantification or parameter estimation) – two
tasks that are usually out of reach with high-fidelity FOMs. Reduced Order Models (ROMs) are usually
employed to accomplish these tasks, replacing the high-fidelity problem by one featuring a much lower
numerical complexity [3, 2, 4]. Among several available options, the reduced basis (RB) method [48] exploits
the µ-dependence of the solution manifold to generate a reduced subspace that approximates the FOM
solution, and an algebraic system to solve through a (Galerkin-type) projection of the FOM onto the reduced
subspace. Low-dimensional linear subspaces can be obtained, e.g., through proper orthogonal decomposition
(POD). For parametrized PDEs, POD selects the most relevant modes by computing the singular value



decomposition of a matrix collecting a set of FOM snapshots. However, despite the mathematical rigor
of this idea, assembling the resulting ROMs might be an extremely intrusive task. Moreover, to ensure
accuracy, the dimension of the ROM can increase remarkably, making computational benefits negligible in
several applications involving nonlinear, time-dependent problems [15]. Nonetheless, a dynamical system –
even if of small size – has to be solved at the reduced level, in case of time-dependent problems. All these
issues make classical ROM strategies unfeasible in view of real-time predictions.

Recently, Deep Neural Networks (DNNs) have become extremely popular in reduced order modeling, aim-
ing at (i) surrogating the expensive construction of ROMs by exploiting, e.g., feedforward NNs [30, 58, 5],
recurrent NNs [59] and ResNets architectures [45], or (ii) performing dimensionality reduction through, e.g.,
convolutional autoencoders [23, 54, 38], or even (iii) coupling these two latter tasks, e.g., through deep
learning-based reduced order models (DL-ROMs) [16, 17, 43, 46], among which we mention POD-DL-ROMs
[21, 20, 19, 7], POD-LSTM-ROMs [18], and fast SVD-ML-ROMs [12] – indeed very similar to the former.
These latter strategies – and, more generally speaking, data-driven ROMs – are becoming more and more
ubiquitous among ROM techniques, especially when dealing with nonlinear time-dependent parametrized
PDEs, as they offer a striking accuracy, excellent generalization capabilities, and an extremely fast online
inference phase. However, the reliability of deep learning-based strategies strongly depends not only on the
proper design of neural network architectures, but also on the amount of collected samples the neural network
is fed with during the offline training phase. In fact, snapshots’ collection plays a major role in the offline
phase of DL-ROMs – in addition to the training of DNN architectures. When the FOM is particularly hard
to solve, the required computational time might also limit the amount of collected snapshots. On the other
hand, it is well known that data scarcity represents a serious possible concern about the overall reliability
of DNNs-based methods.

Recent advances in Scientific Machine Learning (SciML) suggest to compensate small data regimes with
an optimization phase driven by a physics-informed loss formulation, employing the a priori knowledge of
the physical model governing the problem at hand [67]. Indeed, physics-informed techniques – such as, e.g.,
physics-informed neural networks [49, 32] or physics-informed deep operator networks [60] – can foster the
accuracy remarkably, even in contexts where data are entirely missing in a region of the time-parameter
domain P × T . It is worth to notice that enforcing physics-based constraints has proven to be successful
even when dealing with a sufficient amount of data, implying in these cases a remarkable improvement of
the overall reliability of the considered method [10]. See, e.g., [65, 28, 29] for more general approaches to
build physics-aware, data-driven ROMs.

Even though physics-based constraints shall enhance the training phase of almost any DL-ROM as long
as the underlying physical model is available, in practice a suitable minimum in the physics-informed loss
function is hard to achieve, thus requiring a large number of epochs in the neural network training [60, 49],
or even causing convergence failure in the optimization phase [11]. Approaches exploiting an interplay
between data and physics [10] often reduce the risk of optimization failure and limit the number of epochs
required to achieve a suitable accuracy. Nevertheless, the computation of a physics-informed loss term
requires a substantial amount of computational time and resources per epoch: indeed, it usually relies on
automatic differentiation, and entails residuals’ evaluation – that is, the repeated assembling of FOM arrays
for parametrized problems – with larger and larger difficulties as the order of the required derivatives and the
amount of nonlinearities increases. Thus, it is essential to develop a framework for the residual computation
which only mildly impacts on the required training time and resources.

Within this paper, we extend the proposed deep learning-based ROMs enhanced by POD (POD-DL-
ROMs) [21, 20, 19, 7] to make them physics-aware, thus formulating a pre-trained physics-informed DL-ROM
(PTPI-DL-ROM) paradigm. Our main contributions are thus the following ones:

• we design a physics-based loss functional that enforces the governing physical laws in the training
process, thus compensating for a shortage of available supervised data;

• we devise a fast and efficient pre-training strategy that blends the few available data and the underlying
physics to speed up the convergence to a suitable minima in the proposed loss function;

• we further enhance the proposed architecture through a fine-tuning strategy, which is also characterized
from an abstract point of view.
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Then, we showcase the potential of our approach through small data interpolation and extrapolation tasks.
In particular, we emphasize the complexity of extrapolation tasks, where the available labeled data belong
to a small region of the time-parameter domain P×T , thus leaving the most part of this latter substantially
uncovered by training data, and making the prediction task harder. Specifically, we demonstrate that
a suitably trained PTPI-DL-ROM is endowed with excellent extrapolation capabilities, up to 400% with
respect to both the parameter range and the time interval from which supervised data are sampled.

The structure of the paper is as follows. In Section 2, we state the general formulation of the problem
we deal with, and we specify the family of neural network architectures we intend to focus on. In Section 3
we provide a general framework on the integration of physics to compensate for the drawbacks entailed by
small data regimes. In Section 4, we propose the PTPI-DL-ROM paradigm, which intertwines information
extracted from the underlying physical problem and the contribution of the available labeled data. We
emphasize that this novel paradigm is supplied with an efficient training algorithm consisting in a pre-training
phase and a fine-tuning stage. Section 5 is then devoted to the assessment of the proposed framework through
a series of numerical experiments, including also nonlinear and non-affine differential problems. Finally, the
concluding Section 6 reports a brief discussion on possible further developments and some open issues.

2. A general framework: low-rank DL-based architectures

Within this section we aim at presenting the theoretical framework this work relies on. Specifically, after
introducing the general class of parametrized differential problems we focus on, we describe the architecture
and the properties of low-rank deep learning based ROMs; among the latter, we distinguish spatially dis-
cretized (or mesh-based) approaches – such as POD+DNN [30], POD-DL-ROMs [21] and POD-DeepONets
[41] – from spatially continuous (or mesh-agnostic) techniques – such as DeepONets [40], characterizing them
in a data-driven context.

2.1. Problem formulation

We aim at treating generic nonlinear time-dependent parametric PDEs whose general formulation can
be expressed as follows:

∂u

∂t
+A(µ, t)u(µ, t) +N (u(µ, t),µ, t) = f(µ, t), in Ω× (0, T ]

B(µ)u(µ, t) = g(µ, t), on ∂Ω× (0, T ]

u(µ, 0) = u0(µ), in Ω.

(1)

The problem is set in the spatial (compact and bounded) domain Ω ⊂ Rd, d ≥ 1. The solution u = u(x,µ, t)
at any point x ∈ Ω depends on both the input parameter vector µ ∈ P ⊂ Rp, with P compact, and the time
variable t ∈ T = [0, T ], for some T > 0. In the formulation (1), A represents a linear (second-order, elliptic)
operator, N denotes a nonlinear operator, while B is a generic boundary operator, encoding e.g. the trace of
a function on ∂Ω or the normal flux, or their linear combination, to represent Dirichlet, Neumann, or Robin
conditions, respectively; finally, u0 = u0(µ) denotes the initial datum.

Once discretized through the finite element method (FEM) on a mesh with step size h > 0, problem (1)
yields a nonlinear dynamical system of size NFOM – this latter might coincide with the number Nh of vertices
{xi}Nh

i=1 appearing in the finite element discretization mesh [47], even if thi choice is not restrictive. We thus

define Vh = span({ψi}NFOM
i=1 ) as the finite dimensional subspace involved in the problem discretization, where

ψ1, . . . , ψNFOM
denote the finite element basis functions. Note that also the choice of the FEM as high-fidelity

technique is not restrictive, other options being also possible, such as, e.g., the Spectral Element Method,
or the Finite Volume Methods. Without loss of generality, the general formulation of the high-fidelity FOM
problem reads asM(µ)

∂uFOM
∂t

(µ, t) + A(µ, t)uFOM (µ, t) + N(uFOM (µ, t),µ, t) = f(µ, t), t ∈ (0, T ]

uFOM (µ, 0) = u0(µ),
(2)

where M(µ) ∈ RNFOM×NFOM denotes the parameter-dependent (symmetric, positive definite) mass ma-
trix, while the (possibly, time-dependent) stiffness matrix A(µ, t) ∈ RNFOM×NFOM and the nonlinear
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term N(·,µ, t) : RNFOM → RNFOM are the discrete counterparts of the linear operator A and of the
nonlinear operator N , respectively. The remaining right hand side contributions are encompassed by
f := f(µ, t) ∈ RNFOM , while u0(µ) denotes the initial datum. We remark that the FOM discrete so-
lution uFOM (µ, t) = {uFOM,i(µ, t)}NFOM

i=1 can be directly linked to the function approximating the PDE

solution, that is, u(x,µ, t) ≈ uFOM (x,µ, t) =
∑NFOM

i=1 uFOM,i(µ, t)ψi(x).
We emphasize that we normally collect the evaluation of the high-fidelity solution at the mesh vertices,

namely uh(µ, t) = {uFOM (xi,µ, t)}Nh
i=1, or we choose uh(µ, t) = uFOM (µ, t); for the sake of readability,

hereon we consider NFOM = Nh, without loss of generality. Then, we employ the high-fidelity solver to
collect the labeled training dataset for varying values of (µ, t) ∈ Psup×Tsup ⊆ P ×T (Psup, Tsup compacts).
Formally:

• we select a finite set of time-parameter values through a sampling strategy, namely,

Psup = {µj ∈ Psup}Ns
j=1, Tsup = {k|Tsup|/Nt}Nt

k=1;

• then, we generate a set of snapshots with the high-fidelity solver (2), thus obtaining the supervised
(labeled) training dataset

Dsup = {(µ, t,uh(µ, t)), for any (µ, t) ∈ Psup × Tsup}.

We stress that the computational burden entailed by the FOM solver might become unaffordable in the
case of complex problems, so that we might be able to collect only a handful of data. Within the present
work, we focus on two different sampling strategies for the synthetic data generation phase – namely, we
assume either (i) to sample scattered data in the entire time-parameter domain, thus leaving large portions
of it substantially uncovered by training data, or (ii) to draw solution snapshots from a small region of the
entire time-parameter space, that is Psup × Tsup ( P × T , where |Psup × Tsup| � |P × T |. We employ
the same procedure to collect a suitably representative test dataset to evaluate the performance of the
ROM strategy: thus, we set Ptest × Ttest ≡ P × T and generate Dtest, corresponding to the test instances
Ptest × Ttest ⊂ Ptest × Ttest. We remark that the test dataset is needed only a posteriori to test the ROM
accuracy, assuming to manage to query the computationally expensive high-fidelity solver a sufficiently large
number of times (|Dtest| � |Dsup|).

2.2. Neural network architectures and low-rank decompositions

Within the present work we consider an operator learning task that involves the approximation of map-
pings between (possibly infinite-dimensional) function spaces [34]. Specifically, assuming that X is a compact
set in either N or Rd, our purpose is to approximate the parametric mapping u : P × T → L2(X ). In the
following, we focus in particular on low-rank deep learning-based approaches as they feature a powerful
combination of linear dimensionality reduction (entailed by a low-rank decomposition) and nonlinear ap-
proximation capabilities due to a neural network (NN) core [24, 27]: indeed, they have been widely used
for learning parametric operators even in real-world applications involving, e.g., chemical combustion [36],
seismology [26], electrophysiology [22] and micro-mechanical systems [19]. In the following, we formally
define low-rank deep learning-based architectures.

Definition 2.1. Let X be a compact set of either N or Rd and denote by P ×T ⊂ Rp+1 the time-parameter
domain. Assume that u : P×T → L2(X ) is the parametric map to be approximated, and that {v̂k}Nk=1 : X →
RN is a collection of N < +∞ (possibly learnable) basis functions spanning a low-dimensional subspace of
L2(X ). We call low-rank deep learning-based architecture any NN architecture

û : P × T → L2(X ), û(µ, t) :=

N∑
k=1

v̂kq̂k(µ, t) ≈ u(µ, t),

where the branch network q̂ = {q̂k}Nk=1 : P × T → RN is any (deep) feedforward neural network.

This definition allows us to cast – apparently different – strategies like, e.g., space-discrete POD+DNN
architectures (like, e.g., POD-DL-ROMs), or space-continuous DeepONets in a common framework, ulti-
mately combining them to devise a new, physics-informed POD-DL-ROM strategy. Indeed, we emphasize
that in our framework the distinction between space-discrete and space-continuous approaches resides in the
choice of the compact set X , as we are going to detail in the following.
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Space-discrete DL-based architecture: POD+DNN

If we suppose that X ≡ {1, . . . , Nh}, then v̂k : X → RN is usually represented using a matrix V ∈ RNh×N

defined as Vik = v̂k(i), k = 1, . . . , N , i = 1, . . . , Nh. Thus, we obtain

RNh 3 ûh(µ, t) = Vq̂(µ, t) ≈ uh(µ, t)

and, since the present approach is associated to the numerical discretization, we deem it space-discrete
or mesh-based. We stress that the peculiar lightweight training of space-discrete approaches is due to a
remarkable reduction of the computational burden of the optimization phase: indeed, the global spatial
basis functions collected in V are pre-computed before the training of the branch neural network q̂. This
usually ensures lower backpropagation costs and fosters stability during the optimization phase.

Hereon we focus on POD-based strategies [63, 48, 15, 8], thus delving into the POD+DNNs family
of architectures [30]; however, we remark that in the literature there are some alternatives, see e.g. [45].
For the sake of brevity, we do not delve deeper into density results and error estimates involving low-rank
deep learning-based architectures: the interested reader can refer to, e.g., [37, 7]. Building a POD+DNN
architecture entails the following steps:

(i) from the supervised training dataset Dsup, we extract the snapshots matrix as follows

U ∈ RNh×NsNt s.t. U[:, (k + (j − 1)Ns)] = uh(µj , tk) for j = 1, . . . , Ns and k = 1, . . . , Nt;

(ii) we perform a preliminary dimensionality reduction aiming at compressing the available data, heuristi-
cally assuming that the parametric dependence and the dynamics can be resolved by few coordinates. In
this respect, we employ singular value decomposition (SVD) [13] – or its randomized version [56] – and
retain the first N ≤ Nh modes. Formally, we seek to factorize the snapshot matrix U ≈ VΣWT , where
V ∈ RNh×N and W ∈ RN×Ndata are two semi-orthogonal matrices, while Σ = diag({σk}Nk=1) ∈ RN×N
is a diagonal matrix whose entries σk, for k = 1, . . . , N , are referred to as the singular values. It is well
known [48, 13, 10] that (thin) SVD entails the best N -rank linear decomposition, in the sense that,

V = arg min
W∈RNh×N :WTW=I

|Psup × Tsup|
NsNt

Ns∑
j=1

Nt∑
k=1

‖uh(µ, j, tk)−WWTuh(µj , tk)‖2;

moreover, the (squared) error entailed by the preliminary POD dimensionality reduction amounts to

|Psup × Tsup|
NsNt

NsNt∑
j=1

‖uh(µj , tk)−VVTuh(µj , tk)‖2 =
∑
k>N

σ2
k.

We then compress the available snapshots, namely, Q = VTU ∈ RN×NsNt = {{q(µj , tk)}Nt

k=1}
Ns
j=1.

(iii) We train the branch network, i.e., we optimize the POD+DNN’s weights and biases with respect to
the data-driven loss functional

LPOD+DNN =

Ns∑
j=1

Nt∑
k=1

‖q̂(µj , tk)− q(µj , tk)‖2 (3)

employing suitable optimization algorithms, such as Adam [33].

Space-continuous DL-based architecture: DeepONets

Despite they are ubiquitous in the operator learning framework because of their outstanding approxi-
mation and generalization capabilities, POD+DNNs architectures are limited by their discrete nature, in
the sense that they cannot be evaluated continuously in the spatial domain Ω. Space-continuous (or mesh-
agnostic) low-rank DL-based architectures aim at filling this deficiency by casting the operator learning task
in a suitable infinite-dimensional setting. Formally, we choose X ≡ Ω (in the notation of Definition 2.1), so
that v̂k ∈ L2(Ω) for any k = 1, . . . , N . DeepONets are a particular instance of space-continuous low-rank
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Figure 1. Example of (a) space-discrete (POD+DNN) and (b) space-continuous (DeepONets) low-rank DL-based architectures.

DL-based architectures that model the basis function v̂ = {v̂k} ∈ RN through a neural network, which is
referred to as the trunk net. In the end, by combining the trunk net and the branch net, we obtain the
mesh-agnostic approximator

û(x,µ, t) := v̂(x) · q̂(µ, t) ≈ u(x,µ, t), ∀x ∈ Ω, µ ∈ P, t ∈ T .

We stress that, in practice, one recovers further regularity (at least v̂k ∈ C(Ω)) depending on the smoothness
of the activation function of the trunk net [37]: the continuity assumption is essential for the mesh-agnostic
evaluation of the approximated solution û(x,µ, t).

Nevertheless, we emphasize that the mesh-agnostic property of DeepONets comes with some drawbacks.
Indeed, if POD+DNNs entail the pre-computation of the POD basis V ∈ RNh×N , within the DeepONet
paradigm the trunk net is trained simultaneously with the branch net. Specifically, their data-driven loss
functional is

LDeepONet =

Nh∑
i=1

Ns∑
j=1

Nt∑
k=1

|uh,i(µj , tj)− v̂(xi) · q̂(µj , tk)|2, (4)

where uh,i is the i-th element of the high-fidelity solution uh, usually minimized by employing either Adam
[33] or other adequate optimization algorithms. We remark that the simultaneous training of branch and
trunk implies in a loss of training stability and entails higher backpropagation costs, resulting in a more
computationally demanding training. Nonetheless, the discrete basis functions provided by POD are optimal
for the training data at hand, while we have no guarantee of optimality for the trained trunk net’s basis
functions. Moreover, POD modes are ordered depending on the “energy” that they retain, whereas the trunk
net functions are not sorted. We refer the reader to Fig. 1 for a visual comparison of the architectures of
space-discrete and space-continuous approaches.

2.3. POD-DL-ROMs as low-rank deep learning-based architectures

Among low-rank DL-based architectures, we now focus on the POD-DL-ROM paradigm, which can be
seen as a special space-discrete, low-rank approach, suitable for small data regimes. POD-DL-ROMs can be
seen as a particular instance of POD+DNNs, employing an autoencoder-based architecture as underlying
neural network; for an in-depth analysis of the technique we refer the reader to [7, 21]). Aside from the
preprocessing procedure through POD, POD-DL-ROMs (see Fig. 2) are obtained by combining an encoder
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Ψ′(θΨ′) : RN → Rn that further compresses the information coming from the POD coefficients to p+1 ≤ n <
N latent variables, a decoder Ψ(θΨ) : Rn → RN , and a (deep) feedforward neural network φ(θφ) : Rp+1 → Rn
that maps the input parameters to the aforementioned latent representation to perform both a change of
variables and an augmentation of the input parameters. We denote by θq := (θΨ′ ,θΨ,θφ) the vector
including all the trainable weights and biases of the aforementioned neural networks; hereon, we omit them
in the notation for the sake of clarity.

In their original formulation, POD-DL-ROMs rely on a fully data-driven optimization phase. Thus, the
underlying physics governing the problem at hand is only inferred from the collected snapshots’ data. In
other words, no physics-based constraints are imposed neither in the loss formulation, nor as hard constraint
in the architecture. Thus, without including any physics-based knowledge, the data-driven loss function to
be minimized during the training phase is made by two distinct terms:

LPOD−DL−ROM = LPOD−DL−ROM (ωN , ωn) = ωNLN + ωnLn, (5)

where ωN , ωn ≥ 0, with ωN + ωn = 1, and

LN =

Ns∑
j=1

Nt∑
k=1

‖(Ψ ◦ φ)(µj , tk)−VTuh(µj , tk)‖2, Ln =

Ns∑
j=1

Nt∑
k=1

‖Ψ′(VTuh(µj , tk))− φ(µj , tk)‖2.

Optimizing the loss LPOD−DL−ROM during the offline training phase implies (i) the minimization of the
reconstruction error, represented by LN , and (ii) the fulfillment of a suitable latent representation, obtained
by enforcing the compatibility condition represented by Ln. We emphasize that the encoder Ψ′ is employed
only at the training stage to seek a suitable latent encoding, however it does not play any active role in the
approximation of the forward map (µ, t) 7→ uh(µ, t) since it is not connected to the rest of the architecture:
for this reason, we can discard it in the online prediction phase. Then, we define as

ûh(µ, t) = Vq̂(µ, t) = V(Ψ ◦ φ)(µ, t) ≈ u(µ, t)

the ROM network, where V ∈ RNh×N is the POD matrix, thus resulting in a special instance of POD+DNN
approach. Nonetheless, if we compare the POD-DL-ROM loss function (5) with the data-driven POD+DNN
loss function (3) we immediately see that they differ by the additive term ωnLn. From a computational
viewpoint, the latter term allows POD-DL-ROMs to benefit from the autoencoder-based architecture by en-
forcing an adequate representation in the latent space through a data-driven regularization, thus alleviating
the complexity of the decoder [7, 21]. We emphasize that limiting the complexity by design is a huge advan-
tage when dealing with small data regimes: indeed, if the amount of available training data is insufficient,
over-parametrized architectures may suffer from overfitting.

Note that the approaches presented within this section have been originally conceived as data-driven
paradigms. However, a data-driven optimization for low-rank DL-based architectures – as for any other DL
architecture – requires a suitable amount of data to be properly trained in order to be able to generalize
well. To compensate the availability of (usually, few) training data, recent trends in the literature propose
physics-based loss functionals in the optimization phase [60, 10]. The purpose of this work is to show
how to equip our former POD-DL-ROM architecture with physical constraints, ultimately yielding our new
PTPI-DL-ROM architecture.

3. Mitigating the shortfalls of small data regimes with physics

Several recent works in the literature [30, 21, 7, 40, 41, 39, 43] showed that data-driven DL-based ar-
chitectures may require a large amount of supervised training samples depending on the variability of the
problem and the required test set accuracy. However, in the case of complex problems, data collection might
become expensive or even unaffordable. Hence, training data could be scattered in the time-parameter space,
with large portions of this latter substantially uncovered [64, 6]. It is well known that the generalization
capabilities of data-driven neural network paradigms are skewed in the case of scarce or unavailable labeled
data [67]. Within this section, we analyze in detail data scarcity/unavailability from a theoretical standpoint.
Formally, following the notation of Section 2, we do not assume that the time-parameter sampling domain
of the supervised training set and the test set coincide. To better clarify our setting, let us define both
interpolation and extrapolation tasks as follows.
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Figure 2. The POD-DL-ROM architecture: we highlight the POD projection, the discrete lifting induced by the matrices VT

and V, and the autoencoder-based architecture.

Definition 3.1. We deal with an interpolation task in the time-parameter domain if Ptest × Ttest ≡ Psup ×
Tsup; we deal with an extrapolation task if Ptest × Ttest ) Psup × Tsup.

In practice, data scarcity and/or unavailability may be due to (i) a limited number of training samples
(small data interpolation regime, which occurs when Ptest×Ttest ≡ Psup×Tsup and |Dsup| is small), (ii) the
absence of available labeled data in an extended region of the time-parameter space (extrapolation regime),
or (iii) a combination of the former two cases. To mitigate the limits of data-driven architectures in the
latter scenarios, physics-informed DL paradigms have arisen as powerful techniques to learn parametric
operators without requiring labeled input-output observations [49, 60]. The hypothesis which they are built
upon is that the terms of the underlying physical models (1) – and their discretized version (2) as well –
convey the same information of the data synthetically obtained from them through high-fidelity solvers. The
main advantage is that the physics-based loss formulation, which is obtained by minimizing the residual
of (1) – or equivalently of (2) – is unsupervised in the sense that it does not require paired input-output
observations [53, 60]. Thanks to this latter observation, we can arbitrarily sample the input parameters from
the residual time-parameter space Pres × Tres, enforcing the physics-based constraint instead of minimizing
the reconstruction error in the regions of the time-parameter space where training data are not available.
Thus, in general, we choose Pres × Tres ⊇ Ptest × Ttest, and we define the unlabeled dataset as follows,

Dres =

{
(µ, t)j ∈ Pres × Tres

}Nres

j=1

.

We note that we can sample Dres efficiently – using for instance random samplers or more involved algorithms
[42] – since the data belonging to Dres are unlabeled, that is, we do not need to use the high-fidelity solver.
We refer to Fig. 3 for a sketch of the time-parameter domains Psup×Tsup,Ptest×Ttest and Pres×Tres, along
with their realizations.

3.1. The computation of the physics-based residual

We now discuss possible alternatives for the computation of a physics-based residual, identifying the
strong continuous formulation as the most versatile among them.
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Figure 3. An instance of the time-parameter domains Psup × Tsup,Ptest × Ttest and Pres × Tres and their realizations, in
dimension p+ 1 = 2.

When dealing with space-discrete low-rank neural network architectures, like POD+DNNs, one of the
most natural strategies to compute the physics-based residual could involve the discretized high-fidelity
formulation of the problem (2) or its projection on a low-rank subspace. For instance, the technique presented
in [10] concerns POD+DNNs entailing the approximation uh = uh(µ, t) ≈ Vq̂(µ, t). From the high-fidelity
formulation (2), by employing a Galerkin projection we can write the physics-based residual of the problem
at hand as

RdiscrPDE(µ, t) = VT

(
M(µ)V

∂q̂

∂t
(µ, t) + A(µ, t)Vq̂(µ, t) + N(Vq̂(µ, t),µ, t)− f(µ, t)

)
, (6)

if t > 0, and
RdiscrIC (µ) = q̂(µ, 0)−VTuFOM,0(µ)

otherwise. However, this approach may struggle in the presence of, e.g., complex physics involving non-
polynomial nonlinearities and non-affine parameter dependencies. Indeed:

• the authors of [10] demonstrate how to apply their proposed approach only to linear problems and
to equations featuring only quadratic nonlinearities. Indeed, their method cannot be generalized to
non-polynomial nonlinearities without additional costly efforts. To avoid the explicit computation of
the high-dimensional nonlinear term, namely N(Vq̂(µ, t),µ, t), one might still rely on hyper-reduction
methods, which may entail a large reduced mesh and remain expensive;

• for the computation of the residual as in (6), we still have to assemble the FOM matrices even for
samples belonging to the residual dataset, thus implying additional costs both in the data collection
phase and in the training stage, especially if the problem depends non-affinely on the parameters. For
example, suppose that the stiffness matrix A(µ, t) is non-affine, namely, it does not admit a linear
decomposition of the form

A(µ, t) =
∑
p

θl(µ, t)Al, for θl : Rp 7→ R,Al ∈ RNh×Nh .

Then, the proposed algorithm requires to compute and store the set of matrices

Ares = {VTA(µj , tj)V ∈ RN×N : (µj , tj) ∈ Pres × Tres}Nres
j=1

for the entire duration of the training, thus entailing a computational bottleneck, especially if |Ares| =
Nres � 1;
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• the residual dataset cannot be resampled without summoning the high-fidelity solver, which is compu-
tationally prohibitive in the case of real applications involving non-affine and nonlinear problems. It is
worth to notice that resampling techniques (and evolutionary sampling) are actually useful to ensure
convergence to adequate minima when dealing with a physics-based loss formulation [11].

Possible alternatives could rely on, e.g., the weak formulation of the problem [52] or a wavelet-based technique
[14]. However, the variational formulation of the physical problem still requires tedious and expensive
numerical integrations, and the wavelet-based counterpart is only available (with periodic wavelets) for
simple domains and equispaced discretizations. Therefore, neither of these two options is suitable for complex
problems in non-trivial domains.

In the following, we consider the strong continuous formulation of the residual based on (1) [60, 67],
whose continuous nature makes it versatile enough for our purposes. However, we stress that the strong
continuous formulation of the residual is properly defined only for spatially continuous low-rank DL-based
architectures that enable pointwise evaluations for any x ∈ Ω. By setting û = û(x,µ, t) = v̂(x) · q̂(µ, t),
where v̂(x) and q̂(µ, t) are the trunk and branch network respectively, the strong formulation of the residual
reads

RscΩ (x,µ, t) =

N∑
k=1

{
∂q̂k(µ, t)

∂t
v̂k(x) +A(x,µ, t)q̂k(µ, t)v̂k(x) +N (q̂k(µ, t)v̂k(x),x,µ, t)− f(x,µ, t)

}
,

if x ∈ Ω and t > 0; on the other hand, if x ∈ ∂Ω and t > 0, we have

Rsc∂Ω(x,µ, t) =

N∑
k=1

B(x,µ)q̂k(µ, t)v̂k(x)− g(x,µ, t).

Similarly, the residual for the initial conditions could be expressed as

RscIC(x,µ) =

N∑
k=1

q̂k(µ, 0)v̂k(x)− u(x,µ, 0).

On a further note, we emphasize that, while the time derivatives can easily be recovered either with Automatic
Differentiation (AD) [1] or finite difference schemes since the time variable is one-dimensional, when dealing
with spatial derivatives, AD is the only reliable technique to provide accurate approximations for any domain
shape. However, the evaluation of (possibly high-order) spatial derivatives with AD remains the main
bottleneck in the residual computation pipeline, especially in the case of complex underlying neural network
models.

In this respect, we remark that within the present work we consider sophisticated physical models that
require (very) deep trunk networks that properly model detailed low-scale effects in the global spatial modes
to enable a faithful approximation of the ground truth solution. Thus, we deem it appropriate to perform a
preliminary numerical experiment showing how the trunk complexity and the derivative order impact on the
computational time required by AD. We proceed as follows. We set v̂(l,w) : Rd → RN as the trunk network
endowed with l − 1 hidden layers consisting of w neurons each. Without loss of generality, we suppose that
the input dimension is d = 3 and the output dimension is N = 10, and we fix the batch size as b = 100. Then,
we measure the computational time required to evaluate the first and second derivative of the trunk network
output with respect to its input, in two different scenarios, namely, (i) as function of the network depth
l ∈ {3, 4, . . . , 10}, fixing the width to w = 10, and (ii) as function of the width w ∈ {5+3k, for k = 0, . . . , 8},
fixing l = 10. We repeat the latter experiment 10 times for each configuration and we report the results in
Fig. 4. It is rather evident that the higher the derivative order, the higher the burden entailed by derivative
computation. Moreover, one can notice that, for both first and second derivatives, the width of the trunk
network does not impact on the computational time required to calculate derivatives. On the other hand,
the spatial derivatives’ computational time strongly depends on the depth of the trunk network, especially
in the case of the second derivative, for which the resulting trend is very steep.

We conclude by emphasizing that the derivatives’ computation is performed during the training phase
and is therefore registered in the backpropagation’s computational graph, thus causing the training time to
grow quickly, especially in the case of deep trunk networks and physics-based residuals including higher-order
derivatives. For this reason, we deem it necessary to devise a suitable algorithm that limits the computational
burden of the training phase entailed by the calculation of the physics-based residual.
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Figure 4. Computational time required for AD as function of the neural network depth (left) and width (right). We remark
that the continuous line represent the average value among 10 runs, whereas the reported interval shows the minimum and the
maximum value registered.

4. The PTPI-DL-ROM paradigm

In the present section we justify the choice of the underlying neural network architecture at the foundation
of our new paradigm. We introduce a suitable loss functional intertwining data-driven and physics-informed
contributions, and we describe the full training algorithm, which comprises a lightweight pre-training stage
and a fine-tuning phase.

4.1. Architecture design and pre-training algorithm

The optimization of DL architectures entailing physics-based loss functions through gradient descent
algorithms is a notoriously complex task that shows recurrent modes of failure even in trivial numerical
experiments [51, 35, 62]. To avoid those optimization failures, in the literature some authors have proposed
complex training algorithms based on evolutionary sampling [11] or adversarial strategies [57]. Other works
have shown how small amount of data can limit these phenomena [66, 50, 25]. Indeed, combining data and
physics can lead to a powerful paradigm for operator learning: if on the one hand physics helps in supplying
information to the neural network when data are missing, on the other hand few available data can mitigate
the risk of optimization failure and limit the computational burden of training.

To blend data and physics and devise a quick, stable, and efficient physics-aware training algorithm that
we will refer to as PTPI-DL-ROM paradigm, we merge POD-DL-ROMs and DeepONets, leveraging their
positive elements. In particular, from POD-DL-ROMs we keep (i) the preliminar dimensionality reduction
through POD and the autoencoder-based architecture in order to extract the most informative features
from the handful of available data while avoiding overfitting, and (ii) the low computational cost of the
training procedure, which is characterized by a suitable offline-online decomposition. On the other hand,
from DeepONets we retain the characteristic mesh-agnostic property of space-continuous low-rank DL-based
architectures that enable the evaluation of the physics-based residual with the strong continuous formulation.
Based on this, we devise a lightweight pre-training strategy, proceeding as follows.

Step 1. The first step of pre-training consists in extracting the most important information from the
available data in order to construct a set of representative spatial modes. To do that, inspired by POD-DL-
ROMs (and in general by the POD+DNN family of architectures) we rely on POD to compute the basis
matrix V ∈ RNh×N (through SVD or its randomized version [56]) which however only induces a discrete
lifting. To obtain a set of continuous functions required for the residual computation in a strong continuous
formulation, we train the trunk net v̂(x) ∈ RN to interpolate the POD modes, thus devising a supervised
loss functional, namely,

Ltrunk =
∑

i∈Itrain

‖v̂(xi)−V[i, :]‖2, (7)

where Itrain ⊂ {1, . . . , Nh} and V[i, :] extracts the i-th row of V.
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Then, we instantiate the branch net architecture, which induces a set of time-parameter-dependent co-
efficients, namely (µ, t) 7→ q̂(µ, t), as a DL-ROM1 since DL-ROMs (i) feature a lower complexity when
compared to vanilla DNNs [16, 7], and (ii) constrain the latent space to have a meaningful latent representa-
tion (of dimension n� N) of the available supervised data thanks to their autoencoder-based architecture.
In particular, we define the encoder RN 3 VTuh(µ, t) 7→ Ψ′(VTuh(µ, t)) ∈ Rn, the reduced network as
Rp+1 3 (µ, t) 7→ φ(µ, t) ∈ Rn and the decoder as Rn 3 φ(µ, t) 7→ Ψ(φ(µ, t)) ∈ RN . Furthermore, we
complement the DL-ROM based architecture with the trunk net, namely u(x,µ, t) ≈ v̂(x) · q̂(µ, t), thus
obtaining a special instance of a DeepONet (see Fig. 5).

Figure 5. Schematic representation of the PTPI-DL-ROM architecture.

Step 2. Before starting the subsequent phase of pre-training, we deem the trunk net v̂ untrainable, namely,
we “freeze” its weights and biases, making them unaffected by any gradient descent procedure from now
on. Thus, in the next stage, we only pre-train the branch net, de facto decoupling the training of the
trunk net and the branch net – this is in contrast with the classic DeepONet training paradigm. Since the
trunk network is “frozen”, we can pre-compute a set of quantities that will be useful when evaluating the
loss function, involving both a data-driven and a physics-informed term. In particular, we store the matrix
V̂ ≈ V ∈ RNh×N , computed as follows [V̂]ik = v̂k(xi) for i = 1, . . . , Nh and k = 1, . . . , N . Then, we select a

set of points {yi}
Ny

i=1 ⊂ Ω (that may coincide with the mesh vertices {xi}Nh
i=1) to evaluate the physics-based

residual at, and we compute offline the spatial derivatives entailed by the linear elliptic operator A, the
nonlinear operator N and the boundary operator B.

We highlight that the obtained low-rank architecture is space-continuous, thus we can formulate a loss

1We refer to a DL-ROM architecture [17] as to the one obtained by combining the autoencoder Ψ′ ◦Ψ and a deep feedforward
neural network φ as in a POD-DL-ROM, however without including any preliminary dimensionality reduction.
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functional that blends data and physics as follows,

LPTPI−DL−ROM = ωNLN + ωnLn + ωΩLΩ + ω∂ΩL∂Ω, (8)

where

LN =

Ns∑
j=1

Nt∑
k=1

‖V̂Ψ ◦ φ(µj , tk)− uh(µj , tk)‖2,

Ln =

Ns∑
j=1

Nt∑
k=1

‖Ψ′(VTuh(µj , tk))− φ(µj , tk)‖2

LΩ =

Ny∑
i=1

Nres∑
j=1

|RscΩ (yi,µj , tj)|21yi∈Ω

L∂Ω =

Ny∑
i=1

Nres∑
j=1

|Rsc∂Ω(yi,µj , tj)|21yi∈∂Ω,

where LN minimizes the reconstruction error, Ln ensures a meaningful latent representation, LΩ enforces
the PDE residual, while L∂Ω constrains the neural network to satisfy the boundary conditions.

The resulting pre-training is suitably informative, yet remarkably lightweight, because (i) we decoupled
the training of the trunk network and the branch network, (ii) the branch pre-training performed in Step
2 informs the architecture with the underlying physics without computing the expensive spatial derivatives
during the online training phase. However, to further enhance the accuracy of our predictions, we operate
an additional fine-tuning of the architecture.

4.2. The rationale behind the fine-tuning

The prediction accuracy of the proposed architecture is strictly bounded by the representation capabilities
of the global spatial modes entailed by the trunk network with respect to the test solution manifold. Since the
trunk network is constrained to approximate the set of POD modes computed with the available supervised
data, we further elaborate on both interpolation and extrapolation tasks in the time-parameter space from
the POD perspective. In particular, we investigate the effect of the amount of available training data on
the generalization capabilities of POD. To do that, we first suppose to have access to an infinite number
of training data and define the optimal rank-N (with N ≤ Nh) representation for the supervised training
manifold Ssup = {uh(µ, t) ∈ RNh : (µ, t) ∈ Psup × Tsup}.

Definition 4.1. The basis V∞ ∈ RNh×N is optimal with respect to the supervised training manifold Ssup if∑
k>N

σ2
k,∞ =

∫
Psup×Tsup

‖uh(µ, t)−V∞VT
∞uh(µ, t)‖2d(µ, t)

= min
W∈RNh×N :WTW=I

∫
Psup×Tsup

‖uh(µ, t)−WWTuh(µ, t)‖2d(µ, t),

where

K∞ =

∫
Psup×Tsup

uh(µ, t)uh(µ, t)T d(µ, t) ∈ RNh×Nh

is the correlation matrix and {σ2
k,∞}

Nh

k=1 are its eigenvalues.

However, the optimal representation entailed by V∞ is in general not available, requiring an infinite
amount of data [7]: in practice, we have to rely on the POD basis computed through SVD, employing the
so-called method of snapshots [48], and thus obtaining a quasi-optimal POD representation, according to the
following definition.
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Definition 4.2. We deem the basis V := V(Psup × Tsup) ∈ RNh×N quasi-optimal with respect to the
supervised training manifold Ssup if∑

k>N

σ2
k =
|Psup × Tsup|

NsNt

∑
(µ,t)∈Psup×Tsup

‖uh(µ, t)−VVTuh(µ, t)‖2

= min
W∈RNh×N :WTW=I

|Psup × Tsup|
NsNt

∑
(µ,t)∈Psup×Tsup

‖uh(µ, t)−WWTuh(µ, t)‖2,

where

K =
|Psup × Tsup|

NsNt
uhu

T
h ∈ RNh×Nh

is the correlation matrix and {σ2
k}
Nh

k=1 are its eigenvalues.

Despite POD provides the best possible representation, among linear subspaces of a given dimension,
of the training data at hand (due to the Eckart-Young-Schmidt theorem [13]), the POD basis computed
through SVD is only quasi-optimal. Indeed, at a (P × T )-continuous level, we have that∫

Psup×Tsup

‖uh(µ, t)−V∞VT
∞uh(µ, t)‖2d(µ, t) ≤

∫
Psup×Tsup

‖uh(µ, t)−VVTuh(µ, t)‖2d(µ, t).

In this respect, we focus on the formulation of a convergence result that aims at bridging the gap between
the optimal POD basis V∞ and the quasi-optimal POD basis V. To do that, we define the generalization
error of POD with respect the time-parameter space P × T as

EgenPOD(P × T ;Ns, Nt) =

∫
P×T

‖uh(µ, t)−VVTuh(µ, t)‖2 − ‖uh(µ, t)−V∞VT
∞uh(µ, t)‖2d(µ, t),

and we state the following result.

Lemma 4.1. For any N ≤ min{Nh, NsNt}, denote by V ∈ RNh×N the POD basis computed through
SVD, and by V∞ ∈ RNh×N the optimal POD projection matrix. Then, there exists a sampling strategy for
(µ, t) ∈ Psup × Tsup such that

EgenPOD(Psup × Tsup;Ns, Nt)
a.s.−−→ 0, Ns, Nt → +∞.

Proof. We report the proof in the Appendix.

The latter result provides an insight on the performance of POD in the interpolation regime, where
Ptest × Ttest ≡ Psup × Tsup, so that EgenPOD(Ptest × Ttest;Ns, Nt) = EgenPOD(Psup × Tsup;Ns, Nt). Notably,
from Lemma 4.1, we can infer that in the interpolation regime we can expect that the more training data
we have access to, the better the rank-N representation entailed by POD in terms of retained variance.
In other words, it is possible to make the generalization error on the test time-parameter space arbitrarily
small. On the contrary, in the small data regime, where only a handful of scattered training time-parameters
data points are available (namely, |Psup × Tsup| = NsNt is small), POD might yield a suboptimal low-rank
compression if the training dataset is not representative of the entire supervised training manifold Ssup.

Instead, when dealing with extrapolation regimes (Ptest × Ttest ) Psup × Tsup) we have that

EgenPOD(Ptest × Ttest;Ns, Nt) = EgenPOD(Psup × Tsup;Ns, Nt)+
+ EgenPOD(Ptest × Ttest \ Psup × Tsup;Ns, Nt),

where we suppose that |Ptest × Ttest \ Psup × Tsup| > 0. We notice that, while we can sample suitably the
supervised training dataset so that EgenPOD(Psup × Tsup;Ns, Nt) is arbitrarily small thanks to 4.1, we cannot
achieve the same conclusion for the remaining contribution of the generalization error referring to the test
instances that belong to the extrapolation regime, namely EgenPOD(Ptest × Ttest \ Psup × Tsup;Ns, Nt).

Then, once the test set becomes available, one may investigate a posteriori the effect of suboptimality of
the POD compression with a practical criterion, both in a small data interpolation and in an extrapolation
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regime. To this end, once the test instances become available, we can compute the empirical relative POD
error as

ePOD(Dtest) :=

(∑
(µ,t)∈Dtest

‖uh(µ, t)−VVTuh(µ, t)‖2∑
(µ,t)∈Dtest

‖uh(µ, t)‖2

)1/2

.

Lemma 4.1 and the subsequent remarks provide us with some insights on how small data interpolation and
extrapolation regimes might impact on the representation capabilities of the POD modes and, by extension, of
a trunk net approximating the POD modes. We emphasize that investigating the representation effectiveness
of spatial global modes in the present context is of fundamental relevance since prediction accuracy of low-
rank DL-based architectures is bounded by the low-rank projection error [5, 7]. For this reason, if the modes’
representation capabilities are poor, the prediction accuracy might be unsatisfactory as well. However, by
employing our pre-training algorithm, the trunk net modes are inferred only from the available data, and
are not modulated by the physics. Indeed, the physics-based loss formulation plays a role only in Step 2 of
the pre-training algorithm, where the trunk net is “frozen”, so that its weights and biases are not updated
by gradient descent.

In this respect, we equip our training procedure with a further fine-tuning that improves the representation
capabilities of the global spatial modes and thus, by extension, enhances the accuracy and the reliability of
the overall method. Specifically, we “unfreeze” the trunk net, making its weights and biases susceptible to
gradient descent updates. Then, we repeat Step 2 of pre-training, this time training simultaneously both the
trunk and the branch networks. We stress that the fine-tuning is relatively more expensive since, differently
from the pre-training phase, it entails the computation of the spatial derivatives during the training phase.
On the other hand, the fine-tuning enables the trunk net and the branch net to be informed by physics
at the same time. In this way, we can adjust simultaneously the modes entailed by the trunk net and the
parametric map entailed by the branch net with the contribution of the physics-based residual corresponding
to the samples drawn from the regions of the test time-parameter set not properly covered by the supervised
training data, following the procedure explained in Section 3. The fine-tuning concludes the PTPI-DL-ROM
training algorithm. For the complete training pseudocode, we refer the reader to Algorithm 1.

Algorithm 1 PTPI-DL-ROM training algorithm

1: Inputs Supervised training data Dsup, unlabeled training data Dres, set of mesh points {xi}Nh
i=1, neural

network architecture, reduced dimension N .
2: Compute the POD basis V ∈ RNh×N with SVD using the supervised training data Dsup.
3: Pre-train the trunk net to approximate the POD basis with the loss functional (7), using the labeled

data {(xi,V[i, :]}Nh
i=1.

4: “Freeze” the trunk net’s weights and biases.
5: Pre-train the branch net with the loss functional (8), using Dsup as labeled data and Dres for the physics-

based residual.
6: “Unfreeze” the trunk net’s weights and biases.
7: Fine-tune the branch net and the trunk net simultaneously with the loss functional (8), using Dsup as

labeled data and Dres for the physics-based residual.
8: Output Trained PTPI-DL-ROM architecture

5. Numerical experiments

In this section we assess the accuracy and the performance of the proposed PTPI-DL-ROM through
a series of numerical experiments carried out on parametrized problems involving non-affine terms, non-
stationary regimes, nonlinearities, or a combination of the former aspects. Specifically, we focus on:

(i) validating the proposed residual computation technique, assessing the reliability of the predictions on
the test set;

(ii) assessing the small data interpolation and extrapolation capabilities of the proposed PTPI-DL-ROMs;

(iii) demonstrating the computational efficiency of the proposed training algorithm.
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We employ generic dense layers, possibly with a Fourier feature expansion at the input [60, 55], with
sufficiently regular activations like ELU or SILU. Unless otherwise stated, we make use of the Adam optimizer
to train neural networks, delegating 80%÷90% of the supervised samples to the training set and the remaining
samples to the validation set, through which we select the best model.

To measure the performance of the proposed ROM strategy on the test set, we choose to employ the
following error indicators:

• the time-wise relative error, which is employed to measure the accuracy of the predictions over time,
namely,

E(t;Ndata) :=
1

N test
s

Ntest
s∑
j=1

(∑Nh

i=1 |uh,i(µj , t)− û(xi,µj , t)|2∑Nh

i=1 |uh,i(µj , t)|2

)1/2

;

• the per-snapshot relative error, which measures the variability of the error across the parameter space,
that is

e(µ;Ndata) :=
(
∑Ntest

t

k=1

∑Nh

i=1 |ûh(xi,µ, tk)− uh,i(µ, tk)|2)1/2

(
∑Ntest

t

k=1

∑Nh

i=1 |u(µ, tk)|2)1/2
;

• the relative error over the entire time-parameter space, namely,

E(Ndata) :=
1

N test
s N test

t

Ntest
s∑
j=1

Ntest
t∑
k=1

(
∑Nh

i=1 |uh,i(µj , tk)− û(xi,µj , tk)|2)1/2

(
∑Nh

i=1 |uh,i(µj , tk)|2)1/2
.

We highlight the intrinsic dependence of all error indicators on the number of available supervised training
samples Ndata = NsNt.

5.1. Eikonal Equation

The first test case deals with the Eikonal Equation, a stationary PDE with a nonpolynomial nonlinearity.
Through the present test case we aim at demonstrating that, differently from data-driven POD-DL-ROMs,
the proposed PTPI-DL-ROM is able to mitigate the shortfalls of small data regimes.

Problem description. We consider the problem{
‖∇u‖ = 1 in Ω

u = 0 on Γ(µ),

where Ω = (−1, 1)2 denotes the computational domain and Γ := Γ(µ) = {x = (x1, x2) ∈ Ω ⊂ R2 : x2
1 + x2

2 =
µ2} the circle of radius µ > 0. The exact solution of the problem above is given by

uexact(x1, x2, µ) = µ−
√
x2

1 + x2
2.

Data collection and architectures. The problem does not depend on the time variable, thus we let
Nt = N test

t = 1. We evaluate the performance of our strategy using a test set that refers to the sampling
Ptest = {0.13 + 0.05k, k = 0, . . . , 17} ⊂ Ptest = [0.1, 1]. To train the neural network, we collect a dataset
of supervised samples referring to the parameter sampling Psup = {0.1 + 0.01k, k = 0, . . . , 40} ⊂ Psup =
[0.1, 0.5]. We remark that both the supervised data and the test set refer to the same mesh of Nh = 900
vertices on a 30-by-30 equispaced grid, while we choose N = 2 and n = 2 as POD and latent dimensions,
respectively. Then, we design the trunk network, the encoder, the decoder, and the reduced network as
dense ELU-neural networks consisting of 4 hidden layers of 50 neurons each.

Training specifics. We pre-train the trunk net for 3000 epochs with a batch size of 10 and a learning
rate of 10−3, whereas the pre-training of the branch network involves 1000 epochs, with a batch size of 1
for the labeled data and 10 for the physics-based loss term, employing a learning rate of 3 × 10−4. We
then decrease the learning rate to 1 × 10−4 for the fine-tuning phase, which needs a total of 500 epochs.
We employ the loss functional (8), with the following choice of the hyperparameters that weight the four
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contributions: ωN = ωn = ωΩ = 0.5, ω∂Ω = 100. Since Psup ( Ptest we tackle an extrapolation task in
the parameter space; thus, we uniformly sample the unlabeled dataset for the physics-based residual from
Pres = [0.1, 1.1] ⊃ Ptest every 5 gradient descent epochs, collecting the realizations in Dres ⊂ Pres with
= |Dres| = Nres = 1000. We emphasize that we enforce the boundary conditions at 100 uniformly spaced
points on Γ(µ), whereas the collocation points for the imposition of the PDE residual are chosen as the mesh
points during the pre-training phase and as {yi ∼ U(Ω)}1000

i=1 for the fine-tuning stage. We then compare the
described PTPI-DL-ROM paradigm with a data-driven POD-DL-ROM architecture trained for 600 epochs
with a learning rate of 1× 10−3 and a batch size of 1. We remark that the reported training specifics enable
both PTPI-DL-ROM and POD-DL-ROMs to reach a suitable minimum in their loss functional.

Results analysis. We measure how the proposed framework handles the small data regime by performing
an ablation study. To do that, we iteratively construct a group of supervised training datasets of increasing
number of samples:

• for P1
sup, we considered N1

data = 5, selecting from Psup the 5 outermost points.

• then, until depletion, we construct Pisup by adding 5(2i−1−2i−2) snapshots to Pi−1
sup , randomly sampling

from Psup \ Pi−1
sup .

Assembling the dataset in this way ensures consistency: for any i ∈ {1, 2, 3, 4} we have that min{µ ∈
Pisup} = min{µ ∈ Psup} and max{µ ∈ Pisup} = max{µ ∈ Psup}. We display in Fig. 7 a realization of

the proposed sampling technique. Then, for any dataset Pisup, we train both the PTPI-DL-ROM and the
POD-DL-ROM with the training specifics characterized beforehand. Moreover, we compare the accuracy of
the two architectures measuring the per-snapshot relative error over the test set, displaying the results in
Fig. 8. In particular, we note that:

(i) PTPI-DL-ROMs compensate for a shortage of supervised data in the interpolation regime. Indeed, we
when performing an interpolation task, as the number of supervised data decreases, the discrepancy
between the PTPI-DL-ROMs and the data-driven POD-DL-ROMs, in terms of test set accuracy,
increases;

(ii) as the amount of supervised data increases, the PTPI-DL-ROM approach and the data-driven POD-
DL-ROM reach extremely similar results when dealing with interpolation tasks. In particular, this
validates the residual computation since it demonstrates a compatibility between the supervised data
and the calculation of the residual, thus suggesting that they convey the same information;

(iii) in the extrapolation regime we notice that error diverges in the case of the data-driven paradigm. As
expected, moving further from the supervised domain yields worse accuracies. On the other hand, we
emphasize PTPI-DL-ROM extrapolation capabilities: if suitably trained, the PTPI-DL-ROM approach
achieves an almost constant accuracy on the entire test set.

The remarkable extrapolation capabilities of the PTPI-DL-ROM paradigm are demonstrated also in
Fig. 8. Specifically, we select the parameter instance as follows, µ = 0.98 ∈ Ptest \ Psup. Then, we compare
the prediction of data-driven POD-DL-ROMs with two results obtained with the novel PTPI-DL-ROM
architecture (after the pre-training and after the fine-tuning procedure, respectively). We note that a total
absence of supervised data in a neighborhood of µ = 0.98 prevents the data-driven POD-DL-ROM to provide
reliable results. On the other hand, the PTPI-DL-ROM predictions after pre-training are already adequately

Figure 6. Eikonal equation: sampling strategy for the ablation study.
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Figure 7. Eikonal equation: results of the ablation study. The continuous line refers to the novel PTPI-DL-ROM paradigm,
whereas the dashed line concerns the data-driven POD-DL-ROM.

accurate since ePOD ≤ 1 × 10−6, namely, the POD basis is representative also of the extrapolation regime.
Nonetheless, the simultaneous training of the branch net and the trunk net performed during the fine-tuning
is able to further enhance the accuracy of a factor higher than 2 – from E(Ndata = 40) = 3.6 × 10−3 after
pre-training to E(Ndata = 40) = 1.6× 10−3 after fine-tuning.

5.2. Advection Diffusion Reaction Equation

This second test case deals with a linear time-dependent advection-diffusion-reaction equation set on
a three-dimensional domain, that depends nonaffinely on a vector of input parameters. Here we focus on
showcasing the capability of the novel architecture to handle complex parameter-extrapolation tasks for
3D problems with high parametric variability, as well as the computational efficiency of the pre-training
procedure of PTPI-DL-ROMs.

Problem description. The problem formulation reads as follows:
∂u

∂t
− 0.05∆u+ 0.05u+ a(t)

∂u

∂x
= f(x, y, z;µ), in Ω× [0, T ]

u = 0, on ∂Ω

u(t = 0) = 0, in Ω,

(9)

where Ω = (0, 1)3 is the spatial domain, T = 7π, while the unknown u = u(x, y, z,µ, t) – which might
represent the concentration of a chemical species – is subject to the action of the time-dependent advec-
tion field a(t) = log(0.1t). Moreover, we choose as source term the µ-dependent function f(x, y, z;µ) =
e3xyz sin(πµ1x) sin(πµ2y), showing a non-affine dependence on µ = (µ1, µ2).
Data collection and architectures. In order to collect the FOM snapshots, we spatially discretize the
problem using a mesh made by Nh = 14075 vertices and formulate the semi-discrete high-fidelity problem
by means of P1-FEM, using the redbkit library [44]. We opt for a BDF2 time advancing scheme with a
constant time step ∆t = π/10 for a total of Nt = 70 time steps. Both the train and test samples refer to
the same time set, namely Tsup = Ttest = {π/10 + π/10k, k = 0, . . . , Nt}. The parameter training instances
are represented by the set Psup = {0.5 + 0.125k, k = 0, . . . , 4}2 ⊂ [0.5, 1]2, while the test parameter instances
are given by Ptest = {0.55 + 29/140k, k = 0, . . . , 7}2 ⊂ [0.5, 2]2. We define the supervised time-parameter
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Figure 8. Eikonal equation: comparison between data-driven POD-DL-ROMs and the novel PTPI-DL-ROM for an instance
that does not belong to the supervised training parameter space, namely, µ = 0.98 ∈ Ptest \ Psup.

space as Psup × [0, T ] ⊃ Psup ×Tsup, and the test time-parameter space as Ptest × [0, T ] ⊃ Ptest ×Ttest. We
mention that, aiming to capture the variability of the solution manifold with sufficient accuracy, we choose
N = 15 and n = 8 ≥ p + 1 = 3. Then, we design our architecture as follows: the trunk network consists of
6 hidden layers of 100 units each with a sinusoidal nonlinearity; the branch encoder, decoder and reduced
network are endowed with 4 hidden layers of 50 neurons each; the ELU activation function is used.

Training specifics. The PTPI-DL-ROM training consists of a pre-training phase for the trunk network
of 1000 epochs, with a batch size of 100 and a learning rate of 1 × 10−3. Then, we pre-train the branch
net with 2000 gradient descent epochs employing 1× 10−3 as learning rate. Finally, we fine-tune the whole
network with 4000 epochs, by lowering the learning rate to 1×10−4. Since the present numerical experiment
tackles an extrapolation task, we select Pres × Tres = [0.4, 2.1]2 × [0, 7.1π]. In the loss function, the four
contributions are weighted by ωN = ωn = ωΩ = 0.5, ω∂Ω = 50, setting the resampling frequency of the
unlabeled dataset Dres = {(µ, t)j ∈ U(Pres×Tres)}100

j=1 to 5 epochs. We stress that in the pre-training phase
we choose the mesh points as spatial collocation points for the residual computation; on the other hand, at
the fine-tuning stage the PDE residual is enforced at 300 uniformly sampled spatial points in Ω, whereas
the boundary conditions are still enforced at the boundary mesh points. We emphasize that the number of
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spatial collocation points needed for the evaluation of the residual is much lower than the amount of dofs of
the high-fidelity labeled data. Moreover, unless otherwise stated, the batch size is set to 30 for the supervised
data and to 10 for the unlabeled data.

Aiming at assessing the effectiveness of our proposed pre-training algorithm, we compare the PTPI-DL-
ROM algorithm with two different training strategies. Specifically, we employ the same architecture and
configuration as before, for the sake of fairness, considering

• The w/o pre-training approach, which entails a basic optimization procedure that does not involve any
kind of pre-training. Indeed, this strategy implies only the minimization with respect to the physics-
informed loss functional described in (8), employing 10000 epochs of Adam and 1 × 10−4 as learning
rate. We remark that this approach was originally conceived in the context of DeepONets [60].

• The vanilla pre-training approach [67], which entails (i) a pre-training phase that simultaneously
optimizes both the branch net and the trunk net with respect to a data-driven loss formulation (see
Eq. (4)), employing only the available labeled data, thus without any physics-based constraint, and
(ii) a fine-tuning stage based on the physics-informed loss functional (8). We remark that the pre-
training consists of a total of 3000 epochs with a learning rate of 1 × 10−3 and that we fine-tune the
architecture for 7000 epochs, using a lower learning rate (1× 10−4).

We summarize the main features of the w/o pre-training, the vanilla pre-training, and the PTPI-DL-ROM
optimization strategies in Table 1.

w/o pre-training vanilla pre-training PTPI-DL-ROM
pre-training - data data+physics
fine-tuning data+physics data+physics data+physics

Table 1. Comparison between the w/o pre-training approach, the vanilla pre-training strategy and the PTPI-DL-ROM
paradigm.

Finally, for the sake of the comparison of the novel PTPI-DL-ROM against the data-driven POD-DL-
ROM, we train this latter with 2000 epochs of gradient descent and a learning rate of 10−3.

Results analysis. The strong influence of the (nonaffinely parametrized) source term on the problem
solution, as well as the presence of a time-dependent advection field, makes this problem a good test bed to
compare the novel PTPI-DL-ROM paradigm and its data-driven counterpart. Indeed, for this test case, the
per-snapshot error indicator e(µ,Ndata) shows a high sensitivity depending on whether the spatial frequency
effects are suitably captured. Indeed, as shown in Fig. 10 and Fig. 11, data-driven POD-DL-ROMs fail
to achieve a reliable solution for sample instances that fall beyond the region from where labeled data
are available. On the other hand, the proposed PTPI-DL-ROM architecture is able to return remarkably
faithful reproductions of the test samples belonging to both the interpolation and the extrapolation regime.
Specifically, Fig. 11 shows that in the interpolation regime the fine-tuned PTPI-DL-ROM integrates the
knowledge available from the labeled data with the information about the underlying physics to reach an
outstanding precision. Nonetheless, the PTPI-DL-ROM mitigates the absence of data with physics in the
regions where labeled data are not available, thus providing reliable solutions in the extrapolation regime,
too.

Ultimately, we can investigate the effectiveness of our proposed pre-training strategy: from Fig. 9 we
notice that, in general, employing a pre-training strategy is essential to speed up the convergence to suitable
minima. Nevertheless, the proposed PTPI-DL-ROM pre-training – among the options we considered – offers
the most convenient strategy. Indeed, the decoupled nature of the PTPI-DL-ROM pre-training ensures lower
computational costs than the vanilla pre-training strategy; conversely, this latter entails the simultaneous
training of branch and trunk. More remarkably, we emphasize that the loss value computed at the first
epoch of the fine-tuning is lower in the PTPI-DL-ROM case: indeed, the vanilla pre-training strategy is
purely data-driven and thus more sensible to small data regimes, whereas the PTPI-DL-ROM pre-training
is based upon a loss functional that combines data and physics. As a final remark, the PTPI-DL-ROM loss
decay is the least prone to oscillations and thus most stable among the three proposed approaches.
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Figure 9. Advection Diffusion Reaction equation: comparison between different pre-training strategies in terms of their effect
on the fine-tuning training loss decay. The relative error metric for the PTPI-DL-ROM paradigm is E(Ndata) = 1.3 × 10−1,
whereas both the non-pre-trained approach and the vanilla approach result in worse accuracy (E(Ndata) = 2.2 × 10−1 and
E(Ndata) = 1.6× 10−1, respectively).

5.3. Darcy Equations

This third test case aims at showing the capability of the proposed framework to both handle non-trivial
vector problems and tackle complex parameter extrapolation tasks.

Problem description. We consider the Darcy equations to describe a flow in a porous medium. In mixed
formulation, the problem reads as follows:

κ(µ)−1σ −∇p = 0, in Ω
∇ · σ + 1 = 0, in Ω

p = 0, in Γp
σ · n = 0, in Γσ,

(10)

where the computational domain is Ω = (0, 3) × (0, 1), whereas the domain boundary is divided into Γp =
[0, 3]× {0, 1} and Γσ = ∂Ω \ Γp. We highlight that the problem is parameterized by means of the nonaffine
permeability function κ = κ(x, y;µ) = exp(sin(µ1πx) + sin(µ2πy)) and that n denotes the outward normal
unit vector.

Data collection and architectures. We collect a total of Ndata = 196 supervised snapshots corresponding
to the following choice of the parameter train dataset Psup = {(1.0+j/26, 1.0+k/13), for j, k = 0, . . . , 13} ⊆
[1.0, 1.5] × [1.0, 2.0] = Psup. To generate the supervised data, we discretize the problem (10) by means of
the Finite Element method. In particular, to ensure inf-sup stability, we choose to employ Brezzi-Douglas-
Marini elements of degree 1 for the flux σ, whereas we select discontinuous elements of degree 0 for the
pressure p. We remark that the resulting discretized system features 31756 dofs, but, in order to avoid
retaining redundant information, we choose to evaluate the solution fields only at the mesh vertices, thus
yielding Nh = 12213. We generate the test dataset by means of the same solver and configuration as the
training dataset, by sampling the test parameter instances from Ptest = {(1.0 + j/26, 1.0 + k/13), for j, k =
0, . . . , 13} ⊂ [1.0, 1.5]× [1.0, 2.0] = Ptest. We highlight the complexity of the parameter extrapolation task:
we have that Psup ( Ptest and |Ptest| = 4× |Psup|. We select N = 30 POD modes per channel, whereas the
latent dimension is set to n = 7, thus enabling suitable linear and nonlinear compressions of the solution
manifold, respectively.
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Figure 10. Advection Diffusion Reaction equation: comparison between the predictions obtained with data-driven POD-DL-
ROM and the proposed PTPI-DL-ROM. The last two rows refers to instances pertaining to the extrapolation regime.

Figure 11. Advection Diffusion Reaction equation: visualization of log10(e(µ, Ndata)) for the data-driven POD-DL-ROM and
the proposed PTPI-DL-ROM.

Then, we construct the neural network core as follows: (i) the trunk network is a Fourier-features-
enhanced dense network of 6 hidden layers consisting of 100 neurons each with a SILU nonlinearity, (ii) the
branch encoder is a ELU-dense network of 4 hidden layers of 50 neurons each, (iii) the branch reduced
network consists of 6 hidden layers of 50 neurons each with a ELU activation, and (iv) the branch decoder
is composed of 6 hidden layers of 70 units each and is endowed with a ELU activation.
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Training specifics. Since the present numerical experiment entails an extrapolation task (Psup ( Ptest),
we suitably sample the unlabeled dataset for the physics-based soft constraint as follows Dres = {µj ∈
U(Pres)}Nres

j=1 , where Pres = [0.9, 2.1]×[0.9, 3.1] ⊃ Ptest. For the pre-training phase, we impose the residual at
the mesh points, while at the fine-tuning stage we choose to sample 300 collocation points for the imposition
of the PDE residual from a uniform distribution over Ω, and we enforce the boundary conditions at the
boundary mesh points. We weight the loss contributions of the four terms of the loss formulation (8) with
the choice ωN = ωn = ωΩ = 0.5, ω∂Ω = 50. The trunk net pre-training consists of 600 epochs, with a learning
rate of 1× 10−3 and a batch size of 10. Then, we pre-train the branch net for 2000 epochs, with a learning
rate of 1 × 10−3, and a batch size of 10 for both the supervised and the unsupervised datasets, resampling
Dres each 50 epochs. Finally, we fine-tune the architecture for 1500 epochs, decreasing the learning rate to
3× 10−4 and diminishing the resampling frequency for Dres to 5. For the sake of comparison, we stress that
the data-driven POD-DL-ROM is trained for 600 epochs, employing a learning rate of 1× 10−4 and a batch
size of 10.

Results analysis. According to the per-snapshot relative errors reported in Fig. 12, we can remark that:

• The data driven POD-DL-ROM performs well in the interpolation regime; on the other hand, moving
further beyond the interpolation regime we obtain more and more skewed predictions.

• The pre-training phase of PTPI-DL-ROM mitigates the absence of data in the extrapolation regime
thanks to its physics-informed loss formulation, however the error remains still high beyond the inter-
polation regime. This is due to the fact that ePOD = 1.5 × 10−1 is rather large: the POD modes are
not adequately representative of the entire test parameter space.

• The fine-tuned PTPI-DL-ROM further refines the pre-trained architecture, thus enhancing the faith-
fulness to the high-fidelity solution: indeed, the simultaneous physics-informed training of the branch
and the trunk networks enables an adequate low-rank representation also beyond the interpolation
regime. We emphasize that the fine-tuned PTPI-DL-ROM outperforms the data-driven POD-DL-
ROM in terms of interpolation accuracy, since it integrates data and physics in the interpolation
regime. Nonetheless, PTPI-DL-ROMs are reliable even in the regions of the parameter space where
data is completely missing, in contrast to data-driven POD-DL-ROMs.

Figure 12. Darcy equations: visualization of log10(e(µ, Ndata)) for the data-driven POD-DL-ROM and the novel PTPI-DL-
ROM.

Our analysis is further supported by the visualization of the pressure field and the flux magnitude,
reported in Fig. 13 and Fig. 14, respectively. Indeed, we highlight that both POD-DL-ROMs and the
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Figure 13. Darcy equations: visualization of the pressure field p in the yx plane for three different instances of the parameter
µ. We remark that the last two instances belong to the extrapolation regime.

fine-tuned PTPI-DL-ROMs are reliable in the interpolation regime (first row). On the contrary, in the
extrapolation regime (second and third row) the fine-tuned PTPI-DL-ROM is extremely accurate, whereas
the data-driven POD-DL-ROM’s predictions are skewed.

As a final remark, we emphasize that the physics-based loss functional enables an evident spatial regu-
larization of the pressure field, therefore enhancing the overall solution quality, compared to the high-fidelity
solution; this latter is indeed less smooth since it relies on a P0-DG discretization.

24



Figure 14. Darcy equations: visualization of the flux magnitude ‖σ‖ in the yx plane for three different instances of the
parameter µ. We remark that the last two instances belong to the extrapolation regime.

5.4. Navier-Stokes Equations

Within this last numerical experiment we tackle the case of parameter-dependent incompressible Navier-
Stokes equations in a two-dimensional domain. Specifically, we deal with the simulation of the fluid flow
induced by a prescribed inlet through a backward-facing step geometry. Here, we aim at demonstrating
the capability of the proposed physics-informed strategy to handle a time extrapolation task in a nonlinear
time-dependent vector problem featuring a more complex - and parameter-dependent - physics.

Problem description. We consider the formulation of a Navier-Stokes flow in its adimensional formulation,
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namely, 

∂u

∂t
+ (u · ∇)u− 1

Re
∆u+∇p = 0, in Ω× (0, T )

∇ · u = 0, in Ω× (0, T )

u = uD(t), on ΓIN × (0, T )

u = 0, on ΓWALL × (0, T )

∇un− pn = 0, on ΓOUT × (0, T )

u(t = 0) = 0, in Ω,

(11)

where n denotes the outward normal unity vector and Re > 0 the Reynolds number. The computational
domain is Ω = ((0, 4) × (0, 1)) \ ((0, 1) × (0, 0.5)). We define the inlet boundary as ΓIN = {(x, y) ∈ ∂Ω :
x = 0, y ∈ [0.5, 1]}, the outlet boundary as ΓOUT = {(x, y) ∈ ∂Ω : x = 4, y ∈ [0, 1]}, and the internal
wall ΓWALL = ∂Ω \ (ΓIN ∪ ΓOUT ). We force a time-dependent Dirichlet datum at the inlet, namely
uD(y; t) = [2(1 − e−3t)(y − 0.5)(1 − y), 0], while we employ a no-slip condition at the wall and endow the
outlet with natural boundary conditions. We highlight that the problem is parametrized by means of the
Reynolds number Re: therefore, for the sake of consistency with the previously employed notation, we set
µ = Re.

Data collection and architectures. We generate high-fidelity snapshots by employing an inf-sup stable
couple of Finite Element spaces, namely P1b − P1, once the problem is suitably discretized on a mesh of
Nh = 1722 vertices. Thus, the semi-discrete formulation features a system of 8166 dofs. Then, we employ the
Chorin-Temam splitting scheme with an explicit treatment of every left-hand-side term. We collect a total of
Ns = 10 training samples on a time grid characterized by ∆t = 0.05, yielding Psup = {200 + 100/3k, for k =
0, . . . , Ns − 1} ⊂ Psup = [200, 500] and Tsup = {0.05k, for k = 1, . . . , 20} ⊂ Tsup = [0, 1] respectively. Then,
we generate N test

s = 5 test samples for Ptest = {210 + 70k, for k = 0, . . . , N test
s − 1} ⊂ Ptest ≡ Psup =

[200, 500]. The considered test time grid is Ttest = {0.05k, for k = 1, . . . , 80} ⊂ Ttest = [0, 4]; thus, we are
dealing with a time extrapolation task since Tsup $ Ttest. We stress that we employ N = 20 modes per
channel for the preliminary dimensionality reduction and a latent dimension of n = 5. The latter choice
ensures a suitable preliminary compression of the supervised data and the possibility to adequately capture
the variability of the solution manifold at the same time.

We then design the neural network core as follows: (i) the Fourier-features-enhanced trunk net consists
of 6 hidden layers of 100 neurons each, and is endowed with a SILU activation, (ii) the branch encoder is
a dense network of 4 hidden layers of 50 units each with a ELU nonlinearity, (iii) the branch decoder is a
composed of 9 hidden dense layers of 100 neurons each activated by the ELU function, and (iv) the branch
reduced network consists of 4 hidden dense layers of 100 units each, and is endowed with the ELU activation.

Training specifics. We pre-train the trunk net for 3000 epochs with a batch size of 30 and a learning
rate of 3 × 10−4. The branch net with 5000 gradient descent epochs using a learning rate of 3 × 10−4,
employing a batch size of 30 for the labeled data and of 10 for the unlabeled data, respectively. Finally,
we fine-tune the resulting PTPI-DL-ROM for 5000 epochs: to do that, we lower the learning rate to 10−4.
Since Psup × Tsup ( Ptest × Ttest, the present test case encompasses an extrapolation task.

Thus, we compensate the small data regime by enforcing the physics-based constraint in Pres × Tres =
[200, 500] × [0, 4.1] ⊃ Ptest × Ttest. Specifically, we draw Dres = {(µ, t)j ∼ U(Pres × Tres)}100

j=1 each 5
gradient descent epochs. Moreover, we remark that with respect to the pre-training stage, we choose to
compute the physics-based residual at the mesh points. Nonetheless, while fine-tuning we decide to enforce
the boundary conditions at the boundary mesh points, whereas the PDE residual is computed for {yi ∼
U({xl}Nh

l=1)}500
i=1 ∪ {yi ∈ U([1, 2] × [0, 0.5])}100

i=1 ∪ {yi ∈ U([0, 1] × [0.5, 1])}200
i=1. We note that the weighting

criterion for the loss formulation terms is more complex than in the previous experiments, since a series of
complex equations is involved. Specifically, while we employ ωN = ωn = 0.5 for every output channel for the
labeled data, ωΩ = [10, 10, 10] assumes a vectorial form, being the first and the second term related to the
momentum equation of the x-velocity and the y-velocity, respectively, whereas the third term controls the
incompressibility constraint. Similarly, we select ω∂Ω = [100, 1000, 1, 1], being the first two terms related to
the Dirichlet boundary conditions, and the remaining to the natural boundary conditions. For the sake of
comparison, we emphasize that we train a data-driven POD-DL-ROM for a total of 5000 epochs employing
a learning rate of 3× 10−4.
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Figure 15. NS equations: visualization of E(t,Ndata) for the comparison between data-driven POD-DL-ROM and the proposed
PTPI-DL-ROM.

Figure 16. NS equations: comparison between the velocity magnitude accuracy of the data-driven POD-DL-ROM and
fine-tuned PTPI-DL-ROM simulations at different time instances.

Results analysis. The present numerical experiment is employed for the validation of the time-extrapolation
capabilities of PTPI-DL-ROM. In particular, we observe from Fig. 15 that the PTPI-DL-ROM showcases
outstanding accuracy in the interpolation regime, i.e. for t ∈ Tsup = [0, T ], where both data and physics are
available. Nevertheless, we note that, even though the data-driven POD-DL-ROM is extremely accurate in
the regions where labeled data are available, its reliability become skewed just beyond Tsup and the relative
error steadily increases in the extrapolation regime. In contrast, the proposed PTPI-DL-ROM preserves a
very good performance even for extrapolation samples, taking advantage of physics to compensate for the
absence of supervised training data. Our analysis is further validated by Fig. 16 and 17, which empha-
size the reliability of the PTPI-DL-ROM technique both in the interpolation regime (first row) and in the
extrapolation regime (second and third row).
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Figure 17. NS equations: comparison between the pressure accuracy of the data-driven POD-DL-ROM and fine-tuned
PTPI-DL-ROM simulations at different time instances.

Conclusions

The recent success of low-rank deep learning-based neural network architectures [30, 21, 41, 40] in the
ROM field is due to their flexibility, their outstanding (and provable) approximation capabilities, as well
as their lightweight architectures. However, theoretical investigations and numerical experiments [7, 5, 37]
involving these techniques have shown that their test accuracy strongly depends on the amount of available
training data. This latter fact represents a huge drawback since very often the data generation phase is
barely affordable because of the high computational burden entailed by the high-fidelity solvers, in terms of
both computational time and resources, especially when dealing with complex problems.

Recent investigations [60, 53] have argued that labeled data and the underlying physical equations convey
the same information, thus making possible to learn parametric operators by minimizing the reconstruction
error of the available training data and by enforcing a soft constraint based on the underlying physics in the
regions of the time-parameter domain where training data are not accessible.

Along this strand, we have proposed a novel framework based on a NN architecture that combines the best
features of POD-DL-ROMs and DeepONets, two widely used low-rank deep learning-based architectures, to
design a training strategy that significantly reduces the computational burden entailed by the computation
of physics-based residual. Indeed, despite being extremely versatile, usually the computation of the strong
continuous formulation of the residual through AD also becomes prohibitive: this further bottleneck is caused
by the huge size of the computational graph entailed by AD, especially as the problem complexity increases
and if the residual calculation requires the evaluation of high-order spatial derivatives. Thus, in order to
mitigate such computational burden, and motivating our choices in light of the theory, we have devised a
new affordable training algorithm consisting of (i) a lightweight pre-training phase that efficiently blends
physics and data in order to approach an adequate minimum in the loss landscape, and (ii) a more expensive
fine-tuning stage that enables the proposed architecture to reach a suitable test accuracy. Ultimately, we
have assessed the extremely good performances of our proposed strategy on a wealth of numerical test cases
involving different physical models and operators.

Several working directions may stem from the present work. For instance, in order to enhance the
extrapolation capabilities in the time domain, we may consider suitable advanced architectures, such as
LSTM [18] or Neural ODEs [9]. Moreover, in this work we focused on POD-based architectures to generate
the linear trial manifold during the pre-training phase, whereas in the flourishing ROM literature other
alternatives have emerged as well [45]. Nonetheless, we mention that recent developments in physics-informed
machine learning approaches aim at proposing novel sampling techniques and hyperparameter tuning criteria
[11, 31, 61], allowing for a more rapid convergence to suitable optima during the training phase. We believe
that these new techniques will further enhance the training of PTPI-DL-ROMs and will enable us to tackle
even more complex problems stemming from Applied Sciences and Engineering.
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Appendix A. Additional proofs

Appendix A.1. Proof of Lemma 4.1

Proof. By definition, we have that∫
Psup×Tsup

‖uh(µ, t)−V∞VT
∞uh(µ, t)‖2d(µ, t) =

∑
k>N

σ2
k,∞,

so that

EgenPOD(Psup × Tsup;Ns, Nt) =

=

∫
Psup×Tsup

‖uh(µ, t)−VVTuh(µ, t)‖2d(µ, t)−
∑
k>N

σ2
k +

∑
k>N

σ2
k −

∑
k>N

σ2
k,∞

≤
∣∣∣∣∫
Psup×Tsup

‖uh(µ, t)−VVTuh(µ, t)‖2d(µ, t)−
∑
k>N

σ2
k

∣∣∣∣+

∣∣∣∣∑
k>N

σ2
k −

∑
k>N

σ2
k,∞

∣∣∣∣.
We observe that, by definition of

∑
k>N σ

2
k,∣∣∣∣∫

Psup×Tsup

‖uh(µ, t)−VVTuh(µ, t)‖2d(µ, t)−
∑
k>N

σ2
k

∣∣∣∣ =

=

∣∣∣∣∫
Psup×Tsup

‖uh(µ, t)−VVTuh(µ, t)‖2d(µ, t)−

− |Psup × Tsup|
NsNt

∑
(µ,t)∈Psup×Tsup

‖uh(µ, t)−VVTuh(µ, t)‖2
∣∣∣∣→ 0

as Ns, Nt →∞, by choosing an adequate sampling strategy for Psup × Tsup (for instance, µ ∼ U(Psup) and

t ∈ {kTsup/Nt}Nt

k=1: in this case the convergence is a.s., see Proposition 1 of [7]). Then, thanks again to the
results of Section 2 of [7], we have that:∑

k>N

σ2
k
a.s.−−→

∑
k>N

σ2
k,∞, Ns, Nt →∞,

which concludes the proof.
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points of dynamical systems in training physics-informed neural networks. Transactions on Machine
Learning Research, 2023(1), January 2023.

[51] Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bézenac. An operator precondi-
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