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Abstract
In the context of clinical and biomedical studies, joint frailty models have been developed

to study the joint temporal evolution of recurrent and terminal events, capturing both the
heterogeneous susceptibility to experiencing a new episode and the dependence between the
two processes. While discretely-distributed frailty is usually more exploitable by clinicians
and healthcare providers, existing literature on joint frailty models predominantly assumes
continuous distributions for the random effects. In this article, we present a novel joint
frailty model that assumes bivariate discretely-distributed non-parametric frailties, with an
unknown finite number of mass points. This approach facilitates the identification of latent
structures among subjects, grouping them into sub-populations defined by a shared frailty
value. We propose an estimation routine via Expectation-Maximization algorithm, which
not only estimates the number of subgroups but also serves as an unsupervised classification
tool. This work is motivated by a study of patients with Heart Failure (HF) receiving
ACE inhibitors treatment in the Lombardia region of Italy. Recurrent events of interest are
hospitalizations due to HF and terminal event is death for any cause.

Keywords: Recurrent events; Joint frailty models; Discrete frailty; Non parametric frailty;
Heart Failure

1 Introduction

Recurrent or repeated events are common in many clinical and biomedical studies, as patients
usually experience the same event multiple times. Typical situations are follow-up visits, hospital
admissions, tumour relapses, heart attacks and many others. In the recurrent event framework,
classic survival approaches are not suitable as they discard the correlation between subsequent
events in the same subject. A wide literature about recurrent events modelling has hence flour-
ished in past years (Kleinbaum and Klein, 1996; Therneau and Grambsch, 2000; Cook and
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Lawless, 2007; Aalen et al., 2008; Amorim and Cai, 2015; Ozga et al., 2018). Among others,
frailty models handle repeated episodes by introducing a random effect which takes a common
value for each group of dependent observations (Hougaard, 1995, 2012; Kleinbaum and Klein,
1996; Therneau and Grambsch, 2000; Rondeau et al., 2003, 2006; Cook and Lawless, 2007; Aalen
et al., 2008; Amorim and Cai, 2015; Gasperoni et al., 2020). Given the existence of heteroge-
neous susceptibility to the risk of recurrent events among subjects, the random term can describe
the excess risk or frailty of different individuals, accounting for unexplained heterogeneity not
covered by observed covariates. Frailty models are particularly well suited to handle hierarchical
data structures, such as subjects nested within groups (e.g., patients nested within hospitals).
Nonetheless, an individual’s recurrent process duration may be influenced by a terminal event,
such as study end, loss to follow-up, or death. Death can prematurely end repeated events, and
the terminal event time might be affected by the recurrent event history. Increased occurrences of
serious events (e.g., re-hospitalizations) often raise the risk of death, challenging the assumption
of independent censoring. As a result, joint frailty models of recurrent and terminal processes
has gained significant attention.

Joint frailty models analyse both processes over time, treating the terminal process as infor-
mative censoring and accounting for their dependence. They capture both the correlation among
repeated events and the dependence between repeated and terminal processes by incorporating
random effects in both hazard functions. Lancaster and Intrator (1998) initially proposed a
parametric model for repeated episodes via Poisson process with a rate function that shares
the same subject-specific frailty as the time-to-death hazard, assuming the two processes inde-
pendent given the frailty term. Huang and Wolfe (2002) introduced a joint frailty model for
clustered data with informative censoring, sharing a log-normal frailty between censoring and
failure rates at the cluster level. Liu et al. (2004), Huang and Liu (2007), and Rondeau et al.
(2007) considered joint models with shared frailty terms that apply differently for the two hazard
functions. Liu et al. (2004) and Huang and Liu (2007) used gamma frailty, focusing on time to
events (i.e., calendar times) and time between events (i.e., gap times), respectively, and employ-
ing a Monte Carlo Expectation–Maximization algorithm for estimation. Alternatively, Rondeau
et al. (2007) proposed a non-parametric penalized likelihood estimation method, accommodating
gamma and log-normal shared frailty and handling both calendar and gap times. This approach
also estimates (smoothed) hazard functions, which often have a meaningful interpretation in epi-
demiological studies. Zeng and Lin (2009) generalized joint shared-frailty models using a variety
of transformation models, including various possible multivariate random-effects distributions.
Further extensions included Bayesian non-parametric approaches (Paulon et al., 2020), handling
various situations like zero-inflated recurrent events (Liu et al., 2016), nested clustered data
for family studies (Choi et al., 2020), cure fraction models (Tawiah et al., 2020; Talebi-Ghane
et al., 2021), and non-proportional hazards through generalized survival models (Chauvet and
Rondeau, 2023).

Moved by the need for a more flexible approach enabling two correlated random effects to
jointly model the dependence between recurrent event and terminal event hazard rates, Ng et al.
(2023) adapted the formulation of Tawiah et al. (2020) to cases without long-term survivors.
They focused on patients’ gap times between events and developed a joint frailty model using
multivariate Gaussian random effects within a generalized linear mixed model. Unlike traditional
joint shared-frailty models, this approach uses two sets of random effects to account for both intra-
subject correlation in recurrent event times and individual differences in mortality hazard rates.
Their formulation efficiently cancels out the unknown baseline hazard functions from the partial
likelihood, making the estimation procedures relatively efficient. This method also captures the
positive or negative association between recurrent and terminal events, distinguishing the origin
of their dependence.
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Despite the strengths presented by the aforementioned joint frailty models, the assumption
of Gaussian random effects, which is traditionally the most classical approach to model depen-
dency in repeated observations over longitudinal trajectories, poses an edge in the framework of
the precision medicine. This is especially the case when the aim is to identify patients profiles
that exhibit different hazards, for whom costumized targeted interventions are needed. In this
perspective, in the last few decades, a more recent branch of the literature is focusing on the
treatment of discretely-distributed random effects (Aitkin, 1996, 1999; Hartzel et al., 2001; Azz-
imonti et al., 2013; Masci et al., 2019, 2021, 2022). Most of the work in this direction has been
done in the context of mixed-effects regression models for continuous responses (both univari-
ate and multivariate) and other types of responses in the exponential family, but this approach
has been recently extended in the survival analysis framework, by the introduction of discretely-
distributed frailties (Caroni et al., 2010; Gasperoni et al., 2020; Cancho et al., 2020, 2021; Molina
et al., 2021). The main advantage of modelling discrete random-effects is two-fold. First, it pro-
vides a new type of treatment and interpretation of the units at the highest level of the hierarchy,
that are clustered into latent subpopulations. When considering events nested within patients
or patients nested within healthcare providers, this approach enables the clustering of patients
or healthcare providers, helping to identify characteristics such as long-term and short-term sur-
vivors or more and less successful healthcare providers. Second, the non-parametric discrete
distribution of random effects allows for a more flexibly modelling of the grouping effect. It
avoids imposing any parametric assumption on it and significantly simplifies the computation
of the response marginal distribution, thereby avoiding potential integration issues. Despite the
various proposed models and their contributions to the literature, none of them have yet explored
the joint modeling of recurrent and terminal events.

Motivated by the aim of developing a tool for profiling patients and identifying latent sub-
populations with varying hazard rates, in this article, we extend the joint frailty model by Ng
et al. (2023) to the discrete-frailty framework. The main innovation is assuming a non-parametric
bivariate discrete distribution P ∗ of the random terms with an unknown finite number of mass
points. In addition to handling both heterogeneous susceptibility to the event risk and infor-
mative censoring, this novel approach can detect a latent structure among subjects, grouping
them in sub-populations where individuals are characterized by a common frailty value. Frailty
values can then be easily translated in a providers’ assessment, resulting more exploitable from
an interpretative point of view. Our inspiration comes from Masci et al. (2019), where a semi-
parametric mixed effect model with a bivariate discretely-distributed non-parametric random
term was used to perform an unsupervised classification of school sub-populations based on stu-
dent performance distributions. Along with the model, we propose an estimation routine via
Expectation-Maximization algorithm (Dempster et al., 1977; Bishop, 2006) and discuss the pos-
sible model design choices. Since the number of subgroups is estimated by the algorithm and is
not being known a priori, the proposed model can also be interpreted as an unsupervised clas-
sification tool, encouraging exploration of similarities within grouped subjects and differences
between sub-populations.

The approach developed in this paper is motivated by a study on patients with Heart Failure
(HF) hospitalized in the Lombardia region of Italy. HF disease often leads to recurrent hospi-
talization events (Kennedy, 2001; Baraldo et al., 2013; Rogers et al., 2016; Paulon et al., 2020;
Spreafico and Ieva, 2021b), which usually herald a substantial worsening of patient’s survival
prognosis and are terminated by death. In this context our novel approach is hence of inter-
est for several reasons. First, it addresses informative censoring and detects sub-populations of
HF patients at different risks, representing a more informative interpretation tool for medical
practice. It also enables the investigation of the impact of patient-specific (time-varying) char-
acteristics on hospital readmissions and/or mortality. Specifically, a key component of patient’s
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care is adherence to medication, that is the process by which patients take their medication as
prescribed (Vrijens et al., 2012). Proper medication adherence in HF patients can improve clinical
outcomes and prevent hospitalization and reduce mortality (Ponikowski et al., 2016). Specifi-
cally, we focus on HF patients receiving Angiotensin-Converting Enzyme (ACE) inhibitors, i.e.,
disease-modifying drugs of routine use for HF therapy (McMurray et al., 2012; Yancy et al.,
2013; Ponikowski et al., 2016), and we study the effect of time-varying adherence (Spreafico and
Ieva, 2021a) to ACE therapy on both re-hospitalisations and death. Both the model and its
application to HF are innovative contributions to the literature.

The remainder of the article is organized as follows. In Section 2, we introduce notation, joint
frailty models and the main novelty of this work, i.e., the Joint Model with Discretely-distributed
non-parametric Frailty (JMDF) for modelling recurrent and terminal events. Section 3 covers the
estimation procedure through Expectation-Maximization algorithm and model design options.
In Section 4, we apply the proposed methodology to the HF administrative database provided by
Regione Lombardia - Healthcare Division (Regione Lombardia, 2012), comparing the results to
the joint frailty model by Rondeau et al. (2007) and by Ng et al. (2023). The concludin Section
5 discusses the approach’s strengths, limitations, and potential future directions. Statistical
analyses were performed in the R software environment (R Core Team, 2021). In order to enhance
reproducibility and validation of the research, source code is available at https://github.com/
mspreafico/JMDF.

2 Methods

In Section 2.1 we introduce the notation for recurrent and terminal time-to-events considering
gap times, i.e., times between consecutive events, and we briefly recall the joint frailty modeling
proposed by Rondeau et al. (2007) and Ng et al. (2023). In section 2.2, we introduce our novel
JMDF methodology.

2.1 Notation and state-of-the-art methods

2.1.1 Notation

Let us consider a cohort of N independent individuals, denoted by index i (i = 1, ..., N), in which
each subject experiences Ji recurrent events, denoted by index j. For each subject i, let TR

ij denote
the gap time of recurrent event j with realization tRij , and TD

i the gap time from the last recurrent
event to the terminal one (e.g., death) with realization tDi . Both event-times are subject to right
censoring, whose time is denoted by Ci. For each subject i we hence observe ni gap times, with
ni = Ji + 1. Define Tij = min

{
TR
ij , T

D
i , Ci

}
∀j = 1, ..., ni as the sequence of random variables

defining observed times with realizations tij . Let δRij be the corresponding censoring variables for
the recurrent event (1 if Tij = TR

ij , 0 otherwise), and δDi be the censoring variable for the terminal
event (1 if Tini = TD

i , 0 otherwise). Let XR
ij ∈ Rp1 denotes the p1-dimensional vector of (fixed or

time-dependent) covariates associated to recurrent event j for subject i, and XD
i ∈ Rp2 be the

p2-dimensional vector of covariates associated to its terminal event. The observable data for each
patient i are given by Oi =

{(
Tij , T

R
ij , δ

R
ij ,X

R
ij , T

D
i , δDi ,XD

i

)
; j = 1, . . . , ni

}
. The overall set of

observable gap times, censoring variables and covariates is denoted by Θ = {Oi; i = 1, . . . , N} .
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2.1.2 Joint frailty model with shared log-normal random effects (Rondeau et al.,
2007)

To account for heterogeneity in the data due to unobserved covariates, Rondeau et al. (2007)
proposed a joint model that included a common frailty term to the individuals for the two rates
related to recurrent and terminal events. Such term is assumed to follow either a Gamma or a
log-Normal distribution and acts differently on the two hazard rates by means of a parameter α.
In particular, the hazard functions for the joint log-Normal frailty model are defined by:{

hRij

(
t|ηi,XR

ij

)
= hR0 (t) exp

(
βTXR

ij + ηi

)
hDi

(
t|ηi,XD

i

)
= hD0 (t) exp

(
γTXD

i + αηi
) (1)

where hR0 (·) and hD0 (·) are the baseline hazard functions for recurrent and terminal events,
respectively; β and γ are the vectors of fixed-effect coefficients associated to recurrent and
terminal events, respectively. The random effects are iid and distributed as ηi

iid∼ N (0, σ2). The
parameter α determines direction of the association (if significant) between the two processes.

Parameter estimation is based on a semiparametric penalized likelihood estimation or para-
metric estimation on the hazard function (see Rondeau et al. (2007) for further details) and it is
implemented in the R package frailtypack (Rondeau et al., 2012; Król et al., 2017).

2.1.3 Joint frailty model with multivariate Gaussian random effects (Ng et al.,
2023)

Recently, Ng et al. (2023) proposed a joint frailty model for recurrent and terminal events with
multivariate Gaussian random effects. The authors denote by u = (u1, . . . , uN )T and v =
(v1, . . . , vN )T the N -dimensional random vectors of ui and vi that represent the frailty for the
i-th subject to account for intra-subject correlation of gap times of the recurrent events and
individual differences in mortality hazard rate for the gap time from the last recurrent event to
death, respectively. Their joint frailty model is defined as:{

hRij

(
tRij |ui,XR

ij

)
= hR0

(
tRij

)
exp

(
βTXR

ij + ui

)
hDi

(
tDi |vi,XD

i

)
= hD0

(
tDi

)
exp

(
γTXD

i + vi
) (2)

where hR0 (·) and hD0 (·) are the baseline hazard functions for recurrent events and death, respec-
tively; β and γ are the vectors of fixed-effect coefficients associated to recurrent and terminal
events, respectively. The frailty joint distribution is

[ui, vi] ∼ N2(0,Σ) with Σ =

[
θ2u ρθuθv

ρθuθv θ2v

]
. (3)

This formulation allows a well-defined, straightforward interpretation of all the parameters in-
volved, being θ2u and θ2v the quantifiers of unobserved heterogeneity in the two processes, whereas
ρ models the dependence between u and v.

Parameter estimation is performed by maximize the sum of two components: (i) the usual Cox
partial log-likelihood of failure times assuming u and v fixed, i.e., ℓ1 (β,γ|u,v); (ii) the logarithm
of the joint probability density function of random effects u and v, i.e., ℓ2 (u,v|θu, θv, ρ). See
Ng et al. (2023) for further details.

2.2 Joint Model with Discretely-distributed non-parametric Frailty (JMDF)

In devising our original methodology, we build upon the framework proposed in Ng et al. (2023),
while introducing a bivariate non-parametric discrete distribution for the random effects. This
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choice is driven by the fact that a discrete distribution of frailties not only offers an additional
layer of interpretation in medical practice but also provides the opportunity to discover and
analyze latent partitions within the cohort of patients under consideration.

The hazard functions in the JMDF for recurrent and terminal events are defined as:{
hRij

(
tRij |ui,XR

ij

)
= hR0

(
tRij

)
exp

(
βTXR

ij + ui

)
hDi

(
tDi |vi,XD

i

)
= hD0

(
tDi

)
exp

(
γTXD

i + vi
) (4)

where hR0 (·) and hD0 (·) are the baseline hazard functions for recurrent and terminal events,
respectively; β and γ are the vectors of fixed-effect coefficients associated to recurrent and
terminal events, respectively. Random effects ui and vi are assumed to be distributed according
to an unknown discrete measure with a finite support in R2, called P ∗:

[u, v]i
iid∼ P ∗ ∀i = 1, ..., N. (5)

P ∗ can be characterized by a vector P = (P1,P2, . . . ,PK) of k = 1, . . . ,K points Pk = [P u
k , P

v
k ] ∈

R2 where K is unknown a priori, and a vector w = (w1, w2, . . . , wK) of relative weights. Notice
that

∑K
k=1wk = 1 and each weight wk = Pr ([u, v]i = Pk) expresses the probability for each

subject i (that is the second-level unit) to be assigned to a certain point k.

2.2.1 Likelihood construction.

In order to define the likelihood, we initially consider K as fixed and we introduce a set of
auxiliary random variables. For each subject i, we define an auxiliary random vector zi as
follows

zi = [zi1 zi2 zi3 ... ziK ] where zik =

{
1 if [u, v]i = Pk

0 otherwise.
(6)

Thus, each auxiliary vector is distributed according to a multivariate Bernoulli distribution of
parameters w.

Assuming that we have observed the realizations of such auxiliary random vectors (collected
in the random matrix Z), we can express the full likelihood of the model as

L (Ω;Θ|Z) =
K∏
k=1

N∏
i=1

[
wk · Lik(Ω;Oi|zi)

]zik (7)

where Θ is the overall set of observable data (see Section 2.1), and Ω =
[
β,γ, HR

0 (t), H
D
0 (t),w,P

]
denotes the quantities to be estimated, with HR

0 (t) and HD
0 (t) being the cumulative baseline haz-

ards related to the two processes. Each individual contribution to the likelihood can be written
as the following product

Lik (Ω;Oi|zi) =
ni∏
j=1

LR
ijk

(
Ω;OR

ij

∣∣zi) · LD
ik

(
Ω;OD

i

∣∣zi) (8)

with

LR
ijk

(
Ω;OR

ij

∣∣zi) = [
hR0

(
tRij

)
exp

(
βTXR

ij + P u
k

)]δRij · exp{−HR
0

(
tRij

)
exp

(
βTXR

ij + P u
k

)}
(9)

and

LD
ik

(
Ω;OD

i

∣∣zi) = [
hD0

(
tDi

)
exp

(
γTXD

i + P v
l

)]δDi · exp
{
−HD

0

(
tDi

)
exp

(
γTXD

i + P v
k

)}
, (10)
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where P u
k and P v

k stand for the coordinates of the chosen support point Pk, respectively.
We can then express the log-likelihood ℓ (Ω;Θ|Z) as the sum of three terms:

ℓ (Ω;Θ|Z) = ℓw (Ωw;Θ|Z) + ℓR (ΩR;ΘR|Z) + ℓD (ΩD;ΘD|Z) (11)

where

ℓw (Ωw;Θ|Z) =

K∑
k=1

N∑
i=1

zik · log(wk), (12)

ℓR (ΩR;ΘR|Z) =
K∑
k=1

N∑
i=1

zik ·

[
ni∑
j=1

δRij
{
log

(
hR0

(
tRij

))
+ βTXR

ij + P u
k

}
(13)

−HR
0

(
tRij

)
exp

(
βTXR

ij + P u
k

) ]
,

ℓD (ΩD;ΘD|Z) =
K∑
k=1

N∑
i=1

zik ·

[
δDi

{
log

(
hD0

(
tDi

))
+ γTXD

i + P v
k

}
(14)

−HD
0 (tDi ) exp

(
γTXD

i + P v
k

) ]
.

Estimators for Ω = [Ωw,ΩR,ΩD] can be obtained by maximizing Eq. (11) using the Expectation-
Maximization algorithm (Dempster et al., 1977; Bishop, 2006) proposed in Section 3.1.

3 Estimation and Model design

In this section we present the Expectation-Maximization algorithm (Section 3.1) we propose to
estimate parameters, discussing details on the identification of the support points (Section 3.2).

3.1 A tailored Expectation-Maximization algorithm

The log-likelihood in Eq. (11) is defined conditionally on the auxiliary random matrix Z. In
order to maximize it, we propose a novel Expectation-Maximization algorithm (Dempster et al.,
1977; Bishop, 2006; Gasperoni et al., 2020) to estimate Ω = [Ωw,ΩR,ΩD] for a given number of
support mass points K.

Parameter initialization: The initial step involves parameter initialization, i.e., determin-
ing Ω(0). Firstly, the grid of support points for the discrete distributions is initialized to obtain
[P ,w](0) following the procedure outlined in Section 3.2. Next, two Cox-type models are fitted:
one for the recurrent events with P(0)

u as the offset, and another for the terminal event with
P(0)

v as the offset. The estimated parameters from these models, along with their corresponding
estimated cumulative baseline hazard functions, are then used to initialize the remaining param-
eters, namely

[
β,γ, HR

0 (t), H
D
0 (t)

](0).
E-step: At each iteration, the Expectation step consists of computing:

Q (Ω) = EZ|Ω̂ [ℓ(Ω;Θ)] = EZ|Ω̂ [ℓw (Ωw;Θ)] + EZ|Ω̂ [ℓR (ΩR;ΘR)] + EZ|Ω̂ [ℓD (ΩD;ΘD)] (15)
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which is the expectation over Z, given the current estimates of parameters Ω̂, of the log-likelihood
in Eq. (11) for the observed data Θ. This reduces to the computations of E

[
zik

∣∣Ω̂,Oi

]
which

we indicate as Zik and can be derived in closed form using Bayes’ theorem:

Zik =
wk exp

{∑ni

j=1

(
δRijP

u
k −HR

0 (tRij) exp{βTXR
ij + Pu

k }
)
+ δDi P v

k −HD
0 (tDi ) exp{γTXD

i + P v
k }

}∑K
m=1 wm exp

{∑ni

j=1

(
δRijP

u
m −HR

0 (tRij) exp{βTXR
ij + Pu

m}
)
+ δDi P v

m −HD
0 (tDi ) exp{γTXD

i + P v
m}

} .
(16)

It is worth to notice that Zik represents the probability that subject i belongs to point k, given
the current state of parameters. This allows to identify a latent partition of subjects into the K
points.

M-step: The Maximization step consists of maximizing Q (Ω) with respect to Ω, given the
Zik obtained at the E-step. It is useful to notice that the three terms involved in the log-likelihood
(11) depend on three disjoint subsets of parameters: Ωw = [w], ΩR =

[
β, HR

0 (t),Pu

]
, and

ΩD =
[
γ, HD

0 (t),Pv

]
, where Pu and Pv are respectively the vectors of abscissas and ordinates

of the points composing the support of the discrete distribution. The maximization of Q (Ω)
can be carried out separately with respect to these three terms: Qw (Ωw) := EZ|Ω̂ [ℓw (Ωw;Θ)],
QR (ΩR) := EZ|Ω̂ [ℓR (ΩR;ΘR)], and QD (ΩD) := EZ|Ω̂ [ℓD (ΩD;ΘD)].

Recalling that weights wk must sum up to 1, the maximization of Qw (Ωw) is a constrained
optimization problem. Using Lagrangian optimization we obtain

ŵk =
1

N

N∑
i=1

Zik ∀k = 1, ...,K. (17)

The optimization of QR (ΩR) involves multiple parameters, so we adopt a multi-step ap-
proach. First, we estimate the abscissas Pu of the support points, fixing β and HR

0 (t) to their
last available estimates:

P̂ u
k = log

 ∑N
i=1 Zik

∑ni
j=1 δ

R
ij∑N

i=1 Zik
∑ni

j=1H
R
0 (t

R
ij) exp

(
βTXR

ij

)
 ∀k = 1, ...,K. (18)

By substituting P̂u in QR and recalling that
∑K

k=1 Zik = 1, we can rewrite QR in the following
form:

QR

(
β, HR

0 (t)
∣∣P̂u

)
=

N∑
i=1

ni∑
j=1

[
δRij ·

{
log

(
hR0

(
tRij

))
+ βTXR

ij +
K∑
k=1

ZikP̂
u
k

}
+ (19)

−HR
0

(
tRij

)
·

{
K∑
k=1

Zik · exp
(
P̂ u
k

)}
· exp

(
βTXR

ij

) ]

that is the usual full log-likelihood of a Cox model with known offset log
[∑K

k=1 Zik · exp
(
P̂ u
k

)]
.

With arguments similar to Johansen (1983) and Gasperoni et al. (2020), we can then compute
the Breslow estimator for the cumulative baseline hazard for recurrent events as follows:

ĤR
0 (t) =

∑
ab:tRab≤t

dRab∑
rs∈R(tRab)

{∑K
k=1 Zrk · exp

(
P̂ u
k

)}
· exp

(
β̂TXR

rs

) (20)

where tRab is the time of recurrent event b for patient a, dRab is the total number of recurrent events
happening at time tRab and R(tRab) represents the recurrent-risk set at time tRab.
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Lastly, including ĤR
0 (t) in Eq. (19), we obtain the profile log-likelihood as a function of β:

ℓRprofile(β) =

N∑
i=1

ni∑
j=1

δRij ·

βTXR
ij − dRij · log

∑
ab∈R(tRij)

{
Zak · exp

(
P̂ u
k

)}
· exp

(
βTXR

ab

) (21)

which is of the form of the usual partial log-likelihood in the Cox model with known offsets, so
it is maximized through standard software in order to retrieve β̂.

The optimization of QD (ΩD) can be performed following the same procedure designed for
QR (ΩR). Similarly, the estimates P̂v and ĤD

0 (t) are given by:

P̂ v
k = log

[ ∑N
i=1 Zik · δDi∑N

i=1 Zik ·HD
0 (tDi ) exp

(
γTXD

i

)] ∀k = 1, ...,K; (22)

ĤD
0 (t) =

∑
a:tDa ≤t

dRa∑
r∈R(tDa )

{∑K
k=1 Zrk · exp

(
P̂ v
k

)}
· exp (γ̂TXD

r )
(23)

where tDa is the terminal event time for patient a, dDa is the number of terminal events happened
at tDa and R(tDa ) is the terminal-risk set at time tDa . Regression parameters γ̂ can be retrieved
by maximizing the following partial profile log-likelihood:

ℓDprofile(γ) =

N∑
i=1

δDi ·

γTXD
i − dDi · log

∑
a∈R(tDi )

{
Zak · exp

(
P̂ v
k

)}
· exp

(
γTXD

a

) . (24)

3.1.1 Computation of standard errors.

To estimate the standard errors of the coefficients, we used the conventional coxph approach of
Cox models from survival package (Therneau, 2021), where the inverse of the Hessian matrix is
evaluated at the estimated coefficients. This enables us to assess the statistical significance of the
parameters by calculating the corresponding Wald statistic (Collet, 2015). Similarly, we apply
the same approach to obtain standard errors for the discrete random effects. ∀k = 1, ...,K, we
compute the Hessian H as the second derivative of QR(ΩR) with respect to P u

k and we evaluate
it at P̂ u

k :

E
[
H(P̂ u

k )
]
=

∂2ΩR

∂Pu∂P ′
u

(P̂ u
k ) = −

N∑
i=1

Zik

ni∑
j=1

HR
0 (t

R
ij) exp

(
βTXR

ij

)
exp

(
P̂ u
k

)
(25)

V ar[P̂ u
k ] =

(
I(P̂ u

k )
)−1

=
(
−E

[
H(P̂ u

k )
])−1

(26)

where I represents the information matrix. Equivalently, we compute the variance of P̂ v
k .

3.2 Support points identification

Up to now, we have detailed the steps of the EM algorithm by considering the total number
K of support points of the discrete distribution as known. In order to estimate the discrete
distribution on R2, we propose a wrapper method that, given an initial grid, performs a support
reduction, according to Masci et al. (2019).

Grid Initialization: The initial step involves defining a grid of M points in R2 that ideally
covers the region believed to contain the true support of the discrete distribution (which is
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unknown). This can be accomplished based on existing knowledge, such as insights from general
exploratory analysis, medical expertise, or previously fitted models. Another option could be
sampling from a specific distribution, such as:

(i) a bivariate Gaussian distribution, where weights are initialized according to the corre-
sponding Normal density and then normalized to be unitary (Ripatti and Palmgren, 2002);

(ii) a Uniform distribution of points over a rectangle in R2, whose boundaries are defined to
cover the supposed area of the true support.

To account for the algorithm’s sensitivity to grid initialization, it is advisable to employ a general
and non-informative initialization strategy. This helps mitigate potential misspecification issues.
Additionally, in both cases, it is important to ensure that the number M of points in the initial
grid is sufficient to adequately explore the designated region.

Support Reduction: Given the initial grid, the EM algorithm (Section 3.1) gradually
performs the support reduction of the discrete distribution to identify K < M mass points. At
each E-M iteration, this reduction involves two steps.

(I) First, prior to the E-step, a specified threshold L is defined and the merging process is
performed: if two points Pm1 and Pm2 are closer than L, in terms of a pre-defined distance
metric, they collapse at a unique point Pm̄ =

(
Pu
m1

+Pu
m2

2 ,
P v
m1

+P v
m2

2

)
with weight wm̄ =

wm1 + wm2 . The merging process begins with the pair having the minimum distance less
than L and continues until no remaining pairs closer than the threshold remain, resulting
in K̃ mass points. This process is sensitive to two design choices: the threshold L and
the distance metric used for merging points. Specifically, the Euclidean distance offers a
clear interpretation of the merging criterion based on geometric distance. However, the
Manhattan distance could be beneficial when dealing with specific patterns in the hidden
discrete distribution of random effects. Further insights into the definition of threshold
L are discussed in Section 3.2.1. Subsequently, the E-step is executed and the Z(I)

ik are
computed for each individual i and remaining support point k = 1, ..., K̃.

(II) Prior to proceeding to the M-step, each individual i is assigned to the sub-population (i.e.,
mass point) k∗i such that k∗i = argmaxkZik and the support points that do not contain any
individual are deleted. Let K∗ denote the set of remaining mass-points with |K∗| = K.
When one or more mass points are deleted (i.e., K̃ ̸= K), the probabilities that individual
i belongs to mass-points k ∈ K∗ are re-parameterized in such a way that they sum up to 1:

Znew
ik =

Zold
ik∑

m∈K∗ Zold
im

. (27)

Finally, the M-step is executed by considering in Eq. (17) the remaining re-parametrized
probabilities Zik = Znew

ik with k = 1, . . . ,K.

The algorithm terminates when the number of masses in the discrete distribution is stable
(i.e., no reduction happens in the current iteration) and the maximum difference between the
components of the weights of the current and previous iteration is less than a stopping threshold
toll, or when a predefined number of iterations max.it is reached. The overall procedure is
summarized in panel Algorithm 1.
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Algorithm 1 Estimation procedure of JMDF
Input parameters:
M : initial number of support points
init: type of initialization procedure (Gaussian or Uniform) with relative initial parameters
distance: type of distance (Euclidean, Manhattan,...)
L: value of threshold for the merging process
max.it: maximum number of iterations
toll: stopping threshold
Estimation procedure:
1: Grid initialization [P ,w](0) according to the init procedure with (at least) M support

points
2: Parameter initialization

[
β,γ, HR

0 (t), H
D
0 (t)

](0) by distinct Cox-type models with offsets
P(0)

u and P(0)
v

3: Set iteration it = 0, converged = FALSE, and K(0) = M
4: while !converged & it ≤ max.it do
5: Update iteration: it = it+ 1
6: Support Reduction I : merge points closer than L (in terms of distance) by averaging

the components and adding up their weights
7: E-step: compute Z(it)

ik for each patient i and remaining support point k = 1, . . . , K̃(it)

8: Support Reduction II : extract the latent partition, delete empty support points, and
re-parameterise the remaining conditional probabilities Z(it),new

ik with k = 1, . . . ,K(it)

9: M-step: update Ω(it)
w = [w](it), Ω(it)

R =
[
β, HR

0 (t),Pu

](it), and Ω
(it)
D =

[
γ, HD

0 (t),Pv

](it)
10: if K(it) = K(it−1) & maxk

∣∣w(it)
k − w

(it−1)
k

∣∣ < toll then
11: converged = TRUE
12: end if
13: end while
14: Resulting estimates for parameters Ω and number of mass points K are[

P ,w,β,γ, HR
0 (t), H

D
0 (t)

](it) and K(it), respectively.

3.2.1 Definition of threshold L

Defining the threshold L that determines which points will be collapsed is a crucial aspect of the
estimation procedure, as it has a significant impact on the resulting discrete distribution and the
identified number of masses. In general, it is advisable to set the threshold to the smallest value
that captures a meaningful difference in subject classification for the specific application, taking
into consideration available knowledge. From a practical standpoint, conducting a sensitivity
analysis is recommended. This involves examining the behavior according to a fitting criterion
(e.g., log-likelihood, AIC, classification log-likelihood) for different threshold values (and different
runs for the grid initialization) to identify the most promising candidates. The choice of the fitting
criterion itself will influence the sensitivity analysis. In this study, to fairly compare models with
different number of masses K, we consider the classification likelihood

Lclass (Ω;Θ|Z) =

K∏
k=1

N∏
i=1

[
Lik(Ω;Oi|zi)

]zik (28)

rather than the mixture one (McLachlan, 1982), and we computed the AIC and the BIC accord-
ingly, by considering the number of parameters g = p1 + p2 +K × 2 + (K − 1).
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4 Application

The approach developed and presented in Section 2.2 is motivated by a study of patients with
Heart Failure (HF) undergoing ACE inhibitors treatment, where recurrent events of interest are
hospitalizations due to HF and terminal event is death for any cause. In Sections 4.1 and 4.2,
we introduce the real administrative HF database of Regione Lombardia - Healthcare Division
(Regione Lombardia, 2012) and we present the joint model setting. Results of our method and
the comparison with joint parametric frailty models by Rondeau et al. (2007) and Ng et al. (2023)
are reported in Section 4.3 and 4.4, respectively.

4.1 Data

Administrative data were provided by Regione Lombardia - Healthcare Division within the re-
search project HFData [HFData—RF-2009-1483329] (Regione Lombardia, 2012). The project
database was built for non-paediatric residents in Lombardy (a region in northern Italy) which
were hospitalized for HF from 2000 to 2012. A 5-years period from 2000 to 2005 was used in
order to consider only “incident” HF patients, i.e., patients with no contacts with healthcare
system in the previous five years due to HF. Each record in the dataset was related to (i) patient
ordinary admission to hospital (Hospital Discharge Charts, HDC) – which contain data related to
discharge date, length of stay in hospital and comorbidity conditions assessed as in Gagne et al.
(2011), or (ii) pharmaceutical purchases (identified by their Anatomical Therapeutic Chemical
(ATC) codes; see World Health Organization et al., 2003) – which provide information on the
number and times of drug purchases. Deaths were collected from the HDC Database (for in-
hospital deaths) or Vital Statistics Regional Dataset (for out-hospital deaths). Further details
regarding data extraction and selection are discussed in Mazzali et al. (2016).

In this work, we focused on a representative sample of HFData related to 4,872 patients
with their first HF discharge between January 2006 to December 2012. Overall survival was
measured from the index hospitalization to the date of death or to the administrative censor-
ing date (December 31st, 2012). To assess the effect of ACE treatment on both survival and
re-hospitalizations, only subjects who experienced at least one hospitalization and one ACE pur-
chase after the index event were selected. Demographics, comorbidities and adherence to ACE
drugs were considered to adjust models. In particular, a dichotomous time-dependent variable
that at each event-time indicates whether the patient was adherent to ACE therapy according
to the proportion of days covered method with an 80% threshold was used (Spreafico and Ieva,
2021a).

4.1.1 Descriptive statistics.

A final cohort of N = 2, 970 patients who underwent ACE inhibitors therapy and experienced at
least one re-hospitalization was selected. At index event, median age and number of comorbidities
were 74 years (IQR = [67; 80]) and 2 (IQR=[1; 3]) respectively, with a percentage of male
patients equal to 58.1% (1,726 patients). Before the terminal event/censoring, median number
of total re-hospitalizations was 3 (IQR = [2; 6]), with a maximum of 42 occurrences. At last
hospitalization event, median age and number of comorbidities were 77 years (IQR = [70; 83]) and
3 (IQR=[2; 5]) with 1,058 patients (35.6%) adherent to ACE therapy. Median overall survival
and final gap-time (i.e., time between the last recurrence and the terminal event/censoring)
computed using the reverse Kaplan-Meier method by Schemper and Smith (1996) were 1,894 days
(IQR=[1,365; 2,265]; about 5.1 years) and 485 (IQR=[197; 1,053]; about 1.3 years), respectively.
At death/censoring event, 1,032 patients (34.7%) resulted adherent to ACE therapy and 2,139
(72.0%) patients were alive.
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To proceed with the analyses, administrative data was reformatted as explained in Appendix A.

4.2 Joint frailty models for re-hospitalizations and death

In order to assess the role of patient’s clinical history on both re-hospitalizations and death
through the JMDF in Eq. (4), we assumed that the two instantaneous hazards for each patient
depend on four explanatory variables: sex (male or female; time-fixed), age (in years; time-
dependent), number of comorbidities (ncom; time-dependent) registered at the last known hos-
pitalization, and the dichotomous adherent variable (0/1; time-dependent) indicating whether
the patient is adherent or not to ACE therapy at the considered event time (Spreafico and Ieva,
2021a). The proposed JMDF for re-hospitalizations (R) and death (D) via discretely-distributed
non-parametric random effects was given by{

hRij

(
tRij

)
= hR0

(
tRij

)
exp

(
β1sexi + β2ageij + β3ncomij + β4adherentij + ui

)
hDi

(
tDi

)
= hD0

(
tDi

)
exp

(
γ1sexi + γ2ageini

+ γ3ncomini + γ4adherentini + vi
) (29)

where hR0 (·) and hD0 (·) are the baseline hazard functions of the re-hospitalizations and death,
respectively, and [u, v]i are the random effects of the i-th patient distributed according to P ∗ as
in Eq. (5). The vectors of parameters β = (β1, β2, β3, β4) and γ = (γ1, γ2, γ3, γ4) are respectively
relative to the (time-dependent) vectors of covariates xR

ij =
(
sexi, ageij , ncomij , adherentij

)
and

xD
i =

(
sexi, ageini

, ncomini , adherentini

)
. Note that the covariate values in xR

ij may vary for
each event j experienced by a patient (except for sex), whereas the values in xD

i are taken at
the last gap-time ni, representing the patient’s last available measurement (see Appendix A).

The JMDF applied to HFData proposed in Eq. (29) was compared to the joint frailty
models introduced by Rondeau et al. (2007) and Ng et al. (2023) (see Sections 2.1.2 and 2.1.3,
respectively). The setting was the same as in Eq. (29), except for the random effects structure:

• Rondeau et al. (2007) assume shared log-Normal random effects with ui = ηi and vi = αηi,
where ηi ∼ N (0, σ2) is the patient-specific random intercept in the recurrent events process
and α is the multiplicative parameter which quantifies the effect of the patient frailty on
the terminal event process;

• Ng et al. (2023) assume bivariate Gaussian random effects as in Eq. (3).

4.3 Results of the joint models with discrete non-parametric frailty

The results of applying the JMDF in Eq. (29) to the cohort presented in Section 4.1.1 are now
discussed step-by-step.

4.3.1 Grid initialization and identification of threshold L

For each initialization procedure (Gaussian and Uniform), we conducted multiple runs of the
algorithm while varying the threshold values L (measured in terms of Euclidean distance) from
0.1 to 3 to determine the optimal one.

At each run with Gaussian initialization, we sampled M = 1000 points from a bivariate
Gaussian distribution centered at the origin in R2 and with a diagonal variance-covariance matrix.
To ensure a proper exploration of the space and prevent an overly informed distribution, we opted
to double the variance estimated by the joint model with bivariate Gaussian random effect by Ng
et al. (2023) (see Section 4.4) and enforce zero correlation in the initial grid definition. Weights
were computed using the density of the bivariate Gaussian distribution under consideration, and
then normalized to sum to one. For each run with Uniform initialization, we sampled a Uniform
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Figure 1: Gaussian (left panel) and uniform (right panel) initial grids for the random effects distribution
of the discrete frailty model. Each point is colored according to a gradient scale from blue to red, which
distinguishes points associated with decreased risk (blue) from one associated with increased risk (red).
The size of each point reflects its weight in the discrete distribution.
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Figure 2: AIC (top panels) and number of masses (bottom panels) obtained by the joint model with
discrete frailty under different distance thresholds L and across 12 runs of the algorithm. Left and right
panels refer to the Gaussian and Uniform initialization cases, respectively.

distribution over a rectangle centered in the origin of R2 with sides’ lengths set at six times the
standard deviation of the corresponding variance parameters obtained by the application of the
joint model by Ng et al. (2023). The rectangle area was filled with M = 1024 equally spaced
points with uniform weights. Figure 1 illustrates an example of the support-point grids of the
random effects for the Gaussian (left panel) and the Uniform (right-panel) initializations.

Figure 2 reports the AIC (top panels) and the number of masses K (bottom panels) of models
obtained from 12 runs, each with varying values of L, using the two initialization procedures.
Results on AIC showed that the Uniform case (right panel) leads to more stable and better
estimates compared to the Gaussian one (right panel). This confirmed the advantage of using
a more comprehensive and adaptable initialization grid. Furthermore, transitioning from the
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highest number of masses (7 for the Gaussian case; 9 for the Uniform case) to 3 or even 2 masses
(L ≈ 1 or L ≈ 2) resulted in only a slight decrease in AIC. The sensitivity analysis was repeated
by computing the BIC, and the results remained consistent. In terms of mass cardinality, both
the procedures highlighted the presence of stability regions for different values of L ranging from
1 to 2.5, where the fitted model suggested the presence of either 3 and 2 masses. Striking the
best balance between model accuracy and complexity, these regions guided the choice of optimal
threshold values. In both the Gaussian and Uniform cases, the values of L from the runs that
led to the identification of K = 2 or K = 3 masses (i.e., L ≈ 1 and L ≈ 2, respectively) with the
lowest AIC were selected as viable options.

4.3.2 Estimated mass points

Figure 3 displays the discrete random-effects estimates for the case of 2 and 3 masses, obtained
with the Gaussian (left) and Uniform (right) initialization (the complete list of the estimates
and their standard errors is reported in Appendix B). The disposition of points follows a linear
pattern, suggesting that patients’ fragility remains consistent between hospitalizations and death
hazards. Notably, the range of values for the estimated random effect associated with the termi-
nal event (v̂i) is broader than that of the recurrent random effect (ûi). For both the initialization
procedures, when 2 mass points were identified (diamonds in blue palette), the most frequent
cluster (about 69% of patients) was relative to the neutral/protected sub-population (blue dia-
mond P1) with a slightly negative frailty for both processes. The rest 31% can be identified as
the at-risk sub-population (light-blue diamond P2), containing individuals at higher risks of both
hospital readmission and mortality. As the value of L decreased to the point where the algorithm
identified 3 mass points, we observed that the 2 clusters of patients split into 3 more differentiated
clusters. This indicates that the lower value of L enables a finer separation and characterization
of the patient population, revealing additional heterogeneity and subgroups within the data.
In this case, results were slightly different for Gaussian and Uniform initialization but in both
cases we can distinguish a protected sub-population (P1), a neutral sub-population (P2), and the
sub-population at-risk (P3).
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Figure 3: Estimated random-effects of the JMDF specified in Eq. (29) with Gaussian (left panel) and
Uniform (right panel) initialization procedures, when K = 3 (circles in orange/pink palette) and K = 2
(diamonds in blue palette) mass points are identified. Each point is reported along with its coordinates
(u, v) and the size is proportional to its mass weight w. The complete list of the estimates and their
standard errors is reported in Appendix B.
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This evidence highlights the strength of the proposed methodology in producing straightfor-
ward and interpretable results. A comparison of these results with the parametric continuous
frailties estimated using the methods by Rondeau et al. (2007) and Ng et al. (2023) is provided
in Section 4.4.

4.3.3 Estimated survival curves stratified by random effects

To better quantify and interpret the effects of belonging to different sub-populations, Figure 4
displays the estimated survival curves for a never-adherent male patient aged 74 years at base-
line with two comorbidities over time. The curves are stratified by random effects for both the
recurrent and terminal event processes, particularly in the more specific cases of three clusters
(left panels: Gaussian; right panels: Uniform). In each panel, the black line represents the
estimated survival curve for a null random effect. Regarding the re-hospitalization risk (top
panels), the distinction among the three sub-populations is subtle yet evident. In both cases, the
at-risk population exhibits a steeper curve, consistent with their shorter expected time before a
new hospitalization. Aligning with the wider ranges of values for the estimated terminal-process
frailties, the difference between the three sub-populations is more pronounced in terms of proba-
bility of survival (bottom panels): the at-risk sub-population exhibits a high mortality risk since
the beginning of the follow-up, in contrast to the neutral sub-population, while the protected
sub-population demonstrates good survival.
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Figure 4: Estimated survival probability curves for hospitalization (top-panels) and death (bottom-
panels) processes related to a never-adherent male patient aged 74 years at baseline with two comorbidities
over time and stratified by random effects. The curves are associated to the discrete frailty distribution
identified by using Gaussian (top-left) and Uniform (top-right) initializations when K = 3 masses are
selected. The color of each curve is the same of the corresponding random-effect point as in Figure 3. The
black lines represent the estimated survival probability curves for a null random effect. Time is expressed
in days since index event.
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Sex (Male) Age (10-year) Comorbidity Adherent (Yes)
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Figure 5: Comparison of estimated fixed-effect Hazard Ratios (HRs) and their 95% CIs in the trained
models. Top panels refer to the recurrent hospitalization process, whereas bottom panels to terminal
death process. Considered joint models are: JMDF with Gaussian initialization when K = 2 (G2 : green)
and K = 3 (G3 : dark-green) masses are identified; JMDF with Uniform initialization when K = 2 (U2 :
light-blue) and K = 3 (U3 : blue) masses are identified; Shared log-normal frailty model by Rondeau
et al. (2007) (R: brown); Multivariate Gaussian frailty model by Ng et al. (2023) (N : salmon).

4.3.4 Effects of fixed covariates

The estimated fixed-effects (covariates sex, age, ncom, and adherent) were strongly consistent
across different runs, choices of L, and initialization procedures. Figure 5 reports the Hazard
Ratios (HRs) along with the 95% Confidence Intervals (CIs) for the fixed-effects estimates in
both the recurrent (top panels) and terminal (bottom panels) events. Each panel displays the
results for the JMDF with 2 or 3 masses, using both Gaussian and Uniform initializations, in
addition to the estimates from the parametric frailty models proposed by Rondeau et al. (2007)
and Ng et al. (2023). The estimated HRs showed a high level of concordance across the models,
especially for the recurrent events process. This suggests that, despite varying assumptions about
the random effects, the fixed-effects estimates remain consistent across the models. Another
positive observation pertains to the standard errors, which are smaller in the JMDF compared
to the others.

The sex variable (first columns) did not emerge as a significant predictor for either the hazard
of recurrent or terminal events. Patient age was found to be statistically significant for both
processes. Its effect on the hospitalization hazard is a 12% reduction in the hazard of hospitaliza-
tion per 10-year increase (HR = 0.88). Conversely, a 10-year increase results in a 45% increase
in the death hazard (HR=1.45). From a clinical perspective, this phenomenon can be explained
by the fact that as patients get older, the risk of experiencing a new hospitalization is partially
replaced by the risk of mortality. The number of comorbidities ncom resulted a statistically sig-
nificant risk factor for both processes, leading to a 10% increase in the risk of hospitalization
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and a substantial 23% increase in the risk of death per registered comorbidity (HR = 1.10 and
HR = 1.23, respectively). This confirmed the well-documented role of comorbidities in increas-
ing mortality and hospitalizations among HF patients (Van der Wal et al., 2017; Widmer, 2011).
Finally, being adherent to the ACE treatment was found to be statistically significant at any
level for the recurrent event process, yielding a 20% decrease in the hazard of a new hospitaliza-
tion (HR = 0.80). For the death process, it was significant only in the 3-mass cases, where it led
to a 15% decrease in the death hazard (HR = 0.85). From a clinical perspective, these results
endorse the efficacy of ACE inhibitors treatment for HF. It demonstrates a significant reduction
in the hospitalization rate, consequently lowering the occurrence of critical HF events in adherent
patients throughout their clinical journey, while also enhancing their survival probability.

4.4 Comparison of random effects with joint parametric frailty models

To compare our proposed method with discrete non-parametric random effects to its counter-
parts, we applied the joint parametric frailty models presented by Rondeau et al. (2007) and Ng
et al. (2023) to the HFData.

Figure 6 displays pointwise estimates for models by Rondeau et al. (2007) (left panel) and
Ng et al. (2023) (right panel). In the right panel, each point corresponds to a different subject
i with recurrent ûi as abscissa and terminal v̂i as ordinata, and it is colored according to the
assigned discrete point-mass group for Uniform initialization when K = 3 masses are identified
as in Figure 3. In the left panel, we report the estimated exp(ηi) stratified according to the
assigned 3 discrete mass points. Results are in line with the role of the protected/neutral/at-risk
sub-populations.

Table 1 reports the estimated parameters for the random-effects in Figure 6. In both models,
the frailty associated with the recurrent events process exhibits lower variability compared to the
frailty associated with the death process. This observation aligns with the estimated distribution
of our mass points (see Figure 3) and is clinically reasonable, as subjective factors influencing
mortality outcomes may exhibit greater diversity and significance compared to those affecting
hospitalizations. The notably high positive value estimated for the multiplicative parameter in
Rondeau et al. (2007) (α̂ = 5.552) and the strong positive correlation (ρ̂ = 0.883) between the
frailties estimated by Ng et al. (2023) indicate a significant positive correlation between the frail-
ties associated with the two processes, affirming the positions of the mass points in our discrete
distribution. This finding emphasizes the importance of modeling the dependence between the
frailties of the recurrent events process and the death process. It highlights that individuals
more susceptible to re-hospitalizations are also more likely to experience higher mortality risks.
By incorporating and accounting for this dependence in the model, we can better capture the
interplay and shared underlying factors between these two processes.

Joint model Random-effect Parameters Estimate StdDev pvalue

Rondeau et al. (2007) σ2 0.127 0.009 <2e-16
α 5.552 0.318 <2e-16

Ng et al. (2023)
θ2u 0.094 0.004 <2e-16
θ2v 1.438 0.059 <2e-16
ρ 0.883 0.006 <2e-16

Table 1: Estimated random-effects coefficients of the joint parametric frailty models by Rondeau et al.
(2007) and Ng et al. (2023).
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Figure 6: Random effects pointwise estimates for models by Rondeau et al. (2007) (left panel) and Ng
et al. (2023) (right panel). In the right panel, points are visualized in R2 considering hospitalization
frailties as abscissa and death frailties as ordinata. Each point correspond to a different subject and it
is colored according to the assigned discrete point-mass group for Uniform initialization when K = 3
masses are identified as in Figure 3.In the left panel, the distribution of exp(ηi) is stratified according to
the assigned 3 discrete mass points.

5 Discussion

This paper contributes to the literature on joint models for recurrent and terminal events by
introducing an innovative joint frailty model, called JMDF, in which the frailties related to the
two processes assume a discrete distribution with an a priori unknown number of support points.
The JMDF approach allows for the clustering of the highest-level units, i.e., patients in our case,
based on their frailty levels. After adjusting for the observable factors, the bivariate discrete
frailty takes into account the heterogeneity at the patient level, associated with unobserved
covariates, and captures the correlation between the two processes. Specifically, the assumption
of a discrete distribution translates this heterogeneity into the identification of clusters of patients,
enabling us to distinguish different patients profiles based on their associated frailty values.

The advantage of this modelling approach is twofold. First, using a discrete distribution with
an unknown number of support points for frailties can indeed increase the model’s flexibility
compared to classic parametric distributions. Parametric distributions impose specific assump-
tion on the shape of the frailty that might not always hold in real-world data. By using a discrete
distribution, the frailties can encompass a broader range of values and patterns, potentially re-
ducing the risk of bias and leading to a better fit to the data. Second, discrete frailties capture
different patterns of vulnerability or risk among patients, with each support point corresponding
to a distinct subpopulation of patients sharing a similar frailty profile. These subpopulations
represent individuals who share unobserved common characteristics, behaviors, or risk factors
affecting their outcomes. This lends interpretability to the subpopulations and provides insights
for tailoring interventions to address the specific needs of each group.

When applied to HFData for modelling the two correlated processes related to hospitaliza-
tions and death, the JMDF suggested the presence of three different patients subpopulations,
namely the protected, neutral, and at-risk populations. Compared to the methods proposed in
Ng et al. (2023) and Rondeau et al. (2007), our fixed-effects estimates aligned with those esti-
mated by the counterparts and, moreover, exhibited smaller standard errors. Regarding random
effects, the subpopulations identified by JMDF were consistent with the distribution of contin-
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uous frailties estimated by Ng et al. (2023) and Rondeau et al. (2007). These findings support
the reliability of the proposed method and its results.

Alongside these advantages, our approach has also some limitations and possibilities for
future developments. Firstly, the estimation procedure is highly sensitive to the choice of the
parameter L, which tunes the spacing between mass points in the frailty discrete distribution.
When users have a priori knowledge about the magnitude of differences they aim to observe
across patient clusters, the parameter L represents a positive key point. Otherwise, a sensitivity
analysis is necessary to address this issue and identify potential values for L. By exploiting the
clusters identified using different L values, we can identify stability regions and compare their
goodness-of-fit indices, achieving a balance between model complexity and the ability to capture
meaningful patterns. This procedure also allows for result evaluation at different granularity
levels, revealing varying degrees of heterogeneity among the subpopulations. Nonetheless, tuning
this parameter might be time-consuming and challenging. Further work will be devoted on
developing a significance-based method in which the identified clusters differ in terms of statistical
significance (Ragni et al., 2023). Second, the type of discrete distribution we assume assigns each
patient to a cluster that describes the dynamic related to both the death and hospitalization
processes. The two processes are assumed to arise from a distribution with the same number of
mass points. However, this assumption may not always reflect the underlying reality as there
might be patients sharing the same type of hospitalization process but not the same type of
death process and vice-versa. Patient-level heterogeneity can vary between these processes, and
the optimal number of clusters to capture the dynamics within the data could differ as well.
Therefore, relaxing this assumption and using a more flexible discrete distribution present a
promising avenue for future research in this field. By allowing for varying numbers of clusters
or mass points in the frailty distribution for each process, researchers can potentially provide a
more accurate and nuanced representation of the underlying phenomena.

Overall, this work enriches the literature on joint frailty models for recurrent and termi-
nal events by embracing discretely-distributed non-parametric frailties. This new methodology
empowers the identification of subgroups of patients united by shared frailty attributes. In col-
laboration with healthcare professionals, this additional information has the potential to better
profile patients and, in turn, improve the refinement of their therapeutic pathways.

Software & Code. Software in the form of R code (R Core Team, 2021), together with a toy sample
input data set and complete documentation is available at http://github.com/mspreafico/JMDF.
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Appendix

A Data format

After selecting the cohort of patients for analysis and identifying the relevant events in each
patient’s clinical history (see Section 4.1), we proceeded to reformat the administrative data to
adhere to the required format for the coxph function in the survival R package (Therneau,
2021). Table 2 shows an example of reformatted dataset related to two hypothetical patients
i ∈ {A,B}.

The dataset contains 11 rows, which corresponds to the sum of the number of gap times Tij

for both patient A and patient B, i.e., nA = 5 and nB = 6 respectively. Patient A experienced
four re-hospitalization events (δRAj = 1 and δDAj = 0 for j = 1, . . . , 4), and was censored at the last
follow-up (δDA5 = 0 and δRA5 = 0). Patient B experienced five re-hospitalization events (δRBj = 1

and δDBj = 0 for j = 1, . . . , 5), and died at the last follow-up (δDB6 = 1 and δRA6 = 0).
The dataset contains four explanatory variables: patient’s sexi (male or female; time-fixed),

time-dependent ageij (in years) and number of comorbidities (ncomij) registered at the last
known hospitalization, and time-dependent dichotomous variable adherentij indicating whether
the patient was adherent to ACE therapy according to the proportion of days covered method
with an 80% threshold (Spreafico and Ieva, 2021a).

The (time-dependent) vectors of covariates xR
ij =

(
sexi, ageij , ncomij , adherentij

)
and xD

i =(
sexi, ageini

, ncomini , adherentini

)
. Note that the covariate values in xR

ij may vary for each
event j experienced by a patient (except for sex), whereas the values in xD

i are taken at the last
gap-time ni, representing the patient’s last available measurement. As an example, considering
the second and the last gap times for each patient in Table 2, we have the following values:

xR
A2 = (female, 67, 5, 1) and xR

B2 = (male, 77, 2, 0) ;

xD
A = xR

A6 = (female, 71, 5, 0) and xD
B = xR

B6 = (male, 79, 4, 1) .

i j δRij δDij Tij sexi ageij ncomij adherentij
A 1 1 0 49 female 65 5 1
A 2 1 0 901 female 67 5 1
A 3 1 0 391 female 69 5 1
A 4 1 0 10 female 69 5 1
A 5 0 0 801 female 71 5 0
B 1 1 0 82 male 77 2 0
B 2 1 0 11 male 77 2 0
B 3 1 0 186 male 77 2 1
B 4 1 0 29 male 77 2 1
B 5 1 0 118 male 78 4 1
B 6 0 1 183 male 79 4 1

Table 2: Example of reformatted dataset.
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B Discrete frailty estimates

Gaussian initialization Uniform initialization

P̂ u
k P̂ v

k ŵk
P̂ u
k P̂ v

k ŵk(sd) (sd) (sd) (sd)

K = 3

P1
-0.278 -1.573 0.453 -0.333 -2.630 0.248(0.0002) (0.0199) (0.0004) (0.1131)

P2
0.071 0.629 0.322 -0.067 0.121 0.485(0.0002) (0.0036) (0.0002) (0.0040)

P3
0.458 2.270 0.225 0.431 2.230 0.266(0.0002) (0.0019) (0.0002) (0.0017)

K = 2
P1

-0.181 -0.813 0.691 -0.180 -0.795 0.693(0.0001) (0.0051) (0.0001) (0.0049)

P2
0.404 1.814 0.309 0.405 1.793 0.307(0.0002) (0.0016) (0.0002) (0.0016)

Table 3: Estimated random-effects of the JMDF specified in Eq. (29) with Gaussian and Uniform
initialization procedures, when K = 3 and K = 2 mass points are identified. Each point k is reported in
terms of its coordinates P̂k =

(
P̂u
k , P̂

v
k

)
and its weight ŵk. Standard errors of the estimates are reported

in brackets.
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