
MOX-Report No. 84/2021

Analysing transportation system reliability: the case
study of the metro system of Milan

Torti, A.; Galvani, M.; Urbano, V.; Arena, M.; Azzone, G.;

Secchi, P.; Vantini, S.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Analysing transportation system reliability: the

case study of the metro system of Milan

Agostino Torti1,2,∗ Marta Galvani1,∗ Valeria Urbano2,3

Marika Arena3 Giovanni Azzone2,3 Piercesare Secchi1,2

Simone Vantini1

1MOX - Department of Mathematics, Politecnico di Milano
2Center for Analysis Decisions and Society, Human Technopole,

Milano
3Department of Management, Economics and Industrial

Engineering, Politecnico di Milano

∗Both authors contributed equally to this work

Abstract

This paper introduces a methodology to monitor the passenger flow in
a subway transport system and analyse the system reliability under differ-
ent offer and demand scenarios. Motivated by a collaboration with ATM
- the company responsible for the management of the public transport in
Milan - we focus on the subway system of Milan with the aim of helping
operation managers to handle the daily access of travellers to the train
stations during Covid-19 pandemic. In details, we first apply a calibra-
tion procedure to estimate a reliable OD matrices; then, a model able to
monitor the passenger flow by estimating, for each train, the number of
passengers getting on and off at each station, along with the load factor
of the train along the line. Results highlight the subway sections and
the stations most at risk of congestion under different offer and demand
scenarios; moreover, eventual queues at each station are estimated. The
proposed approach develops a flexible and scalable method to analyse and
monitor any urban railway system in any city.

Keywords: OD Matrix, Network Analysis, System Reliability, Metro
System, Covid-19.

1 Introduction

In the last decades, due to the increasing in population in urban centers, the
travel demand on public transports has rapidly increased. In many metropoli-
tan areas, the metro has become the preferred mode of public transport, due to
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the low travel times and high accessibility [1]. The rapid increasing in passenger
flow has made transport companies to face several challenges for maintaining
a high quality level service. Congestion situations can occur, especially in the
peak hours, slowing the trains travelling times and thus reducing the passengers
quality perception of the service and the travel security. For this reason, many
efforts have been put in developing services for passenger flow monitoring, thus
obtaining a timely warning on the state of crowds in public places (e.g. [2], [3],
[4]).
The COVID-19 pandemic has had a great impact on contemporary public trans-
portation worldwide, leading to an unprecedented decline in travel demand due
to the imposed mobility restrictions ([5]). However, despite the decreasing in
demand, the International Association of Public Transport (UITP) considers
the maintenance of high levels of service to ensure safe distancing as one of
the main challenges associated with resuming public transport operations ([6]).
The risk of contagion must be minimized by public transport operators both
on-board and during passenger waiting time; for this reason, in addition to
personal protective equipment and new system of air renovation and filtering,
limitations must also be placed on occupation rates to avoid crowding situations
and ensure physical distancing ([7]). All major countries around the world have
imposed several bus and train capacity constraints (reducing the maximum al-
lowed number of passengers per vehicle) in order to fight the spread of the
virus. This is also the case of Italy, where the authorised vehicle capacity has
been reduced up to 27% in April 2020. Hence, public transport companies are
facing the problem of providing a high quality service respecting the imposed
capacity constraints. Therefore, despite the great decrease in travel demand
on public transport, with the weaknesses of mobility restrictions, the returning
of passengers to public transport systems is imposing to transport companies
a great challenge, making the problem of monitoring passenger flow and avoid
congestion situations of prior importance ([8]).
Motivated by a collaboration with ATM, the company responsible for the man-
agement of the public transport in Milan, the second biggest city in Italy, we
analysed the metro system of Milan with the aim of monitoring the passenger
flow in the transport system and analyse the system reliability under different
offer and demand scenarios. In detail, starting from Origin-Destination ma-
trices, we developed a model able to estimate, for each train, the number of
passengers departing and arriving at each station, along with the load factor of
the train along the line. By doing so, we were able to extract useful insights
for the operation managers, highlighting the subway sections and the stations
most at risk of congestion, according to different offer and demand scenarios.
Therefore, differently from other works whose objective is to set the optimal fre-
quency of public transport lines in order to conform with the pandemic imposed
capacity constraints (e.g., [9] and [10]), we focus on the problem of monitoring
passenger flow and system reliability.
The paper is structures as follow: in Section 2 the data at hand are introduced;
the used methodology and the related literature review are presented in Section
3; obtained results are shown in Section 4. Conclusions are presented in Section
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5.

2 The Milan Metro system

The company responsible for the management of public transport in Milan is
ATM (Azienda Trasporti Milanesi), which manages both the surface transport
and the underground transport of the municipality. The Milan Metro is cur-
rently the largest underground system in Italy for length (96,8 km), number of
lines (4), number of stations (113) and ridership (about 1.4 mln of trips per day
during working days before COVID-19 pandemic and about 365 mln per year).
In Figure 1 the whole infrastructure is represented: the four different lines (M1,
M2, M3 and M5) are highlighted and seven interchange stations can be iden-
tified; note that each of these stations is considered, both in the data and in
the metro system modeling explained in the next paragraphs, as two different
stations, one for each line crossing it. In these stations a walking transfer is
present to connect the interchanging lines.

Figure 1: The metro infrastructure of Milan, highlighting the four different lines
and showing the interchange stations with a white square.

2.1 Available data

To analyse the passenger flow across the metro network, we rely on a set of
data collected by the company itself. Three different data sources have been
analysed:

• the ”turnstiled” data;

• the OD matrices;
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• the timetable data.

The ”turnstiled” data consists of a counting of turnstiles movements during the
day. In details, for each station and each time interval of 10 minutes, the number
of passengers crossing the turnstiles is collected, i.e. we know the number of
passengers arriving and departing from each station during the day. The OD
matrices contain the number of trips between the 113 stations of the metro
system collected through the tickets tapping system. Each OD matrix reports
the number of trips departing from one station to another in a time interval
of one hour during the day (00:00-00:59, 01:00-01:59, ..., 23:00-23:59). Notice
that, even if from OD matrices it should be possible to reconstruct information
contained in the ”turnstiled” data, due to the different systems employed for
the data collection process, these two information are not always aligned. This
is due to the fact that tickets tapping is not always mandatory when exiting
a station, especially for big and congested stations during peak hours to avoid
crowding situation around the turnstiles, thus not recording some OD trips;
therefore, as shown in the next section, OD matrices results to be biased with
respect to ”turnstiled” data in some stations and some hours of the day. Finally,
the timetable data consists of the train service timetable information provided
by the company. Note that, to describe tha data in the next section, we will
refer to the 8th of October 2020.

2.2 Modeling of the metro network

The metro network can be modeled as a directed network where the nodes are
the stations and the edges are the connections among stations. In detail, let
G(V,E) be the network modelling the system, with V the set of nodes, repre-
senting the 113 stations, and E ⊂ (V ×V ) the set of edges, representing the 232
connections among stations. Two different types of connections could be identi-
fied in the system: standard edges - edges modelling the rail line connecting two
consecutive stations belonging to the same line - and interchange edges, edges
modelling the underground walking transfer connecting the two interchanging
lines in interchange stations; the obtained network is composed from 218 stan-
dard edges and 14 interchange edges.
Moreover, to model the system, different attributes on both edges and nodes of
the network should be considered. Indeed, even if the topology of the network
remains the same during the whole day, some features, as for instance the trav-
elling times of trains, vary according to the hour of the day according to the
timetable. To take into account the within day variability, we decide to focus
on time intervals of one hour, which is a reliable time scale for urban mobility
systems ([11]) and it is also the thinnest time scale on which the OD matrices
are available. Hence, setting H = {00 : 00− 00 : 59, ..., 23 : 00− 23 : 59} as the
set of observed time intervals, we construct a directed network with different
node/edge attributes. In details, for each edge (i, j) ∈ E, we define:

• TTijTTijTTij , the vector of the edges Travelling Times for each hour of the day
h ∈ H, which is equal to the average hourly train travelling time for
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standard edges, or equal to the average hourly walking time for interchange
edges.

Note that, while the average hourly train travelling time between two consec-
utive stations is obtained looking at the timetable, instead, the average hourly
walking time is a data obtained by the company through handheld stopwatches.
For each node i ∈ V , we define an attribute related to the Waiting Time in
that station in the different hours of the day due to the timetable; note that the
Waiting Time does not only depend on the departing station but also on the
arrival one, this because not all trains travelling on a line can join all couple
of stations in that lines due to the presence of bifurcations in some of the lines
(see Figure 1). We thus evaluate the Waiting Time to reach a node j from i as
the average time elapsed between two subsequent trains connecting these two
stations in a specific hour. Hence, for each node i ∈ V , the following attribute
is defined:

• WTiWTiWTi, a matrix containing for each hour of the day h ∈ H the hourly
average Waiting Times to go from node i to all the nodes j, with j ∈ V ,
which can be directly reached from i taking one train.

Once the modeling of the network is built, we also consider other information,
coming from the different available data sources, related to the network. In
details, considering the OD matrices, we define as:

• ODij(h), the number of detected trips from node i ∈ V to node j ∈ V for
each hour of the day h ∈ H.

To be consistent with the time scale on which the OD matrices are collected,
the ”turnstiled” data are analysed at hourly interval as:

• di(h), the total number of departures from node i ∈ V for each hour of
the day h ∈ H;

• ai(h), the total number of arrivals from node i ∈ V for each hour of the
day h ∈ H.

As already mentioned in previous paragraphs, even if the two datasets poten-
tially contain the same information about the number of passengers departing
and arriving at each station in a specific time interval, the data differ due to the
differences in data collection modes. It appears that the information collected
in the OD matrices result to be incomplete with respect to the total number of
”turnstiled” passengers in each station. In details, considering the data at hand,
it can be observed that the two following conditions are not always satisfied as
it should be in real situations:∑

j∈V
ODij(h) = di(h) ∀i ∈ V ∀h ∈ H

and ∑
i∈V

ODij(h) = aj(h) ∀j ∈ V ∀h ∈ H.
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Checking the two previous formula, and taking for example the data related to
the 8th of October 2020, we observe that the OD matrices cover around the
85% of departures trips contained in the ”turnstiled”. In details, the number
of trips recorded from ”turnstiled” data is about 765 K while the number of
trips recorded from OD matrices is about 658 K. To verify the spatio-temporal
coverage of OD matrices with respect to ”turnstiled” data (i.e. to verify if there
is any biased structure in the coverage), we evaluate for each hour h and each
station the following values:

Arrivals coveragepercentage =

∑
j∈V ODij(h)

di(h)
(1)

and

Departures coveragepercentage =

∑
i∈V ODij(h)

aj(h)
. (2)

The obtained results shows how OD matrices have a good coverage in almost all
the stations, both in terms of departures and arrivals with respect to ”turnstiled”
data, but a low coverage (e.g., sometimes low than 50% when looking at arriving
passengers) in few stations. In Figure 2 and 3, we report as example the obtained
values for line M3. Observing the Figures, we notice that looking at departures
the coverage is higher than 80% in almost all the stations, with the exception
of the central part of the line whose stations reveal a coverage between 60%-
80% in the afternoon; focusing, instead, on arrivals, a very low coverage, lower
than 50%, is highlighted looking at Centrale and Rogoredo stations during the
whole day. Hence, making evident that the lack of departures/arrivals in the
OD matrices is time and station specif, the OD matrices appear to be inaccurate
and unreliable.
Due to the inaccuracy of the available OD matrices, in the next chapters, we will
have to deal with the problem of estimating a proper OD matrix so to correctly
analyse the passenger flow across the metro system.

Figure 2: Departures coverage percentage of OD matrices with respect to ”turn-
stiled” data for stations belonging to line M3 during the day.
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Figure 3: Arrivals coverage percentage of OD matrices with respect to ”turn-
stiled” data for stations belonging to line M3 during the day.

3 Methods

To monitor the reliability of the Milan subway system under different offer and
demand scenarios, we need to develop a traffic assignment simulator able to
highlight the dynamic of each train, in terms of getting on and off passengers
and trains load factor. To do so, accurate OD matrices are required along with
a model able to define the route choices for each OD couple and assign the
different passengers at each train.

3.1 OD Matrix calibration

OD matrices are fundamental to understand the dynamic of traffic demand as
they allow to observe where passengers are coming from and going to. For this
reason, as these data are not always available or reliable, a wide literature on
the OD matrix estimation and calibration problem has been developed in the
last decades.
A broad research area encompasses models which estimate OD matrices using
data about zone potential attraction, land use and travel costs; this is for ex-
ample the case of gravity models, [12] and [13]. Other methods employ a wide
range of data source, e.g. traffic counts and assignment of OD matrices to
actual service, to asses OD matrices; among these works [14] and [15] employ
an information minimisation and entropy maximisation principles and a gener-
alized least square method, respectively, to estimate OD matrices from traffic
counts. More recent works (e.g., [16], [17], [18] and [19]) exploit these models to
obtain solutions which better fit the available dynamic traffic counts and over-
come computational problems related to optimization problems. In addition,
the OD matrix estimation optimization problem is severely under-determined
([19], [20]). Another set of techniques employed to calibrate OD matrices are
growth models (e.g., [21],[22]), these methods are well suited when an OD ma-
trix is already present and the aim is to calibrate or predict a new OD matrix
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knowing the generation and attraction flow of each zone, assuming no changes
in travel patterns due to changes in spatial accessibility or supply.
Due to the nature of the problem and the available data, we decide to rely on
Growth Models to obtain accurate OD matrices starting from the ones already
available in the data according to arrivals and departures in the ”turnstiled”
data; in details, we make use of the Furness Method, introduced in [22], which
is well suited with our data sources; the goodness of this method is discussed in
[23].
Let G(V,E) be the directed network modeling the metro system, with V the
set of nodes and E ⊂ V × V the set of edges, as defined in Section 2.
Recalling Section 2, for each hour of the day h ∈ H, the following data are
known:

• ODij(h): the number of detected trips from node i to node j, with (i, j) ∈
V × V in the time interval h ∈ H;

• di(h): the total number of departures from node i ∈ V in the time interval
h ∈ H;

• aj(h): the total number of arrivals in node j ∈ J in the time interval
h ∈ H.

We defineXij(h), with (i, j) ∈ V ×V and h ∈ H, as the unknown variables which
represent the true number of trips from node i to node j at hour h. From now
on, until the end of this section, we drop for simplicity of notation the hourly
dependence from our data, e.g. referring to ODij(h) as ODij . Following the
Furness procedure, at each iteration, for each couple of origin i and destination
j, a growth factor (τij) is applied to obtain a calibrated OD matrix as follow:

X
(1)
ij = τ

(1)
ij ODij

X
(n)
ij = τ

(n)
ij X

(n−1)
ij

X
(n)
ij =

n∏
k=1

τ
(k)
ij ODij

The growth factors are estimated as to respect the constraints on departures
and arrivals at each node:∑

j∈V
X

(2n+1)
ij = di ∀i ∈ V

∑
i∈V

X
(2n)
ij = aj ∀j ∈ V

At each iteration the row and column growth factors, respectively αi and βj ,
are iteratively evaluated as:

α
(n+1)
i =

di∑
j∈V X

(2n)
ij

∀i ∈ V n ≥ 1
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β
(n)
j =

ai∑
i∈V X

(2n−1)
ij

∀j ∈ V n ≥ 1

In details the algorithm works as in Algorithm 3.1.

Algorithm 1 Furness Method

Data: Original OD matrix OD, arrival for each node i, departures for each
node j, errormax, itermax

Result: New calibrated OD matrix X
Set:
error = error(OD);
X(0) = OD;
while iter < itermax and error > errormax do

Evaluate αi and multiply each row for αi;
Evaluate βj and multiply each column for βj ;
error = error(X(iter))

end

The error at each iteration is estimated as the squared errors between the
total arrivals and departures obtained summing the OD trips and the detected
arrivals and departures for each node from ”turnstiled” data as:

error =

√∑
i∈V (

∑
j∈V Xij − di)2

|V |
+

∑
j∈V (

∑
i∈V Xij − aj)2

|V |

At the end of the algorithm a calibrated OD matrices which minimizes the
deviation from ”turnstiled” data is obtained.

3.2 Route choice selection and passenger flow simulation

To model the dynamics of each train across the network, in terms of both get-
ting on and off passengers and trains load factor, we need to develop a traffic
assignment simulator. In the last decades, several methods have been pro-
posed in the literature regarding traffic assignment procedures. The majority
of available works deals with the problem of traffic assignment for road traffic
networks (see [24] to have a review of the models evolution in this regard), while
the literature related to the analysis of subway and/or railway transit systems
is less extensive. [8] develops a mathematical passenger route choice and train
scheduling model to asses the maximum transport capacity of the Dutch railway
network. [25] introduces a schedule-based loading model capable of distribute
passengers over the network and validates it with data from the Mass Transit
Railway network in Hong Kong. [26] proposes a scheduled-based dynamic traf-
fic assignment model, whose performance are illustrated through a large-scale
network of Beijing (Peking) subway. [27] employs a logit multinomial model to
study how different covariates (e.g. travel time, waiting time, network topology
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and passengers preferences) could influence the estimation of the probability of
selecting one route in the Santiago metro for each OD pair; this last work relies
on the wide literature of route assignment employing a discrete choice model
to estimate the probability of choosing a specific route among a set of selected
ones (e.g. [28], [29], [30]).
In our work, we develop a deterministic assignment model in which travel choices
are known a priori and passengers do not change their established route if they
are in a queue but they wait for the following available train. As alternative,
we could have estimated the travel choices through user equilibrium criteria,
therefore relying on passengers past experience (passengers memory and habit);
however, when the interest is in the monitoring of the system on a particular
day or scenario, finding an equilibrium solution is not actually applicable ([25]).
Moreover, the existence of a unique equilibrium is just one of the possible cases
and a day-to-day process may oscillate among different equilibria or even show
a chaotic pattern ([31]). Therefore, since we are interested in investigating and
monitoring the performance of the network under different offer and demand
scenarios, we stick with the a priori estimation of the route choices.
[32] divides the route choice procedure into two steps: generate a set of possible
alternative routes and calculate the probability a given route is selected by pas-
sengers. Following this idea, we employ a route choice method which assumes
that passengers tend to select the shortest path in terms of needed time con-
sidering both waiting, transfer and travelling times; this approach is consistent
with classical route choice model [33], as we do not have additional information
about passengers preferences (e.g. comfort preferences) to be included in the
model. In addition, no data about past passengers route choice are available,
making difficult to employ procedures from the discrete choice model literature.
To select the set of possible alternative routes, given an (O,D) pair, all simple
paths to reach the destination D from origin O are evaluated on the directed
network of the metro system and then the admissible ones are selected following
some criteria. Let G(V,E) be a directed network representing a metro system
in a fixed time interval, with V the set of nodes representing the stations of
the network and E ⊂ (V × V ) the set of edges representing the connections
between stations; each edge, which can be a standard edges or interchange edge,
as specified in Section 2, has an associated weight given by the travelling time
or transfer time on that connection in the observed time interval. We have to
consider that, as already mentioned, the Milan Metro system is composed by
four lines connecting the city center of Milan, the second biggest city in Italy,
with the hinterland areas. Therefore, passengers use the metro line both for
short trips (e.g. few stops in the center of the city) and for long ones (e.g. to
reach the city center from the hinterland). For this reason, as (O,D) pairs in-
clude both short and long trips, we decide to not include, in the admissible set
of paths for each OD, the k-shortest paths ([34]) as often done in literature (e.g.
[35], [36]), as this choice could be unfeasible for short travels. In details, first all
the simplest paths between the couple (O,D), coupled with their associated cost
in terms of needed times, are computed and then only a subset of admissible
ones is selected. The set of admissible paths is selected, for each (O,D) pair,
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considering the shortest one and all the paths with a cost lower that the cost
of the shortest one plus at maximum a 15% of it. The probability of using a
specific path is then evaluated for each OD trip as the weighted inverse of the
cost of each admissible path. Note that, as the paths costs change according to
the hour of the day, different admissible paths can be identified during the day
considering the same OD pair.
After estimating the admissible paths for each couple OD at any hour, the num-
ber of OD trips employing a specific path is evaluated considering the number
of passengers going to D from O and the probability of using a specific path,
i.e. allowing to know, for each hour, the number of passengers travelling on a
specific path. In this way, for each hour, we obtain a set of OD trips with associ-
ated path which is needed to assign the different passengers at each train of the
metro system. Moreover, to assign passengers to relevant trains, departure time
for each OD trip on each path is evaluated at thinner time intervals. First, for
each hour, the OD trips are distributed on time intervals of 10 minutes consid-
ering the percentage distribution of departing passengers from each station and
each time interval of 10 minutes in that hour, as observed in the ”turnstiled”
data. Then, for each time interval of 10 minutes, the OD trips are uniformly
distributed on intervals hh of one minute. Finally, at each departure time, we
add 30 seconds as the time needed to reach the platform from turnstiles.
To simulate the passenger flow on the metro system, a simulator, which works
separately for each line, of the system is implemented. Therefore, all OD trips
travelling on paths involving more than one line should be considered as dif-
ferent trips, one for each line, on different sub-paths with different departure
times. Lets take, for example, an OD trip, with departure time hh, related to
one path going from station O = i to D = j and including an interchange edge
connecting station k and q belonging to two different lines. In this case, the OD
trip is re-allocated into two sub-paths with two different departure times: the
first sub-path going from station i until the interchange station k with depar-
ture time equal to hh; the second one going from the interchange station q until
station j with departure time equal to hh+WTi,k(·) +TTi,q(·), where WTi,k(·)
is the Waiting Time to go from i to k and TTi,q(·) is the Travelling Time to
go from i to q, estimated summing the Travelling Time of all the crossed edges
to go from i to q, evaluated as defined in Section 2 in the hourly time interval
to which hh belongs. The same process is adopted for all OD trips on paths
covering more than two lines simply obtaining a number of sub-paths equal to
the number of crossed lines. Once each OD trip is related to a sub-path cover-
ing a single line, we can simulate the passenger flow on the different lines of the
metro system. In detail, given a direction l on a specific line, we consider as Zl

the set of trains travelling on l from the timetable and Vl the set of stations in
l. To simulate the passenger flow on the metro system, for each train z ∈ Tl
and each station i ∈ Vl:

1. the set of passengers travelling from i to another station j ∈ Vl with
departure time hh before the arrival time of the train z in i which are not
already assigned to any previous train are getting on z;
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2. the set of passengers which has already got on the train z in the previous
station with destination i is getting off;

3. in case some passengers could not get on the train z due to train capacity
limitation they are marked as queuing passengers at station i waiting for
the next train.

As the assignment model works separately for each line and direction, since the
queuing passengers can effect the other lines delaying departure times of some
passengers, an iterative procedure should be develop. In detail, if some pas-
sengers could not get on a train, thus delaying their arrival on other stations,
then the departure time of OD trips on subsequent sub-paths on the other lines
should be updated before simulating the passenger flow on the other lines and
directions. The algorithm works updating the departures times of each OD trip
on each line any time a delay is identified in some OD trips in a line, see Algo-
rithm 2.

Algorithm 2 Assignment model algorithm

while iter < iter max do
for line and direction l do

Passenger flow simulation for each train z ∈ Zl and station i ∈ Vl;
if

∑
i∈Vl,t∈Zl

queuez,i > 0 then
Update departing times on other lines and directions;

end

end
if

∑
l

∑
i∈Vl,z∈Zl

queuez,i = 0 Or the system has converged

then
STOP

else
iter=iter+1

end

end

To evaluate the algorithm convergence we need to estimate if results are not
changing in one iteration with respect to the previous one. To do so, at each
iteration iter the identified queues for each train z in each station i, queuez,i, are
compared to the ones at the previous iteration iter − 1 and the mean absolute
difference (MD) is evaluated as:

MD(iter) =
1∑

l |Vl||Zl|
∑
l

∑
i∈Vl,z∈Zl

(|queuez,i(iter)− queuez,i(iter − 1)|) (3)

When the difference is zero it means that the model has converged and the
system is stable.
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4 Analyses and results

In this Section, we display the performance of our model by applying the meth-
ods presented in Section 3 on a specific scenario of offer and demand. In details,
we simulate the behavior of the metro system in two scenarios that we call
scenario A and scenario B. In both cases the demand scenario is the mobility
demand occurred the 8th of October 2020; the offer scenario is the timetable
effective on that day, but we consider different train capacity offers in the two
considered scenarios: in scenario A the train capacity is fixed to the 80% of
train capacity under normal condition, while in scenario B the train capacity
is fixed to the 27% of train capacity under normal condition; notice that sce-
nario A is the real scenario occurred at the 8th of October 2020, while scenario
B is a simulated scenario to observe what would have been happen with more
restrictive policies.

4.1 Calibrated OD matrices

First of all, the hourly OD matrices have been calibrated by means of the Fur-
ness method, as explained in Section 3.1. To show the accuracy of the obtained
calibrated OD matrices, we evaluate the Departures coverage percentage and
Arrival coverage percentage (respectively defined as in (1) and (2)) of these
matrices with respect to the data collected by ”turnstiled”. Notice that the
calibrated OD matrices cover the 99% of the ”turnstiled” passengers entering
in the metro system. In Figure 4 and 5, we report as example the obtained
coverage per station and hour for line M3. By comparing these outputs with
the ones obtained from the initial OD matrices (Figure 2 and 3), it is trivial to
observe that the resulting OD matrices do not show any evident lack of depar-
tures/arrivals with respect to ”turnstiled” data both for departures and arrivals.

Figure 4: Departures coverage percentage of the calibrated OD matrices with
respect to ”turnstiled” data for stations belonging to line M3 during the day.
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Figure 5: Arrivals coverage percentage of the calibrated OD matrices with re-
spect to ”turnstiled” data for stations belonging to line M3 during the day.

4.2 Passengers flow simulation

Then, the admissible travel routes for each couple Origin-Destination in a spe-
cific hour are identified. In details, for each OD pair, the admissible paths
are selected following the procedure explained in Section 3.2. In Figure 6 the
distribution of (O,D) pairs with respect to the number of selected paths at
h =08:00-08:59 is reported.

Figure 6: Distribution of (O,D) pairs with respect to the number of selected
paths at h =08:00-08:59.

After identifying the paths employed by passengers for each (O,D) pair at
each time interval h ∈ H, the assignment model, presented in Section 3.2, is
applied. For each train in each line the passenger flow getting on and off and
the load factor are evaluated in each station. The eventual forming of queue is
estimated when passengers can not get on the train due to capacity constraints.
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Simulation with no queues

When considering scenario A, no congestion situations are identified, thus only
one iteration in the model is required. In details, the higher value in term of
load factor is reached on the M1 line in the railroad from Cadorna M1 to Cairoli
M1 at 8:40 and it is equal to 61%.
In Figure 7 and 8, we report some examples of obtained results for some trains
in different hours of the day: the first one in the morning rush hour and the
second one in the afternoon rush hour, respectively. In details, at each stop of
the line, Figure 7 and 8 display the number of passengers getting on and off,
the people queuing and the load factor of the train with respect to the capacity
under normal condition highlighting with a red line the allowed capacity in the
considered scenario (80%). Figure 7 displays results for a train in the morning
rush our: a train belonging to line M1, departing from Bisceglie at 08:22 with
final destination Sesto F.S. at 09:08. Figure 8 displays results for a train in the
afternoon rush our: a train belonging to line M3, departing from San Donato
at 18:05 with final destination Comasina at 18:36.

Figure 7: Results for a morning rush hour train under scenario A.
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Figure 8: Results for a afternoon rush hour train under scenario A.

Simulation with queues

When considering scenario B, crowding situations happen in many stations gen-
erating queues. For this reason the model needs to be iterated until convergence
as presented in Section 3.2. In Figure 9 the Mean Absolute Difference, estimated
as in (3), of queues between two consecutive iterations is reported showing that
convergence is reached at iteration 2.

Figure 9: MD of queues between two consecutive iterations highlighting in red
when the algorithm converges making MD(iter) = 0.

Results reveal that among the monitored 2307 trains, about 55% of them
reaches the maximum allowed value of capacity and produce queues in at least
one station. In details, looking at the number of stations characterised from
queues for each train, we observe a minimum of one and a maximum of eleven
stations. For instance, the train departing from Rho at 08:26 with final destina-
tion Sesto F.S. at 09:13 (belonging to line M1) generate queues in eleven of the
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31 crossed stations, forcing almost 3000 passengers to wait for the subsequent
trains.
In Figure 10 and 11, we report some examples of obtained results, exactly as
done for scenario A: at each stop of the line, the Figures display the number
of passengers getting on and off, the people queuing and the load factor of the
train with respect to the capacity under normal condition highlighting with a
red line the allowed capacity in the considered scenario (27%). In Figure 10 the
obtained results for the same train showed in Figure 7 (a train departing from
Bisceglie at 08:22 with final destination Sesto F.S. at 09:08) are reported, show-
ing how in this scenario, due to the congestion on the train, queuing passengers
are present in some stations generating crowding situation both on trains and
platforms. In details, in the first part of the line (between Bisceglie and Cairoli)
the train is almost always full (the maximum capacity is reached) and queues
of the order of magnitude of almost one thousand are generated. Figure 11
displays the results obtained for the same train showed in Figure 8 (a train
departing from San Donato at 18:05 with final destination Comasina at 18:36)
under the reduction of capacity constraints of scenario B. Even in this case,
queuing passengers and crowding situations are present. In details, the worst
station is Missori where about 1250 passengers can not board and have to wait
for the subsequent trains.

Figure 10: Results for a morning rush hour train under scenario B.

In conclusion, in Figure 12 we highlight the train stations in which a queue
is present under scenario B, respectively, in the morning (7:00-8:00) and the
afternoon (18:00-19:00) rush hours. Focusing on the morning rush our, there are
58 stations generating queues, which cover all the four lines with the exception
of line M5 (the only line with no queues). Notice that, among these 59 stations,
all of them generate a queue only on one train platform of the two directions
of the line; in details, all the queues are mainly generated in stations in the
suburb from trains directed to the city center. Focusing on the afternoon rush
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Figure 11: Results for a afternoon rush hour train under scenario B.

our, there are 32 stations generating queues, 17 of which only on one platform
(i.e. direction) and 15 of which on both platforms. It can be noticed how
these stations are mainly in the city center and are, for the most, not the same
stations which are characterised from queues in the morning. All these results
suggest that the subway system, as well know from ATM, is mainly used from
commuters travelling to the city center in the morning and going outside of the
city center in the afternoon.

Figure 12: Metro system of Milan highlighting with darker colours the stations
with a queue under scenario B, respectively, between 8:00-8:59 and 18:00-18:59.
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5 Conclusion

In this work we developed a model able to monitor the passenger flow in a urban
railway system, estimating, for each train, the number of passengers getting on
and off at each station, along with the load factor of the train along the line. In
details, we first apply a calibration procedure to estimate a reliable OD matrix
starting from a prior OD matrix coupled with accurate data related to the de-
partures and arrivals at each station. Then, the route choice for each OD pair
is estimated by properly taking into account the costs for each path in terms of
needed time, considering both waiting, transfer and travelling times. Finally, a
simulator able to assign the different passengers at each train, monitoring the
load factor of the train and therefore handling potential queues is implemented.
The developed model has been tested on the metro system of Milan, in Italy, to
monitor the reliability of the network under different offer and demand scenarios.
Results provide useful insights which have been shared with ATM, the company
responsible for the management of the public transport in Milan, allowing them
to best handle the management of the service. In detail, the provided results
highlight the subway sections and the stations most at risk of congestion, show-
ing the crowding of each train and station platform at any hour of the day. It is
obvious that these type of information turn out to be more than ever essential
in the present worldwide scenario in which public transport companies, due to
the spread of COVID-19, are facing the problem of providing a high quality ser-
vice respecting several imposed capacity constraints, thus minimizing crowding
situations.
In conclusion, despite this work focuses on the metro system of Milan in Italy,
the math and the methodology developed easily allow to analyse and monitor
any larger urban railway system in different cities, therefore obtaining a flexible
and scalable approach.
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