
MOX-Report No. 85/2024

Error estimates for POD-DL-ROMs: a deep learning framework for

reduced order modeling of nonlinear parametrized PDEs enhanced

by proper orthogonal decomposition

Brivio, S.; Franco, Nicola R.; Fresca, S.; Manzoni, A.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it



Error estimates for POD-DL-ROMs: a deep learning framework for
reduced order modeling of nonlinear parametrized PDEs

enhanced by proper orthogonal decomposition

Simone Brivioa,, Nicola Rares Francoa, Stefania Frescaa, Andrea Manzonia

aMOX – Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy

Abstract

POD-DL-ROMs have been recently proposed as an extremely versatile strategy to build accurate and reliable
reduced order models (ROMs) for nonlinear parametrized partial differential equations, combining (i) a
preliminary dimensionality reduction obtained through proper orthogonal decomposition (POD) for the
sake of efficiency, (ii) an autoencoder architecture that further reduces the dimensionality of the POD space
to a handful of latent coordinates, and (iii) a dense neural network to learn the map that describes the
dynamics of the latent coordinates as a function of the input parameters and the time variable. Within
this work, we aim at justifying the outstanding approximation capabilities of POD-DL-ROMs by means of a
thorough error analysis, showing how the sampling required to generate training data, the dimension of the
POD space, and the complexity of the underlying neural networks, impact on the solution accuracy. This
decomposition, combined with the constructive nature of the proofs, allows us to formulate practical criteria
to control the relative error in the approximation of the solution field of interest, and derive general error
estimates. Furthermore, we show that, from a theoretical point of view, POD-DL-ROMs outperform several
deep learning-based techniques in terms of model complexity. Finally, we validate our findings by means of
suitable numerical experiments, ranging from parameter-dependent operators analytically defined to several
parametrized PDEs.

Keywords: Operator Learning, Neural Networks, Approximation bounds, Reduced order modeling,
parametrized PDEs, deep learning-based reduced order modeling

1. Introduction

Solutions to partial differential equations (PDEs) are not usually available in analytic form and need
to be approximated by suitable high-fidelity methods, such as the Finite Element Method (FEM) [35, 37].
The latter usually entails a suitable spatial discretization of the (bounded, compact) computational domain
Ω ⊂ Rd, d = 1, 2, 3, regulated by the step size h > 0 and yielding a set of Nh degrees of freedom, that
in some cases might correspond to the vertices of the elements providing the domain discretization. High-
fidelity methods are usually referred to as full order models (FOMs) as they provide very accurate solutions,
however resulting in computationally demanding strategies in terms of either time or resources. Within this
work, we focus on a parametric setting, where in general the PDE solution u depends not only on the spatial
coordinate x ∈ Ω and the time variable t ∈ T = [0, T ], but also on a parameter vector µ ∈ P – being the
parameter space P ⊂ Rp a compact set – namely u = u(x,µ, t). Once the problem has been discretized in
space, we aim at exploring the solution manifold SNh = {u(µ, t) = [u(xi,µ, t)]

Nh
i=1 ∈ RNh : (µ, t) ∈ P × T },

evaluating the problem solution in multiple scenarios, for different parameter values. To carry out this task
efficiently, as well as to tackle other multi-query tasks such as those involving Uncertainty Quantification
and to perform real-time numerical simulations, FOMs must be replaced by efficient and reliable reduced
order models (ROMs), a wide class of strategies providing very efficient results yet retaining an adequate
representation of the solution manifold SNh .

Linear projection-based ROMs, such as the reduced basis (RB) method relying on either greedy algo-
rithms or the Proper Orthogonal Decomposition (POD) to build a low-dimensional linear trial subspace, are
widely used in the context of parametrized PDEs. Usually relying on a (Petrov-)Galerkin projection to gen-
erate the corresponding ROM by enforcing at the reduced order level the physical constraints expressed by



the FOM, these strategies feature however several drawbacks, especially when dealing with time-dependent,
nonlinear, and nonaffine problems, ultimately requiring suitable hyper-reduction strategies such as the Em-
pirical Interpolation Method (EIM) [1, 9, 36] or the Discrete EIM (DEIM, [4]). Despite being very general,
and widely applied, hyper-reduction techniques usually feature an intrusive nature, require to handle al-
gebraic arrays extracted from the FOM, ultimately resulting in overwhelming computational costs when
dealing with nonlinear time-dependent parametrized PDEs.

To overcome these limitations, data-driven Deep Learning-based ROMs (DL-ROMs) were recently pro-
posed in [10, 12] and similar works [27, 31, 34, 45] to exploit the power of DNNs to both perform dimension-
ality reduction of a set of high-dimensional snapshots data (obtained by sampling the solution manifold) and
learn parameter-to-solution maps nonintrusively. Unfortunately, these techniques require to train complex
architectures and might become unfeasible to train as soon as the FOM dimension Nh increases, suffering
from the curse of dimensionality in their vanilla version. To counter this issue, POD-DL-ROMs were then in-
troduced in [16], leveraging on the power of DL-ROMs and the physically-consistent dimensionality reduction
achieved through POD, and then training a DL-ROM network using FOM data projected on a (possibly,
large dimensional) POD space: overall, POD-DL-ROMs are capable of lower training efforts in terms of
both memory storage and computational time. The POD-DL-ROM paradigm has been tested against sev-
eral problems, showing remarkable approximation capabilities in the numerical simulation of, e.g., fluid flows
and fluid-structure interaction problems [15, 16], cardiac electrophysiology [18], and micro-electromechanical
systems [14] among others.

However, a thorough numerical analysis of the POD-DL-ROM technique – connecting, e.g., the complexity
of the NN architectures involved in a POD-DL-ROM, the sampling error entailed by the selection of training
data, the POD error generated while projecting those data onto a POD space, with the overall accuracy of
the computed solution – is still lacking. Within this work, we aim at addressing these questions in light of a
solid theoretical analysis, providing general error estimates for the POD-DL-ROM technique, assessing their
validity in a series of numerical experiments involving different parametrized problems.

1.1. Literature review and existing results

Thanks to the flourishing and rapidly evolving literature of Approximation Theory, many Deep Learning-
based approaches to reduced order modeling are now being justified with rigorous theoretical results and
error estimates. The majority of these are grounded on a notorious result by Yarotski (2017) [42], which
we report below. In what follows, we use the acronym ReLU for the rectified linear unit activation, i.e., the
scalar map x→ max{x, 0}.

Theorem (Yarotski [42]). Let b ∈ N, b ≥ 1 and 0 < ε < 1/2. Any f ∈ W s,+∞([0, 1]b) can be approximated
uniformly with an error of at most ε by a ReLU Deep Neural Network (DNN) having at most c log(1/ε)
layers and cε−b/s log(1/ε) weights, where c = c(s, b, f) is a constant.

Indeed, this result and its subsequent generalizations, see e.g. [43, 21], constitute the foundation of many
recent works, for instance:

(i) in [10], the authors exploited these results to formulate an error analysis for general DL-ROMs. How-
ever, their analysis is limited to the time-independent case and does not resolve the curse of dimen-
sionality, as it binds the complexity of DL-ROMs linearly with the FOM dimension Nh;

(ii) Yarotski’s Theorem was also considered in [11], where the authors investigated the approximation
capabilities of Convolutional Neural Networks (CNNs), suggesting a strong connection between these
architectures and the Fourier transform;

(iii) similarly, the results in [42] are fundamental for the derivation of the approximation bounds reported
in [26], which, instead, concern the DeepONet paradigm, an approach first proposed by Lu et al. in
[28];

(iv) finally, Yarotski’s Theorem and its generalizations were also employed to derive approximation bounds
for deep learning-based ROM strategies that couple POD and feedforward neural networks, see, e.g.,
[2].

Here, we aim at proposing a similar analysis for POD-DL-ROMs, emphasizing the main differences between
this approach and the existing literature.
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1.2. Overall idea and paper structure

We analyze the overall approximation error entailed by the use of POD-DL-ROMs when dealing with the
solution of both linear and nonlinear time-dependent parametrized PDEs by highlighting two separate error
contributions: one, coming from the preliminary dimensionality reduction obtained through POD, and one
entailed by the use of neural networks.

In brief, the idea goes as follows. First, we show that in the finite data regime, the overall error of a
POD-DL-ROM, ER, can be decomposed as

ER ≤ ES + EPOD + ENN ,

where ES is the sampling error, EPOD is the POD projection error, and ENN is the approximation error
of the neural network model in the DL-ROM pipeline. Then, we address each of the three contributions
separately.

For the first two, we rely on classical arguments that bind together the discrete and the continuous
formulation of POD, see e.g. [9, 36], ultimately showing that the sampling error vanishes as a function
of the sample size, while EPOD is uniquely characterized by the eigenvalue decay of the data correlation
matrix. In this sense, our analysis is strictly related to the one proposed in [26]. To study the neural
network error, instead, we consider a specific construction that reflects the general philosophy of DL-ROM
techniques. More precisely, we emphasize the fact that POD-DL-ROMs use a neural network architecture
that is obtained through the combination of two networks: a feature map, φ, which captures the roughness
in the parameter-to-solution operator, and a smoother decoder Ψ. In particular, we base our proof on a
generalization of Yarotski’s Theorem, due to Gühring et al. [21], which, during the composition step, allows
us to keep the approximation error under control. For the sake of better readability, we report the latter
result below.

Theorem (Gühring et al. [20]). Let b, s ∈ N, with b ≥ 1, s ≥ 2 and n ∈ {0, 1}. For any tolerance
0 < ε < 1/2 and any f ∈ W s,+∞([0, 1]b), there exists and a ReLU DNN Ψ having at most c log(1/ε) layers
and cε−b/(n−s) log(1/ε) weights, where c = c(s, b, f, n) is a constant, such that

‖Ψ− f‖Wn,+∞([0,1]b) < ε.

All of this ultimately allows us to characterize the accuracy of POD-DL-ROMs in terms of their complex-
ity, providing explicit error bounds that we later compare with the existing literature and verify numerically.

The paper is organized as follows: in Section 2 we formulate the problem, describing rigorously the POD-
DL-ROM approach and the reducibility measures for the framework at hand; Section 3 contains the main
results of this work, namely the error decomposition formula, a lower bound result and an upper bound result
for the approximation error. Section 4 then demonstrates advantages of POD-DL-ROMs when compared
to similar deep learning-based frameworks, such as, e.g., POD+DNN and DeepONets. Finally, a series of
numerical experiments that validate the theoretical analysis is shown in Section 5, while the last section
draws some conclusions and summarizes possible further developments.

2. An overview of the POD-DL-ROM technique

POD-DL-ROMs provide a general-purpose ROM approach combining a data dimensionality reduction
obtained through POD with the DL-ROM approach. After introducing the general class of problems we deal
with, we overview the main building blocks of the POD-DL-ROM technique. For further details regarding,
e.g., detailed algorithms for the offline (or training) and the online query (or testing) stages, the interested
reader can refer to, e.g., [16]. An extension of the POD-DL-ROM technique in view of time forecasts of the
problem solution out of the training time window has been proposed in [13].
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2.1. Problem formulation

Within this work, we consider time-dependent parametric PDEs of the following type
∂u

∂t
+ L(µ)u(µ, t) +N (u(µ, t),µ) = f(µ, t), in Ω× (0, T ]

B(µ)u(µ, t) = g(µ, t), on ∂Ω× (0, T ]

u(µ, 0) = u0(µ), in Ω,

(1)

where:

• u = u(x,µ, t) is the PDE solution ∀x ∈ Ω. Here we highlight the explicit dependence of u on the time
variable t ∈ T = [0, T ] (for some T > 0) and the input parameter vector µ ∈ P ⊂ Rp, P compact;

• L is a linear operator, whereas N is a nonlinear operator and B is the boundary operator; virtually,
all these operators might be µ-dependent

• u0 = u0(µ) is the initial condition;

• Ω is the (bounded) spatial domain where the problem is set.

Depending on the nature of the problem, input parameter can refer to either physical or geometrical prop-
erties of the problem at hand. We considered the formulation (2) as general framework since it describes a
wide variety of problems ranging in the fields of engineering, physics, and life sciences, just to make a few
examples. Introducing a computational mesh over Ω with mesh size h > 0 and a corresponding space dis-
cretization of the problem (1) having Nh degrees of freedom (dofs) obtained through, e.g., the finite element
method, the finite-dimensional counterpart of problem (1) provides our FOM and reads as follows:M(µ)

∂u

∂t
(µ, t) + A(µ)u(µ, t) + N(u(µ, t),µ) = f(µ, t), t ∈ (0, T ]

u(µ, 0) = u0(µ),
(2)

where u(µ, t) ∈ RNh denotes the vector of the Nh dofs of the FOM solution, M(µ) ∈ RNh×Nh the mass
matrix, A(µ) ∈ RNh×Nh the stiffness matrix, N(·,µ) : RNh → RNh a nonlinear map, f(µ, t) ∈ RNh the
source term and u0(µ) ∈ RNh the initial data. The FOM (2) is then discretized in time, introducing a
suitable time advancing scheme over a partition of T made by Nt time steps {tk}Ntk=1.

To explore efficiently the solution manifold SNh = {u(µ, t) : (µ, t) ∈ P × T } we employ the POD-DL-
ROM technique, performing a two-step dimensionality reduction: first, POD (realized through randomized
SVD) is applied on a set of FOM snapshots; then, a DL-ROM is built to approximate the map between
(µ, t) and the POD generalized coordinates. This latter task can be achieved by relying on two neural
network architectures, (i) a deep autoencoder – possibly involving convolutional layers – that extracts a set
of few, latent coordinates, ultimately representing the reduced-order coordinates of the ROM, and (ii) a
deep feedforward neural network, to learn the map between (µ, t) and these latent coordinates. Below, we
report the main building blocks of a POD-DL-ROM, originally proposed in [16]:

(i) the snapshot matrix for the parameter vectors µj , j = 1, . . . , Ns is collected, thus obtaining Uj =

[u(µj , tk)]Ntk=1 ∈ RNh×Nt ;

(ii) the whole snapshot matrix is obtained stacking Uj , j = 1, . . . , Ns, namely U = [Uj ]
Ns
j=1 ∈ RNh×Ndata ,

where Ndata = NsNt;

(iii) a singular value decomposition (SVD) is performed on the snapshot matrix U, and the first N left
singular vectors are retained, thus yielding U ≈ VΣWT , where V ∈ RNh×N , Σ ∈ RN×N and W ∈
RN×Ndata . Then, projecting U on the reduced linear subspace V ∈ RNh×N , we obtain a snapshot
matrix for the POD coefficients Q = VTU;
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(iv) the POD coefficient vectors q(µj , tk), j = 1, . . . , Ns, k = 1, . . . , Nt, obtained from the columns of Q,
along with the parameters vector µj and the time instants tk, are used to train a DL-ROM. This latter
consists of a deep autoencoder Ψ ◦Ψ′ and a deep feedforward neural network (to which we refer to as
reduced network) φ, defined as follows:

zDYN = φ(θDYN ;µj , tk)

zENC = Ψ′(θENC ; q(µj , tk))

q̂ = Ψ(θDEC ; zDYN (θDYN ,µj , tk)),

where φ,Ψ′,Ψ are the reduced network, the encoder and the decoder, respectively, while θDYN ,θENC ,θDEC
are their corresponding neural network weights and biases (they are omitted, hereon, for the sake of
readability). The three networks are trained according to the per-example loss function below,

Lsupervised = ωNLN + ωnLn,

where n denotes the latent dimension of the architecture,

LN =

Ns∑
j=1

Nt∑
k=1

‖q̂(µj , tk)− q(µj , tk)‖2,

Ln =

Ns∑
j=1

Nt∑
k=1

‖zENC(µj , tk)− zDYN (µj , tk)‖2,

while ωN , ωn > 0 are suitable hyperparameters having the purpose to properly balance the two con-
tributions. As a matter of notation, from hereon we equip any finite dimensional space Rb (for some
b ∈ N) with the `2 norm: thus, unless otherwise stated, we define ‖ · ‖ := ‖ · ‖2. It is worth to remark
that LN penalizes high reconstruction errors and Ln ensures a good representation in the latent space.

Recalling that (µ, t) → Vq̂(µ, t) ≈ u(µ, t) provides the POD-DL-ROM approximation, the objective of
the present work is to characterize the relative error

ER :=

Å∫
P×T

‖u(µ, t)−Vq̂(µ, t)‖2

‖u(µ, t)‖2
d(µ, t)

ã1/2

in terms of the POD-DL-ROMs complexity. Here, we choose to focus on analyzing ER since it is a common
measure for the accuracy in the ROM literature. Moreover, we highlight that the entire workflow yielding
the error estimate we propose in this work is only based on the approximation error. Indeed, in the wake of
analogous works, e.g. [7, 26, 30], our analysis disregards the contribution of the optimization error, which
is an additional source of error stemming from the stochastic nature of the neural network training, related
to, e.g., the stochastic gradient descent algorithms and random initializations of the networks weights and
biases. We remark that a thorough analysis of the training stage and the optimization algorithm employed to
compute the optimal parameters is beyond the purpose of the present work but it may constitute a promising
direction for future research. Moreover, we mention that the extension to more general vector energy norms
including the contribution of symmetric positive definite mass matrices to define the counterpart of norms
in functional spaces like, e.g., L2(Ω) or H1(Ω), is also straightforward and is not considered here for the sake
of simplicity.

2.2. POD: from the discrete to the continuous formulation

Before proceeding towards the thorough analysis of ER, we have to appropriately define the working
setting, which depends on the linear dimensionality reduction. First, we notice that even though within
the POD-DL-ROM pipeline we computed the POD matrix V through the (randomized) SVD algorithm,
thus using a fully data-driven procedure that employs a set of training data, the relative error ER aims at
measuring the approximation capabilities over the entire time-parameter space P × T , taking advantage
of a continuous formulation. Within this section, we aim at filling the gap between the discrete and the
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continuous formulation of POD, highlighting links and bounds, focusing initially only on the source of error
coming from the projection phase, rather than directly considering ER: this allows us to set the ground upon
which the more complex approximation results of POD-DL-ROM are based.

We start by considering the (P × T )-discrete setting, and the fact that V results from the solution of a
minimization problem; indeed, denoting by

K =
|P × T |
Ndata

UUT ∈ RNh×Nh

the (discrete) correlation matrix and by σ2
k its eigenvalues, it holds that [36]

∑
k>N

σ2
k =
|P × T |
Ndata

Ndata∑
j=1

‖uj −VVTuj‖2

= min
W∈RNh×N :WTW=I

|P × T |
Ndata

Ndata∑
j=1

‖uj −WWTuj‖2,

where N is the chosen POD dimension and uj is the solution vector that corresponds to the tuple (µ, t)j .
We can proceed analogously for the (P × T )-continuous setting, by considering

K∞ =

∫
P×T

u(µ, t)u(µ, t)T d(µ, t) ∈ RNh×Nh (3)

as the (continuous) correlation matrix and denoting by σ2
k,∞ its eigenvalues; similarly, we can prove that

there exists an optimal rank-N matrix V∞ ∈ RNh×N such that∑
k>N

σ2
k,∞ =

∫
P×T

‖u(µ, t)−V∞VT
∞u(µ, t)‖2d(µ, t)

= min
W∈RNh×N :WTW=I

∫
P×T

‖u(µ, t)−WWTu(µ, t)‖2d(µ, t)

From the considerations above, we can infer that∑
k>N

σ2
k,∞ =

∫
P×T

‖u(µ, t)−V∞VT
∞u(µ, t)‖2d(µ, t)

≤
∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t);

from the inequality above, we can remark that the data-driven POD matrix V is not optimal for the
continuous formulation, which stems from the hypothesis of having infinite data samples, while being the
best orthogonal matrix in terms of explained variability with respect the training data at hand. In other
words, even though V is optimal for the training data, we have no guarantee that it is optimal for the test
data, too; however, since in practice we are not able to obtain the matrix V∞, we must necessarily rely on
V also in the online testing phase.

Finally, we show how the discrete and the continuous POD formulations are related: indeed, denoting
by [·]i the i-th entry of a vector, and extending this notation to matrices, we have that ∀k, l = 1, . . . , Nh

[K∞ −K]kl =

∫
P×T

[u]k[u]ld(µ, t)− |P × T |
Ndata

Ndata∑
j=1

[uj ]k[uj ]l,

recalling that uj is the solution vector that corresponds to the tuple (µ, t)j . Upon requiring integrability
(easily verified for non-trivial bounded solutions), we can use the Strong Law of Large Numbers [23] and

obtain [K −K∞]kl
a.s.−−→ 0 as Ns, Nt → ∞,∀k, l = 1, . . . , Nh, which implies that ‖K −K∞‖1

a.s.−−→ 0, being
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‖Z‖1 any 1-norm of the squared matrix Z. By employing Bauer-Fike’s theorem [37] with the 1-norm, we
can state that, upon ordering, for any σ2

k,∞, there exists σ2
k belonging to the spectrum of K such that

|σ2
k − σ2

k,∞| ≤ K1(X)‖K−K∞‖1, ∀k = 1, . . . , Nh

where X is the matrix collecting the right eigenvectors of K, and K1(X) denotes its condition number. Thus,
we can conclude that, setting N as the POD dimension, it holds that∑

k>N

σ2
k
a.s.−−→

∑
k>N

σ2
k,∞, Ns, Nt →∞.

2.3. An overlook over the reducibility measures for POD-DL-ROMs

POD-DL-ROMs couple POD, for the sake of a preliminary dimensionality reduction, with an autoencoder-
based architecture to reconstruct the parameter-to-POD-coefficients map. Thus, at first it is evident that
the projection-based nature of the paradigm invokes the definition of a linear reducibility measure to account
for the FOM-to-POD dimensionality reduction task.

Definition 1. Let SNh = {u(µ, t) ∈ RNh : (µ, t) ∈ P ×T } be the solution manifold. The linear Kolmogorov
N-width of SNh is defined as

dN (SNh) = inf
VN⊂RNh :dim(VN )=N

sup
u∈SNh

inf
v∈VN

‖u− v‖.

It is worth to notice that the linear Kolmogorov N -width is strictly related to the eigenvalues decay of
the correlation matrix K∞ ∈ RNh×Nh . In fact, following the same notation of Subsection 2.2, we have that: ∑

k>N

σ2
k,∞ =

Å∫
P×T

‖u(µ, t)−V∞VT
∞u(µ, t)‖2d(µ, t)

ã1/2

≤
Å∫
P×T

‖u(µ, t)−WWTu(µ, t)‖2d(µ, t)

ã1/2

≤ |P × T |1/2 sup
(µ,t)∈P×T

‖u(µ, t)−WWTu(µ, t)‖2

for any W ∈ RNh×N ; thus,  ∑
k>N

σ2
k,∞ ≤ |P × T |

1/2dN (SNh).

The above relationship shows that the eigenvalue decay is an alternative (and more practical) measure of
reducibility, with respect to a weaker norm. However, notice that in practice we can only approximate
the quantity

∑
k>N σ

2
k,∞ ≈

∑
k>N σ

2
k, which is consistent with the theory thanks to the convergence result

presented in Subsection 2.2.
The autoencoder-based architecture of a POD-DL-ROM introduces a second level of dimensionality

reduction, which operates a further compression of the information coming from the parameter-to-POD-
coefficients map Q : (µ, t) → VTu(µ, t). The nonlinear nature of the dimensionality reduction performed
through the autoencoder Ψ ◦Ψ′ (being Ψ′,Ψ the encoder and the decoder, respectively) induces a nonlinear
analogue of the Kolmogorov n-width [8].

Definition 2. The nonlinear Kolmogorov n-width of the reduced manifold SN = {q(µ, t) = VTu(µ, t) ∈
RN : (µ, t) ∈ P × T } is defined as

δn(SN ) = inf
Ψ∈C(RN ,Rn)

Ψ′∈C(Rn,RN )

sup
u∈SNh

‖u−Ψ(Ψ′(u))‖.

Now, to deal with nonlinear approximation methods, we state another fundamental definition upon which
the main results of this work are based.
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Definition 3. The reduced manifold SN = {q(µ, t) = VTu(µ, t) ∈ RN : (µ, t) ∈ P × T } enjoys the perfect
embedding Assumption with regularity s, s′ if the infimum in Definition 2 is attained, namely there exist
Ψ∗ ∈ Cs(RN ,Rn),Ψ′∗ ∈ Cs

′
(Rn,RN ) such that

Ψ∗(Ψ
′
∗(q(µ, t)) = q(µ, t) ∀(µ, t) ∈ P × T .

In conclusion, as we did with the POD dimension N , we need to characterize the latent dimension n with
a practical criterion. To do that, an extension of Theorem 3 provided in [10] shows that if the parameter-to-
solution map G : (µ, t) → u(µ, t) and thus the parameter-to-POD-coefficients map Q : (µ, t) → VTu(µ, t)
are Lipschitz-continuous, there exists n ≤ 2p+ 3 such that δn(SN ) = 0.

3. Main results

Before stating the main result of this work, namely an upper bound result, that concerns only POD-DL-
ROMs, we make some preliminary reasoning that, instead, applies to any POD+DNN approach, i.e. we
do not constrain the neural network q̂, that approximates the parameter-to-POD-coefficients map, to be a
DL-ROM. For this purpose, we briefly recall that the POD+DNN technique involves the reconstruction of
the parameter-to-solution map through the approximation (µ, t) 7→ Vq̂(µ, t) ≈ u(µ, t), where q̂ is a generic
(possibly dense) neural network.

In particular, we start by characterizing ER through an error decomposition formula, that enables us to
describe the various error contributions and formulate possible strategies to control them. Secondly, we state
a lower bound result, that highlights how, regardless of the architecture of neural network q̂, the relative
error ER can be bounded from below by a quantity depending on the POD projection. Then, we move to
our upper bound result, where we quantify how complex a POD-DL-ROM should be in order to achieve a
specific bound on the relative error ER.

We initially remark that the computation of the error ER and other related quantities hinges upon the
evaluation of complex integrals, possibly in high dimensional spaces, which can be effectively handled through
Monte Carlo methods. In this respect, we shall make the following assumptions, which we assume to hold
true hereon.

Assumption 1 (Sampling criterion). Let p > 0, assume that P ⊂ Rp is compact and denote T = [0, T ]
for some T > 0. We assume that the training (and testing) snapshots are sampled uniformly and iid in the
parameter space, µ ∼ U(P), while a uniform grid is employed for the time variable, t ∈ {∆t, 2∆t, ..., Nt∆t},
where Nt ∈ N≥2 and ∆t = T/Nt.

Assumption 2 (Parameter-to-solution map). Let G : P × T → RNh be the parameter-to-solution map,
mapping (µ, t) 7→ u(µ, t). We assume that

i) m = ess inf(µ,t)∈P×T ‖u(µ, t)‖ > 0, M = ess sup(µ,t)∈P×T ‖u(µ, t)‖ <∞;

ii) G is Lipschitz-continuous with constant L > 0.

From these assumptions, one can easily derive a couple of auxiliary results, which will be of practical
interest in the remainder, and are reported below; for the sake of brevity, their proofs are postponed to
Appendix Appendix A.

Proposition 1. Let f ∈ L2(P × T ). Under Assumption 1, one has

E
∣∣∣∣∫
P×T

f(µ, t)d(µ, t)− |P × T |
Ndata

Nt∑
i=1

Ns∑
j=1

f(µj , ti)

∣∣∣∣ ≤ O(N−1/2
s +N−1

t ).

where the expectation is taken across all the possible realizations of the data sampling procedure.

8



Proposition 2. Under the Assumption 2, define w(µ, t) = ‖u(µ, t)‖−2. Then

‖ · ‖L2
w

=

Å∫
P×T

‖ · ‖2w(µ, t)d(µ, t)

ã1/2

is a norm in L2(P × T ;RNh).

3.1. The error decomposition formula

In the following, we state an error decomposition formula that is valid for any POD+DNN approach
– and, in particular, for our POD-DL-ROM strategy. Given the more general nature of this result, its
formulation is therefore not restricted to the technique at hand.

Theorem 3.1. Let G : (µ, t) 7→ u(µ, t) for any (µ, t) ∈ P × T be the parameter-to-solution map. Consider
a POD+DNN approximation of G as G(µ, t) ≈ Vq̂, where q̂ : Rp+1 → RN is a neural network trained over
a given training set made by a collection of input parameters (µi, ti)

Ndata
i=1 and the corresponding snapshot

matrix U ∈ RNh×Ndata , while V ∈ RNh×N is the POD projection matrix. Then, under the Assumptions 1
and 2, we have

ER ≤ ES + EPOD + ENN , (4)

where:

• ES = ES(G, {(µi, ti)Ndatai=1 }, N) is the sampling error, that satisfies ES
a.s.−−→ 0 as Ns, Nt → ∞ and

E[ES ] = O(N
−1/4
s +N

1/2
t );

• EPOD = EPOD(G, {(µi, ti)Ndatai=1 }, N) is the POD projection error, that satisfies EPOD
a.s.−−→ EPOD,∞ as

Ns, Nt →∞, where EPOD,∞ = EPOD,∞(G, N) is independent of the sampling criterion;

• ENN = ENN (G, N, q̂) is the approximation error of the neural network, which is arbitrarily low depend-
ing of the approximation capabilities of the network q̂.

Proof. By means of the triangular inequality, we obtain

ER =

Å∫
P×T

‖u(µ, t)−Vq̂(µ, t)‖2

‖u(µ, t)‖2
d(µ, t)

ã1/2

= ‖u(µ, t)−Vq̂(µ, t)‖L2
w

≤ ‖u(µ, t)−VVTu(µ, t)‖L2
w

+ ‖VVTu(µ, t)−Vq̂(µ, t)‖L2
w
. (5)

According to the notation of Section 2, let q(µ, t) := VTu(µ, t). We define

ENN :=

Å∫
P×T

‖Vq(µ, t)−Vq̂(µ, t)‖2

‖u(µ, t)‖2
d(µ, t)

ã1/2

.

Notice that, of the two terms at the right-hand-side of Eq. (5), ENN corresponds to the second one; in par-
ticular, it corresponds to the only error component actually depending on the neural network approximation.
Moreover, we can bound the remaining term in (5) as

‖u(µ, t)−VVTu(µ, t)‖L2
w
≤ m−1

Å∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)

ã1/2

.

Let now K = |P × T |N−1
dataUUT ∈ RNh×Nh be the discrete correlation matrix and let σ2

k be its eigenvalues.
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By employing the triangular inequality and the trivial inequality
√
a+ b ≤

√
a+
√
b for a, b ≥ 0,

m−1

Å∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)

ã1/2

≤

≤m−1

Å∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)−
∑
k>N

σ2
k +

∑
k>N

σ2
k

ã1/2

≤

≤m−1

Å∣∣∣∣∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)−
∑
k>N

σ2
k

∣∣∣∣+
∑
k>N

σ2
k

ã1/2

≤

≤m−1

∣∣∣∣∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)−
∑
k>N

σ2
k

∣∣∣∣1/2 +m−1
 ∑
k>N

σ2
k.

In light of this, we define the sampling error as

ES := m−1

∣∣∣∣∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)−
∑
k>N

σ2
k

∣∣∣∣1/2,
and the POD error as

EPOD := m−1
 ∑
k>N

σ2
k.

Thus, we obtain the inequality in (4)

ER ≤ ES + EPOD + ENN .

In the last part of the proof we aim at showing the characteristic properties of ES and EPOD; recalling that

∑
k>N

σ2
k =
|P × T |
Ndata

Ndata∑
j=1

‖uj −VVTuj‖2,

we can write the sampling error in a slightly different form

ES = m−1

∣∣∣∣∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)− |P × T |
Ndata

Ndata∑
j=1

‖uj −VVTuj‖2
∣∣∣∣1/2.

Moreover, thanks to the compactness hypothesis of Assumption 1 and the boundedness hypothesis of As-
sumption 2 we have that

f(µ, t) = ‖u(µ, t)−VVTu(µ, t)‖2 ≤M2‖I−VVT ‖2 < +∞,

so that f ∈ L2(P × T ). Thus, by means of Proposition 1, we conclude that E[ES ] = O(N
−1/4
s +N

−1/2
t ).

Finally, since ES and EPOD depend on the number of samples and snapshots in the training set, it is
natural to verify their behavior in the infinite data limit. Thanks to Assumption 1, by the Strong Law of
Large Numbers, it is evident that ES

a.s.−−→ 0 as Ns, Nt →∞ and, by means of the results in Section 2,

EPOD
a.s.−−→ EPOD,∞ := m−1

 ∑
k>N

σ2
k,∞, Ns, Nt →∞.

Remark 1. The convergence rate for ES can be improved by modifying Assumption 1. Indeed, Monte Carlo
sampling could be replaced by other strategies: for instance, using Quasi-Monte Carlo techniques [32, 3], and

under suitable regularity assumptions, one has E[ES ] = O((log(Ns))
p+1
2 N

−1/2
s +N

−1/2
t ).
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3.2. Lower bound for the relative error

POD-DL-ROMs couple classical projection-based methods such as the POD with Deep Learning-based
techniques that allow to correctly reproduce the nonlinearity of the parameter-to-POD-coefficient map Q.
This means that we still need to rely on the linear transformation represented by the POD matrix V ∈ RNh×N
(or V∞ in the infinite data limit) to expand the neural network approximation of the POD coefficients.

This last consideration is crucial: indeed, the fact that the POD-DL-ROM technique hinges upon a linear
decomposition forces the relative error to still depend on the eigenvalues decay of the correlation matrix; the
mentioned dependence is highlighted in the lower bound result provided below.

Theorem 3.2. Under the same assumptions of Theorem 3.1, we have that

ER ≥
m

M
EPOD,∞,

where EPOD,∞ := m−1
»∑

k>N σ
2
k,∞.

Proof. We immediately notice that, by optimality of projection coefficients,

ER =

∫
P×T

‖u(µ, t)−Vq̂(µ, t)‖
‖u(µ, t)‖

d(µ, t) ≥
∫
P×T

‖u(µ, t)−VVTu(µ, t)‖
‖u(µ, t)‖

d(µ, t),

where we recall that V is the POD matrix computed via SVD using the discrete formulation and V∞ is
relative to the continuous formulation. Then,

(EPOD,∞)2 = m−2
∑
k>N

σ2
k,∞

= m−2

∫
P×T

‖u(µ, t)−V∞VT
∞u(µ, t)‖d(µ, t)

≤ m−2

∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)

= m−2

∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2

‖u(µ, t)‖2
‖u(µ, t)‖2d(µ, t)

≤ M2

m2

∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2

‖u(µ, t)‖2
d(µ, t) ≤ M2

m2
(ER)2,

from which the thesis follows.

Remark 2. The quantity EPOD,∞ reflects the expressivity of the ideal POD basis, that is, the one obtained
with an infinite amount of data. As such, it is actually related to the contribute ES + EPOD appearing in the
error decomposition formula, Theorem 3.1. To see this, note that

ES + EPOD ≥

≥ m−1

Å∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)

ã1/2

≥

≥ m−1

Å
min

W∈RNh×N :WTW=I

∫
P×T

‖u(µ, t)−WWTu(µ, t)‖2d(µ, t)

ã1/2

=

= m−1

Å∫
P×T

‖u(µ, t)−V∞VT
∞u(µ, t)‖2d(µ, t)

ã1/2

= m−1
 ∑
k>N

σ2
k,∞ = EPOD,∞,

by definition of ES, EPOD, and V∞. It is worth to remark that EPOD,∞ only depends on the eigenstructure
of the continuous correlation matrix K∞, while it is independent of the data sampling.
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Remark 3. Since V∞ is not available in practice, we cannot compute EPOD,∞ exactly. In practice, we can
use a stricter bound: leveraging on quantities emerging from the proof, we actually employ

ẼPOD := m−1

Å∫
P×T

‖u(µ, t)−VVTu(µ, t)‖2d(µ, t)

ã1/2

which we either compute analytically (if possible) or estimate via Monte-Carlo.

Theorem 3.2 states that, no matter how accurate the neural networks approximation is, the relative error
ER is still bounded from below by the variance neglected by the POD projection. Additionally, the lower
bound does not depend on how much data we gather for the supervised training phase. Of note, this is in
agreement with the results provided in the analysis of other linear decomposition-based techniques, such as
DeepONets [26].

3.3. Upper bound for the relative error

On the basis of the error decomposition and the perfect embedding hypothesis, we aim at providing
the main result of this work, which is contained in the Theorem 3.3 and is endowed with a constructive
proof founded on the approximation results of [42]. We remark that the present result is only valid for
POD-DL-ROMs.

Theorem 3.3. Let G : (µ, t) 7→ u(µ, t) for any (µ, t) ∈ P × T be the parameter-to-solution map and
suppose valid Assumptions 1 and 2. Let δ > 0 and 0 < ε < 1; suppose to have collected Ndata = Ndata(δ, ε)
data samples into the snapshot matrix U ∈ RNh×Ndata . Consider the (P × T )-discrete correlation matrix
K = |P × T |N−1

dataUUT ∈ RNh×Nh and let σ2
k be its eigenvalues. Moreover, choose

N = arg min

ß
j ∈ N :

∑
k>j

σ2
k ≤

m2

9
ε2

™
.

We define the parameter-to-POD-coefficients map Q : (µ, t) 7→ q(µ, t) as Q(µ, t) = VTG(µ, t) for any
(µ, t) ∈ P × T , where V ∈ RNh×N is the reduced rank-N POD matrix computed via SVD. We assume that
there exists n > 0, Ψ∗ : Rn → RN ,Ψ′∗ : RN → Rn that are respectively s-times and s′-times differentiable
(with s� s′ ≥ 2), such that they enjoy the perfect embedding assumption stated in Definition 3, namely

Ψ∗(Ψ
′
∗(q(µ, t)) = q(µ, t) ∀(µ, t) ∈ P × T .

We let
C1 = sup

|α|≤s′
sup
v∈RN

|DαΨ′∗(v)| C2 = sup
|α|≤s

sup
w∈Rn

|DαΨ∗(w)|.

Then, there exists a constant c = c(P, T , L, C1, C2, p, n, s, s
′) and a POD-DL-ROM architecture Vq̂ =

Vψ ◦ φ : Rp+1 → RN composed of a decoder ψ : Rn → RN having at most:

• Ln→N = c log
(
ε−1
)

layers,

• wn→N = cNε−n/(s−1) log
(
ε−1
)

active weights,

and a reduced map φ : Rp+1 → Rn having at most:

• L(p+1)→n = c log
(
ε−1
)

layers,

• w(p+1)→n = cnε−(p+1) log
(
ε−1
)

active weights,

such that P{ER < ε} > 1− δ.

Proof. We immediately notice that, choosing N as in the theorem statement, we derive

EPOD = m−1
 ∑
k>N

σ2
k ≤

ε

3
.
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Then, we aim at bounding ES = ES(Ns, Nt); under the Assumption 1, by the Weak Law of Large Numbers
[23] we can infer the following statement:

∀δ > 0, ∀0 < ε < 1, ∃Ns, Nt : P{ES(Ns, Nt) < ε/3} > 1− δ.

Then, we are left to bound ENN : by means of the Cauchy-Schwarz and the Hölder inequalities, considering
that ‖V‖2 = 1, it is trivial that

ENN =

Å∫
P×T

‖Vq(µ, t)−Vq̂(µ, t)‖2

‖u(µ, t)‖2
d(µ, t)

ã1/2

≤ m−1

Å∫
P×T

‖Vq(µ, t)−Vq̂(µ, t)‖2d(µ, t)

ã1/2

≤ m−1

Å
|P × T | sup

(µ,t)∈P×T
‖Vq(µ, t)−Vq̂(µ, t)‖2

ã1/2

≤ m−1

Å
|P × T |‖V‖2 sup

(µ,t)∈P×T
‖q(µ, t)− q̂(µ, t)‖2

ã1/2

= m−1|P × T |1/2 sup
(µ,t)∈P×T

‖q(µ, t)− q̂(µ, t)‖,

(6)

Therefore, we are left to bound the error due to the neural network approximation of the map Q, namely

sup
(µ,t)∈P×T

‖q(µ, t)− q̂(µ, t)‖.

Firsly, we notice that we can take n ≤ 2p + 3, since G (and consequently Q) is Lipschitz-continuous (see,
e.g., [10, Theorem 3]). Then, we proceed as in [10], according to the following steps:

• we consider the reduced manifold SN := {q = Q(µ, t) : (µ, t) ∈ P×T }; then Vn = Ψ′∗(SN ) is such that
diam(VN ) ≤ LC1diam(P ×T ), thanks to the Lipschitz-continuity hypothesis provided by Assumption
2. Thus, by Theorem due to Gühring et al. [20] recalled in Section 1.2, there exists a ReLU DNN
ψ : Rn → RN such that

sup
v∈Vn

‖ψ(v)−Ψ∗(v)‖ < m

6
|P × T |−1/2ε

ess sup
v,v′∈Vn

|(ψ −Ψ∗)(v)− (ψ −Ψ∗)(v
′)|

|v − v′|
<
m

6
|P × T |−1/2ε,

(7)

with Ln→N = c log
(
ε−1
)

layers and wn→N = cNε−n/(s−1) log
(
ε−1
)

active weights. Notice that the

Lipschitz constant of ψ is bounded by the quantity C3 = C2 + m
6 |P × T |

−1/2;

• setting φ∗(µ, t) = Ψ′∗(q(µ, t)) ∀(µ, t) ∈ P×T , we notice that it is Lipschitz-continuous, with constant
bounded by LC1, and thus, by the Theorem due to Yarotski [42] recalled in Section 1.1, there exists a
ReLU DNN φ : Rp+1 → Rn such that

sup
(µ,t)∈P×T

‖φ(µ, t)− φ∗(µ, t)‖ <
m

6C3
|P × T |−1/2ε, (8)

with L(p+1)→n = c log
(
ε−1
)

layers and w(p+1)→n = cnε−(p+1) log
(
ε−1
)

active weights.

Moreover, let q̂ = ψ ◦ φ : Rp+1 → RN be the underlying neural network of the POD-DL-ROM, mapping
parameters and time to POD coefficients. Then, by means of the triangular inequality, the perfect embedding
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Assumption, the definition of φ∗, and the Lipschitz-continuity of ψ, we derive:

sup
(µ,t)∈P×T

‖q(µ, t)− q̂(µ, t)‖

≤ sup
(µ,t)∈P×T

(‖Ψ∗(Ψ′∗(q(µ, t))− ψ(φ∗(µ, t))‖+ ‖ψ(φ∗(µ, t))− ψ(φ(µ, t))‖)

≤ sup
v∈VN

‖ψ(v)−Ψ∗(v)‖+ C3 sup
(µ,t)∈P×T

‖φ(µ, t)− φ∗(µ, t)‖ <
m

3
|P × T |−1/2ε,

employing the bounds (7) and (8). Then, plugging the last inequality in (6) we can state that ENN < ε
3 .

Finally, by means of the error decomposition formula, we derive the desired bound

ER ≤ EPOD + ES + ENN <
ε

3
+
ε

3
+
ε

3
= ε,

with probability greater than 1− δ.

Remark 4. The DL-ROM paradigm proposed in [12] and applied to cardiac electrophysiology in [17], has
been theoretically analyzed in [10], providing approximation bounds and a complexity analysis, which shows
that in general DL-ROMs suffer from curse of dimensionality with respect the number of high-fidelity dofs
Nh. Relying on the present Theorem 3.3, we demonstrate how the preliminary dimensionality reduction
through POD affects both the complexity of the POD-DL-ROM and its approximation capabilities. Indeed,
POD-DL-ROMs avoid the curse of dimensionality of the DL-ROMs at the cost of discarding the small scales
contribution, which might be however relevant when considering, e.g., highly nonlinear problems showing a
slow eigenvalue decay. On the other hand, POD-DL-ROMs provide a neural network architecture with a
lower number of trainable weights, thus yielding a lighter training procedure in practice. Finally, we can
highlight that the a priori choice of employing DL-ROMs or POD-DL-ROMs must be based exclusively on
the linear reducibility of the problem and the availability of computational resources.

4. Comparative analysis with deep learning-based existing strategies

On the basis of the results of the previous section, we comment the advantages of POD-DL-ROMs when
compared with other deep learning-based existing strategies present in the literature, namely:

• simple DNNs to approximate the POD (or Kernel-POD) coefficients, that results in the widely used
POD+DNN approach [6, 22, 38, 41];

• the POD-DeepONets architecture, which was proposed in [29] and based on the classical DeepONets
approach [28];

• the technique presented in [33], which aims at reconstructing the parameter-to-solution map by coupling
linear projection methods and residual networks and which we will hereon refer to as lin+ResNets;

• the CNNs architecture for operator learning proposed in [11], whose analysis is based on the Fourier
decomposition.

4.1. POD-DL-ROMs vs POD+DNNs: a matter of regularity

The purpose of this subsection is to highlight how the POD-DL-ROM approach provides a suitable setting
to establish tighter bounds on the model complexity when compared to generic POD+DNNs, especially when
the parameter-to-solution map is not regular.

It is worth to remark that, under the hypothesis of Theorem 3.3, the number of layers of the POD-DL-
ROM network architecture is expected to scale as

LPOD−DL−ROM = O(log
(
ε−1
)
),
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while the total number of active weights behaves as

wPOD−DL−ROM = wn→N + w(p+1)→n

= O(Nε−n/(s−1) log
(
ε−1
)
) +O(nε−(p+1) log

(
ε−1
)
).

We expect that, in general n� N = N(ε); moreover, n ≤ 2p+3 since the parameter-to-POD-coefficients
map is Lipschitz-continuous, due to Assumption 2. Thus, it is evident that the majority of the neural
network complexity amounts to the decoder, which has to perform the most difficult task, namely, decoding
the information provided by the latent coordinates. Instead, the reduced network only aims at providing an
alternative representation of the time-parameters vector (µ, t) such that it makes as easy as possible for the
decoder to reconstruct the POD coefficients. Noting that wPOD−DL−ROM depends exponentially on s, we
can control the complexity of the POD-DL-ROM by choosing s as large as possible, namely, s� s′ ≥ 2.

Essentially, we aim at finding a representation of POD coefficients of the form

Ψ∗(Ψ
′
∗(q(µ, t)) = q(µ, t) ∀(µ, t) ∈ P × T , (9)

through the composition of an encoder Ψ′∗ that absorbs all the irregularity of the identity map I = Ψ∗ ◦Ψ′∗,
and a decoder Ψ∗ that is extremely regular. We highlight that the perfect embedding Assumption stated in
Definition 3 is critical; indeed, under the hypothesis of Theorem 3.3, leaving out only the perfect embedding
assumption, we may be tempted to trivially use Yarotski’s Theorem [42] to construct a ReLU DNN which
has LPOD+DNN layers and wPOD+DNN active weights, where

LPOD+DNN = O(log
(
ε−1
)
)

wPOD+DNN = O(Nε−(p+1) log
(
ε−1
)
),

in order to control the relative error with ER < ε. Notice that:

• the number of layers LPOD+DNN is of the same order as LPOD−DL−ROM ;

• the estimate of the number of active weights wPOD+DNN can only take advantage of mild regularity
assumptions on G (and Q), that is only Lipschitz-continuous.

However, it is evident that Theorem 3.3 only provides a theoretical result offering a different perspective
in order to enhance the complexity estimate of POD+DNN. Indeed, within the framework stated by Theorem
3.3, given an accuracy level ε one could take advantage of the POD-DL-ROM theoretical setting, and thus
the perfect embedding Assumption, to construct a proper architecture that approximates the parameter-
to-solution map keeping ER < ε – and, then, notice that the resulting architecture is indeed in general a
POD+DNN. The difference in practice is represented by the training procedure. Indeed, notice that training
a network like the one involved in a POD+DNN with the classical supervised loss formulation, by letting
ωn = 0 in (2.1) and thus without taking advantage of the encoder, does not ensure to recover an adequate
representation in the latent space. Instead, if we train the network relying on the POD-DL-ROM paradigm,
namely taking ωn > 0 in (2.1), we actually employ the encoder to implicitly enforce the architecture to
satisfy the perfect embedding Assumption, and then discard the encoder in the online testing phase.

Suppose now that N � n: trivially, we have that wDNN & w(p+1)→n; moreover, wPOD+DNN & wn→N ,
upon requiring that n

(s−1) < p + 1, that provides an estimate for the regularity of the decoder in the

representation (9), that is s > n
p+1 + 1. In practice, given that n ≤ 2p + 3, we can safely assume that

s & 3 + 1
p+1 and finally s & 4. Thus, if the parameter-to-solution map G is only Lipschitz-continuous, if

the perfect embedding Assumption is satisfied for s ≥ 4, POD-DL-ROMs achieve a tighter bound on the
model complexity when compared to general POD+DNN approaches: this is due to the fact that there exists
a better representation (in terms of regularity) φ∗(µ, t) for the time-parameters vector (µ, t) that can be
recovered by the reduced network.

Until now, we considered the case where the parameter-to-solution map is only Lipschitz-continuous;
however, it is interesting to consider cases where we can verify that the map G shows higher regularity, and
see how this increased regularity affects the complexity of both POD-DL-ROMs and POD+DNNs in terms
of number of active weights. Indeed, by means of similar arguments employed previously, and thanks to the
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Theorem due to Yarotski [42] recalled in Section 1.1, assuming that G ∈W r,+∞(P×T ;RNh), we obtain that

wPOD+DNN = O(Nε−(p+1)/r log
(
ε−1
)
).

Thanks to the fact that the exact reduced map φ∗ of Theorem 3.3 now would be min{r, s′}-times differen-
tiable,

wPOD−DL−ROM = wn→N + w(p+1)→n

= O(Nε−n/(s−1) log
(
ε−1
)
) +O(nε−(p+1)/min{r,s′} log

(
ε−1
)
)

Assuming that N � n, it is trivial to verify that wPOD+DNN & w(p+1)→n; furthermore, it is valid that

wPOD+DNN & wn→N if n
(s−1) >

p+1
r , that is s > nr

p+1 + 1, which gives the estimate s & (2 + 1
p+1 )r + 1 and

finally s & 3r + 1. The meaning of the last estimate is that, if the parameter-to-solution map is extremely
regular (namely, r → ∞), it becomes more and more difficult for the POD-DL-ROMs to guarantee lower
complexity than simple POD+DNNs, since the perfect embedding Assumption should be verified for s→∞.
This is rather intuitive: indeed, if the parameter-to-solution map is extremely regular, we do not need a to
recover a better representation φ∗(µ, t) for the time-parameter vector (µ, t) in order to make it easier for
the underlying neural network to learn the solution manifold.

4.2. POD-DeepONets and POD-DL-ROMs: a comparison

In this subsection, we aim at analyzing the POD-DeepONet architecture from a theoretical standpoint,
showing the close relationship with POD-DL-ROMs when dealing with problems whose general formulation
can be reduced to (2). We let X be a Banach space and we consider two compact subsets, K1 ⊂ X
and K2 ⊂ Rd, where d denotes the number of spatial (or spatio-temporal) dimensions of the problem
at hand. Defining W ⊂ C(K1) as a compact subset, we suppose that we aim at learning the operator
G∞→∞ : W → C(K2), where the subscript highlights that the considered operator is a map between infinite-
dimensional spaces. We first consider a DeepONet architecture [28] employed to reconstruct G∞→∞, which in
its unstacked formulation consists in the combination of the output of two different neural networks through
the scalar product. In particular, we define the branch net b : W → RN as the neural network that processes
information about the input function φ ∈ W , and the trunk net τ : Rd → RN , which aims at encoding the
coordinate input y ∈ Rd in a set of basis functions. Then, we can define the DeepONet approximation as

G∞→∞(φ)(y) ≈ Ĝ(φ)(y) = b(φ) · τ (y). (10)

and note that N describes the number of basis functions employed in the decomposition (10); thus, N plays
the same role as the POD dimension in the POD-DL-ROM architecture. Based on the analysis proposed in
[26], we can split the DeepONet operator Ĝ : W → C(K2) into Ĝ = Rτ ◦ Am→N ◦ Em, where Em, Am→N
and Rτ are defined as follows:

• the encoder operator is defined as the map Em : C(K)→ Rm, such that, given xi ∈ K1,∀i = 1, . . . ,m:

Em(ψ) = [ψ(x1), ψ(x2), ..., ψ(xm)]T ∀ψ ∈ C(K1).

It is worth to notice that Em is well defined since any continuous function can be evaluated pointwise;

• Am→N : Rm → RN is the approximation operator; thus, we can decompose the branch net of the
DeepONet operator as b = Am→N ◦ Em;

• recalling that τ : Rd → RN is the trunk net, we define the τ -induced reconstructor operator Rτ :
RN → C(K2) as

Rτ (ξ) = ξ · τ ∀ξ ∈ RN .

In a more compact formulation, we retrieve the classical architecture of the DeepONets, namely:

Ĝ(φ) = Rτ ◦ (Am→N ◦ Em(φ)) = Rτ ◦ b(φ) = b(φ) · τ .
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POD-DeepONets were recently introduced in [29] and the test cases considered within the paper confirm
better approximation accuracy when compared with classical DeepONets: the methodology consists in substi-
tuting the trunk net with the corresponding row of the POD matrix. The drawback is that POD-DeepONets
can only approximate operators defined as G∞→Nh : W → RNh , losing the capability of mapping between
infinite-dimensional spaces.

Supposing to initially deal with stationary, time-independent problems and denoting by vj ∈ RN the
j-th row of the POD matrix V ∈ RNh×N , we define the expansion operator Lvj : RN → RNh as

Lvj (ξ) = ξ · vj ∀ξ ∈ RN ,

and the POD-DeepONet operator as

[G∞→Nh(φ)]j ≈ [ĜPOD−DeepONet(φ)]j = q̂(φ) · vj = Lvj ◦ Am→N ◦ Em(φ),

∀j = 1, . . . , Nh, where q̂ is the corresponding branch net, which now approximates the underlying POD
coefficients. It is worth to notice that, by employing the vector formulation, we can write:

G∞→Nh(φ) ≈ ĜPOD−DeepONet(φ) = Vq̂(φ).

Then, we need to adapt the POD-DeepONet framework to the problem considered within this work (2),
where even the input parameter space is finite-dimensional, thus eliminating the need of the encoder operator
Em. Indeed, POD-DeepONets for finite-dimensional-input problems involving the reconstruction of the map
Gp→Nh : Rp → RNh take the form

[Gp→Nh(µ)]j ≈ [ĜPOD−DeepONet(µ)]j = q̂(µ) · vj = Lvj ◦ Ap→N ,

∀j = 1, . . . , Nh, or in a more compact way

Gp→Nh(µ) ≈ ĜPOD−DeepONet(µ) = Vq̂(µ),

where µ ∈ P ⊂ Rp, P compact. It is worth to notice that in this case the branch net coincides with the
approximation operator Am→N .

Finally, in order to include also the time-dependence, we could adopt two different strategies:

• we could treat the time t as a spatial coordinate in a DeepONet-like way, leading to a POD matrix
of dimension NhNt × N , that however increases the possible impact of the curse of dimensionality,
however offering the opportunity to deal with time-dependent basis functions;

• alternatively, we may consider the time t as an additional parameter, a choice which reduces the compu-
tational requirements and is consistent with the POD-DL-ROM approach, leading to the construction
of time-independent global spatial basis functions.

Within this comparison, for the sake of consistency, we choose to employ this latter approach. Thus,
aiming at reconstructing the map (µ, t) 7→ u(µ, t), we could employ different neural network architectures;
for instance, if we choose to employ a DL-ROM architecture as the branch net of the POD-DeepONets,
we retrieve the POD-DL-ROM approach, while employing a vanilla DNN as the branch net results in the
POD+DNN approach. The comparison between POD-DL-ROM and POD+DNNs is extensively treated in
the previous subsection.

Finally, inspired by the DeepONet approach, we notice that extending the content of the present paper
to the case of infinite-dimensional input parameters is straightforward and introduces an additional source
of error, namely the encoding error, that ultimately depends on the variability of the input parameters and
their spatial discretization; for a thorough discussion on the topic, we refer the reader to, e.g., [26].

4.3. Learning POD coefficients with ResNets

The ResNets-based approach proposed in [33] couples linear decompositions and residual networks
(ResNets) to reconstruct field-to-solution maps, an approach which is inherently close to POD-DL-ROMs.
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In this case, we start our analysis of the technique by examining the proposed architecture, and by adapting
it to the problem formulation considered within the present work.

Indeed, we immediately notice that the lin+ResNet architecture needs that every residual layer has input
dimension equal to the output dimension layer output dimension: iterating, for a fully residual network, we
must require that the input of the network has the same dimension of the network output. Such a constraint
in the architecture is managed in [33] by projecting both the input fields and the output targets onto two
linear subspaces of equal dimension N � Nh, where Nh is the FOM dimension. Then, the output targets
are numerically approximated on the same mesh and projected onto a subspace of dimension N , too. The
approach results in the sequence of maps:

RNh lin.proj.−−−−−→ RN residual−−−−−→ RN residual−−−−−→ ...
residual−−−−−→ RN lin.lift.−−−−−→ RNh ,

where the linear projection is usually carried out by employing POD, Karhunen-Loève expansions [39] or
active subspaces [44]. However, when dealing with finite dimensional parameter inputs instead of fields (for
instance (µ, t) ∈ Rp+1 with p + 1 < N), it may occur that the ResNet input dimension (p + 1) is different
from the output dimension N ; to fill the gap, it is necessary to employ for instance a dense layer Rp+1 → RN
as the first layer of the architecture. Thus, we will consider the sequence of maps:

Rp dense−−−−→ RN residual−−−−−→ RN residual−−−−−→ ...
residual−−−−−→ RN lin.lift.−−−−−→ RNh .

The lin+ResNets approach ultimately aims at providing a constructive way to build a neural network in
terms of breadth and depth.

The breadth, which may be intuitively defined as the maximum number of neurons per layer in the
network, coincides with N , the characteristic dimension of the preliminary dimensionality reduction. In
order to favour compressed representations, the authors of [33] suggest keeping as low as possible the latent
dimension k of the ResNet, which can be identified with the dimension of the nonlinearity added at each
layer. Indeed, the residual map between the layer zl ∈ RN and zl+1 ∈ RN can be identified with

zl+1 = zl + W1lσ(W0lzl + bl),

where W0l ∈ RN×k, W1l ∈ Rk×N , bl ∈ Rk and σ is the activation function; the total number of weights
per layer is then O(Nk). However, in contrast to our approach, they did not propose a way to identify k:
we remark that the discussion on the latent dimension n of the POD-DL-ROM architecture is fundamental
because it allows to set a tighter bound on the complexity of the decoder network in terms of active weights.

Furthermore, the authors developed approximation bounds on the underlying ResNet complexity in terms
of its depth, employing the connection between ResNets, Neural ODE and control flows [5]. The bound on
the ResNet depth enable the user to control the `2 error on the solution (and by extension the relative error
too) with a suitable bound ε by employing O(ε−1) layers. Thus, we can straightforwardly state that, on
the basis of the complexity analysis, POD-DL-ROMs outperform the ResNets-based approach in terms of
number of layers:

Llin+ResNets = O(ε−1) & O(log
(
ε−1
)
) = LPOD−DL−ROM

and number of active weights:

wlin+ResNets = O(Nkε−1) & O(Nε−n/(s−1) log
(
ε−1
)
)+

+O(nε−(p+1) log
(
ε−1
)
)) = wPOD−DL−ROM ,

supposing for instance N � n and s ≥ n+ 1, which are reasonable assumptions. Indeed, N � n is satisfied
when the nonlinear Kolmogorov n-width decays much faster that the eigenvalue decay of the correlation
matrix, a phenomenon that is usually encountered in applications; the condition s ≥ n + 1 is valid by
ensuring s ≥ 2p+ 4, that is the decoder map must be sufficiently regular.

Despite the disadvantage on the complexity front, we remark that ResNets constitute one of the most
suitable paradigms to implement adaptive-depth architectures, since adding a layer to an already trained
architecture can produce an arbitrary small perturbation on the network output; for a more detailed analysis
on the lin+ResNets training, we refer the reader to [33].
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4.4. The effect of the POD basis optimality on the network complexity

Within this subsection, our purpose is finally to show how choosing the POD basis as global spatial
basis function in the linear decomposition leads to a reduced complexity of the underlying neural network,
comparing in details CNNs for operator learning and POD-DL-ROMs. In particular, we notice that, within
the POD-DL-ROM approach, the reconstruction of the approximated solution at the high-fidelity level
depends on the decomposition assumption u(µ, t) ≈

∑
j<N q̂j(µ, t)vj , where N denotes the POD dimension.

Analogously, the recent work on the approximation bounds for CNNs proposed in [11] strives to reconstruct
a decomposition between global spatial basis functions that are strictly related to the Fourier modes, and a
set of coefficients, that is, u(µ, t) ≈

∑
j<C âj(µ, t)fj , where the sum is over C terms (the number of channels

in the input and output is O(C)).
In the following, we assume that u(·,µ, t) ∈ Cα(Ω) for any (µ, t) ∈ P × T , being α ≥ 1 the spatial

regularity, and ε > 0 is the desired accuracy level; we then describe the three main differences between the
CNN-based approach and the POD-DL-ROM technique:

• The convolutional block is limited to uniformly spaced mesh points (h is the spacing parameter) in
square domains, while POD-DL-ROMs are more versatile both in terms of the domain shape and the
mesh properties.

• The architecture proposed in [11] consists of two different blocks: the dense block is devoted to the
parameter-dependent coefficient approximation, while the convolutional block strives to reconstruct
the spatial basis function. Instead, POD-DL-ROMs compute the spatial basis before the training of
neural networks by means of SVD [36] or randomized SVD [40] through an unsupervised learning
criterion: in principle, this means that POD-DL-ROMs do not need any active weights to reconstruct

the spatial basis functions, while the CNN approach needs O(ε−
2

2α−1 log
(
h−1

)
) weights to learn them

(we refer the reader to Theorem 2 in [11]).

• In the decomposition employed in [11], C plays the role of the reduced dimension: it is an analogue of
the POD-dimension N employed within the POD-DL-ROM technique. In the following, we exploit an
optimality result fulfilled by the POD basis to show that the complexity of the neural network in the
parameter-to-coefficient map approximation is lower in the case of POD-DL-ROM when compared to
the approach proposed in [11].

The quasi-optimality of the POD decomposition in its discrete formulation confirms that with a N -terms
truncation, provided a sufficient amount of data have been suitably sampled, no linear decomposition captures
as much variance as the discrete formulation of the POD decomposition, so that the reduced dimension C of
[11] satisfies the inequality C > N with probability 1− δ (see Subsection 2.2 and Appendix Appendix A.3).
Furthermore, we assume that:

(i) N � n as usual, since we expect that the nonlinear Kolmogorov n-width decays (much) faster than
the linear reduced dimension N ;

(ii) u(·,µ, t) ∈ Cα(Ω) for any (µ, t) ∈ P × T for some α ≥ 1 to comply with the hypotheses of Theorem 2
of [11];

(iii) the parameter-to-solution map has regularity r, i.e. G ∈W r,∞(P × T ;RNh);

(iv) the decoder map is adequately regular, namely n
s−1 >

p+1
r (s ≥ 3r + 1 is sufficient, as in 4.1).

We recall that Theorem 2 in [11] provides the estimate C = O(ε−
2

2α−1 ). Therefore, in the worst case

scenario N = O(ε−
2

2α−1 ); however, depending on the singular values decay that in some cases might be even
exponential (e.g. stationary elliptic PDEs, analytic parameter-to-solution maps, see [36]) we actually obtain
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improved estimates. We then derive:

wPOD−DL−ROM = O(Nε−n/(s−1) log
(
ε−1
)
) +O(nε−(p+1) log

(
ε−1
)
)

≈ O(Nε−n/(s−1) log
(
ε−1
)
)

. O(Cε−n/(s−1) log
(
ε−1
)
)

= O(ε−
2

2α−1−
n

(s−1) log
(
ε−1
)
)

. O(ε−
2

2α−1 [ε−
n

(s−1) (log
(
ε−1
)

+ log
(
h−1

)
])

. O(ε−
2

2α−1 [ε−
p+1
r (log

(
ε−1
)

+ log
(
h−1

)
])

= wCNN .

Thus, we can conclude that, if the hypotheses setting is verified, the overall complexity of the POD-DL-
ROMs in terms of active weights is lower (or equal) than the complexity of the CNN architecture proposed
in [11].

5. Numerical experiments

Within this section, we present different numerical tests, aiming at validating the theoretical analysis
proposed in the previous Sections. In particular, we focus on (i) the error bounds of Theorems 3.2–3.3 and
the error decomposition formula, as well as on (ii) the role of the reduced dimension N and the total number
of snapshots Ndata and on (iii) the comparison against recent approaches proposed in the literature, in light
of the theoretical results of Sections 3 and 4. In particular, the numerical experiments involve:

a) a benchmark test case with an analytically defined operator that allows us to know a priori the
properties of the parametric operator (like, e.g., the regularity of the parameter-to-solution map) in
order to validate the theoretical estimates on the network complexity;

b) a linear 1D Initial Boundary Value Problem (IBVP), to show how to select Ndata and N in order
to minimize the a priori error (given by the sum of ES and EPOD), then validating a posteriori the
network complexity as a function of the relative error;

c) a nonlinear 2D time-dependent IBVP in a non-conventional domain, to show the effectiveness of the
POD-DL-ROM approach when dealing with more complex problems, validating also the lower bound
and the upper bound on the relative error ER, which stem from the theoretical analysis.

We remark that the complexity analysis of POD-DL-ROM and related approaches is discussed from a
theoretical point of view only in terms of the approximation error; however, when numerical experiments
are addressed, we also have to take into account the training error, which plays a major role especially
when the network is sufficiently deep or wide, or data are limited. For the same reasons, in our numerical
experiments we mainly address the complexity study in terms of number of active weights w, since the
latter is a quantity which is less sensitive (when compared to the depth L) to the training error. Thus,
the experimental complexity analysis presented here may not reflect exactly the estimates provided in the
previous sections, but they validate qualitatively the theory. However, within the present section, aiming at
mitigating the effect of the training error on the error estimates, we employ several ad hoc strategies, like,
e.g.,

• we employ early stopping to prevent overfitting;

• the approximation results in terms of network complexity are achieved in an error range [ε1, ε2] that
is deemed appropriate for the chosen number of samples Ndata: in practice the training error depends
on data availability;

• for fixed number of active weights, we regulate the network architecture trying to randomly achieve the
configuration that minimizes the training error; we keep the depth of the network as low as possible
in order to ensure convergence to a suitable minimum and avoid expensive training loops;
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• starting from educated guesses, we look for the best training hyperparamenters (which are the learning
rate and the learning rate decay).

Finally, we remark that, in order to comply with the hypotheses of the Theorems of Section 3, we limit
the numerical experiments to generic dense layers equipped with the α-LeakyReLU activation function,

LeakyReLUα(x) =

®
x, x ≥ 0

αx, x < 0.

Unless otherwise stated, we set α = 0.1. The optimization procedure is carried out by employing the
Adam algorithm [25]. Note that although our Theorems are stated for ReLU activations, we adopt the
α-LeakyReLU variation to enhance model training. It is well known, indeed, that ReLU networks are harder
to train because of vanishing gradients [19]; still, this modification is consistent with our theory as, when it
comes to model expressivity and architectural complexity, α-LeakyReLU and ReLU networks are known to
be mathematically equivalent [19].

5.1. Benchmark test case

We begin our experimental analysis by considering a benchmark test case similar to the one described in
[11], and involving the reconstruction of an analytically defined operator, namely

uβ(x,µ) = µ3|x− µ1|βe−µ2x, x ∈ [0, 1],

where µ = [µ1, µ2, µ3] ∈ P = [0, 1] × [0, 1] × [1, 2]. Within this numerical test we vary β ∈ {3/2, 7/3, 3}
and we analyze the three resulting cases independently. Notice that the hyperparameter β > 0 controls the
regularity of the parameter-to-solution map. Indeed,

u3/2(x, ·) ∈W 1,+∞(P) \W 2,+∞(P)

u7/3(x, ·) ∈W 2,+∞(P) \W 3,+∞(P)

u3(x, ·) ∈W 3,+∞(P) \W 4,+∞(P);

thus β = 3/2, 7/3, 3 correspond to r = 1, 2, 3 respectively, where r is defined as the regularity of the
parameter-to-solution map in agreement with this paper notation. Furthermore, the problem does not
depend on the time variable, thus we set Nt = 1, Ndata = Ns and p = 2 (instead of p = 3) to comply with
the theoretical framework of the present work. Moreover, we discretize the problem in space by means of a
uniform discretization with Nh = 1000. Selecting n = 5 ≤ 2p+ 3 = 7 to ensure both a suitable compression
and an adequate representation in the latent space, Ns = 500, and

N = N(r) =


20, r = 1

17, r = 2

15, r = 3,

to control the variability retained by the preliminary linear dimensionality reduction. We then proceed
towards a complexity analysis, showing a comparison of the results against the CNN approach considered in
[11], the POD+DNN framework and the lin+ResNets technique. We remark that for the sake of fairness and
consistency, we keep the batch size during training equal to B = 20 for every comparison considered in the
benchmark test case. Then, for any r ∈ {1, 2, 3}, we estimate the approximation error ER on the respective
test set consisting of N test

s = 104 samples.
From a theoretical standpoint, we immediately notice G : µ 7→ u(µ) ∈ W r,+∞(P;RNh); then, from the

findings of Section 4, since n� N , we can infer that

wPOD+DNN = O(Nε−3/r log
(
ε−1
)
)

wPOD−DL−ROM = O(Nε−5/(s−1) log
(
ε−1
)
).

Thus, owing to the fact that in the POD-DL-ROMs approach the perfect embedding Assumption with
coefficients s, s′ is enforced thanks to their peculiar loss formulation, we expect them yielding a less steep
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Figure 1: Benchmark test case: model complexity comparison between POD-DL-ROMs and POD+DNNs as the parameter-to-
solution regularity r varies in {1, 2, 3}. The trends are displayed through solid lines, which fit the collected results in the least
squares sense.

increase (when compared to POD+DNNs) in the model complexity as the accuracy level decreases whenever
the decoder map is suitably regular, which is equivalent to require s > 5

3r + 1. Figure 1 demonstrates that
the latter behavior is more likely to happen as the regularity of the parameter-to-solution map r decreases.

We then compare POD-DL-ROMs against the lin+ResNets approach; for the latter, we limit the analysis
to the case where the basis functions are yielded by POD for the sake of consistency. We thus fix the latent
space dimension of the residual layers as k = 5 and, from the estimates obtained in Section 4, we recall that
the complexity bound of lin+ResNets in terms of number of active weights is in general independent of the
regularity of the parameter-to-solution map, namely:

wlin+ResNets = O(Nkε−1).

We thus remark that the lin+ResNets approach does not take advantage of any regularity assumption on the
parameter-to-solution map: we then expect a similar trend as r varies in {1, 2, 3}. Nonetheless, if the trained
POD-DL-ROM architecture are able to find an adequate representation in the latent space which induces
a very regular decoder, that is s > 6, we can ensure that the POD-DL-ROM outperform the lin+ResNets
approach in terms of complexity: this behavior is indeed observed in Figure 2.

Figure 2: Benchmark test case: model complexity trend of POD-DL-ROMs and the lin+ResNets approach for different values
regularity of the parameter solution map r.

Finally, we consider the comparison against the CNN approach considered in [11]: if the decoder map is
sufficiently regular (from the theoretical analysis we derive the condition s ≥ 5

3r + 1), POD-DL-ROMs take
advantage of the basis optimality to achieve a less steep increase of complexity as the error bound ER < ε
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Figure 3: Benchmark test case: comparison between POD-DL-ROMs and CNNs in terms of number of active weights, varying
the regularity r ∈ {1, 2, 3}.

decreases: the behavior is indeed observed in Figure 3, in the cases when the regularity of the parameter-
to-solution map is low (r = 1, 2). Moreover, differently from the CNN-based technique, we remark that
the POD-DL-ROMs’ algorithm does not require to learn the basis functions, thus not affecting the overall
complexity of the underlying network.

5.2. 1D Initial Boundary Value Problem

The present test case is designed to highlight the advantages of POD-DL-ROMs when compared to other
considered approaches even when dealing with time-dependent parametrized problems. Moreover, before
starting the training process, we show a priori how to choose the hyperparameters N,Ns, Nt, based on the
analysis of ES and EPOD. In particular, we consider the following IBVP:

∂u

∂t
− ∂2u

∂x2
= u+ 10 cos(x) sin(2πt), in (0, π)× (0, T ]

u = 10(2µ3 − 3µ2 + µ), at {x = 0} × (0, T ]

∂u

∂x
= 2|1− 2µ| − 1, at {x = π} × (0, T ]

u(x, 0) = u0(µ), in (0, π),

where the initial condition is

u0 = u0(µ) = 10(2µ3 − 3µ2 + µ) cos(x) + (2|1− 2µ| − 1) sin(x),

while µ ∈ P = [0, 1] and T = 1. Thus, p = 1 and we can fix n = 5 = 2p + 3 to ensure an adequate
representation in the latent space, according to the framework presented in the present paper. We collected
synthetic data generated with an high-fidelity model solved on a uniform grid of Nh = 100 points: we
generate a test set of N test

s = 100 samples of N test
t = 200 snapshots each with a Matlab-based PDE solver,

sampling µ ∼ U(P) iid and t from a uniform grid of step ∆ttest = T/N test
t .

We start by analyzing the dependence of ES on Ns, Nt and N ; for the sake of clarity, we specify that
the sampling criterion employed in the a priori analysis below is based on the theoretical analysis of the
entire work: thus, we assume µ ∼ U(P) iid and that t is sampled from a uniform grid of step ∆t = 1/Nt.
To analyze the effect of Ns on the sampling error, we fix Nt = 1000 and we generate a group of datasets
depending on Ns ∈ {l = 2k : k = 1, . . . , 7}: as shown in Figure 4, the decay has slope −1/4 and it is
independent of the chosen value of N . Conversely, we fix Ns = 100 and vary Nt ∈ {l = 2k : k = 3, . . . , 9},
validating experimentally in Figure 4 that ES ∼ N

−1/2
t , independently of N . We then move to the analysis

of the projection error, showing in Figure 5 how EPOD decays with N and is mostly independent of Ns and
Nt respectively. We notice that the present analysis is done before the training of the underlying neural
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Figure 4: 1D IBVP test case: decay of the sampling error ES with respect to Ns, Nt and N .

Figure 5: 1D IBVP test case: decay of the projection error EPOD varying Ns, Nt and N .

network and allow us to know a priori how much variance is not accounted for due to the sampling (ES)
and the initial dimensionality reduction (EPOD), allowing us to calibrate the values N,Ns, Nt before we
start the expensive training procedure. The idea is to choose N,Ns, Nt to guarantee that EPOD and ES are
suitably small, so that we can control the relative error ER with a strict bound, which is provided by the
error decomposition of Theorem 3.1. Thus, based on the results of the present a priori analysis, we choose
Ns = 50, Nt = 20, N = 20.

We then move our focus to the comparison of the POD-DL-ROM technique against other approaches in
terms of complexity, showing the relation between the relative error ER and the number of active weights
employed in the underlying neural network. Notice that, since the analytical solution of the IBVP is not
available, here we are not provided with any information on the regularity of the parameter-to-solution map.
Anyway, experimental results on the complexity analysis confirm our theoretical expectations: when deal-
ing with parameter-to-solution maps arising from parametric PDEs, POD-DL-ROMs’ complexity increases
slower than POD+DNNs’ one as the relative error decreases. Indeed, the latent representation of the POD-
DL-ROM approach induces a decoder that is extremely regular, that is s� 2, which enables a slow increase
in network complexity, as suggested by the theoretical approximation bounds of Theorem 3.3 and validated
in Figure 7. Similarly, we notice that the results relative to the comparison between POD-DL-ROMs and
lin+ResNets are in agreement with the theory, demonstrating again how, lin+ResNets are outperformed in
terms of complexity by POD-DL-ROMs, when it is possible for the latter to achieve an extremely regular
decoder map due to an adequate latent representation. Finally, when compared to the Fourier-inspired
CNN technique POD-DL-ROMs’ number of active weights show a slower increase as the relative error ER
decreases, as shown in Figure 7; as proved theoretically in Section 4, the magnitude of the slope is strongly
linked to the optimality of the basis functions. Moreover we validate how the burden of learning the set
of basis function impacts heavily on the underlying CNN complexity, which shows a remarkable difference

24



Figure 6: 1D IBVP test case: comparison between the ”true” solution (solid black line) and the most accurate POD-DL-ROM
prediction (dashed red line) to demonstrate that the variability of the solution manifold is correctly reproduced.

when compared the POD-DL-ROM approach in terms of number of active weights, not only regarding the
slope magnitude but also in the absolute sense. The observed behavior highlights how crucial it is in terms
of complexity to consider a fixed set of optimal basis functions instead of a learnable set of non-optimal ones.

Thus, this validates the theoretical considerations and concludes our comparison based on model com-
plexity, demonstrating how POD-DL-ROMs outperform any of the considered techniques when tackling more
complex problems, for which the regularity of the parameter-to-solution map is low or unknown a priori.

5.3. 2D nonlinear Initial Boundary Value Problem

This numerical experiment involves a nonlinear version of a time-dependent parametrized diffusion equa-
tion with a non-affine source term in an unconventional domain, cf. Fig. 8; the strong formulation of the

Figure 7: 1D IBVP test case: comparison between POD-DL-ROMs and other techniques in terms of number of active weights.
The solid line represents the least squares fitting of the log-log data.
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problem at hand takes the form

∂u

∂t
−∇ ·

Å
0.001(1 + u2)∇u

ã
= 0, in Ω× (0, T ]

u = 1− e−100t + h(x, y, µ)e−100t, on ΓD × (0, T ]

∂u

∂n
= 0, on ΓN × (0, T ]

u0 = h(x, y, µ), in Ω,

where T = 0.05 and

• h(x, y, µ) = 0.1 + 10y sin(µπx) represents a non-affine term, being µ ∈ P = [5, 7] the parameter that
regulates the spatial frequency of h = h(x, y, µ);

• letting Ea,b(x, y) be the ellipse of axes a and b and center (x, y), we set D1 = E0.2,0.2(0.5, 0.4) and
D2 = E0.3,0.1(1.0, 0.2); then, we can define the domain as Ω = (0, 1)× (0, 0.4) \ (D1 ∪D2);

• the Dirichlet and the Neumann boundary are ΓD = ∂D1∪∂D2 and ΓN = ∂Ω\(∂D1∪∂D2), respectively.

Through this numerical experiment we aim at verifying the upper bound and lower bound results presented
in Section 3. To do so, we generate the training set and the test set input-output pairs through the numerical
solution of the discretized problem on a mesh of Nh = 1666 dofs by means of P1-FEM, employing a Forward
Euler time-advancing scheme and the Newton method to handle nonlinearities. The training set is made by
Ns = 20 samples relative to µ ∼ U(P) iid of Nt = 30 snapshots each, sampling t from a uniformly space
time grid of step T/Nt. The test set data consist of N test

s = 30 samples, evaluated on the same time grid
employed in the training set.

Then, for each N ∈ {2k | k = 0, . . . , 7} we train a POD-DL-ROM of latent dimension n = 2p + 1 = 5,
which is composed of:

• a reduced network of 3 hidden dense layers of 10 units each;

• an encoder and a decoder with 5 hidden dense layers of 25 units each.

We then evaluate the lower bound m
M ẼPOD, the upper bound due to the error decomposition formula ENN +

ES + EPOD, the value relative error ER, according to the theoretical framework of Section 3.

Figure 8: 2D IBVP test case: domain and boundary specifics (upper left), comparison between ”true” solution (upper right)
and POD-DL-ROM’s predicted solution (lower left) and visualization of the absolute error (lower right), in the case of N = 16,
which achieves the best accuracy with respect to the relative error metric.
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Figure 9: 2D IBVP test case: analysis of the error bounds varying the POD dimension N .

We show both the lower bound and the upper bound results in Figure 9, displaying as well the error
contributions ENN , ES , EPOD to assess the way they affect the relative error ER. We then remark again
that it is crucial for POD-DL-ROMs to provide both an adequate neural network approximation of the
parameter-to-solution map and a suitably large POD dimension. Indeed, we notice that in the present test
case, especially for low values of N , ENN shows a marginal contribution to the upper bound value when
compared to the sampling error ES and the projection error EPOD. On the other hand, as the POD dimen-
sion increases, learning higher-dimensional parameter-to-POD-coefficients maps becomes more burdensome:
indeed, for larger values of N the majority of the upper bound value is explained by the contribution of
ENN . Furthermore, as expected, we observe the strong dependence of the lower bound m

M ẼPOD on the POD
dimension, demonstrating again the importance of choosing an adequate value for N . Finally, we assess a
posteriori that the number of samples in the training set is suitable since the sampling error ES does not
heavily influence the upper bound of the relative error.

5.4. 3D large-scale Differential Problem

As a final test case, we consider a real application concerning a heat exchanger device featuring: a
complex 3D geometry (cf. Fig. 10), discontinuous boundary conditions, and a six-dimensional parameter
space. In particular, we aim at reconstructing the temperature u of a laminar fluid flow, modeled as the
solution to the following time-dependent advection-diffusion equation

∂u

∂t
−D∆u+ v · ∇u = 0, in Ω× (0, T ]

u =

3∑
j=1

gj1Γj , on ∪3
j=1 Γj × (0, T ]

u = 0, on (ΓIN ∪ ΓW )× (0, T ]

∇u · n = 0, on ΓOUT × (0, T ]

u0 = 0, in Ω,

(11)

where T = 2, whereas Γ1,Γ2,Γ3 are the boundaries of the three baffles (cf. Fig. 10). Here, D ∈ [0.01, 0.1]
is the thermal diffusivity, while, for i = 1, 2, 3, gi ∈ [1, 11] is the temperature at Γi. Note that, due to
u ≡ 0 on ΓIN ∪ ΓW , the latter results in a discontinuous boundary condition. The transport field v ∈ R3,
instead, is obtained as solution of the steady incompressible Navier-Stokes equations in a low-Re regime
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Figure 10: 3D large-scale test case: we highlight the domain boundaries of interest. Notice that ΓW can be retrieved as set
difference, namely, ΓW = ∂Ω \ (∪3

j=1Γj ∪ ΓIN ∪ ΓOUT ).

(Re ≈ 50∇ · 200), namely 

− ν∆v + (v · ∇)v +∇p = 0, in Ω

∇ · v = 0, in Ω

v = [h(y, z;A), 0, 0], on ΓIN

v = 0, on ∪3
j=1 Γj ∪ ΓW

− pn+ ν(∇v)n = 0, on ΓOUT ,

(12)

where ν ∈ [0.01, 0.02] is the fluid viscosity, while A ∈ [1, 2] is a model parameter regulating the amplitude of
the inlet profile

h(y, z;A) = 0.15−2 · 16A(0.75− y)(y − 0.25)(0.4− z)(z − 0.1).

We collect Ns = 40 training samples, each consisting of Nt = 60 uniformly spaced timesteps, via the
following four-steps discretization procedure:

• first, in order to initialize the nonlinear solver for the Navier-Stokes equation, we solve the linearized
version of (12) (namely, the Stokes equation obtained by removing the nonlinear term), via finite
elements, using the P1b− P1 inf-sup stable pair;

• we then solve the Navier Stokes equations with Newton iterations, obtaining an approximated velocity
field v in the P1b space;

• we interpolate the Navier-Stokes velocity field onto the P2 space;

• we solve the time-dependent advection-diffusion problem using Forward Euler in time and P2 elements
in space, thus yielding Nh = 111942 dofs.

Following the same procedure, we also collect N test
s = 10 additional samples, which we use for testing

purposes. Since the fluid temperature depends on a 6 parameters, hereby represented by the vector µ =
[ν,A,D, g1, g2, g3] ∈ R6, and (11) is time-dependent, we set the latent dimension to n = 2 · 6 + 3 = 15,
whereas we vary the reduced dimension N ∈ {2i, for i = 1, . . . , 8} in order to validate the lower and the
upper bounds for different values of N . The reduced network of the POD-DL-ROM architecture entails 3
hidden layers of 50 units each, while both the encoder and the decoder feature 5 hidden layers of 30 neurons
each.
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Figure 11: 3D large-scale test case: analysis of the error bounds for varying POD dimension N .

Results are shown in Figures 11-12. Once again, we see that the obtained approximations are in perfect
agreement with our theory, with POD-DL-ROM always reporting errors within our theoretical error bounds.
Concerning the different error contributions, we see a trend similar to the one observed for the other test
cases. For small values of N , most of the error is caused by the POD block, as the complexity of our model
problem cannot be replicated with few basis functions. On the other hand, if N is large, learning the POD-
coefficients becomes more challenging, and the error produced by the neural networks eventually dominates.
Nonetheless, these results show that the POD-DL-ROM paradigm can provide extremely accurate surrogate
model, even for problems featuring discontinuous boundary conditions and complex 3D geometries.

Conclusions

The main goal of this work is to suggest effective and practical strategies to set a POD-DL-ROM stemming
from a rigorous analysis of the technique, to control the approximation accuracy, measured in terms of the
relative error ER, which is linked to relevant features and hyperparameters that can be effectively regulated.
To accomplish the task, we analyze the error ER, providing a lower bound that depends only on the projection-
based nature of the method. Then, by the error decomposition formula and the upper bound result, we
highlight the contribution of sampling, POD projection and neural network approximation; in particular:

(i) on the basis of the analysis of the sampling error ES we propose a family of strategies to adopt in
the data collection phase in order to ensure the convergence of ES → 0 in the limit of infinite data,
providing also a decay estimate through Monte Carlo analysis in terms of the number of sampled
snapshots Ndata;

(ii) we determine a practical criterion based on the eigenvalue decay to control EPOD in terms of the
reduced dimension N ;

(iii) starting from the approximation results proposed in [42], we estimate the complexity of the underlying
neural network that is required to reach a given accuracy.

Then, relying on the aforementioned findings, we compare the POD-DL-ROM paradigm to other ar-
chitectures that are widely used in the literature, namely DL-ROMs [10, 12, 17], POD+DNNs [6, 22, 38],
POD-DeepONets [29], lin+ResNets [33] as well as CNNs [11], showing the strengths of the POD-DL-ROM
strategy, especially when dealing with low-regularity maps. Ultimately, we demonstrate the outstanding ap-
proximation properties of POD-DL-ROMs, which motivate the excellent performance already encountered
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Predicted solution at t=0.2s Predicted solution at t=2s

True solution at t=0.2s True solution at t=2s

Absolute error at t=0.2s Absolute error at t=2s

Figure 12: 3D large-scale test case: comparison between the high-fidelity solution and the POD-DL-ROM simulation for a test
instance on the plane z = 0.25. We choose N = 128, which corresponds to the best model according to the relative error metric.

in a variety of test cases analyzed in the recent literature [16, 15] and in the present work. Several work-
ing directions could stem from the present paper; for instance, more efficient sampling criteria arising from
Monte Carlo analysis could be implemented: we mention variance reduction techniques and Quasi Monte
Carlo methods [3], among others. On the other hand, one could consider ad hoc layers to be employed in
the reconstruction of parameter-to-POD-coefficients maps instead of relying purely on dense layers; however,
this latter option would require novel and precise approximation results for the considered layers. More-
over, an alternative formulation could split the time- and the parameter-dependence, avoiding to treat time
as an additional parameter, similarly to what has been proposed in [24], in order to further enhance the
approximation bounds proposed in this paper.
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Data availability

The source code implementation of the method described in the paper is made available from the GitHub
repository: https://github.com/DLROM-hub/poddlrom-error-estimates together with a sample numeri-
cal experiment to showcase a possible use.

Appendix A. Additional proofs

Appendix A.1. Proof of Proposition 1

Thanks to Assumption 1, trivially we obtain ∆t = TN−1
t = O(N−1

t ) and we set ti = i∆t. Letting
f = f(µ, t) be the (sufficiently regular) integrand of the integral that we want to approximate, we obtain

E
∣∣∣∣∫
P×T

f(µ, t)d(µ, t)− ∆t|P|
Ns

Nt∑
i=1

Ns∑
j=1

f(µj , ti)

∣∣∣∣ ≤ I1 + I2,

where

I1 =

∣∣∣∣∫
P×T

f(µ, t)d(µ, t)−∆t

Nt∑
i=1

∫
P
f(µ, ti)dµ

∣∣∣∣ = O(N−1
t )

and

I2 = ∆t

Nt∑
i=1

E
∣∣∣∣ ∫
P
f(µ, ti)dµ−

|P|
Ns

Ns∑
j=1

f(µj , ti)

∣∣∣∣
= O

Å
N−1/2
s ∆t

Nt∑
i=1

(Var(f(µ, ti)))
1/2

ã
= O

Å
N−1/2
s

Å
O(N−1

t ) +

∫
T

Var(f(µ, t))dt

ãã
= O(N1/2

s )

Notice that ∫
T

Var(f(µ, t)) < +∞

because ∫
T

Å∫
P
f(µ, t)2dµ

ã1/2

dt ≤ T 1/2

Å∫
T ×P

f(µ, t)2d(µ, t)

ã1/2

< +∞,

since f ∈ L2(P × T ). Thus, the error we commit in approximating the integral goes to zero upon requiring
Ns, Nt →∞. Finally, notice that

∆t|P|
Ns

=
T |P|
Ndata

=
|P × T |
Ndata

,

which allows us to write

E
∣∣∣∣∫
P×T

f(µ, t)d(µ, t)− |P × T |
Ndata

Nt∑
i=1

Ns∑
j=1

f(µj , ti)

∣∣∣∣ ≤ O(N−1/2
s +N−1

t ).

Appendix A.2. Proof of Proposition 2

We notice immediately that the integral is well defined ∀v ∈ L2(P ×T ;RNh) thanks to the boundedness
assumptions on the solution u ∈ L2(P ×T ;RNh). We also remark that the boundedness hypotheses may be
relaxed: our choice was aimed at consistency with the other theoretical results of the present work. In order
to prove that ‖ · ‖L2

w
is a norm, we have to show that:
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(i) It satisfies the triangle inequality. Given v, z ∈ L2(P ×T ;RNh), by means of the triangular inequality,
it is trivial to show that

‖v + z‖2L2
w

=

=

∫
P×T

‖v(µ, t) + z(µ, t)‖2w(µ, t)d(µ, t) ≤

≤
∫
P×T

(‖v(µ, t)‖+ ‖z(µ, t)‖)2w(µ, t)d(µ, t) =

=

∫
P×T

(‖v(µ, t)‖2 + ‖z(µ, t)‖2 + 2‖v(µ, t)‖‖z(µ, t)‖)w(µ, t)d(µ, t).

Moreover, by the Cauchy-Schwarz inequality, the following inequality holds,∫
P×T

‖v(µ, t)‖‖z(µ, t)‖w(µ, t)d(µ, t) ≤

≤
 ∫
P×T

‖v(µ, t)‖2w(µ, t)d(µ, t)

∫
P×T

‖z(µ, t)‖2w(µ, t)d(µ, t).

Thus, we can infer

‖v + z‖2L2
w
≤ ‖v‖2L2

w
+ ‖z‖2L2

w
+ 2‖v‖L2

w
‖z‖L2

w
= (‖v‖L2

w
+ ‖z‖L2

w
)2

and derive the thesis;

(ii) ‖ · ‖L2
w

is homogeneous thanks to the linearity of the integral;

(iii) If v ∈ L2(P × T ;RNh), ‖v‖L2
w

= 0 implies that v = 0 a.e. by trivial arguments.

Appendix A.3. Quasi-optimality of the discrete formulation of the POD decomposition

We base the following analysis on the results of the (P×T )-continuous problem proposed in [36]. We first
recall that by definition V∞ ∈ RNh×N (where N is the POD dimension) is optimal for the (P×T )-continuous
formulation, that is with respect to the L2(P × T ;RNh) norm. Formally, we set δ, ε > 0 and, by assuming
u(µ, t) ∈ L2(P × T ,RNh), we define T : L2(P × T )→ RNh as

Tg :=

∫
P×T

u(µ, t)g(µ, t)d(µ, t) ∀g ∈ L2(P × T ).

The adjoint operator of T , namely T ∗, enjoys the property

T ∗w = (u(µ, t),w)2 ∀w ∈ RNh .

Moreover, recall the definition of the (continuous) correlation matrix (3) and denote by (σ2
k,∞, ζk) its eigen-

pairs (where {ζk}k denotes an orthonormal basis). We thus define the HS-norm of T as

‖T‖HS =

√ ∑
k≤rank(T )

σ2
k,∞.

Setting

ξk =
1

σk,∞
T ∗ζk ∀k = 1, . . . , Nh,

we denote by TN,∞ the rank-N Schmidt approximation, with

TN,∞ =

N∑
k=1

σk,∞ζk(ξk(µ, t), ·)L2(P×T ) = V∞VT
∞T.
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and by TN = VVTT its approximation by means of the discrete POD formulation. Theorem 6.2 and
Proposition 6.3 in [36] show that the rank-N Schmidt operator and therefore the set of basis V∞ are
optimal with respect to the HS-norm, namely they retain the most variability. Formally:

‖TN,∞ − T‖HS = min
B∈BN

‖B − T‖HS

= min
W∈RNh×N :WTW=I

Å∫
P×T

‖u(µ, t)−WWTq(µ, t)‖2d(µ, t)

ã1/2

=

 ∑
k>N

σ2
k,∞

= mEPOD,∞,

(A.1)

where BN = {B ∈ L(L2(P × T );RNh)) : rank(B) ≤ N ∧ ‖B‖HS < +∞}, being L(U) the space of linear
continuous operators from U to U , for U Banach. Now, suppose to define BN ∈ BN which does not attain
the minimum in (A.1), thus

0 < 2εmax := ‖BN − T‖HS − ‖TN,∞ − T‖HS . (A.2)

By means of the results of Theorem 3.1, with the same hypotheses, we have that

‖TN,∞ − T‖HS ≤ ‖TN − T‖HS
≤ m(ES + EPOD)

a.s.−−−−−−−→
Ns,Nt→∞

mEPOD,∞ = ‖TN,∞ − T‖HS .

Thus, since a.s. convergence implies convergence in probability, we derive that

∀δ > 0, ∀0 < ε < εmax, ∃Ns, Nt :

P
ß
‖TN − T‖HS − ‖TN,∞ − T‖HS < ε

™
> 1− δ.

Finally, thanks to (A.2), we have

∀δ > 0, ∃Ns, Nt : P
ß
‖BN − T‖HS − ‖TN − T‖HS > εmax

™
> 1− δ.
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