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Abstract

We present and analyze a discontinuous Galerkin method for the numerical modeling of the non-
linear fully-coupled thermo-hydro-mechanic problem. We propose a high-order symmetric weighted
interior penalty scheme that supports general polytopal grids and is robust with respect to strong
heteorgeneities in the model coefficients. We focus on the treatment of the non-linear convective
transport term in the energy conservation equation and we propose suitable stabilization techniques
that make the scheme robust for advection-dominated regimes. The stability analysis of the problem
and the convergence of the fixed-point linearization strategy are addressed theoretically under mild
requirements on the problem’s data. A complete set of numerical simulations is presented in order to
assess the convergence and robustness properties of the proposed method.
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1 Introduction

The thermo-hydro-mechanical (THM) coupling refers to the coupled interactions between tempera-
ture, fluid flow, and mechanical deformations. This coupling occurs in many natural and engineered
systems. THM is relevant in several processes, such as environmental science, civil engineering, and
material science. Applications of THM have an impact on many fields: environmental sustainability
(e.g. COy sequestration or geothermal energy production), public safety, economy. Moreover, it finds
application also in seismicity /induced seismicity studies.

The THM problem is often formulated starting from Biot’s equation of poroelasticity. Poroelas-
ticity inspects the interaction between fluid flow and elastic deformation within a porous medium,
indeed it is a suitable modelization of the subsoil. In fact, in the context of geophysical applications,
we model it as a fully-saturated poroelastic material, and — if the focus is not the study of seismic
effects — it is often assumed that we are in the small deformations regime. Thus, through this article
we assume to be in the quasi-static regime. For the aforementioned applications, the temperature
plays a key role in the description of the phenomena and its evolution, then it is included in the model
via an energy conservation equation, leading to a fully-coupled THM system of equations [5, [17, [18§]:
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6t (CL()T — bop + 5Vu) — CfVT : (KVp) -V (@VT) =H in Q x (0, Tf], (Z)
O (cop —boT +aV-u) —V-(KVp) =g in Q x (0,TY%], (44) (1)
—V-o(u,p,T)="1 in Q x (0, Ty, (ii7)

where 2 is the computational domain, 7 > 0 is the final simulation time, and o (u,p,T) is the total
Cauchy stress tensor accounting for the effects of pressure and temperature. Our model is constituted
by three equations: (i) the energy conservation equation, that is solved in the temperature unknown
T, (i) the mass conservation equation in the pore pressure unknown p, and (éii) the momentum
conservation equation in the solid displacement unknown u. In (i), (#i7) we can recognize the structure
of the Biot’s system with the additional contribution of the temperature, which plays a role similar
to the one of the pressure. Equation (i) is similar to (i) but with the presence of both conduction
and convection terms at the same time. The convection term is the one that makes the two equations
different, moreover, we highlight that it is a nonlinear term. The correct handling of this non-linearity
is one of the main points of this work: we propose a discretization technique that can handle the case
of vanishing thermal conductivity. To this aim, we refer to the strategies used in the discontinuous
Galerkin treatment of advection-diffusion problems in the advection-dominated regimes. Moreover,
reasoning as in the hyperbolic framework, we add boundary terms that are in charge of enforcing
boundary conditions in the inflow part of the boundary of the domain. To ensure the robustness of
the scheme for the quasi-incompressible limit — i.e. with respect to volumetric locking phenomena
— we consider one additional scalar equation that is solved in the so-called total pressure auxiliary
variable. The introduction of the total pressure also ensures the inf-sup stability of the problem.

For the spatial discretization of the problem, we propose a discontinuous Galerkin (dG) finite
element method on polytopal grids (PolyDG [19]). Examples of PolyDG schemes can be found in
[1, 2, @] for elliptic problems, in [20] for parabolic problems, and in [3, 11, 12] for poroelasticity.
Moreover, in [5] a PolyDG method for thermo-hydro-mechanics model is analyzed. The PolyDG
schemes are appealing in this context because they are geometrically flexible, i.e. they allow for
polygonal /polyhedral elements (possibly agglomerated), local mesh refinement and coarsening, and
allow to handle highly heterogeneous media by facilitating the representation of inner discontinuities.
To further enhance robustness with respect to heterogeneities we consider a Symmetric Weighted
Interior Penalty (WSIP) version of the PolyDG scheme, in which weighted averages [26-28], [31] are
introduced in place of the standard averages operators of the discontinuous Galerkin methods [25].
Finally, they are also suitable for high-order approximations and through the article, we show that
this may be an important property for dealing with the robust treatment of the non-linearity.

The major highlights of this paper are: (a) a detailed description of the PolyDG-WSIP method
for the THM problem; (b) an in-depth discussion of the advection term, with suitable stabilization
techniques to deal with the advection-dominated regime; and (¢) numerical verification of the robust-
ness of the proposed method both in terms of stability for degenerating coefficients and in terms of
capability to handle heterogeneities in the physical parameters. The numerical analysis presented in
this work, compared to [5], focuses on establishing stability estimates which are robust with respect
to hydraulic and thermal conductivities. Additionally, a novel linearization strategy is proposed and
analyzed by deriving a condition on the model data which ensures convergence.

The rest of the paper is organized as follows: the model problem, the assumptions on the model’s
coefficients, and the four-fields formulation is presented in Section In Section |3} we design the
PolyDG-WSIP space discretization, we detail the treatment of the non-linear advection term (cf.
Section , introduce the stabilization techniques (cf. Section , and present the linearization
algorithm. In Section[d] we study the stability of the semi-discrete problem and study the convergence
of the fixed-point iteration scheme. In Section we assess the performance of the method in terms
of accuracy and in Section in terms of robustness with respect to the model coefficients.



2 Model Problem

Let Q C RY d € {2,3}, be an open bounded Lipschitz polygonal/polyhedral domain. We consider
the coupled thermo-hydro-mechanical problem reading: find (u,p,T') such that it holds

aoT —bop+ BV-u—¢;VT - (KVp) —V-(OVT) =H in Q, (2a)
cop —boT +aV-u—V-(KVp) =g in €, (2b)
—V-o(u,p,T)="1 in Q, (2¢)

Note that T" represents the variation of the temperature with respect to a reference value [22]. The
source terms H, g, f are a heat source, a fluid mass source, and a body force, respectively and are
given. The constitutive law for the stress tensor o (in ) in the linear elasticity framework is given
by

o(u,p,T) = 2ue(u) + AV-ul — apl — BT1, (3)

where I is the identity tensor and €(u) = &(Vu+ VuT) is the strain tensor. For the sake of simplicity,
we supplement with homogeneous Dirichlet conditions, namely u =0, p =0, and T = 0 on 0.

We remark that Problem [2| can be seen as one step of an implicit time advancing scheme (e.g.
backward Euler method) applied to . In this case, the conductivity tensors K in and © in
are scaled by the time-step ¢, namely K = §tK and © = §t®, where K and © are the actual
hydraulic mobility and heat conductivity of the medium, respectively. For a detailed derivation of
the quasi-static model we refer the reader to [16]. In Table [I| we detail the parameters characterizing
problem — specifying their physical interpretation and their corresponding unit of measure. For
a detailed discussion on the parameters and the relations among them we refer to [5].

Notation Quantity Unit

ao thermal capacity Pa/K?

bo thermal dilatation coefficient K™t

co specific storage coefficient Pa~!

@ Biot—Willis constant -

I3 thermal stress coefficient Pa/K

cyf fluid volumetric heat capacity divided by reference temperature | Pa/K?>
Iy A Lamé parameters Pa

K permeability divided by fluid viscosity m?/(Pas)
C) effective thermal conductivity m? Pa/(K?s)
1) porosity -

Table 1: Thermo-hydro-mechanics coefficients appearing in , .

2.1 Notation and assumptions

For X C Q, we denote by LP(X) the standard Lebesgue space of index p € [1,00] and by H?(X)
the Sobolev space of index ¢ > 0 of real-valued functions defined on X, with the convention that
HY(X) = L?(X). The notation L?(X) and HY(X) is adopted in place of [LQ(X)]d and [H?(X)]?,
respectively. In addition, we denote by H(div, X) the space of L?(X) vector fields whose divergence
is square integrable. These spaces are equipped with natural inner products and norms denoted by
()x = (- )r2x) and || - [[x = || - [|z2(x), With the convention that the subscript can be omitted in
the case X = Q. For the sake of brevity, in what follows, we make use of the symbol z < y to denote
x < Cy, where C' is a positive constant independent of the discretization parameters.

Following [I7], we introduce suitable assumptions on the problem data, both on the forcing and
boundary data and on the problem parameters:

Assumption 2.1 (Assumptions on the problem data). We assume that:

i,j=1
fields which, for strictly positive real numbers kyr > ky,, and 0y > 0., satisfy

1. the hydraulic mobility K = (K)¢._, and heat conductivity ® = (@>§l,j:1 are symmetric tensor

km|C1? < CTK(2)¢ < k¢ and  0,,|¢1? < ¢TO(x)C < 00[C12, V¢ eRY, ae z e



2. The shear modulus jv and the fluid heat capacity cs are scalar fields such that p: Q = [, pirr]
and cp: Q — [0,crp] with 0 < pim < piar and 0 < cpag;

3. the coupling parameters a: Q — (¢, 1] and B : Q — (0, By] are strictly positive;
4. the scalar fields A, co, by, and ag are such that A > 0 and ag,co > by > 0;

5. the forcing terms are chosen such that g, H € L*(Q) and f € L(9).

2.2 Four-field formulation

As in [B], we refer to the four-field formulation of the THM problem obtained by introducing the total
pressure auxiliary variable ¢ ([II], 30]), in which we include all the volumetric contributions to the
stress tensor, namely:

p=AV-u—ap— pT.

We introduce the functional spaces V. = H}(Q), V = H}(Q), and Q = L?(Q2). Then, the weak
formulation of reads: find (u,p,T,p) € VXV xV xQ such that:

M((p, T, ¢), (9, 5,9)) + (OVT,VS) = (¢;VT - (KVp), 5) + (KVp, V) + (2p€(u), €(v))

+ (o, V-v) = (V-u,v) = (H,s)+ (g,q9) + (f,v) V (v,q,8,%) e VXV xV xQ. ()

where the bilinear form M : V x V x @ — R is given by:

M((p,T,¥),(q,5,¢)) = (bo(p —T),q — S) + ((ao — bo)T, S) + ((co — bo)p, q)
+ (A (o +ap+BT), %+ agq + BS).

Remark 1. The convection term c;VT - (KVp) should not be tested by an H'-regular function,
since it is only in L*(QY). However, it can be inferred from the thermal energy equation and the
assumption on the problem data that c;VT - (KVp) € H~Y(2), where H=1() is the dual space of V.
Therefore, the third term in the left-hand side of has to be intended as the duality product

(s VT - (KVp), S) g-1(0),H1(0)-

For additional details on the well-posedness of coupled Darcy and heat equations, we refer to [10)].

3 Discretization

The aim of this section is to derive the PolyDG approximation of problem (2)). We start by introducing
some preliminaries on the discretization. Then, we show the PolyDG scheme, in which we exploit
the Symmetric Weighted Interior Penalty method (WSIP) [25], in order to make the method able to
cope with strong heterogeneities in the physical coefficients. A particular focus will be devoted to the
linearization and stabilization procedures.

3.1 Preliminaries

The aim of this section is to introduce some instrumental assumptions and results on the PolyDG
method. For designing the PolyDG discretization of Problem we start by introducing a polytopic
subdivision 7 of the computational domain 2 and its features. An interface is defined as a planar,
simplitial subset of the intersection of the boundaries of any two neighbouring elements of 7. In
the following, we denote with F, F7, and Fp the set of faces, interior faces, and boundary faces,
respectively. In what follows, we introduce the main assumptions on the mesh 7, [19, 21].

Definition 3.1 (Polytopic regular mesh). A mesh T}, is said to be polytopic regular if Vi € Ty, there
erist a set of non-overlapping d-dimensional simplices contained in k, denoted by {Sf}pcam such
that, for any face F C Ok the following condition holds: h, < d |SE| |F|~!.



Assumption 3.1. Given {Tp}p, h > 0, we assume that the following properties are uniformly satisfied:
A.1 Ty is polytopic-reqular;

A.2 For any neighbouring elements k%, k=~ € Ty, hp-local bounded variation property holds, i.e.
h/{* S hl-@* S hkﬁy Pr+ 5 Pr- IS Prt-

Note that the bounded variation hypothesis is introduced to avoid technicalities. Under
the following inequality (trace-inverse inequality) holds [20]:

_1
1ol 2(0m) < Caxh™2 L|0ll 20y Vo € PX(r), (5)

where P*(k) is the space of polynomials of maximum degree equal to £ in x and Ct, > 0 is independent
of £, h, the number of faces per element, and the relative size of a face compared to the diamater of
the element it belongs to.

For the sake of simplicity, we assume that the parameters ®, K, p and ¢y are element-wise constant.
Then, we can introduce the following quantities:

O, = <| V ®|f{|%> , K, = (| V K|/{|g> , He = M|m Cfr = Cf’m

where | - |3 is the £2-norm in R?*?. We remark that this assumption is reasonable in the context of
groundwater flow models, where the data are derived through local measurements.

3.2 The PolyDG-WSIP discrete problem

In this section, we present the WSIP method [25] and discuss its application to the THM problem.
The key ingredient of the method is to use weighted averages instead of arithmetic ones. The use
of weighted averages has been introduced for elliptic problems in [31] and then developed for dis-
continuous Galerkin methods (dG-WSIP) for dealing with advection-diffusion problems with locally
vanishing diffusion [25]. As one of the aims of this work is to inspect the robustness with respect to the
model’s coefficients, we use this modification of the standard PolyDG scheme. Other than ensuring
numerical robustness with respect to large heterogeneities, another advantage of dG-WSIP is that it
requires minimal modifications with respect to standard dG schemes both in terms of analysis and
coding.

For the definition of the WSIP method we introduce the weight function w* : F; — [0,1] [25-
28, 31]. Given an interior face F' € Fy, we denote the values taken by wt and w™ = 1 — w™ on the
face F' as w|;§ and w|y, respectively. Given the function w we can introduce the notion of weighted
averages and jump operators, denoted with {-}}  and [-]], and of normal jump, denoted by [[-]},, [7,25]:

[a] =atnt +an, [a] =a* ©nt +a ©n", [a], =at nt+a" -n,
fa}, =wrat +wTe  fa,=wrat +wa, {A}, =wTAY W AT,

where a ®n = an’, and a, a, A are (regular enough) scalar-valued, vector-valued, and tensor-

valued functions, respectively. The subscript w in the weighted-average operator is omitted whenever
w™ =w™ = 1/2. On boundary faces F' € Fp, we set [[a]] = an, {a}}, = a, [a] =aon, {a}}, =
a, [[a], = a-n, {A}, = A. For the averages, this corresponds to consider w* single-valued and
equal to 1.

We start deriving the PolyDG-WSIP formulation of problem by intoducing the discrete spaces
that are used in the following. Given m, ¢ > 1, we define:

Q= {v € LX(Q) : Y|x € P™(k) Vi € Tp}, Vi = {v € L*() : v]. € Pl(x) Vi € n}, Vi = [V,ﬂd.

The PolyDG-WSIP discretization of problem reads: find (ap,pn, Th,on) € Vi X V,f X V,f X Qp
such that N (Vp,qn, Sk, ¢n) € sz X V,f X Vhe X Q' it holds

M1 Ty o1, (ns Sy n)) + AL (T, Sh) + C (Th, pa, Su) + AL (ph, an) + Af, (wh, vi)

— Bi(#n; Vi) + Br(¥n, un) + Drlon, ¥n) = (£, 9, H), (Vh, qhs Sh)) 5 ©)



where the bilinear and trilinear forms are defined by:

A(T.9) = (09, 1.9,5) = - [ ({OVATR. [S] + [T]-4OVSH, — o [71-[5]).
FeF
A (p0) = (K990 = 3 [ ({0l + 1) ARl — € o] L)
FeF
A5 (1,v) = (2pen(u = 3 [ (Rzmentwhe, D+ [u]: {2uen V)b, — ¢ [ul:[¥1)
FeF
Ba(6,¥) = — (6, Vo) +Z/{{90}} (7)

FeF

G (T, 8) = (— ¢f (K Vip) - ViT,6) — 3 / ({~cs Kup} - [T)) {5}

FeFr
- = Z/ —cy KVyp) -nT S
Fe]—'

55 / s KVl -l [T

FE]—'

=L Jete

FeFr

For allw € V}f and w € me V5w and Vi-w denote the broken differential operators whose restrictions
to each element k € 7, are defined as Vwy, and V-wy;, respectively, and €, (u) = (th + thT) /2.
In (7)) we set:

© 68+, Kook +ox koot
where 6i =n* ©@Fnt (5jE =" K+ n*. Note that, the PolyDG-WSIP method requires also a

dlfferent definition of penalty coefﬁments with respect to standard IP method [6l 20} 24} 34]. Thus,
the stabilization functions o,¢,(, 0 € L (Fy) appearing in are defined according to [25] as:

( 42 52
oy (i) PR [ () Fem
o =
_ 02 2
al@,{h— F e fB, agK,{hf F e Fp,
T T, (8)
37y, max — F e Fy, o4 min S F e Fy,
¢ = re{rt, e} \ g 0 = kre{rt,k=} \\M
2 hy
Ozg,u,.ghf F e Fp, Oqg F e Fp,

where a1, s, a3,a4 € R are positive constants to be properly defined, h, is the diameter of the
element x € Ty, and the coefficients ve, 7k, 7, are given by:

5gn 0o,
52:)’" + 5C:)TL 7

5;;n 0k,
5E7L + 517(” ’

+ pt

Yo = AR O
ot

7K =
We point out that in the discrete formulation above, we have decided to consider the same polynomial
degree for the spaces th and VfL, because we are mainly interested in approximation schemes yielding
the same accuracy for all the primary variables.

Remark 2. Note that, in @, we have added an additional weakly consistent stabilization term Dy,
for the total pressure following the dG discretization of the Stokes problem analyzed in [4).
3.2.1 Treatment of the advection term in the dG framework

In this section, we detail the derivation and the analysis of the first two terms that appear in the

trilinear form 5Ztab. We observe that, assuming that the pressure field is known, the non-linear



convective term in reduces to an advection-like term. Thus, we treat the transport term in the dG
framework following approach of [§, [I5] 23] 29]. For the sake of exposition, we introduce the trilinear
form

GT.1.8) = (— e (K Vi) ViT:8) = X [ (e KV [N 4S) TnS eVl o)
Fer ' F

The following proposition will be instrumental for deriving the a-priori analysis of problem @

Proposition 3.1. The trilinear form 511 defined in @ satisfies for any T, p € V,f:

Ch(T,p,T) = —%(Vh-(—chVhp)sz) + % Z / [—csKVnpll, {T°}} . (10)
rer’t

Proof. We start the proof by recalling the following property that holds for any given product of
scalar- and vector-valued functions w € Vfb_l, v eV V- (wo) =w- Vo + (Vy-w)o.
We exploit the previous identity and element-wise integration by parts to rewrite Cj, as:

Ch(T,p, S) = % > / <(—ch Vip) - VT>S+; > /vh- <(—ch Vip) T) S

KETH VK keTy K
32 [V oaK Vi TS = 3 [ (oK Vil [7D {5}
w€Th " FeF;
1 1
= 252;,1/#@ ((_CfK Vip) - VT)S — 2%2%/’{ <(_ch Vip) T) .VS (11)
+% > /8 ((—CfK Vhp)-n> Ts- % > | Vi (—cK Vip)T S
KETR O keTy, 'K

-3 [ ek Vi D )

FeFr

Reasoning as in [6], the third term in the right-hand side of can be written as:

%Z /(9}{((—@,@1{ Vhp)-n>TS’:

KETH

=3 2 | [ e b 1o+ [ e Vol 475

FeFr
1
+ QF;B/F <(—ch Vhp)-n> TS
-2 KV ) {5} + - KV S| 4T
- zF%;I/F({{Cf npl} - [T) }}+2F§I/F({{Cf nol} - [1ST) 7%
1 1
EPI AT Vil (75} 33, (e wip)om) 5.

By plugging this expression into and grouping together the terms that involve the integral on
the faces, we have:

5h(T>pas) = % Z /

((—ch Vhp) - VT> S— %

ZL((—ch vhp)T> VS

KETH VK KETH

45 3 [ WeK T IS ATY - 5 3 [ ek Vash- (7)) €S} (12)
Fer 't rer, F

452 [ K Vil 78} - 5 Y [ V(oK Vin) TS,
FeF F KETH VK



Then, we conclude the proof by taking S =T in to infer:

T T) =5 X [ Ve Vin T4 5 S [ e Vil (17

KETH FG]—'

Remark 3. Owing to the definition of the bilinear form By in , we can also express (10) as
~ 1
Ch(TapaT) = §Bh(T27_CfKVhp)a Tapae V}f

3.2.2 Stabilization of the trilinear form

In this section, we focus on the last two terms appearing in 5,Sltab . The formulation 5h for the
transport term may suffer when dealing with high Peclet number, namely when the Darcy velocity
—cf(K Vypp) is large compared to thermal diffusion. In [5], it has been observed that this may
be the case when the thermal conductivity coefficient is significantly smaller than the permeability
coefficient. In order to circumvent this issue, we introduce two suitable stabilizations.

Upwind. First, we introduce an upwinding stabilization following [8 25, 29]. In principle, this
stabilization would consist in a different definition of the average, however is has been proven that
it is essentially equivalent to an additional jump-jump stabilization term scaled by an appropriate
coefficient [15, 23]. We denote by C“W the upwinded version of the trilinear form Cp:

i (1.0.5) = Gu(T,p.) + o (15, 8) = GTp5)+ Y [ o HELETD 0 g,
FeFr

(13)
with T, p, S € V,f. In , w is a user-dependent parameter; if we set wo = 1, then we get the classical
upwind fluxed in the finite-volume scheme (this will be our choice in the rest of the work). We remark
that, considering the PolyDG formulation of our problem, the use of jump-jump stabilization
is very convenient from the coding point of view, as we already have the same kind of stabilization
coming from the IP formulation of the bilinear form Ag.

Enforce the inflow condition. In the limit of vanishing thermal conductivity, we notice that the
upwinding correction is not sufficient for ensuring robustness. Our idea, for further stabilizing the
scheme, consists in mimicking the imposition of inflow boundary conditions in the hyperbolic case
[32]. Indeed, Dirichlet conditions are weakly enforced through the bilinear form Ag and, as a result,

we lose control of them for vanishing ®. To this aim, we add two boundary terms to CN};W(T, p,S) and
we obtain the definition of the stabilized trilinear form given in :

Gt (T, p, S) = C™ (T, p, S) 4 sV (T, p, S)
:C~ (T,p, S Z / —cy KVpp- n)° TS,

FeFp
with 7, p, S € V¥ and with () = (|| — ()) denoting the negative part operator.

Remark 4. Given a face F' € Fp we observe that the coefficients appearing in the integrand function
coming from s}fﬁow(T, p,S) read:

(—c; KVpp-n)© =4{ (—cf KVipp) - if (—cy KVpp) -n <0 (inflow),
7 KV, 0, if (—cy KVup) -1 >0 (outflow).

Note that the coefficient — (—cy KVpp) -n is positive when (—cy KVpp)-n < 0. This means that via
s}fﬂow we are effectively enforcing the boundary conditions at the inflow boundary.

As a corollary to Proposition and Remark [3] we have the following useful result:



Proposition 3.2. The trilinear form CN,fbt“b defined in ([7]) satisfies for any T,p € V,f.:

~ 1
G(Tp, T) = — 3 (Vi (~esKV), T) + 1 3 / e KV, (T2
FE]:
[{{=cs KVhP}} n| —¢f KVhp)
3 > /
FeF FeFp
—cr K K
BT K)o [ eI ol 5 / e KVip )T
FeFy FeFp
with (\)° = (|| — (")) denoting the negative part operator.

3.3 Linearization

For tackling the non-linear convective term, we introduce a fixed-point iteration algorithm, as in
[0, 16]. Differently from these works, we design a linearization of the trilinear form CStab(Th, Dh, Sh)
based on the replacement of the Darcy velocity with a known function 77 € VE ! Indeed, when
solving the k*'-step of the algorithm, we set n = —CfKVh(ph D), with ph -1 denotlng the pressure
approximation computed at the (k — l)th—step. With this choice, we get better results in terms of
robustness. According to this linearization procedure, the trilinear form CNthab(T ,p, S) becomes bilinear
and we will refer to it as:

GeTs) = (0 s) - 3 [ (- (1) )

FeFr

Ly [ Mknl g, +Z/nn

FeFr
with 7,5 € V.

Remark 5. We observe that, by setting n = —CvahpZ_l, the energy conservation equation
essentially becomes an advection-diffusion equation, where the advective velocity depends on the pre-
viously computed pressure field.

The linearized semi-discrete formulation becomes: find (un, pn, Th, ¢n) € sz X V}f X V,f X Q' such
that
M((pr, Ts 21 (@n, Shs¥n)) + Ap (Th, Sn) + Co*°(Th, Sn) + AL (pn, an) + Af (wp, vi)

—Bi(¢n:vr) + Br(¥n, un) + Di(en, ¥n) = (H, Sp) + (9,qn) + (£, v4).

for all (Vp,qn, Sh,¥n) € VfL X V}f X V,f x Q3. The linearization algorithm is initialized by taking
711 = 0 at the first iteration. Then, the computed pressure is used to update n and the linear discrete
problem is solved again until a prescribed stopping criterion is verified. The convergence of this
algorithm is established in Section under suitable requirements on the discrete pressure solution.

(15)

4 Stability analysis

In this section, we establish a priori estimates for the solution to the discrete problem and we
investigates the conditions under which the linearization procedure designed yields convergence.



4.1 Well-posedness of the linearized problem

For carrying out the analysis of problem we need to introduce some further notation. The
dG-norms that will be used in our analysis are defined such that

151360 = IV VaSI2+ 3 a2 [S]) |3 v S eV,

FeF
lallZe, = IVK Vgl + Z 1€Y2 [[q]] 1% VqeV, (16)
FeF
IvlZe.e = 120 en(v)|* + Z 12 [v] 17 YveVy.
FeF

We can now state the following results that establishes the main key properties of the bilinear
forms defined in . The proof follows the lines of [23, Chapter 4], [25 Section 3].

Lemma 4.1. Let Assumptions[2.1] and be satisfied and assume that the parameters ay, as, and
Qa3 appearing in are chosen large enough. Then, the following bounds hold:

AL (T, 8) < 1Tlacr||S)lac,r Ap(T,T) 2 ||T 3. r vV T,S €V,
4
A (@) S lIpllacpllallac.p, AL (p,p) 2 lIpllae,, Vp.qeVy,
Aj (0, v) < [uflag.ellvilac.e; Af (u,u) 2 |ullfg. Vu,vevVy,

where the hidden constants do not depend on the material properties and the discretization parameters.

Lemma 4.2. Under Assumption[3.1] the following inequalities hold true with hidden constants inde-
pendent of the model parameters and the mesh size h:

(i) assuming that the polynomial degrees ¢ and m satisfy € + 1 > m and the parameter ay in s
large enough, there exists B > 0, possibly depending on ¢ and m, such that

Bi(Vh, ¢n)
sup

1
i + Dp(¢n, n)2 > Bllpx]| Von € Qn'; (17)
o£vpevt [[Villpe.e

(ii) denoting by |- |ac the broken H(div)-seminorm defined such that

Valic = IVh-val® + ) maz  (Cht) [ [vall, I
P U

one has
1
By(vi, on) < vilacllenll S pwm® [Vallag.ellenll Vv, € V), Yo, € Q1 (18)

(iii) denoting by | - |ac.c the broken seminorm defined such that

0o — ) 62 )
[VhldG,oo = IVh Vil Loo o) +max e thax }( =) VAT, e ry.s

one has
C3(Th, Th) 2 —lac.ooIThl? VTh € Vi (19)

(iv) assuming n € L>®(Q), the bilinear form defined in satisfies

_1
Ci'Y(Th, Sp) < Om? Moo @)1 Thllac, oISkl Th, S € Vi (20)

10



Proof. (i) For the proof of condition we refer to [4, Proposition 3.1].

(ii) Estimate follows from the Cauchy—Schwarz inequality and the trace inverse inequality stated
in , namely

Bu(vh, on) < IVa-vallignll + Y ITvall, lox llonllox

KETH
1 1
2 2
SUVavallienl + | > Cht [vall, 15 > hlonll3s
kETH KETH

SIVevalllenl + 1 >- D Cht vl IF | lenl

FeF ke{xt,k™}

1
2
<||Vh val?+ ) max  (h) | [vall, ||2) lenll = |vhlacllenll-

+
peF RElRTAT }

The second inequality in directly follows by observing that || Vvy| < ||en(v)|| and, for all F' € F,
vl e < T Tvall e
(iii) We proceed with the proof of @ Owing to Proposition we can write

C;sltab(Th,Th) Th”rl + Z / |{{77}} 1’l| Z / n- n6T2
FeFr FeFp
3 ((vimay e 5 [ {n@
FeF

Thus, applying the Holder inequality, recalling the definition of the |-|4¢ 00 seminorm, and using again
the discrete trace inverse inequality, we have

—IVa L= @ 1 72
stab > H (©) 2_ - 0o
Ci™ (T, Th) = 5 ITel™ = 5 (max max 2={l [vally Loy

> [ min G {2

FeF

> e e Y Y [

FeF ke{st,x~}

Y

—\?ﬂdc,
TG Y732 3 D TR | > (o Dl T
KETH

(iv) The boundedness of C5#P in is obtained in a similar way. Applying the Holder and triangle
inequality we obtain

C3i®(Th, 1) < il o IVATllIS] + Imlee (Z LT e (G e + 51 T84 HF)>
FeF

_1
< |[nlluoe (@) IVOVAT IS0l + [l | X2 Y. IITa] 7 ISklr
FeF re{kt,x}

Then, proceeding as in and recalling the definition of the stabilization function ¢ in , it is
inferred that

stal -3 1 : -3
i (T, Sn) < Om® [mlnes (ol Sll (H\@VhThHQ + > lloz [Th] H%) S Om® [nllLee (@) | Thllac,r [|Shll-
FeF

d
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Remark 6. The boundedness of the transport velocity in the |m|4c.00 < 00 holds whenever n € Vh is
the approzimation an H(div)-regqular vector fields such that its divergence belongs to L*°(S2). In the
case of slightly compressible fluids, the divergence of the velocity field is usually close to zero.

The next Lemma is instrumental for the derivation of an a priori stability estimate, that is robust
with respect to limit cases of the model parameters.

Lemma 4.3. Let Assumptions and be satisfied and assume that £ +1 > m and a4 in 18
large enough. Additionally, assume that at least two of the following four requirements are verified:

(Z) bo > by, > 0, (ZZ) agp — by > am, > 0, (ZZZ) co— by > ey > 0, (iv))\</\M < 00.
Then, there exist strictly positive constants a1,b1, and ¢y such that

ar || Tul[* + b1 llonll* + cllpnl® S M((0ns T on) (s Ths 1)) + Palons on) + [[unllbe.e + I£]7. (22)

Proof. First, we derive a bound for the total pressure variable ¢ using the inf-sup property of By,.
Taking (vp,0,0,0) as test function in the linearized discrete problem , one has

Bh(¢n, vi) = A (ap, v) — (f,vy).

Plugging the previous identity into and using Lemma (4.1]) followed by a discrete Poincaré—Korn
inequality [I3] 14], we infer

.Ae Up,Vp) —
B?||on || §Dh(¢h,<ﬁh)+( sup it )~ (

2
f,Vh) _
< Du(ns on) +unl b+ |IEIP. (23)
0#£v,eVE ||Vh||DG,e

Now, we observe that we can express both the temperature and the pore pressure discrete fields as a
linear combination of the terms in M ((pn, Th, ¢1), (Ph, Th- n)) + B?|¢n|, namely

o

Th = 71 [(ao — bo) QTh] + 72 [52 (ph — Tn)] 4+ 3[(co — bo)%ph] + 74 P\_%(% + app, + BTh)] + 75 [Ben]
pr = 01[(ao — bo)5Th} + 92 [bg (pn — Th)| + 63 [(co — bo)%ph] + 04 [)\_%(% + apy + BTh)] + 05 [Ben],
Therefore, the bound in follows from the triangle inequality and . O

We are now ready to establish the stability estimates for the linearized thermo-hydro-mechanics
problem. In particular, we aim at deriving a priori bounds which are independent of the thermal
conductivity ® and hydraulic mobility mathbf K. Instead, for obtaining stability bounds independent
of the dilatation parameter A and the coefficients ag, by, and ¢y (but depending on ® and K), we can
follow the approach of [5, Section 4]. Indeed, the next Theorem can be seen as complementary to
[0, Theorem 4.5] to infer the robustness of the scheme with respect to all possible physical regimes,
including quasi-incompressible media, vanishing storage coefficients, and low-permeable media.

Theorem 4.1. Let the assumptions of Lemmata [£.3, and[].3 be satisfied. Let the transport
velocity m € VfL be such that
Nlac,0 S a1, (24)
with a1 > 0 defined in Lemma[].3 and hidden constant independent of K and ©. Then, the solution
(up, pn, Th, pn) € Vf; X V,f X Vhé X Qp' to problem satisfies the a-priori bound
ar || Tll* + brllenll* + ellpnl® + llunllic.e + 1Tullier + Ionllic, S IHIZ + gl + 1€,

where the hidden constant is independent of the conductivity tensors ©, K, and the mesh size h.

Remark 7. We point out that is mot too restrictive in the case of the numerical solution of
quasi-static thermo- hydm mechanical problems, which is our main focus. As mentioned in Section
@ the discrete problem ([15)) corresponds to one step of an implicit time advancing scheme in which
K = 6tK. Thus, when the transport velocity is set as m = —Cvah(ph 1), condition ) becomes
t<a1‘ —Cvah( ‘dG’oo’

meaning that it is sufficient to select the time-step ot small enough.

12



Proof. Taking (vp,qpn, Sk, ¥n) = (up, pp, Th, @p) in and using Lemma and Lemma we
obtain

ar|Tall* + billenll® + cllpall® + [unllia.e + 1 ThllZe.r + Ipallic.,
< M((prs Thr 1), (01 Ths 1)) + Drlns en) + Inllaae + 1 Tullaer + lonllie, + 1117
< M((pn, Ths 1), (Pn, Ths 01)) + Drn, on) + AL (T, Th) + AL (pry pr) + A5 (up, up) + |12
= (H7 Th) + (gvph) + (fa Uh) + ”fH2 - C?Ltab(Tthh)'

(25)
We now proceed to bound the right-hand side of the previous inequality. Using the Cauchy—Schwarz
and Young inequalities and applying the discrete Poincaré-Korn inequality [13] to bound the L2-norm
of the displacement, it is inferred that

aq 9 € 9 . C1 9 € 9 1 2 CKE | o112
H.T, f < —||T; —||H — — — f
(H,Th) + (9 pn) + (Fun) < TRl + I+ o llpel™ + 5 Ml ™ + 5o Twnlla.e + 5 I

with Ck > 0 independent of the material properties and the discretization parameters. Moreover,
owing to point (7i) in Lemma and recalling assumption , we obtain

—Ci P (Ty, Th) < IMlac,oo | Thl* S <4 ||T 2.

Plugging the two previous bounds in and fixing € > 0 equal to the product of the two hidden
constants that realizes the inequalities in , we are led to the conclusion. ]

4.2 Convergence of the fixed point algorithm

In order to prove the convergence of the linearization procedure, we show that the difference of the
approximate solutions at two successive iterations defines a contracting sequence.

Let (u k“,pi“ TF, of ) and (uf, pf, TF, ¢F) be the solutions to at the (k + 1) and kth
iterations, respectively. The transport velocity at the (k + 1)™ step is given by n = —c; KV, (pF).
For all k£ > 1, we define

k k+1 k k+1 k Tk-‘rl T]lf k+1 k
)

€y = uh — Uy, ph — Dh>» 6T - Soh — Ph-
Then, it can be observed that the differences (ef, e]; , e%, ef;) solve the problem

M((ef, e ek, (ans Sy ton)) + AL (b, Sp) + G ek, pf, Sn) + AP (X, qp) + A5 (ef, vi)

~stab ik k—1 (26)
— Bu(el, vi) + Br(vn, €h) + Drlel, ¢n) = =GP (TF, ep ™", Sp),

with trilinear form 5Ztab defined in @ In the following theorem we investigate the conditions under
which the fixed-point iterative method converges. To do so, we need to introduce the || - ||, 0o-norm
of functions belonging to V}f. Similarly to | - |4@,00, the definition of | - [|4¢,00 is given by

Sillacoo = IV ShllLee 2z S]] o0 V S, € VL.
1Shllac, IV RShllLe +%§§Ke§%}f@ }( =) 1SR s (7). hEVy

Theorem 4.2. Let the assumptions of Theorem[].1] hold. Additionally, assume that

HTf]LCHdG,OO g vV alcfj/[ Vk > 1, (27)

with a1 > 0 defined in Lemmal{.3 and hidden constant independent of K and ©. Then, the lineariza-
tion strategy defined in Section[3.3 converges, namely

k k _k
VEXVEXVEX QT 3 (e u,ep,eT,ew)—>O as k — oo.
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Proof. First, we observe that using the inf-sup condition and taking (v, qn, Sn, ¥n) = (€X,0,0,0)
in we can bound the L?-norm of el; as

2
.Ae(ek Vh)
211 k12 k _k h ’ k _k k12
B Hec,oH 5 Dh(egpv eap) + sup H ‘l’l S Dh(€<p7 eg@) + HeuHDG,e' (28)
04v,evei [IVRIIDG e
Then, using the inequality in under assumption , we obtain
a1y k bk k k
_?HGTHz —(Cie +1) ’CfKVh Ph ‘dGOOHGTHQ < CSta (e7 Ph» €7)-
Using the previous estimate and Lemma and ﬂ 4.3| together with , we infer
a1 k k k k k k
7||6T||2 +billegl® + erllepl® + llegllia,e + 15 Ger + lepllic, <
k k k bk k _k
arllef]* + billeblI” + eallepl® + llebllac.e + 5 l3c,r + lleplac, + Ci*> (k. vk, ef) <
M((ek, ek ek, (ek, e, ek)) + Di(ek, k) + Af (ek, o) + AT (ek eh) + AL (ch, k) + Gt (e, pf, k).

Therefore, taking (vp, qn, Sk, ¥n) = (e ﬁ, el;, e%, e];) in and recalling the definition of the trilinear

form 5Stab we have
b k k— k
HeT”2+b1He<pH2+01HepH2+HequGe+||€THdGT+HepHdeN —CiP (T eb ™t eh) = T1 + To, (29)

W1th 7, and Zy defined as
I, = (Cf(K Vhek_l) -VhT,f,eIr}),

—C eh~1W . p
7= 3 [ ey i ek - LTS gy
FeFr
+ Z / Cvahek Lon)® 7F ek
FeFp

Using the Holder and Young inequalities, we get

Ty < erm | VaTy i (oylley ™ lagpllef |l < H | o | TH e oo e~ 1 (30)

For what concern the term Zs, we apply the Holder, and discrete trace-inverse, and Young inequalities
to obtain

ek ek'
1< Y [ H-erKTack™y ol 1) 21feh ¢ 4]

reF

<> D> KV e TR ey llef e

FeF ke{xt,k~}

B2 B2
< ~ - Hlow ——lef
< (oo, 107 ) 32 p o Skl o)
KETh

1 1

2 2
< - 02 KV k—12 k2
< (o _mox 8] o) G Tlewiei | | 3 1ehi

42
k k— k ay . i eCiCinr k—
< CthCfMHTthG,oo”ep Yaapllehll < —=llefl* + —— Ty g, llep ”(ZiG,p'

Hence, plugging and into and fixing € equal to the hidden constant in , yields

k k—
||e ey S (Co+ D)ctpar TR e sollel™ e p-

As a result of condition , the previous inequality shows that the map (e k=1 e]; 1 el} L efz_l) —
k ok

(eﬁ, e’;, er, 90) isa contractlon. Thus, the conclusion follows by applying Banach fixed-point theorem.
O
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5 Numerical results

The aim of this section is to assess the performance of the scheme in terms of accuracy and robustness.

In [5, Section 6.2] it has been shown that the fixed-point algorithm iterating on the temperature
gradient may not converge for advection-dominated regimes, i.e. when hydraulic mobility is much
greater than thermal conductivity. In this section we analyze in detail the new linearization we
propose according to the stabilization correction we apply in case of advection-dominated regimes,
with a special focus on the case of vanishing thermal conductivity. First, we look at the convergence
properties of the method. Then, we inspect the numerical robustness with respect to the model’s
coefficients; to this aim, we focus on the case of very small @, but being careful of not losing robustness
with respect to the other sensible parameters of the model, namely ag, by, co, and K. We compare
different linearization schemes, that are denoted in the following way: consider the solution of the
mth-iteration of the fixed-point algorithm, we compare the following constructions of the linearized
trilinear form C; (7%, pn, Sh):

COldp S :( thp ) VhTm_l,S),
Cvol Tm _ ( (K Vhpm 1) . VhTm S)
| :( s (K Vi) - Vit 8) = 32 [ ({{=es KV, - [T 453,

FeFr

G (T, 8) = (— e (K Vap™) -V, T, ) — 3 / ({=cy KVup™ B - [T™]) {SD.,
FeFy

+Z/ [fi=e o KV Bonl Z/ —r KV 0 g
FeF FeFp

For the details of the iterative algorithm exploiting Cﬁld, see [5], [17].

In all the numerical tests, we consider a PolyDG-WSIP spatial discretization. The sequence of
two-dimensional polygonal Voronoi meshes has been generated through the Polymesher algorithm
[33]. Last, all the penalty coefficients «;, i = 1,...,4 in are set equal to 10. Thanks to the
introduction of the total pressure-total pressure stabilization, we can use equal order approximations
for the four unknowns of the problem. Thus, in every test we set £ = m and, for the sake of simplicity,
we make use only of the symbol £ to denote the polynomial degree.

5.1 Convergence Test

We start the analysis by assessing the performance of the method in terms of accuracy. We consider
problem in the domain Q = (0, 1)? with the following manufactured analytical solution:

2 cos (%m) sin(mx)

2 cos <%a:) sin(mx)

2

u(zr,y) = ., p(z,y) = 2?sin(rz) sin(ny), T(x,y) = —y° sin(rz) sin(7y),

through which we infer the boundary conditions and forcing terms. The model coefficients are reported
in Table 2

ao [GPa/K?] | 0.02 a[-] 1 i, A [GPa] 1,5
bo [K™) 0.01 B [GPaK™'] | 0.8 K [dm? GPa™*h™] 0.2
co [GPa™] 0.03 cy [PaK™?] 1 ©® [dm® GPaK2h™'] | 0.05

Table 2: Test case of Section problem’s parameters for the convergence analysis

The convergence of the PolyDG scheme is tested both with respect to the mesh size h and to the
polynomial degree £. We consider three different constructions of the bilinear form C;. Indeed, we do
not assess the performance of the stabilized version as we are not in an advection-dominated regime.
For the h-convergence a sequence of polygonal Voronoi meshes is considered and we test different

15



polynomial degrees ¢ = 2,3,4 (one for each linearization). For what concerns the convergence with
respect to £ and for a fixed mesh size, we fix a computational mesh of 100 elements and vary the
polynomial degree £ = 1,2,...,8. In Figure and Figure we show the computed errors in the
L?- and dG-norms defined as in versus h and ¢, respectively, with the use of the form C,‘;ld (cf.
[0, 17]). In Figure Figure |2b| the same results are reported for the form C;{Ol. In both cases, we
observe that the results match the predicted convergence rates in the framework of PolyDG spatial
discretizations [5, Theorem 5.3].

F B 1071 F ]
1074 E o |
2 g ] 2 107 ¢
o I 1 © E ]
= -5 L | = F 1
5 107% ¢ . 5 B ilz ]
' r B - -3 L |
S : g 10 L= up(x,t)
1077 ¢ E | == pp(x, 1) ]
i : 1074} —* Th(X, t) E
10°7 - ‘ ‘ -
101 101.5

1/h 1/h
(a) Convergence test vs h: discretization with bilinear form Czld, polynomial degree of approximation £ = 2.
107° ¢ E g ]
B i 1073 8 E
gz 107°) E 2 i ]
& : ] = 1071 E
=107 E = i |
S » g ] < 105 ]
107° ¢ 4 B B
—h— Th(x,t 1 —6 ; ;
1079 ( | ) | E 107> ¢ B

101 101.5

1/h 1/h
(b) Convergence test vs h: discretization with bilinear form Cxc’l, polynomial degree of approximation £ = 3.
1077} . 1074} E
5| ] 1073 | §
5 10 o 5 0 B 1
= r B g 10—6 L ;
2 1070} & 1070 N
% 10~10 ; ,; % 1077 ? —— uh(x7t) é
E 1 -8 | —- pp,(x,t) i
107 ¢ - Th(x.t)

- - 1077 ‘ ‘
10 1015
1/h 1/h

(c) Convergence test vs h: discretization with bilinear form Cj, polynomial degree of approximation £ = 4.

Figure 1: Test case of Section (convergence test vs h): computed errors in L*-norm (left column) and dG-norms
(right column) versus 1/h (log-log scale).
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(a) Convergence test vs £: discretization with bilinear form Czld, computational mesh made of N = 100 polygons
102
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2 51070
= H
) O]
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10 = 1078
10713 10— 1
l l
(b) Convergence test vs ¢: discretization with bilinear form CZOl, computational mesh made of N = 100 polygons.
1072} s
£ 107° 2
£ =107 1
. 3
o O
~ -9
10 = 408 i
10713 : 10-11 \
0 2 4 6 8 0 0 2 4 6 8
l l

(c) Convergence test vs ¢: discretization with bilinear form Cj, computational mesh made of N = 100 polygons.

Figure 2: Test case of Section (convergence test vs £): computed errors in L?-norm (left column) and dG-norms
(right column) versus £ (semi-log scale). The computational mesh is made of 100 polygons.

For what concerns the convergence vs h we observe that, by using ¢ = 2,3, the dG-errors for all
the three unknowns decrease as h? and h3, respectively. Moreover, for what concerns the L2-errors,
we achieve h!T! convergence. Looking at the convergence with respect to ¢ we see that in the two
cases, both for the L?- and the dG-errors, we observe an exponential decrease of the error.

Finally, we test the accuracy of the method with the whole linearization C;, (without any stabi-
lization, as we are not in the advection-dominated regime) and we report the results in Figure
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Figure Even in this case, we observe that the results are coherent with respect to the previous
linearizations and to the estimates presented in [0, Section 5]. Thus, we prove that the modifications
of the trilinear form explained in Section do not affect the convergence properties of the method.

We conclude this section by looking at the fixed-point iteration count for the convergence of
our scheme. The tolerance is set as 1071 and the stopping criterion is the norm of two successive
iterations.

In Figure [3| we observe that the fixed-point iteration counts are very low and, in general, decrease
both with respect to N and £. Only for the case £ = 8 we observe a small increment for CXOI and Cp,.
We think that this may be due to the conditioning of the linear system. For the most of the cases we
can also observe that the fixed-point iteration counts required considering the linearizations presented
in this article is lower with respect to the fixed-point iteration count when using Cgld.

‘ old 15 T T
=G ——Cold

——Cy!

10 |-

#Iterations
D
I
#Iterations

| |
10! 101 0 2 1 6 8
1/h i

Figure 3: Test case of Section (convergence test): number of iterations of the fixed point algorithm for the convergence
with respect to h (left, semilogz scale) and with respect to £ (right).

5.2 Robustness Tests

In this section, we address the main point of this article: ensuring numerical robustness of the scheme
with respect to the numerical parameters. In particular, we are interested in testing the robustness
with respect to low values of the permeability K and thermal conductivity ®&. Moreover, in the
presented tests, we stress also the coefficients related to the mass terms (ag, by, and ¢p) considering
them to be ag = by = ¢¢ and, eventually, equal to 0. The values of the other model parameters are as
in Table 2

In [5] the robustness with respect to model parameters has been already addressed. Therein, it
is observed that the numerical scheme in which C,‘ild is used exibits good performance when K < ©
and when K, ® <« 1. However, it is possible to observe instabilities when ® < K. In this situation,
we can see as an advection dominated problem and following this observation we can introduce
suitable stabilization terms for making the scheme able to cop with this degenerate case.

We compare the four linearizations C,‘;ld, C,‘;Ol, Ch, C,sltab in terms of performance when the thermal
conductivity degenerates. Moreover, we perform some tests in which we consider K <« © and K, ©® <
1, in order to verify that although we change the linearization to make the method more robust with
respect to ®, we do not lose robustness with respect to the other physical parameters (cf. [5]).

Remark 8. We observe that, compared with the values of the physical parameters presented in [5],
in this case we expect the fixzed-point algorithm either to converge slowly or diverge. This is because,
in the stationary problem, we do not have the scaling of the parameters with respect to the time step,
which was taken much smaller than 1 (namely, we considered 5t = 5-107°). In practice, we expect
that for C}‘L’ld the algorithm will fail for higher values of ® than we can observe in [5].
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5.2.1 Robustness with respect to degenerating thermal conductivity

In this section we focus on the robustness of the method with respect to the thermal conductivity. To
this aim, we consider the following choice of the parameters: through the sequence of the simulations
we keep constant ag = bg = ¢g = 0 and K = 1I; instead, we consider the following sequence for the
values of ® = {1I,10721,107*1, 10751, 10~31, 10~ 1°1}.

We test the three linearizations proposed in this article and the linearization of [5, [I7]. For the
presented sets of physical parameters we perform three simulations considering N = [1000, 310, 100]
and ¢ = [2,3,4]. Then, we compare their performance in terms of errors (L?- and dG-norms) and of
fixed-point iteration counts.

The results concerning the case (¢ = 3, N = 310) are presented in Figure [4| and Table [3| (second
stripe). First, we observe that the linearization C,‘;ld leads to a fixed-point algorithm that is not
convergent. Indeed, the fixed-point iteration counts and the errors blow up for all the values of ©®
lower than 1. The three linearizations presented in this article work better. The algorithm using
C}‘ZOI converges for the first four values of ®, the algorithm that exploits Cp, for the first five values
and the stabilized version converges for all the tested values of ®@. By looking at the results for
the temperature field T}, we can observe that the L2-errors for all the three methods increase as ©
decreases. For what concerns the stabilized version, we see that after 107 settles around the value
of 7-1072. The same behavior can be observed also for the displacement and pressure fields. It is of
particular interest to notice that the L2- and dG-errors of the scheme exploiting Cffab remain almost
constant as © decreases for uy, and pj. Similar results are obtained for the cases (¢ = 2, N = 1000)
and (¢ =4, N = 100) (cf. [B).

By looking at Table [3] it is interesting to notice that — for the three methods that make use of
CZOI, Ch, and C,Sltab — the higher the polynomial degree of approximation, the more robust the scheme.
In fact, we can see that the threshold value for which the method does not converge decreases as the
polynomial degree increases, and in addition, the iteration number remains comparable (often lower)
than in previous cases. We can notice that — in the case of the stabilized bilinear form C,Sfab — most
of the quantities analyzed remain constant and hover around a value below a certain threshold. This
fact is also a qualitative guarantee of limited error and number of iterations even for degenerate values
of thermal conductivity.

The numerical values of the results presented in the supplementary material of the article.

Test | Linearization | 6 =1 | 0=10"2|6=10"*|60=10°% | #=10"% | 9 =10"1°

- e 7 1000 1000 1000 1000 1000

? S cyret 4 10 8 1000 1000 1000

< | Ch 4 10 11 9 1000 1000
= cyrab 4 10 8 17 20 10

- cpMd 5 1000 1000 1000 1000 1000

u cﬁ cpet 3 8 5 11 1000 1000

- Ch 3 8 9 7 48 1000
Cyrab 3 8 7 7 7 8

- e 5 1000 1000 1000 1000 1000

TT ‘lil cpe! 43 19 5 17 1000 1000
~ Ch 3 44 5 6 6
Crab 3 33 5 7 7 7

Table 3: Test case of Section (robustness w.r.t. degenerating thermal conductivity): fixed-point iteration counts
for the convergence of the algorithm versus 6. The cells highlighted in red are the tests for which the maximum number
of iterations is reached.

Remark 9. We observed that, without introducing the inflow stabilization for the boundary faces, the
linearized form Cp" leads to performance that are similar to the ones of Cy. Indeed, C;”;t“b turns out to
be way more robust.

19



Remark 10. For the sake of completeness, we have reported also the value of the dG-errors, defined
as in , for all the three cases. However, we observe that, as the thermal conductivity enters in the
definition of the norm || - |lacr (cf. (L6)), their values are altered by the fact that we are considering
very low values for ©. It is still interesting to notice that the dG-errors for C,‘l’ld blows up, while the
dG-errors related to C}L’Ol, Cn, and Cflmb remain bounded around quite low values.
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(a) Robustness test vs ® = 0I: computed errors for the temperature T},.
102 ;
1 i
= 100 = - = 10 g
= E/ 0 ]
= S 10
5 1072 2 5 . 1
= £ 107 E
£l M 1
) -4 7 : —2 E
N 10 %3 10 e
_3 |
106 L | 10 i -
10719 107% 107% 107* 1072 10° 10719 107% 1076 107* 1072 10°
0 0
(b) Robustness test vs @ = 0I: computed errors for the displacement uy,.
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(c) Robustness test vs @ = 0I: computed errors for the pressure pp,.

Figure 4: Test case of Section (robustness w.r.t. degenerating thermal conductivity): computed errors in L>-
norm (left column) and dG-norms (right column) versus 6 (log-log scale). The different colors represent the different
linearization schemes. The polynomial degree of approximation and the number of elements are £ = 3 and N = 310,
respectively.
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5.2.2 Robustness with respect to degenerating permeability

The aim of this section is to inspect the robustness of the scheme with respect to degenerating values
of K. As the method proposed in [5] was robust with respect to the hydraulic mobility, we directly
test it considering K = 107!°T to verify that, by changing the linearization bilinear form to ensure
robustness with respect to ®, we do not lose robustness with respect to K. The other physical
parameters we consider are: ag = by = cg = 0 and ® = 1I. We consider a sequence of Voronoi meshes
whose number of elements is N = [100, 310, 1000, 3100, 10000] and polynomial degree of approximation
equal to £ = 2.

In Figure B Table [4 we report the results for the errors and the number of iterations, respectively.
First, we observe that for the three linearizations proposed in this article, the fixed-point algorithm
converge in a few iterations and that the number of iterations is comparable for the three cases. For
what concerns Cgld, we see that globally it converges. Even if it reaches the maximum number of
iterations for N = 3100, we observe that the computed error for that refinement is very close to the
one computed using the other three methods. Concerning the errors, we see that we have convergence
both in L2- and dG-norms. In the L?-case we have order of convergence equal to 2 (i.e. we lose the
¢+ 1 accuracy rate), while in the dG-case we have order of accuracy below 2.

—~~ —1 N -

§ 10 E E é\; 1074 | B
% B ] 2 i .
8 L Czld i g [ C;ild ]
— = L i
K107 | -yl il 2 = | —m— el |
[a\] ~ |

~ F—a—Cp, ] % | —a—Cp, |

i e C}sLtab i —hr— Cztab
10_3 . ‘ 10—5 | |
10! 1015 10! 10%?
1/h 1/h

Figure 5: Test case of Section (robustness w.r.t. degenerating permeability): computed errors for the pressure pj
in L2-norm (left) and dG-norm (right) versus 1/h (log-log scale). The different colors represent the different linearization
schemes. The polynomial degree of approximation is ¢ = 2.

Linearization | h =0.1811 | h =0.1025 | h =0.0569 | h =0.0329 | h = 0.0181
cod 3 1000 2 2 2
cr! 3 3 2 2 2
Cn 3 2 3 3 2
cyrab 3 3 3 2 2

Table 4: Test case of Section (robustness w.r.t. degenerating permeability): fixed-point iteration counts for the
convergence of the algorithm versus h. The polynomial degree of approximation is £ = 2. The cells highlighted in red
are the test cases for which the maximum number of iterations is reached.

We observe that the £ + 1 accuracy in the L?-norm is not guaranteed by the theory, we are only
sure the L?-errors converge at least with rate ¢, when using ¢ as polynomial degree of approximation.
In the dG-norm we do not observe the expected order because the values of the errors are altered by
the fact that the permeability directly enters in the definition of the dG-norms, cf. .

The analysis for the displacement u; and the temperature T}, is reported in Appendix B] The
numerical values of the results presented in the supplementary material of the article.

5.2.3 Robustness with respect to degenerating thermal conductivity and permeability

As for the previous test, the aim of this section is to verify that we have not lost robustness with respect
to the scheme proposed in [0, [I7]. Here, we consider the case K,® < 1. On a sequence of Voronoi
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meshes with N = [100, 310, 1000, 3100, 10000] and using as polynomial degree of approximation ¢ = 2,
we use run a convergence test with the following values of the model’s coefficient: K = @ = 10711
and ag = bg = ¢g = 0.01. As in the previous section we observe numerical robustness of the method
with respect to small values of permeability and thermal conductivity. In Figure [6a] Figure [6b] the
errors for the pressure and temperature fields are reported, respectively. In both the two cases we
observe 2 as order of accuracy in L?-norm and convergence in dG-norm. We observe in Table [5| that
the number of iterations necessary for the convergence of the fixed-point iteration scheme is slightly
greater than the previous case, however it is still limited and quite low (maximum is 11) considering
that we are using very low values for the two tensors. The analysis for the displacement uy, is reported
in Appendix [B] The computed numerical values of the results presented in the supplementary material
of the article.

1074 [ i
1071 8 E L i
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5 107 i ’
N i i % 1075 | —4=Cp, .
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1/h 1/h
(a) Robustness test vs K = kI, ® = 6I: computed errors for the pressure py,.
T T 10741 T .
107! 8 E | i
s g ?
5107 ooa | *
X i ] S 105 =0, .
103 . ‘ ‘ .
10! 1015
1/h 1/h

(b) Robustness test vs K = kI, ® = 0I: computed errors for the temperature T},.

Figure 6: Test case of Section (robustness w.r.t. degenerating permeability and thermal conductivity): computed
errors in L?-norm (left column) and dG-norms (right column) versus 1/h (log-log scale). The different colors represent
the different linearization schemes. The polynomial degree of approximation is ¢ = 2.

Linearization | h =0.1811 | h =0.1025 | h =0.0569 | h =0.0329 | h = 0.0181
¢ 4 8 4 4 3
cyo! 6 11 4 4 3
Cn 4 7 4 4 3
cyrab 9 18 6 5 3

Table 5: Test case of Section (robustness w.r.t. degenerating permeability and thermal conductivity): fixed-point
iteration counts for the convergence the algorithm versus h. The polynomial degree of approximation is £ = 2.
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6 Conclusions

In this work we have presented a four-field PolyDG-WSIP formulation for the non-linear fully-coupled
thermo-hydro-mechanical problem. The stability estimate and the convergence of the fixed-point
iteration scheme are presented. Numerical simulations are performed to assess the theoretical bounds
and test the robustness properties of the method. The results confirm that the PolyDG-WSIP scheme
proposed here is appealing for real problems’ simulations.

Further developments of the present work are possible. In particular, we mention the extension
to other non-linear models, such the Darcy-Forchheimer flow equation, the inclusion of the non-
linear convective term and of the stabilization techniques presented in this paper in the fully-dynamic
problem, and the generalization of the non-linear term including the time-derivative of the solid
displacement. Furthermore, for what concerns the solution strategies, one possible development is the
implementation of effective splitting schemes for reducing the large computational cost required by a
non-linear fully-coupled problem. This last development is of particular interest for the extension of
the numerical implementation to the three-dimensional case.
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A Superconvergence of the PolyDG-WSIP scheme for the linear
THM problem

The aim of this section is to prove that the PolyDG-WSIP scheme proposed for the THM problem is
not only optimal convergence, but it also shows some superconvergence properties in the linear case.
To this aim, we consider the following exact solutions:

2% cos (%) sin(mx)
u(x7 y) =y 9 T X ’

x* cos (7) sin(mx)
pe,y) = vp a?sin(ra) sin(my),

T(z,y) = —vr y*sin(rz)sin(my),

through which we infer the boundary conditions and forcing terms. The parameters vy, v, v1 control
the magnitude of the displacement, pressure, and temperature, respectively. The model coefficients
are reported in Table [2| (chosen as in the convergence test).

We observe that the optimal convergence property (even for the non-linear problem) has been
already proven in Section by setting v, = v, = vy = 1.

In order to observe the better robustness of the scheme with respect to large pressure and tem-
peratures, we propose to different tests. In the first, we set v, = 0.1, v, = v = 10*, we consider the
same sequence of meshes as in Section and we test different polynomial degrees, i.e. ¢ = 2,3,4.
For the second test, we fix v, = 0.1, the mesh, and the polynomial degree of approximation; then
we vary the values of v, = v = [1, 10',102,102, 104, 105, 106], concurrently. For the second test we
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consider the following couples of discretization parameters: (N = 10000, ¢ = 2), (N = 3100, ¢ = 3),
(N =1000, ¢ =4).

By looking at Figure[7]and Figure [§] we observe that, for all the tested polynomial degree, we have
the superconvergence phenomenon for the displacement. Indeed, we observe that using polynomial
degree of approximation equal to £, then the error of the displacement in dG-norm converges with order
¢+1 (we remark that the expected order is ¢ in this case and this rate is observed for the temperature
and the pressure). Moreover, for what concerns the error in L?-norm we observe (£+1)+1 convergence
rate. In Figure[7| (right) we observe a slight plateau in the last refinement, this is due to the fact that
we are reaching very low values for the error and numerical errors appear too.

In Figure [0 and Figure[10] we observe the behaviour of the errors with respect to increasing values
of vp, vr. We see that in all the tested cases and for both the L?- and dG-errors are way lower than
the errors of pressure and temperature (even for values of v, vr not too big). It is interesting to
notice that, for v, v = [1, 10, 100] the errors of the displacement remain almost constant, while the
errors of the pressure and temperature start growing.
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N = =
| |
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Figure 7: Superconvergence test: computed errors in L2-norm using as polynomial degrees of approximation £ = 2 (left),
£ = 3 (center), and ¢ = 4 (right).
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Figure 8: Superconvergence test: computed errors in dG-norm using as polynomial degrees of approximation £ = 2
(left), £ = 3 (center), and £ = 4 (right).
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Figure 9: Superconvergence test: computed errors in L2-norm versus Up,vr (log-log scale) using as polynomial degrees
of approximation and number of elements (¢ = 2, N = 10000) (left), (¢ = 3, N = 3100) (center), and (¢ = 4, N = 1000)
(right).
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Figure 10: Superconvergence test: computed errors in dG-norm versus vy, vt (log-log scale) using as polynomial degrees
of approximation and number of elements (¢ = 2, N = 10000) (left), (¢ = 3, N = 3100) (center), and (¢ = 4, N = 1000)
(right).

B Robustness tests: further results

In this supplementary material Section we report the results concerning the robustness tests that are
not presented in Section 5.2.

B.1 Robustness with respect to degenerating thermal conductivity

In this section we present the results of the tests presented in Section 5.2.1 for the configurations
(¢ = 2,N = 1000) and (¢ = 4,N = 100). We recall that we consider the following values for
the model’s coefficients: we wide ® = {1I,1072I,107*I,107%1,10731,107'°T} and keep constant
ag = by = ¢g = 0, K = 11. The other physical parameters are taken as in Section 5.1. We observe
that the behavior is similar to the configuration (¢ = 3, N = 310) presented in the article. We point
out just two observations about these results. First, we notice that for specific values of the physical
and the discretization parameters (cf. Figure , the stabilized scheme leads to a larger error than
the unstabilized case. This is expected when stabilization is not necessary. Second, we observe that
increasing the polynomial degree (¢ = 4, cf. Figure , we get equivalent results for C; and Cfltab
in terms of displacement and pressure field (moreover, the algorithm converges in both the cases, cf.
Table 3). This may be an additional hint that increasing the polynomial degree helps us in solving
correctly the non-linearity (for the linearizations proposed in this article).
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(c) Robustness test vs ® = 0I: computed errors for the pressure py,.

Figure 11: Test case of Section 5.2.1 (robustness w.r.t. degenerating thermal conductivity): computed errors in L>-
norm (left column) and dG-norms (right column) versus 6 (log-log scale). The different colors represent the different
linearization schemes. The polynomial degree of approximation and the number of elements are £ = 2 and N = 1000,
respectively.
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Figure 12: Test case of Section 5.2.1 (robustness w.r.t. degenerating thermal conductivity): computed errors in L>-
norm (left column) and dG-norms (right column) versus 6 (log-log scale). The different colors represent the different
linearization schemes. The polynomial degree of approximation and the number of elements are £ = 4 and N = 100,

respectively.
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(c) Robustness test vs @ = 0I: computed errors for the pressure pp,.

B.2 Robustness with respect to degenerating permeability

In this section we present the results of the tests presented in Section 5.2.2 for the displacement uy,
and the temperature T} in the case of degenerating permeability. We recall that we consider the
following values for the model’s coefficients: K = 1071°T, ® = 11, and ag = by = ¢y = 0. The other
physical parameters are taken as in Section 5.1. We take ¢ = 2 as polynomial degree of approximation
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and a sequence of Voronoi meshes with N = [100, 310, 1000, 3100, 10000] elements.

We observe that, as expected, the results are very similar (essentially equivalent) for the four
linearizations. By using polynomial degree of approximation ¢ = 2, we see that the dG-errors decay
as h! = h? as the very low value of the permeability coefficient does not enter in the definition of the
norms for the displacement and the temperature. Morevoer, it is interesting to notice that for these
fields we observe £ + 1 order of accuracy for the error in L?-norm.
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(b) Robustness test vs K = kI: computed errors for the temperature T},.

Figure 13: Test case of Section 5.2.2 (robustness w.r.t. degenerating permeability): computed errors in L?norm (left
column) and dG-norms (right column) versus 1/h (log-log scale). The different colors represent the different linearization
schemes. The polynomial degree of approximation is ¢ = 2.

B.3 Robustness with respect to degenerating thermal conductivity and perme-
ability

In this section we present the results of the tests presented in Section 5.2.3 for the displacement uy,
in the case of degenerating permeability and thermal conductivity. We recall that we consider the
following values for the model’s coefficients: K = 1071°I, ® = 107'°I, and ag = by = ¢y = 0.01.
The other physical parameters are taken as in Section 5.1. We take ¢ = 2 as polynomial degree of
approximation and a sequence of Voronoi meshes with N = [100, 310, 1000, 3100, 10000] elements.

Similarly to the previous Section, we observe that by using ¢ as polynomial degree of approximation
for the four variables, we get hf and h‘*! error decay for the dG- and L2-errors of the displacement,
respectively.
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Figure 14: Test case of Section 5.2.3 (robustness w.r.t. degenerating permeability and thermal conductivity): computed
errors for the displacement uy, in L?-norm (left) and dG-norm (right) versus 1/h (log-log scale). The different colors
represent the different linearization schemes. The polynomial degree of approximation is ¢ = 2.

C Robustness tests: error tables

In this suppplementary material, we report the tables of the numerical values of the errors for the
test presented in Section 5.2. We refer the reader to Section 5.2, Section [B] for the comments on the

results.
Lin. | Error 0=1 0=10"7 0=10"" 6 =10"° 6 =108 6 =10"1°
|le“||2 | 8.564-10"° 1.587 7.460 1.741 2.208 1.877
lle“]|ac 0.007 12.457 1.187 - 10 70.483 112.891 96.352
CR' | |le?|lpe | 7.097-107C 0.160 0.181 0.169 0.168 0.169
||e?||ac 0.004 0.896 5.070 0.959 0.977 1.225
[le7||,2 | 7.291-107° 199.905 1.449-10* | 3.925-10° | 2.357-10° | 8.567-10°
lle”||ac 0.003 169.448 9.173-10* | 1.843-10° 272.656 825.833
lle*||r2 | 8.564-1076 | 1.035-107° | 5.197-10~° 0.005 0.033 0.074
|le"|lac 0.007 0.007 0.007 0.072 0.244 0.678
G| leP|lpe | 7097107 | 7.068-107¢ | 1.043-107° | 4.477-107* 0.001 0.003
||e?|]ac 0.003 0.004 0.004 0.005 0.011 0.026
lle" |2 | 7.291-107° 0.001 0.009 0.500 4.244 56.313
lle”||ac 0.003 0.001 0.023 0.202 0.048 0.055
l[e“]|,2 | 8.564-107° | 1.053-107° | 4.749-107* 0.001 8.175-107* | 5.036-107*
|le"|lac 0.007 0.007 0.011 0.010 0.011 0.008
Ch | ||€P||p2 | 7.097-107% | 7.067-107% | 3.718-107° | 6.262-107° | 6.422-107° | 3.427.107°
||e?|]ac 0.004 0.004 0.004 0.004 0.004 0.004
lle"||z2 | 7.296-107° 0.001 0.405 0.095 0.163 8.795
e ||ac 0.003 0.002 0.262 0.008 0.002 0.008
lle“]|L2 | 8.564-107° | 1.057-107° | 2.090-10~* | 1.717-10"* | 2.736-10"° | 2.290-10"°
lle"||ac 0.007 0.007 0.008 0.011 0.010 0.010
G | ||e”||p2 | 7.097-107C | 7.067-107° | 1.784-107° | 1.533-107° | 7.408-107° | 7.137-10°
||e?ac 0.004 0.004 0.004 0.004 0.004 0.004
lle"||g2 | 7.297-107° 0.001 0.179 0.612 0.759 0.777
lle¥||ac 0.003 0.002 0.086 0.034 0.005 5.752 - 10~*

Table 6: Robustness test vs @ = 01 Section 5.2.1: L?- and dG-errors of up, pr, and T}, versus 6. The results for the
four different choices of the linearized form are reported. The polynomial degree of approximation and the number of
elements are taken as £ = 2 and N = 1000. In green we highlight the lowest error (for each field and each norm) between
the four linearization schemes.
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Lin. | Error 0=1 0=10"7 0=10"" 0=10"° =108 =101
l[e“]]z2 | 9.793-107"7 1.588 2.174 21.127 3.656 4.391
lle*|lac | 5.537-10* 14.515 186.758 1.824 -10° 207.322 142.031

Ch | |||z | 1.416-107° 0.155 0.170 0.171 0.168 0.169
lle?lac | 6.166-107* 0.965 1.271 3.144 1.014 1.033

6 L2 . * - . . * . * . . . .

T 1.414-1076 201.896 2.632-10% | 2.198-10* | 3.631-10* | 4.073-10°
lleT||lac | 6.006-10~* 210.367 7.485-10° | 1.650 - 10* 543.160 4.402 - 103
e 2 o . a . . N o . a . . B . .
lle*]|,2 | 9.793-10"7 | 9.797-107 | 1.415-107% | 3.791-107° 0.005 0.020
lle*|lac | 5.537-107* | 5.537-10"* | 5.540-10~* 0.002 0.084 0.332

G | leP|lpe | 1.416-107° | 1.416-107° | 1.418-107° | 1.806-10"¢ | 3.176-10~* 0.001
lle?]lac | 6.166-10* | 6.166-10"* | 6.166-10"* | 6.171-10"* 0.003 0.010
lleT||L2 | 1.414-107¢ | 4.816-107¢ | 1.164-10~* 0.011 0.555 32.109
lleT||lac | 6.006-10* | 6.057-107° | 2.578-10~* 0.004 0.022 0.036
lle®||z2 | 9.793-1077 | 9.796-10" | 1.699-107° | 2.869-107° | 5.618-10"* | 5.097-10~*
lle*|lac | 5.537-10* | 5.537-10=* | 6.202-10"* | 5.790-10* 0.003 0.003

Ch | ||€P||p2 | 1.416-107° | 1.416-107° | 1.895-107% | 2.262-107% | 3.473.107° | 3.152-107°
lle?lac | 6.166-10"* | 6.166-10"* | 6.166-10"* | 6.168-10"* | 6.639-10"* | 6.558 - 10~*
lleT||p2 | 1.414-107° | 4.316-107° 0.014 0.001 0.225 19.316
lleT||lac | 6.006-10"* | 6.047-107° 0.010 9.346 - 107° 0.002 0.021

e”||L2 5 -10™ . -10™ . -10™ 5 -10™ . - 10~ . -10™
u 9.793-10°7 | 9.797-1077 | 4.606-107° | 5.238-107° | 5.127-107° | 5.143-10°°
lle“|lac | 5.537-107* | 5.537-10"* | 5.567-10"* | 5.628-10"* | 5.596 - 10~* | 5.596 - 10~*

G | ||e”||z2 | 1.416-107C | 1.416-107° | 1.460-107° | 1.475-107° | 1.454-107° | 1.453-10°
lle?|lac | 6.166-10* | 6.166-10"* | 6.166-10"* | 6.167-10"* | 6.166-10~* | 6.166 - 10~*
lleT||p2 | 1.414-107° | 4.850-107° 0.002 0.007 0.007 0.007
lleT||lac | 6.006-10* | 6.061-107° 0.001 4.356-107* | 5.351-107° | 5.452-107°

Table 7: Robustness test vs ® = 01 Section 5.2.1: L?- and dG-errors of up, pr, and Ty versus 6. The results for the
four different choices of the linearized form are reported. The polynomial degree of approximation and the number of
elements are taken as £ = 3 and N = 310. In green we highlight the lowest error (for each field and each norm) between
the four linearization schemes.
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Lin. | Error 0=1 6 =102 6=10"" 6=10"° 6 =10"8 6=10""°
lle“]| 2 | 6.543-10"7 1.590 4.635 1.975 17.557 78.719
lle“|lac | 3.019-10~* 12.228 414.469 80.932 732.996 4.755 - 103

CR% | |le?|lze | 5.327-1077 0.131 0.168 0.169 0.168 0.171
lleP|lac | 1.713-107* 0.788 2.205 0.929 1.323 5.616
lle"]|L= | 6.261-10"7 189.214 3.869-10° | 2.759-10° | 5.005-10* | 5.016-10°
[leT||ag | 1.773-10* 290.314 1.507 - 10* 789.085 980.373 5.485 - 10°
[le*||> | 6.543-1077 | 1.322-107° | 7.914-107" | 4.849-10~* | 2.780-107* 0.002
[le*|lac | 3.019-10"* | 3.021-10"* | 3.019-10~* 0.006 0.004 0.031

G | JleP||2 | 5.327-1077 | 5.450-1077 | 5.348 1077 | 2.601-107° | 1.893-107° | 1.535-10~*
[leP|lac | 1.713-107* | 1.713-10"* | 1.713-10"* | 2.897-10"* | 2.480-107* 0.001
[le7]|z2 | 6.261-1077 | 2.102-10"* | 5.627-107° 0.038 0.025 2.311
lleT||lag | 1.773-10"* | 2.877-10"* | 5.011-107° 0.011 6.357-107* 0.003
[le*||2 | 6.543-1077 | 2.018-107° | 6.610-10~7 | 7.920-10~" | 1.081-107° | 1.083-107°
[le*|lac | 3.019-107* | 3.025-10"* | 3.019-10~* | 3.018-10~* | 3.018-10~* | 3.018-10~*

Ch | |leP||z2 | 5.327-10"7 | 5.660-10"7 | 5.327-10"7 | 5.333-10"" | 5.349-10""7 | 5.349-10""
lle?|lac | 1.713-107* | 1.713-10"* | 1.713-10~* | 1.713-10"* | 1.713-10~* | 1.713-107*
[leT||z2 | 6.261-1077 | 3.493-10"* | 1.376-107° | 2.218-107* 0.004 0.416
lleT]|lac | 1.773-107* | 4.769-10"* | 1.134-107° | 2.043-107" | 4.699-107° | 4.515-10~*
[le“||z> | 6.543-1077 | 1.984-107° | 6.657-10"7 | 9.170-10"" | 1.057-107° | 1.059-10°
[le*|lac | 3.019-107* | 3.025-10"* | 3.019-10"* | 3.021-10"* | 3.021-107* | 3.021-10*

Ch™ | ||e”||p2 | 5.327-1077 | 5.650-10~7 | 5.327-1077 | 5.344-1077 | 5.353-10~7 | 5.353-10°7
[le?|lac | 1.713-107* | 1.7131-10~* | 1.713-10~* | 1.713-10~* | 1.713-10~* | 1.713-10~*
[leT]|L2 | 6.261-1077 | 3.431-10"* | 2.379-107° | 1.465-10~* | 1.830-10~* | 1.837-10~*
[leT||lag | 1.773-107* | 4.681-10"* | 1.436-107° | 9.604-107° | 1.952-107° | 2.055- 107"

Table 8: Robustness test vs @ = 01 Section 5.2.1: L?- and dG-errors of up, pr, and T} versus 6.
four different choices of the linearized form are reported. The polynomial degree of approximation and the number of
elements are taken as £ = 4 and N = 100. In green we highlight the lowest error (for each field and each norm) between

the four linearization schemes.
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Lin. | Error N =100 N =310 N = 1000 N =3100 | N = 10000
lle*||z2 | 3.158-107* | 5.299-107° | 8.493-10° | 1.334-107% | 2.300-1077
[le*|lac 0.068 0.020 0.006 0.002 6.399 - 10~*

CR | 1e?)| e 0.184 0.056 0.021 0.008 0.003
lle?|lag | 1.456-107* | 7.364-107° | 4.418-107° | 2.795-107° | 1.516-107°
lleT|| 2 | 3.928-10"* | 4.800-107° | 7.368-107¢ | 1.182-107¢ | 1.913-1077
€7 ||ac 0.037 0.012 0.003 0.001 3.380-107*
[le*||r2 | 3.158-107* | 5.299-107° | 8.493-107¢ | 1.334-10¢ | 2.300-10°7
lle“]]ac 0.068 0.020 0.006 0.002 6.399 - 1074

(¢S TP T 0.184 0.056 0.021 0.008 0.003
lleP|lag | 1.456-107* | 7.364-107° | 4.418-107° | 2.795-107° | 1.516-107°
lleT]|p2 | 3.928-107* | 4.800-107° | 7.368-10¢ | 1.182-107% | 1.913-107"
lle”||ac 0.037 0.012 0.003 0.001 3.380-107*
lle*||z2 | 3.158-107* | 5.299-107° | 8.493-107° | 1.334-107% | 2.300-1077
[le*|lac 0.068 0.020 0.006 0.002 6.399 - 107*

Ch | |]eP|| .2 0.184 0.056 0.021 0.008 0.003
[leP|lag | 1.456-107* | 7.364-107° | 4.418-107° | 2.795-107° | 1.516-107°
[le7||z2 | 3.928-107* | 4.800-107° | 7.368-107¢ | 1.182-107¢ | 1.913-1077
lle”||ac 0.037 0.012 0.003 0.001 3.380-107*
[le*||z2 | 3.158-107* | 5.299-107° | 8.493-10% | 1.334-107% | 2.300-1077
[le"||ac 0.068 0.020 0.006 0.002 6.399 - 10~*

G 1 1eP) e 0.184 0.056 0.021 0.008 0.003
lleP|lag | 1.456-107* | 7.364-107° | 4.418-107° | 2.795-107° | 1.516-107°
lleT||p2 | 3.928-107* | 4.800-107° | 7.368-107° | 1.182-107% | 1.913-107"
€7 ||ac 0.037 0.012 0.003 0.001 3.380-107*

Table 9: Robustness test vs K = kI Section 5.2.2: L?- and dG-errors of up, pr, and T}, versus N. The results for the
four different choices of the linearized form are reported. The polynomial degree of approximation and the number of

elements are taken as £ = 2 and N = 1000.
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Lin. | Error N =100 N =310 N =1000 | N =3100 | N =10000
lle*||r2 | 3.158-107* | 5.299-107° | 8.494-107¢ | 1.334-107¢ | 2.300-10~"
|e¥||ac 0.068 0.020 0.006 0.002 6.399 -10*

¢ TP T 0.100 0.031 0.012 0.004 0.001
lle?|lag | 8.096-107° | 4.094-107° | 2.456-107° | 1.554-107° | 8.436-107°
[leT]| L2 0.100 0.031 0.012 0.004 0.001
lleT]|lac | 8.095-107° | 4.094-107° | 2.455-107° | 1.553-107° | 8.425-107°
lle“||z2 | 3.158-107* | 5.299-107° | 8.494-107% | 1.334-107° | 2.300-1077
lle“]|ac 0.068 0.020 0.006 0.002 6.399 -10~*

(¢S TP T 0.100 0.031 0.012 0.004 0.001
[leP|lag | 8.096-107° | 4.094-107° | 2.456-107° | 1.554-107° | 8.436-107°
17| .2 0.100 0.031 0.012 0.004 0.001
lleT]|lac | 8.095-107° | 4.094-107° | 2.455-107° | 1.553-107° | 8.425-107°
lle*||2 | 3.158-107* | 5.299-107° | 8.494-107°¢ | 1.334-107° | 2.300-10~"
|e¥||ac 0.068 0.020 0.006 0.002 6.399 -10*

Ch | |]eP|| 2 0.100 0.031 0.012 0.004 0.001
lle?|lac | 8.096-107° | 4.094-107° | 2.456-107° | 1.554-107° | 8.436-10°°
17| .2 0.100 0.031 0.012 0.004 0.001
lleT]|lac | 8.095-107° | 4.094-107° | 2.455-107° | 1.553-107° | 8.425-107°
lle“]|r2 | 3.158-107* | 5.299-107° | 8.494-107° | 1.334-107% | 2.300- 107
lle“]|ac 0.068 0.020 0.006 0.002 6.399 - 10*

G 1 1eP) e 0.100 0.031 0.012 0.004 0.001

lleP|lag | 8.096-107° | 4.094-107° | 2.456-107° | 1.554-107° | 8.436-107°
eT| L2 0.100 0.031 0.012 0.004 0.001

lle™Ilx

lleT]|lac | 8.095-107° | 4.094-107° | 2.455-107° | 1.553-107° | 8.425-107°

Table 10: Robustness test vs K = kI,® = 0I Section 5.2.3: L?- and dG-errors of up, pr, and T}, versus N. The
results for the four different choices of the linearized form are reported. The polynomial degree of approximation and
the number of elements are taken as £ = 2 and N = 1000.
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