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ABSTRACT

Medical imaging represents the primary tool for investigating and monitoring several diseases, including cancer. The advances
in quantitative image analysis have developed towards the extraction of biomarkers able to support clinical decisions. To
produce robust results, multi-center studies are often set up. However, the imaging information must be denoised from
confounding factors – known as batch-effect – like scanner-specific and center-specific influences. Moreover, in non-solid
cancers, like lymphomas, effective biomarkers require an imaging-based representation of the disease that accounts for its
multi-site spreading over the patient’s body. In this work, we address the dual-factor deconfusion problem and we propose a
deconfusion algorithm to harmonize the imaging information of patients affected by Hodgkin Lymphoma in a multi-center setting.
We show that the proposed model successfully denoises data from domain-specific variability (p-value<0.001) while it coherently
preserves the spatial relationship between imaging descriptions of peer lesions (p-value=0), which is a strong prognostic
biomarker for tumor heterogeneity assessment. This harmonization step allows to significantly improve the performance in
prognostic models with respect to state-of-the-art methods, enabling building exhaustive patient representations and delivering
more accurate analyses (p-values<0.001 in training, p-values<0.05 in testing). This work lays the groundwork for performing
large-scale and reproducible analyses on multi-center data that are urgently needed to convey the translation of imaging-based
biomarkers into the clinical practice as effective prognostic tools. The code is available on GitHub at this link.

Introduction
Hodgkin Lymphoma (HL) is a type of cancer that affects the lymphatic system, where lymphocytes proliferate uncontrollably
in multiple lymph nodes and eventually in extranodal sites (e.g. spleen, bone, etc.). It is acknowledged as a curable disease
thanks to its high rate of response to chemotherapy, often combined with radiotherapy. Still, a considerable percentage of
patients do not respond to first-line treatments and the latest research has been devoting its efforts to discovering alternative and
more efficient therapies, such as immunotherapy. Immunotherapy has indeed been approved for relapsing cases and has since
represented a huge stride for patients, who are on average very young1.

As the number of available therapies increases, treatment planning becomes more and more crucial, and personalized
medicine is catching on in every aspect of medical practice to devise the optimal treatment for each patient. Nevertheless, such
a tailored approach requires quantitative and informative data to input into powerful and transferrable models on which to
rely decisions. On purpose, Positron Emission Tomography/Computed Tomography (PET/CT) radiomic analysis has been
shown to be an insightful, non-invasive tool for histological prediction, prognostic assessment, and bone marrow involvement
definition in lymphoma2. In brief, the radiomics framework entails the extraction of a high-dimensional vector description
of the spatial gray levels’ distribution of an image, the so-called radiomic features3, 4. Each of such features thus describes a
statistical property of the image heterogeneity at different scales, which can inform several downstream analyses and modeling
efforts.

As HL is a rare disease, studies performed at a single institution usually do not account for sufficient information to build
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powerful enough models and derive general knowledge. Therefore, oftentimes multi-center cohorts need to be set up and
large-scale studies have to be conducted, collecting data coming from different sources5. This raises a relevant issue, as
radiomics features are known to be highly influenced by the image acquisition settings, the segmentation procedures, and the
reconstruction parameters, jeopardizing the transferability and scalability of the results6–8. Typical exogenous confounding
factors include both scanner characteristics, protocols and more general center-specific variabilities. These two factors must
therefore be accounted for together when performing any type of analysis on multi-center data.

Moreover, the latest trend in radiomics is developing towards the extraction of more and more features, including first-order
statistics, second- and higher-order statistics, and wavelet/frequency-derived indices. As the number of features rises, their
pairwise correlation increases accordingly, and it becomes harder and harder to build effective models and disentangle the true
signals of interest from technical artifacts, noise, and uninteresting biological variables. Here comes the need to properly reduce
the dimensionality of radiomics vectors, transforming the features into low-dimensional vectors that keep the true informative
signals while discarding domain-specific confounders.

While the above holds for many multi-center radiomics studies of (rare) diseases, when analyzing a hematological (like HL)
or metastatic cancer, an additional level of complexity is added to the task of deconfounding and reducing radiomics features.
In fact, different lesions can be found throughout the body of the patients. Despite the current approach for imaging-based
quantitative assessment of most cancers, including HL, relies on the inspection of the bigger or hotter lesion, Sollini et al.9

have demonstrated how lesions are radiologically heterogeneous within patients in terms of radiomics description and how a
prognostic classifier performs better when all tracer-avid lesions are considered. These findings align with the latest discoveries
in the biological underpinnings of lymphomas. Some studies on solid cancers have previously described how both proximal
and distant lesions deriving from the same primary tumors exhibit divergent patterns of both morphological and genetic
heterogeneity10. Similarly, Tabanelli et al.11 reported the same evolutionary crossroad between morphological heterogeneity
and intra-clonal evolution in a case of high-grade B-cell lymphoma. Thus, morphological heterogeneity behaves as a surrogate
of genetic heterogeneity, responsible for treatment inefficacies. It follows that all lesions’ morphology must be taken into
account, to exhaustively represent the disease in the prediction of cancer progression, therapy efficacy, and disease-free survival
outcomes12, 13. This implies that any postprocessing (i.e. dimensionality reduction and/or deconfusion process) aimed at
preparing radiomics features for patients’ representations needs to keep the inter-lesion relationships within patients consistent,
as here is where information of tumor morphological heterogeneity lies9, 14.

In light of the above, a robust post-image-acquisition method aimed to harmonize multi-lesion radiomics data from multi-
center studies requires (i) to properly remove both scanner and center confounding effects, (ii) to treat features’ collinearity
and allow for simpler statistical modeling via proper dimensionality reduction, and (iii) to keep intra-patient heterogeneity
consistent throughout the transformation. All this should be achieved while retaining all truly informative signals in the data, so
as not to affect – and possibly improve - any potential downstream analysis.

Different strategies have been proposed in recent literature to minimize the batch-effects of radiomics variability, ranging
from imaging-based to feature-based approaches15–17. Most of them aim to perform batch-specific standardization of images to
disentangle the true signal from environment-related noise. Among these, the ComBat method was shown to be superior to other
techniques, attracting attention in the radiomics field15, 18, 19. Starting from its first conception, ComBat was improved over time
by different independent researchers. One for all, Adamer et al. proposed a regularized solution of ComBat, namely ReComBat,
computationally more efficient to facilitate the large-scale harmonization of data20. However, it must be noted that ComBat and
most of its derivative algorithms were developed in the computational biology domain, where usually only one main confounder
(i.e. sequencing batch effect) needs to be removed. Indeed, to remove multiple confounders, they must be applied repeatedly,
one factor at a time. As the context of radiomics studies oftentimes implies multiple confounders, Nested ComBat21 and its
improved evolution from the same authors, OPNested Combat22, were recently proposed specifically to tackle multi-factor
deconfusion. The latter applies ComBat iteratively on confounder-associated subsets of features, identifying the optimal order
of factors to correct for. Notably, irrespective of the number of confounders removed from the data, ComBat-based methods
rely on the hypothesis of normality of the features’ errors, which might be unrealistic for radiomics data22. Moreover, none of
the above methods perform dimensionality reduction and are thus typically followed by Principal Component Analysis (PCA)
before the analysis. Additionally, to the best of our knowledge, none of them has neither explicitly addressed the problem
of preserving inter-lesion relationships within patients, nor has been evaluated in their capability to improve prediction by
exploiting heterogeneity information after deconfusion.

In this work, we propose a multi-factor deconfusion algorithm better suitable for the downstream analysis of multi-
lesion/metastatic patients in multi-center studies, described in Figure 1. The algorithm builds upon the work of Dincer et al.23,
which, in the context of gene expression analysis, proposes an Adversarial Deconfounding AutoEncoder (AD-AE) model that
requires no assumption on features’ distribution and jointly performs dimensionality reduction and cleaning of the embeddings,
enhancing the signal-to-noise ratio. Here, we exploit the rationale of this model for the context of multi-center PET/CT
radiomics analysis, developing a Dual factor AD-AE (in the following, Dual AD-AE) model for the simultaneous removal of
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Figure 1. Graphical schema of multi-lesion multi-center radiomics studies confounding issues and Dual AD-AE solution:
(Panel 1) In multi-lesion and/or metastatic tumor settings such as HL, patients can be modelled as clouds of points, where each
point (L) is defined by the radiomic vector of a lesion (radiomic features can be semantically divided into histogram-derived,
shape-derived, GLCM-derived, GLRLM-derived, GLZLM-derived and NGLDM-derived features). Among others, cloud
heterogeneity is a valuable predictor of patients’ outcome. (Panel 2) The radiomics features computed for the same patient
(Patient A) can be highly affected by the center that collects the images and the scanner used, which are the two primary
confounding factors. In turn, this affects the patient’s cloud representation, biasing heterogeneity-based prediction and making
patients with different center-scanner combinations hardly comparable. (Panel 3) To harmonize data from multi-center studies
(matrix R of confounded radiomics features), Dual AD-AE embeds lesion into a lower dimensional space (Embedding Space)
where exogenous confounding factors are removed and patients’ clouds keep the predictive information – as opposed to directly
performing PCA on the combined dataset, which results in biased patients’ representations (Panel 3 top). To do that, the
encoder of the Dual AD-AE (φ ) is trained to transform the radiomics matrix R into the embedding matrix e by maximizing the
reconstruction (from embeddings to the reconstructed version of the input R̂) and simultaneously minimizing the prediction on
both center and scanner confounding factors (Panel 3 right).

both center and scanner confounding effects (Figure 1). We evaluate the proposed model in terms of (1) its deconfusion power,
(2) its ability to keep invariance of intra-lesion relationship with respect to original data - despite dimensionality reduction -
(3) and its prognostic power. In experiments (1) and (3) we compare the results of Dual AD-AE to those of state-of-the-art
ComBat-based approaches. In experiment (2), we propose a statistical test to access the consistency of the data transformation.
We evaluate our proposed models on a multi-center dataset of HL patients in order to predict response to first-line chemotherapy,
demonstrating that Dual AD-AE enables building exhaustive patient representations and delivering more accurate analyses,
especially when trying to exploit the predictive power of intra-tumor heterogeneity.
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Results

Data collection
Two centers were involved in the study; inclusion criteria were age ≥ 16 years old, newly diagnosed stage I-IV HL and baseline
[18F]FDG-PET/CT availability, and exclusion criteria were missing clinical/imaging/follow-up data; 128 HL patients were
recruited and treated at IRCCS Humanitas Research Hospital (Institution 1), 78 at Fondazione IRCCS Istituto Nazionale dei
Tumori (Institution 2). Personal information and clinical data were annotated for each patient in both hospitals and [18F]FDG
PET/CT imaging was inspected by experienced nuclear medicine physicians. Descriptive statistics of patients are available
in Supplementary Table S1 and Supplementary Table S2 for Institution 1 and Supplementary Table S3 and Supplementary
Table S4 for Institution 2. Of note, number of relapsing patients was 21 over 128 (16%) in Institution 1 dataset and 17 over 78
(22%) in Institution 2 dataset. All [18F]FDG-avid lesions bigger than 64 voxels were segmented in each patient and radiomic
features were extracted from each lesion using LIFEx software (www.lifexsoft.org24). A total of 1340 and 794 lesions were
collected at Institution 1 and Institution 2, respectively. Information about scanners’ specification and acquisition settings is
summarized in Supplementary Table S5 and Supplementary Table S6 , while Imaging Biomarker Standardization Initiative
(ISBI)-compliant standardization and data harmonization have been published elsewhere9. The study was approved by the local
ethics committees at Institution 1 (n. 2595 on Jun16, 2020) and Institution 2 (code INT 212/20 on Sep28, 2020); given the
observational retrospective design of the study, the signature of a specific informed consent was waived.

Experimental outline
As displayed in Figure 2 and further explained in the Methods, the proposed Dual AD-AE consists of (i) an autoencoder
with multiple hidden layers and (ii) two adversary branches that predict the source of data, i.e., the center and the scanner.
The rationale of this method is that penalizing the prediction performance of the adversaries while jointly maximizing the
reconstruction accuracy of the autoencoder will result in lesion embeddings that keep as much as possible of the original signal
while discarding solely the noise introduced exogenously by the two confounders.

As mentioned in the Introduction, to identify a robust post-image-acquisition method to harmonize multi-lesion radiomics
data from multi-center studies, one needs to consider several aspects. Indeed, to propose Dual AD-AE as better suited to the
task, we performed a series of experiments on different harmonization strategies (in the following, modalities).

We recall that the center confounding factor relates to the hospital’s imaging facility, the clinical guidelines, and the
personnel who segments and carries out the acquisition. On the other hand, the scanner confounding factor supplies information
on the scanners’ specifications and reconstruction parameters. The scanner variable may ve intrinsically subordinated to the
center variable, as usually different scanners are found in different centers. They may thus entail some extent of nesting nature
and partially overlap in their confounding information.

For the sake of comparison with state-of-the-art approaches, we tested three major ComBat implementations, namely
Combat18, ReComBat20 and OPNested Combat22, comparing the results to quantify the improvements of our solution.
Specifically, single-factor ComBat was applied twice in cascade (in both confounders’ orders). These two ComBat-based
models are namely ComBat-center-scanner and ComBat-scanner-center depending on the order of the batch-effects. The very
same approach has been followed for ReComBat. OPNested Combat was instead applied once on center and scanner effects at
the same time, as it was specifically developed for multi-factor effect removal.

On these models and ours, we performed three different quantitative experiments. We tested the deconfusion power
of the different modalities, comparing the proposed method to the state-of-the-art models (Experiment 1). Furthermore,
considering that the Dual AD-AE encompasses dimensionality reduction as part of the deconfusion process, leading to a
potentially detrimental transformation of intra-lesion relationships, we developed a novel test to assess this impact quantitatively
(Experiment 2). Finally, we tested and compared all modalities on their ability to keep predictive information intact. We
transformed the deconfounded features of each modality into different all-lesions patients’ representations, to be fed into
prognostic models and evaluated the performance of prognostic models (Experiment 3).

Experiment 1: Checking deconfusion power
To evaluate the strength of the confounders’ effect, one can verify the predictability of the confounding variables (i.e. the center
and the scanner) from the data. A high prediction performance denotes the presence of a strong confounder-related signal.
Therefore, in order to quantify the effect of the deconfusion process, we compared the predictive power of cross-validated
Logistic Regression models fed with the radiomics features before and after the application of the different modalities. Details
on the analysis are provided in the Methods section. Accuracy was annotated for performance comparison through statistical
tests. Table 1 shows the results for the Dual AD-AE, the two ComBat models, the two ReComBat models, and OPNested
ComBat.

While radiomics, as expected, scored very high in predicting both the center and the scanner (as assessed by the univariate
analysis in Supplementary Table 7), our embeddings showed evidence of deconfusion, comparable to state-of-the-art benchmarks.
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Figure 2. Architecture of the Dual Adversarial Deconfounding Autoencoder (AD-AE) model: the model is made of three
parts: an autoencoder (encoder: φ , decoder: ψ), an adversary branch network predicting the center confounder (ν1) and a
parallel adversary branch network predicting the scanner confounder (ν2). The network is trained by optimizing the input
reconstruction task (autoencoder loss) and the deconfusion task (adversary losses) as in Equation 1 of Methods. The
adversaries unlearn to predict the confounding factors, i.e. the center and the scanner.
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Table 1. Experiment 1 results: comparison between the performance of the Logistic Regression models for predicting the two
confounding factors: the center and the scanners. The modalities that have been evaluated are raw radiomic data, Dual AD-AE
embedding, ComBat-standardized data (both with center-scanner order and with scanner-center order),
ReComBat-standardized data (both with center-scanner order and with scanner-center order) and OPNested-standardized data
(with scanner-center order). The Logistics Regression models are fitted on each of these modalities, in a cross-validated fashion.
Values are annotated as mean ± standard deviation. The models evaluate (1) the binary prediction of the center labels, and (2)
the multi-class prediction of the scanner labels. The performances of the radiomics-based models are taken as reference, while
the performances of the other modalities are analyzed in terms of decrease compared to the baseline models’ performance.
Statistical tests have been performed and the models that are significantly different from radiomics are highlighted in bold.

Accuracy CENTER Accuracy SCANNER
Baseline Radiomics 0.8559 ± 0.0117 0.8617 ± 0.0104
Embedding Dual AD-AE 0.6251 ± 0.0131 0.3308 ± 0.0146

ComBat ComBat-center-scanner 0.6220 ± 0.0137 0.2968 ± 0.0278
ComBat-scanner-center 0.6236 ± 0.0134 0.3006 ± 0.0307

ReComBat ReComBat-center-scanner 0.6228 ± 0.0150 0.3009 ± 0.0362
ReComBat-scanner-center 0.6276 ± 0.0124 0.2997 ± 0.0359

Opnested Opnested (scanner-center) 0.6239 ± 0.0118 0.2967 ± 0.0349

Both the Dual AD-AE and all the Combat-based modalities aligned to the same performance, outperforming the non-
deconfounded radiomic vectors. Indeed, values highlighted in bold in Table 1 correspond to non-significantly different, yet
lower than radiomics, performances. All modalities were thus equally powerful at the deconfusion task. Of note, the OPNested
algorithm selected scanner-center as the optimal order, thus the two models are expected to perform similarly. Additionally, the
proposed Dual AD-AE model showed a smaller standard deviation of the accuracy in predicting scanner type, supporting the
robustness of the model.

Experiment 2: Cloud-shape invariance test
In multi-lesion and/or metastatic tumor settings such as HL, patients can be modeled as clouds of points14, where each point is
defined by the radiomic vector – whether original, reduced, or deconfounded – of a lesion, and the shape of the cloud determines
intra-patient tumor heterogeneity as the pairwise relationship between lesions25. To ensure that the predictive information of
the clouds’ shape has been preserved, Dual AD-AE embeddings must keep invariance with respect to the relative positions
of lesions, despite the reduced dimensionality of the resulting vectors. That is, patient-wise lesions’ rankings and pairwise
lesions’ distances should hold after deconfusion, under the hypothesis that they are not independently impacted by exogenous
noise. Given this assumption, to test for the cloud shape-invariance of the feature transformations, we developed a quantitative
method, introducing novel metrics called Point Cloud Semantic Drift (PCSD). As further detailed in the Methods section, PCSD
quantifies the extent of the change in peer lesions’ distance rank order within a patient. Furthermore, to define a quantitative
test of hypothesis for PCSD, we estimated an empirical null distribution of the PCSD values when point clouds are randomly
transformed, inducing random neighbor swaps by injecting repeatedly Gaussian noise in subsets of the embeddings. The
empirical p-value of the Dual ADAE transformation was then obtained from the Empirical Cumulative Distribution Function
(ECDF) of this null PCSD distribution.

Figure 3 shows the results of the proposed method. The population distribution of PDSC from Dual AD-AE transformation
is displayed alongside the Empirical Distribution Function (EDF) of 100 random transformations. From the visual inspection of
the plots, the model produced PCSD values skewed toward zero, suggesting the shape-invariance of the clouds. Moreover, the
empirical p-value was equal to zero, thus we can further sustain that Dual AD-AE successfully kept cloud-shape invariance and
that the change in inter-lesion distance, which occurred during deconfusion, was significantly far from being random.

Experiment 3: Checking prognostic power
Despite its unsupervised nature, the proposed approach aims to enable the design of exhaustive patient representations to deliver
accurate analyses for treatment planning on multi-center datasets. Here we provide an example of downstream analysis where
to quantify the improvement in predicting the first-line chemotherapy outcome of patients affected by HL after correcting for
confounding factors. To do this, we resorted to the use of three patients’ representations, encompassing both separately and
jointly the location and the shape of the point clouds. In particular, we represented each patient as a point cloud and defined
(1) a mean vector of all lesions of each patient (i.e. the centroid of the cloud), (2) a set of topological indexes describing
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Figure 3. Results of patient-wise tests on PCSD for dual AD-AE embedding: (Panel A) The density plot displays the overall
distribution of PCSDs in the population. (Panel B) The density plot shows the score of the Dual AD-AE results over a bootstrap
random distribution. Fiducial values of the distribution are marked with vertical lines in the left plot and our model
performances are displayed with a vertical red line in the right plot.

Table 2. Experiment 3 results: p-values of the tests comparing different survival models. The Dual AD-AE model is
considered according to its three different patient representations: (1) the patient is described by the centroid of their point
cloud, (2) the patient is described by the topological characteristics of their point cloud and (3) the patient is described by both
the centroid and the topological characteristics of their point cloud. These are compared with the radiomics-based models, the
ComBat-based models, the ReComBat-based models, and with the OPNested-based models. Comparisons are made upon the
same patient representation: for instance, the Dual AD-AE model fed with centroid representation is compared to the other
modalities which were fed with centroid representation as well, and so on. Significant values are highlighted in bold.

Comparison wrt Centroid Cloud description Centroid + cloud description
P-value (train) P-value (test) P-value (train) P-value (test) P-value (train) P-value (test)

Radiomics model <<0.001 <<0.001 <<0.001 0.0001 <<0.001 <<0.001
ComBat-center-scanner model <<0.001 0.1065 <<0.001 0.0003 <<0.001 0.0230
ComBat-scanner-center model <<0.001 0.0473 <<0.001 0.0002 <<0.001 0.0160
ReComBat-center-scanner model <<0.001 0.1381 <<0.001 0.0005 <<0.001 0.0368
ReComBat-scanner-center model <<0.001 0.0676 <<0.001 0.0003 <<0.001 0.0274
OPNested ComBat model <<0.001 0.0676 <<0.001 0.0003 <<0.001 0.0274

the structure/shape of the clouds (i.e. the mean and the standard deviation of the pairwise distances between lesions and the
mean and the standard deviation of the distances between lesions and the cloud centroid) and (3) a representation including
both the centroid vector and the cloud describing indexes. Further details are provided in the Methods section. These three
representations were constructed from original radiomics features and their deconfounded versions with all the considered
modalities (Dual AD-AE embeddings; ComBat-, ReComBat- and OPNested ComBat-transformed radiomics). Each of them
was fed into a Cox proportional hazard model26 to predict the time-varying response to therapy. Of note, vectors derived
from the state-of-the-art algorithms needed to be reduced by PCA prior to being input into any model. The significance of the
prognostic power of imaging information was assessed in terms of the Concordance Index (CI,27). Performances on both the
training and testing phases were produced by repeated sampling of 20 independent data splits. Supplementary Table S7 reports
the means and standard deviations of the trials. For visual reference, Figure 4 displays the boxplots of the distributions of the
performance indexes of the modalities, grouped by patients’ representation strategy and deconfusion approach. Pairwise tests
were performed between settings to be compared and can be appreciated in Table 2.

As displayed in Table 2, the model performance of the Dual AD-AE modality was significantly higher than radiomics’,
suggesting how the deconfusion step does also benefit the prediction and the signal-to-noise ratio. Of note, the patient represen-
tations including cloud topology descriptors (i.e. when using heterogeneity as a predictor) always achieved better performance
than the benchmarks, being the most predictive and generalizable (i.e. test set performance) overall. From what centroid
representation is concerned, ComBat-center-scanner, ReComBat-center-scanner, ReComBat-scanner-center, and OPNested

7/15



Figure 4. Experiment 3 results: the boxplots of the distributions of algorithms’ performances. The three different patients’
representation strategies are considered per modality and one representation is displayed per plot. The top row plots show
training results while the bottom row plots show testing performances. All plots report on the y-axis the CIs of
ComBat-center-scanner radiomics (light green, ComBat1 for short), ComBat-scanner-center radiomics (dark green, ComBat2
for short), ReComBat-center-scanner radiomics (dark yellow, reComBat1 for short), ReComBat-scanner-center radiomics (light
yellow, reComBat2 for short), and OPNested ComBat radiomics (fuchsia), dual AD-AE embeddings (blue) and original
radiomics (grey). The red dots highlight the mean CIs, which are also reported on the right of each respective boxplot.

ComBat scored similarly yet worse with respect to Dual AD-AE. We remind that the OPNested algorithm implemented the
same sequence of ComBat-scanner-center, however, this latter model had lower performance, being significantly outperformed
by our model.

Alternative to deconfusion: frailty Cox proportional hazards model
Deconfusion methods ultimately allow the effective modeling of patients’ representations across scanners and centers. However,
instead of removing the confounding factor, an alternative yet well-established approach to model multi-source samples (i.e.
multi-center/multi-scanner data, where we have dependence within groups) is the explicit modeling of the group-specific
variability within the prediction model. For time-to-event data, this can be done via the frailty Cox proportional hazards
model28, which estimates center and/or scanner random effects together with the baseline hazard function. To verify whether
this approach would make the deconfusion step irrelevant, the centroid representation derived from the raw radiomics features
was reduced by PCA and fed into a frailty Cox proportional hazard model with center-specific and scanner-specific random
intercepts. Unfortunately, this test dramatically failed due to a lack of model convergence. This result is motivated by the small
sample size of the data at hand, combined with the high dimensionality of the radiomic variable (even after PCA) and the large
number of censored patients, which did not allow the model to properly estimate the effects’ parameters neither on the training
sets, on the testing sets, nor on the dataset as a whole.

Discussion
In this work, we developed a deconfusion algorithm to harmonize multi-center imaging data, with a particular focus on
multi-lesion/metastatic cancers, like Hodgkin Lymphoma. The Dual AD-AE model performed dimensionality reduction of
radiomic features while removing center- and scanner-related information simultaneously. The proposed approach was trained
on a dataset of Hodgkin Lymphoma patients from two centers and outperformed the state-of-the-art methods in the task of
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radiomic features harmonization, leading to higher prediction of response to first-line chemotherapy.
Three experiments were performed to evaluate the model’s properties, raising some major points of discussion. First, the

deconfounding power of the Dual AD-AE was granted. In fact, the accuracy of Logistic Regression models predicting the
scanner and the center target variable sensibly decreased after deconfusion. The Dual AD-AE demonstrated a comparable
deconfusion power with respect to ComBat-based models, showing no statistical differences in cross-validation. However,
removing both confounding factors at the same time may uncover and discard inter-confounder relationships which may
contribute to undesirable noise in the signal. Interestingly, the standard deviation of the accuracy of the Dual AD-AE model
in predicting the scanner type was lower than other models, suggesting the robustness and stability of the proposed model.
The ComBat (and ReComBat) algorithm applied twice showed variable results when changing the order of application. This
inconsistency is not surprising, as it motivated the development of OPNested ComBat in the first place21, 22. In fact, despite the
slight algorithmic differences between ComBat and OPNested, OPNested performed very similarly to ComBat-scanner-center.

Additionally, as the context of multi-lesion/metastatic data may benefit from the exploitation of intra-tumor heterogeneity
as predictive information, we designed a novel metric (i.e. PCSD) and an associated empirical test to quantify the impact of
the Dual AD-AE deconfusion and dimensionality reduction on intra-lesion relationships shaping the spatial conformation of
patients’ point clouds. Overall, the Dual AD-AE resulted in a significantly low PCSD value, rejecting the null hypothesis of no
correlation between the original (raw) and the deconfounded clouds of lesions. On one hand, this was expected and desired as
lesions of one patient share both the same center and scanner variability. That is, noise can be considered constant within a
single patient and the relationship among peer lesions should in principle not be spoiled by center and scanner deconfusion.
On the other hand, it might be possible that minor shifts could be appreciated in specific lesions, especially where massive
non-linear transformations were needed to properly clear the data. This might be true for some patients lying on the far-right tail
of the PCSD distribution. As proved by the test, such results do not translate into a detrimental data transformation, rather they
show that a trade-off between deconfusion and cloud-shape invariance has to be tuned and rigorously assessed. On purpose, the
PCSD metric can be exploited to highlight the presence of such additional sources of latent and interactive noise, that once
removed would release the true predictive power of intra-lesion heterogeneity.

This point was further validated in the third experiment presented in this work, where we assessed the increase in the
prognostic power of the deconfounded representation of patients in terms of response to therapy, against ComBat-based
alternative approaches. In principle, a proper deconfusion allows the shape and location of the point clouds coming from
different sources to be meaningfully compared. Thus, one can expect that predictive models built on these clouds’ representation,
that is lesions’ characteristics and intra-tumor heterogeneity, benefit from the deconfusion process. In fact, Dual AD-AE
embeddings showed significant improvements with respect to the baseline and the benchmarks, even though the gap between
training performance and testing performance remains large and would necessitate some prevention strategies to overfitting.
The results however testify how the proposed model can identify and remove the complex and potentially non-linear portion
of confounders’ noise that the competitors ignore. Moreover, it demonstrates the relevance of removing all confounders
simultaneously when in presence of multiple factors of variability in the data.

A further particularly relevant result was the difference in performance when using heterogeneity (i.e. cloud describing
indexes) as a predictor. While this cloud shape representation was merely a simple proof-of-concept example, Dual AD-AE
embedding was seen to allow for a much better prediction than the baseline model and competitors. Conversely, ComBat-based
and ReComBat-based benchmarks seemed to corrupt the heterogeneity signal to the point of achieving lower CI than the
original radiomics features during training, and they grant just a very limited performance increase during testing. Additionally,
to the best of our knowledge, none of the previous studies comparing deconfusion algorithms for radiomics data15–17 evaluated
their impact on the predictive power of groups of lesions. Here, our proposed approach was the only deconfounding algorithm
truly releasing the predictive power of heterogeneity, which became the most generalizable predictor.

This finding leads to two relevant considerations. Clinically speaking, it supports the hypothesis that intra-lesion heterogene-
ity does carry predictive information, once properly corrected for linear and non-linear confounders. Technically, it endorses
the use of a more complex non-linear model like the AD-AE, that can uncover and remove explicit and latent types of noise
effectively. Although not explicitly enforcing inter-lesion relationships consistency in the model we propose, so that it could be
in principle applied as-is to single-lesion data, this result testifies in favor of its application (as opposed to the state-of-the-art)
to contexts in which heterogeneity information is crucial for prediction.

Of course, training complex, non-linear, and heavily parametrized models such as the Dual AD-AE has higher computational,
time, and memory demands compared to the simpler ComBat-based methods. Nevertheless, the latter algorithms rely on
Gaussian distribution assumptions for estimating the parametric definitions of the statistical moments across batches (i.e. the
mean and the variance across centers or scanners), prior to standardization. However, this strong hypothesis of underlying data
structure may not always be appropriate for radiomics data, leading to underpowered and biased transformations. Conversely,
we proposed a non-parametric algorithm removing linear and non-linear confounder-induced noise without any prior assumption.
Furthermore, the Dual AD-AE was the only method that dealt with two confounders simultaneously. This permitted to reduce
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the risk of ignoring the portion of noise induced by center and scanner interactions (for instance, if one center uses way more
frequently a set of parameters for a specific scanner, compared to other centers). Moreover, thanks to its modular nature,
one could easily extend the model to adversarially predict - that is, unlearn - more than two confounders. In fact, additional
branches could be added, and the overall loss might be updated with the maximization of the corresponding accuracies. Further,
the weighting parameters λi (with i being the number of adversary branches) enable defining the impact of each confounder,
rebalancing the expected (or measured) relative effect of noising factors on the data. Both these aspects could hardly be
integrated into the ComBat approach. Finally, as opposed to ComBat-based methods, Dual AD-AE performs dimensionality
reduction together with cleaning of the embeddings. While this may affect the interpretability of the deconfounded data, we
argue that radiomics features are not easily interpretable per se, and they usually need a dimensionality reduction (such as PCA)
before modeling, as they are highly collinear.

As a final remark, disregarding the deconfounding algorithm employed, the two-step pipeline of removing confounding
effects and then analyzing the corrected data has raised several critiques29, 30. Oppositely, the most sponsored solution when the
confounder information is available is including it within the final prediction model. Nevertheless, we have shown in our last
tentative experiment how a frailty CoxPH model (even if with only one confounder) does not converge when the sample size is
small and the number of censored patients is high. This is quite common in multi-center studies of rare diseases.

A limitation of the present study is the lack of further data to test our proposed approach. However, no additional
comparable data was available to the authors at the time of writing. Nevertheless, we believe that the comprehensive tests and
benchmark studies performed on these cohorts represent a valuable proof-of-concept of the method’s potential. Moreover,
data provenance may behave as a bias in our experiments. Yet, despite the data originated from two geographically close
hospitals with standardized procedures and consistent image acquisition and feature extraction protocols, inherent heterogeneity
and discrepancies in data values persisted, supporting the objective of implementing a feature-level harmonization31. This
emphasizes the need for a comprehensive approach that combines image standardization, post-processing, and harmonization
models to eliminate batch effects and achieve data consistency.

In conclusion, we provided a modular and effective approach for harmonizing imaging data coming from different sources.
We proved that our approach could efficiently correct for multiple batch-related differences so that data appear as if they were
acquired under a common set of conditions. This translates to higher prognostic performances, above all for what regards
intra-tumor heterogeneity of multi-lesions/metastatic cancers. As it is well known that NN models such as the Dual AD-AE
can benefit from Transfer Learning32 to aid the problem of suboptimal and/or overfitting parameters when training data is
limited, we provide a tutorial to apply our method to new data, available on GitHub. We currently share the weights of our
pre-trained network on this study’s cohorts. Researchers might thus decide to use such weights to pre-train their Dual AD-AE
model, “borrowing” information from additional samples without privacy concerns. This model-sharing framework could be
pushed forward with the contribution of the scientific community sharing their fine-tuned parameters, paving the way for a
virtuous cycle of open science. Insightful knowledge could be thus derived from more exhaustive models to optimally impact
the clinical practice.

Methods

Dual Adversarial Deconfounding Autoencoders
Dual Adversarial Deconfounding AutoEncoder (Dual AD-AE) jointly tackles the denoising from both center- and scanner-
related information. The architecture of the Dual AD-AE is described in Figure 2. The network consists of two parts: one
autoencoder and an adversary branch. The autoencoder takes as input the radiomic vector associated with a lesion and performs
the dimensionality reduction. It is made of one input layer (number of input nodes: [1×45]) two hidden layers (number of first
hidden layer nodes: [1×32], number of second hidden layer nodes: [1×16]), and one output layer (number of output nodes:
[1×45]). The autoencoder represents the backbone of the model and, from its deepest layer, two adversary networks branch
out for center and scanner predictions. Both adversary networks are made of two hidden layers (dimensions of the first hidden
layer and the second hidden layer are [1×50] and [1×50] respectively) and one output layer ([1×2] for center prediction and
[1×5] for the branch predicting the scanners).

The loss is then made of three terms, where the reconstruction error, the accuracy of the center classification, and the
accuracy of the scanner classification sum up as in Equation 1:

min
T

(φ ,ψ,ν)E[|x−gψ( fφ (x))|22 −λ1L(hν1(x),c)−λ2L(hν2(x),s)] (1)

where ν1 is the center adversary branch, ν2 is the scanner adversary branch, λ1 and λ2 are weighting parameters and c and s
are the true labels for center and scanner respectively. Of note, weighting parameters can be tuned to tailor the importance
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of the tasks to be optimized. For instance, one could prioritize one confounding factor rather than the other, having a priori
information about the latent variability of the specific case study data.

In our setting, hyperparameters were tuned according to grid search. The number of layers, the number of nodes, and
weighting parameters were optimized based on the reconstruction error. The number of epochs was optimized according to
early stopping strategy33, i.e., iterations were stopped when no relevant improvements of the validation loss were recorded. The
batch size was set to 128 and λ1 = λ2 = 1.

Benchmark state-of-the-art Methods
Among the methods proposed in the literature for imaging harmonization, ComBat has been repeatedly elected as the best
approach such that different implementations and further improvements have been proposed in the last years.

ComBat was originally proposed by Johnson and Rabinovic18 for removing the batch-effect seen in genetics microarray
analysis. The harmonization method consists of standardizing each batch according to its mean and variance. Specifically, the
correction takes place at a specific location and scale (L/S), wherein the batch-related error is supposed to be present. L/S
model states that the value Y for feature f from a sample j in a batch i follows the following formulation:

Yi j f = a f +Xβ f + γi f +δi f εi j f (2)

where a f is the feature value, behaving as intercept; X is the design matrix and β f is the features coefficients such that Xβ f
is the observed variability; γi f and δi f are the additive and multiplicative batch effects respectively and εi j f the standard error.
Accordingly, γi f and δi f can be estimated (either in parametric and non-parametric ways) from data, and Yi j f can be corrected
as:

Y ∗
i j f =

Yi j f − â f −X β̂ f − γ̂i f
δi f

+ â f +X β̂ f (3)

One of the main advantages of ComBat is being effective even with small batch sizes. Being A = X̃T X̃ positive-definite,
the optimization problem is strictly convex. However, when A happens to be singular the regression estimation does not exist
and, if the system is underdetermined, ComBat is not guaranteed to bring out a unique solution. For this reason, Adamer
et al20 proposed a regularized solution of ComBat (ReComBat) computationally more efficient to facilitate the large-scale
harmonization of data.

As to compare our method with the state of the art, we applied both ComBat and ReComBat models to our case study. We
employed different pipelines to test their performance from different perspectives. ComBat was used for deconfounding the
imaging data from the center and scanner information. The two ComBat models were applied in cascade to the data: (1) one
label was used as a batch effect to be removed and (2) the obtained denoised vector was further deconfounded by the effect
of the other label. We followed two different orders, namely ComBat-center-scanner and ComBat-scanner-center. The very
same procedure was investigated by employing ReComBat implementation. Two different pipelines were thus derived, namely
ReComBat-center-scanner and ReComBat-scanner-center.

As a matter of fact, applying ComBat or ReComBat in cascade to capture and remove the linear variability from more
than one confounding factor may cause instabilities depending on the specific order of the harmonization steps. Very recently,
Horng et al21, 22 proposed an optimized procedure for sequentially harmonizing data from multiple batch effects, namely
OPNested ComBat. Besides ComBat and ReComBat, we included OPNested as a benchmark model, to be tested in both
deconfusion and predictive powers. On one hand, OPNested can show a more effective standardization procedure to compensate
for the heterogeneity of diverse data sources, improving the generalization abilities of imaging data. On the other hand, higher
harmonization performance might not imply higher predictive performance as it yet remains to be investigated whether and
which latent factors have to be removed or smoothed.

Evaluating Point-Cloud shape consistency
We defined and implemented a novel approach to test the point-cloud shape consistency across transformation: the Point Cloud
Semantic Drift (PCSD).

Before defining PCSD, let us introduce some necessary notation. Let Mi(1)...Mi(K) be the scores associated with the
ordered list Li, where Mi(1) is the best score, Mi(2) is the second best, and so on. The best score can be the largest or the
smallest depending on the context. Let rLi(A) be the rank of A in the list Li if element A is within the top k elements, and be it
equal to k+1 otherwise; rδ (A) is defined likewise for a different list δ . The Spearman’s footrule distance between Li and any
ordered list δ can be defined as:
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S(δ ,Li) = ∑
t∈Li∪δ

|rδ (t)− rLi(t)|. (4)

Equation 4 is the sum of the absolute differences between the ranks of all the unique elements of the union of the two
ordered lists. The smaller the value of the metric, the more similar the lists. To compute the Point Semantic Drift (PSD) for
an arbitrary point t, we exploit a weighted version of S. We estimate the PSD as the weighted change in neighbor rankings,
according to Equation 5.

PSD(δ ,Li) = ∑
t∈Li∪δ

|M(rδ (t))−M(rLi(t))|× |rδ (t)− rLi(t)|. (5)

PSD is the sum of penalties for moving an arbitrary element (data point) t of the list Li from a position rδ (t) to another
position rLi(t) within the same list (second term of the product) adjusted by the difference in scores between the two positions
(first term). M(rδ (t)) and M(rLi(t)) are the normalized distances between t and all other points in the cloud, respectively after
and prior to any transformation. This weighting scheme penalizes more the changes in the positions of very distant points,
than the neighboring shifts of observations lying close in the original cloud. That is, higher weights are assigned to swaps
between close-by and far-distant points, compared to changes among close neighbors. Such information can deeply inform the
deconfusion-invariance trade-off.

Once computed the PSD for each point in the cloud C, the Point Cloud Semantic Drift is estimated as the average PSDk of
the K points in C:

PCSD =
1
K

K

∑
k=1

PSDk (6)

where K is the number of lesions in the patient under consideration.
In our setting, Li corresponds to the set of lesions of patient i as described by the raw radiomic features (original set); δ

corresponds to the set of lesions described by the transformed features after deconfusion (e.g. Dual AD-AE mode). PCSD thus
accesses and quantifies the invariance of each cloud (patient) to the data transformation process.

Given that PCSD can take on values ranging from 0 to infinity, we need to establish a suitable test to assess the significance
of the results obtained from our deconfounded point clouds. To accomplish this, we can build a null distribution of PCSD
values (PCSDnull) which serves as an upper bound for the drift. That is, it represents the change in the cloud’s shape that would
occur if an arbitrary embedding function was employed, completely disregarding the initial data structure. Operationally, we
randomly transform the original cloud by adding a random Gaussian noise with mean µ = 0 and variance σ = 3 to a different
subset of the lesions’ vectors. We do this iteratively 100 times, computing the PCSD each time. Upon these values, we build the
Empirical Cumulative Distribution Function. If the true PCSD value obtained from our deconfounded embeddings falls within
the limits of the left tail of this empirical null distribution, significant evidence is obtained on the ability of our algorithm to
maintain the original cloud structure. The empirical p-value is computed from the Empirical Cumulative Distribution Function
by computing the ratio between the number of trials where the PCSD is lower than the computed real value and the total number
of trials (100).

Experiments’ implementation details
Three tests have been implemented to test for (1) deconfusion power, (2) transformation consistency, and (3) predictive power
of the proposed algorithm compared to current literature models.

The deconfusion power has been tested by predicting the confounder(s) using the features under analysis. We employed
a cross-validated Logistic Regression model, with 100 trials and replacement. Testing accuracy was annotated in each trial
to compute the mean trend and the standard deviation of the performance of each modality. Additionally, to compare the
performance of the models, given the normality of the data, we used a two-sided parametric t-test for paired samples and
evaluated the improvements of the different harmonization strategies with respect to the pure radiomics description.

The point cloud shape consistency between radiomics data and transformed data was evaluated as described above. The
PCSD was computed for each patient and a population test for testing the transformation consistency was carried out in the
context of the Dual AD-AE.

Lastly, the predictive power of the imaging features has been evaluated with Cox proportional hazard survival models in
a cross-validation fashion. Three patient representation strategies were implemented to summarize multi-lesion information

12/15



in a single vector object to be properly fed into the models. First, the centroid of each patient’s point cloud was computed
as the mean profile of peer lesions belonging to them (“centroid representation”). Then, as a second patient representation,
only the distribution of the lesions over the space was described and used as model input. For each patient, we computed
the pairwise distances between all lesions in the patient and we calculated the mean and the standard deviation as an index
for lesions’ variability. Moreover, we took the distances between every lesion of the patient and their centroid and kept the
average and the standard deviation of these distances to quantify the lesions’ spreading from their center. Thus, the four indexes
were exploited as “point cloud description representation” to be fed into the survival model. Finally, the two abovementioned
representations were merged in a “complete representation” of the patient encompassing both the mean disease profile of
patients and the variability of their lesions. For each of the modalities under testing, the three representations were computed
and fed into Cox models. Additionally, raw radiomic, ComBat- and ReComBat-based standardized radiomic features were
reduced using PCA. To result in a dimensionality comparable to the embeddings, we kept the first sixteen principal components,
accounting for at least 90% of the variability. Training and testing sets are repeatedly split multiple times (20 splits) and
c-index scores were reported to assess the improvements that the harmonization step brings in terms of prognostic power. To do
this, given the normality of the data, one-sided parametric t-tests for paired samples were employed to establish the optimal
harmonization strategy. Specifically, the Dual AD-AE embeddings’ performance was compared to ComBat-center-scanner,
ComBat-scanner-center, ReComBat-center-scanner, ReComBat-scanner-center, and OPNested ComBat.
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ABSTRACT

Medical imaging represents the primary tool for investigating and monitoring several diseases, including cancer. The advances
in quantitative image analysis have developed towards the extraction of biomarkers able to support clinical decisions. To
produce robust results, multi-center studies are often set up. However, the imaging information must be denoised from
confounding factors – known as batch-effect – like scanner-specific and center-specific influences. Moreover, in non-solid
cancers, like lymphomas, effective biomarkers require an imaging-based representation of the disease that accounts for its
multi-site spreading over the patient’s body. In this work, we address the dual-factor deconfusion problem and we propose a
deconfusion algorithm to harmonize the imaging information of patients affected by Hodgkin Lymphoma in a multi-center setting.
We show that the proposed model successfully denoises data from domain-specific variability (p-value<0.001) while it coherently
preserves the spatial relationship between imaging descriptions of peer lesions (p-value=0), which is a strong prognostic
biomarker for tumor heterogeneity assessment. This harmonization step allows to significantly improve the performance in
prognostic models with respect to state-of-the-art methods, enabling building exhaustive patient representations and delivering
more accurate analyses (p-values<0.001 in training, p-values<0.05 in testing). This work lays the groundwork for performing
large-scale and reproducible analyses on multi-center data that are urgently needed to convey the translation of imaging-based
biomarkers into the clinical practice as effective prognostic tools. The code is available on GitHub at this link.
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1 Patients’ characteristics

Table S 1. Patients’ characteristics in Institution 1: variables are divided into categorical (number, percentage on the total) and
numerical (mean, standard deviation). In the first group, they are listed the stage (four statuses), the sex (female F and male M),
the presence of B symptoms like fever, sweats, weight loss (yes Y and no N), status of the disease (extranodal disease: yes Y
and no N; bone disease: yes Y and no N), administration of radiotherapy (yes Y and no N), the outcome of interim PET (iPET,
Deauville Score DS of the PET), end of treatment PET (EOT PET, Douville Score DS of the PET). Statistics are stratified by
the treatment response, thus patients are divided into responders and non-responders.

Categorical variables – N (%) Responders (N=107) Non-responders (N=21)
Stage I 9 (8%) 0 (0%)

II 57 (53%) 11 (52%)
III 12 (11%) 2 (10%)
IV 30 (28%) 8 (38%)

Sex F 62 (58%) 14 (67%)
M 45 (42%) 7 (33%)

B symptoms N 60 (56%) 7 (33%)
Y 47 (44%) 14 (67%)

Extranodal disease N 74 (69%) 11 (52%)
Y 33 (31%) 10 (48%)

Bone disease N 80 (75%) 18 (86%)
Y 27 (25%) 3 (14%)

Radiotherapy N 38 (35%) 17 (81%)
Y 69 (65%) 4 (19%)

iPET DS1 82 (77%) 10 (48%)
DS2 12 (11%) 2 (9%)
DS3 11 (10%) 1 (5%)
DS4 2 (2%) 5 (24%)
DS5 0 (0%) 3 (14%)

PET EOT DS1 77 (72%) 13 (62%)
DS2 11 (10%) 3 (14%)
DS3 10 (9%) 1 (5%)
DS4 3 (3%) 1 (5%)
DS5 6 (6%) 3 (14%)

Table S 2. Patients’ characteristics in Institution 1: variables are divided into categorical (number, percentage on the total) and
numerical (mean, standard deviation). Among the numerical variables, there are age, number of nodal lesions of the patients,
number of extranodal lesions of the patients, and time to relapse (for censored patients, the time to last follow-up is taken).
Statistics are stratified by the treatment response, thus patients are divided into responders and non-responders.

Numerical variables – mean (std deviation)
Age 39.252 (15.875) 40.143 (15.963)
# Nodal lesions 6.673 (4.813) 6.619 (6.184)
# Extranodal lesions 1.916 (5.750) 3.857 (10.256)
Time to relapse/follow-up [days] 1126.97 (704.94) 358.86 (322.854)
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Table S 3. Patients’ characteristics in Institution 2: variables are divided into categorical (number, percentage on the total) and
numerical (mean, standard deviation). In the first group, they are listed the stage (four statuses), the sex (female F and male M),
the presence of B symptoms like fever, sweats, weight loss (yes Y and no N), status of the disease (extranodal disease: yes Y
and no N; bone disease: yes Y and no N), administration of radiotherapy (yes Y and no N), the outcome of interim PET (iPET,
positive or negative), end of treatment PET (EOT PET, positive or negative). Statistics are stratified by the treatment response,
thus patients are divided into responders and non-responders.

Categorical variables – N (%) Responders (N=59) Non-responders (N=17)
Stage I 1 (2%) 0 (0%)

II 31 (52%) 4 (23%)
III 6 (10%) 1 (6%)
IV 21 (36%) 12 (71%)

Sex F 34 (58%) 8 (47%)
M 25 (42%) 9 (53%)

B symptoms N 35 (59%) 4 (23%)
Y 24 (41%) 13 (77%)

Extranodal disease N 39 (65%) 7 (41%)
Y 20 (45%) 10 (59%)

Bone disease N 44 (75%) 13 (77%)
Y 15 (25%) 4 (23%)

Radiotherapy N 20 (45%) 14 (82%)
Y 39 (65%) 3 (18%)

iPET Negative 55 (93%) 8 (47%)
Positive 4 (7%) 9 (53%)

PET EOT Negative 59 (100%) 0 (0%)
Positive 0 (0%) 17 (100%)

Table S 4. Patients’ characteristics in Institution 2: variables are divided into categorical (number, percentage on the total) and
numerical (mean, standard deviation). Among the numerical variables, there are age, number of nodal lesions of the patients,
number of extranodal lesions of the patients, and time to relapse (for censored patients, the time to last follow-up is taken).
Statistics are stratified by the treatment response, thus patients are divided into responders and non-responders.

Numerical variables – mean (std deviation)
Age 36.478 (13.915) 42.867 (17.868)
# Nodal lesions 7.271 (5.499) 9.706 (6.362)
# Extranodal lesions 2.288 (5.789) 3.706 (7.355)
Time to relapse/follow-up [days] 1105.72 (546.490) 257.59 (167.17)
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2 Scanners’ specifications

Table S 5. Image acquisition protocols and scanner specification in Institution 1: 85 patients were scanned with Siemens
Biograph scanner; 51 patients were scanned with General Electric Discovery 690 scanner; 5 were scanned with other
unspecified scanners.

Institution 1 Biograph – Siemens Discovery 690 – General Electric
PET CT PET CT

Min/bed position (static/dynamic) 2.5 (static) – 2 (static) –
Crystal LSO – LYSO –
Reconstruction Iterative – Iterative, TOF Sharp IR –
Attenuation correction On CT data – On CT data –
Matrix (pixels) 128×128 512×512 256×256 512×512
Resolution (mm) 5.3×5.3 0.98×0.98 2.73×2.73 1.37×1.37
Slice thickness (mm) 2.0 4.0 3.27 3.27
Slices – 6 – 64

Table S 6. Image acquisition protocols and scanner specification in Institution 2: 34 patients were scanned with General
Electric Discovery 710 scanner; 38 patients were scanned with Philips Gemini scanner; 1 patient was scanned with other
unspecified scanners.

Institution 2 Discovery 710 – General Electric Gemini - Philips
PET CT PET CT

Min/bed position (static/dynamic) 2 (static) – 2 (static) –
Crystal LYSO – BGO –
Reconstruction VPFX – Iterative –
Attenuation correction On CT data – On CT data –
Matrix (pixels) 192×192 512×512 169×169 512×512
Resolution (mm) 3.65×3.65 1.37×1.37 4×4 1.37×1.37
Slice thickness (mm) 3.27 3.75 4 4
Slices – 64 – 64
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3 Radiomics discrepancies

Table S 7. Descriptive Statistics and statistical comparisons of radiomics variables in terms of mean values and standard
deviations for the two cohorts.

Institution 1 Institution 2
Variables Mean Std_Dev Mean Std_Dev p-value
CONVENTIONAL_SUVmin 3.7737 1.8616 3.3597 1.6822 <<0.01
CONVENTIONAL_SUVmean 6.1546 2.8542 5.5975 2.4896 <<0.01
CONVENTIONAL_SUVstd 1.4715 0.7308 1.3788 0.6578 0.0054
CONVENTIONAL_SUVmax 10.2264 4.7974 9.4158 4.2288 <<0.01
CONVENTIONAL_SUVpeak 2.3524 4.2680 5.9848 3.9711 <<0.01
CONVENTIONAL_TLG 82.1013 230.5903 75.5440 149.7817 <<0.01
HISTO_Skewness 0.5872 0.4147 0.6171 0.4045 0.1229
HISTO_Kurtosis 2.8807 0.8532 2.8957 0.8498 0.2132
HISTO_ExcessKurtosis -0.1192 0.8532 -0.1042 0.8498 0.2132
HISTO_Entropy_log10 1.1423 0.2083 1.1269 0.1763 0.0067
HISTO_Entropy_log2 3.7946 0.6922 3.7434 0.5858 0.0067
HISTO_Energy 0.0944 0.0538 0.0942 0.0423 0.0073
SHAPE_Volume 11.6197 24.3370 12.6720 24.6858 <<0.01
GLCM_Homogeneity 0.3335 0.1058 0.3327 0.0814 0.0873
GLCM_Energy 0.0191 0.0187 0.0167 0.0135 0.293
GLCM_Contrast 40.3799 42.1976 32.4835 29.6706 0.0437
GLCM_Correlation 0.3036 0.1836 0.3069 0.1315 0.9423
GLCM_Entropy_log10 1.9241 0.3304 1.9367 0.2623 0.2163
GLCM_Entropy_log2 6.3918 1.0975 6.4336 0.8715 0.2163
GLCM_Dissimilarity 4.4523 2.3504 4.1395 1.8138 0.0625
GLRLM_SRE 0.9483 0.0362 0.9505 0.0257 0.0204
GLRLM_LRE 1.2597 0.2396 1.2304 0.1672 0.3075
GLRLM_LGRE 0.0065 0.0132 0.0056 0.0059 <<0.01
GLRLM_HGRE 516.1915 456.6894 419.2514 402.2381 <<0.01
GLRLM_SRLGE 0.0059 0.0107 0.0052 0.0051 <<0.01
GLRLM_SRHGE 496.7612 442.7954 400.0534 375.1861 <<0.01
GLRLM_LRLGE 0.0102 0.0313 0.0075 0.0117 <<0.01
GLRLM_LRHGE 607.9699 539.4094 518.3472 689.0347 <<0.01
GLRLM_GLNU 22.8289 42.6938 19.5446 45.4589 0.5206
GLRLM_RLNU 245.5027 441.3303 194.1253 307.1768 0.0858
GLRLM_RP 0.9331 0.0454 0.9357 0.0337 0.0397
NGLDM_Coarseness 0.0365 0.0224 0.0368 0.0191 0.1317
NGLDM_Contrast 0.3887 0.3496 0.3412 0.2579 0.1648
NGLDM_Busyness 0.2764 0.5719 0.2360 0.4246 0.1134
GLZLM_SZE 0.6168 0.1427 0.6097 0.1149 0.0236
GLZLM_LZE 102.2394 772.5381 88.0518 1134.3479 0.0463
GLZLM_LGZE 0.0066 0.0133 0.0057 0.0057 <<0.01
GLZLM_HGZE 510.9761 437.2528 411.2058 377.2074 <<0.01
GLZLM_SZLGE 0.0033 0.0053 0.0032 0.0025 <<0.01
GLZLM_SZHGE 353.6975 349.1995 276.7329 307.0125 <<0.01
GLZLM_LZLGE 2.7491 30.4856 1.5488 19.6571 0.0014
GLZLM_LZHGE 12582.0082 42514.1309 12686.7792 93404.5481 0.0011
GLZLM_GLNU 7.4366 9.9953 6.4751 6.4384 0.6327
GLZLM_ZLNU 49.2334 87.4316 35.8290 47.5280 0.0509
GLZLM_ZP 0.4574 0.1997 0.4445 0.1594 0.0287
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4 Results of experiment 3

Table S 8. Experiment 3 results: performance of the Cox proportional hazard models trained and tested in cross-validation
using different patient representations. Each modality – i.e. radiomics, Dual AD-AE embeddings, ComBat-based
standardization, ReComBat-based standardization, and OPNested-based standardization – is fed in the survival model
according to three different patient representations: (1) the patient is described by the centroid of its point cloud (“centroid
representation”), (2) the patient is described by the topological characteristics of its point cloud (“cloud description
representation”) and (3) the patient is described by both the centroid and the topological characteristics of its point cloud
(“complete representation”). Best values are highlighted in bold.

Models Centroid representation Cloud description representation Complete representation
C-index (train) C-index (test) C-index (train) C-index (test) C-index (train) C-index (test)

Radiomics 0.6962 ± 0.0190 0.4344 ± 0.1779 0.5828 ± 0.0141 0.5184 ± 0.1203 0.7077 ± 0.0207 0.4026 ± 0.1460
Dual AD-AE 0.7803 ± 0.0132 0.6100 ± 0.1382 0.6728 ± 0.0135 0.6481 ± 0.1305 0.7803 ± 0.0132 0.6100 ± 0.1382
ComBat-center-scanner 0.7041 ± 0.0201 0.5525 ± 0.1358 0.5611 ± 0.0162 0.5101 ± 0.1228 0.7173 ± 0.0180 0.5063 ± 0.1279
ComBat-scanner-center 0.7016 ± 0.0195 0.5366 ± 0.1266 0.5625 ± 0.0159 0.5075 ± 0.1262 0.7291 ± 0.0185 0.5066 ± 0.1234
ReComBat-center-scanner 0.7064 ± 0.021 0.5595 ± 0.1344 0.5621 ± 0.0161 0.5128 ± 0.1239 0.7153 ± 0.0186 0.5201 ± 0.1224
ReComBat-scanner-center 0.7019 ± 0.0194 0.5444 ± 0.1240 0.5635 ± 0.0160 0.5101 ± 0.1244 0.7260 ± 0.0192 0.5120 ± 0.1348
OPNested ComBat 0.7019 ± 0.0194 0.5444 ± 0.1240 0.5635 ± 0.0160 0.5101 ± 0.1244 0.7260 ± 0.0192 0.5120 ± 0.1348
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5 Software
At this link, the code for Dual AD-AE is distributed. We implemented the training of the dual AD-AE model, adhering
to conventional practices involving several procedural steps. Following data preparation and model architecture definition,
the training loop iterated through the training data. In each iteration, a batch of input data underwent encoding to derive
latent representations, which were subsequently passed through the decoder to generate reconstructed data. The loss function
was employed to quantify the dissimilarity between the input and reconstructed data, and backpropagation facilitated the
computation of gradients pertaining to the model parameters. These gradients, in turn, drove the updating of model weights
through the chosen optimizer. Periodic utilization of the validation set allowed for performance evaluation and the monitoring
of training progression, facilitating early stopping to counteract overfitting.

The choice to employ a unique validation set with multiple epochs, rather than opt for cross-validation involving numerous
train/test splits with fewer epochs, was underpinned by various considerations. These encompassed the size of our dataset,
the inherent nature of the problem, and available computational resources. Although this approach harbored the potential for
overfitting and a potentially less precise evaluation of model generalization, its implementation was both straightforward and
computationally efficient, given its reliance on the complete dataset. It further provided a singular model framework endowed
with a consistent validation set, thereby enabling continuous monitoring of performance dynamics.

However, a cross-validation approach can be interesting as an other training option, particularly maximizing the utility of
limited data and furnishing a more robust assessment of generalization, thus we subsequently introduced an alternative training
regimen for the AD-AE model. In this regimen, we implemented a cross-validation setup comprising 50 splits, each spanning
100 epochs.
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