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Abstract

A new orthogonal decomposition for bivariate probability densities em-
bedded in Bayes Hilbert spaces is derived. It allows one to represent a
density into independent and interactive parts, the former being built as
the product of revised definitions of marginal densities and the latter cap-
turing the dependence between the two random variables being studied.
The developed framework opens new perspectives for dependence mod-
elling (which is commonly performed through copulas), and allows for the
analysis of dataset of bivariate densities, in a Functional Data Analysis per-
spective. A spline representation for bivariate densities is also proposed,
providing a computational cornerstone for the developed theory.

Keywords: Compositional data Functional data Tensor product splines An-
thropometric data.

1 Introduction

The analysis of distributional data is gaining an increasing interest in the applied
sciences. Distributional data, such as probability density functions (PDFs) or
cumulative distribution functions, are routinely collected in social sciences (e.g.,
population pyramids [3, 12] and geosciences (e.g., particle-size distributions [20,
21]). Analyses of distributional data based on methods designed for functional
data in L2 often lead to inappropriate results, such as negative predictions [23,
36].

It is now widely recognized that an appropriate statistical analysis of PDF
data should be precisely based on their characterizing properties (e.g., [25, 28,
12, 20]). In the literature, several approaches have been proposed to serve the
purpose of analysing datasets of PDFs. Most works propose to analyse PDF data
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through a prior data transformation. For instance, [3] considers a transformation
approach to the principal component analysis of a dataset of PDFs. [35] use a
square root transformations of densities to deal with a time-warping function in
registration. [28] propose a set of transformations that map the PDF data to a
Hilbert space, where further statistical analyses are possible; this setting allows
for, e.g., principal component analysis, classification, regression. A relatively
large body of recent literature proposes the use of the Wasserstein metric to
define a notion of distance for density data. Such metric has appealing interpre-
tations, being related to the problem of optimal transport. However, it defines
a non-linear space (Riemannian manifold), thus requiring the development of ad
hoc methods for this setting (e.g., [1, 26, 29]), based on Frechét statistics. A
different approach is that relying on the theory of Bayes linear spaces, that rep-
resent a generalization to the infinite-dimensional setting of the Compositional
Data Analysis (CoDa, [27]) approach. In this setting, PDFs are considered as
infinite-dimensional objects that provide relative information [39, 40]. Bayes
Hilbert spaces were built as to represent the so-called principles of CoDa (i.e.,
scale invariance, relative scale, sub-compositional coherence, see [27]), through
a Hilbert geometry for PDFs. The Hilbert structure of the space allows one to
develop most methods of functional data analysis, while accounting for the pecu-
liar nature of PDFs. These include principal component analysis [12], functional
regression [36], spatial prediction [20], profile monitoring [23], time-series analy-
sis [13, 33]. Even though the statistical literature is nowadays well-developed for
distributional data, little attention has been paid so far to the setting of multi-
variate densities, whose study is of paramount importance in the applications. A
first contribution in direction of bivariate densities was recently provided in the
preprint by [11], which uses the theory of Bayes Hilbert spaces over bivariate do-
mains to study the temporal dynamic of coupled time series, modelled through
copulas. As a key element of innovation with respect to previous literature, the
present work proposes a novel statistical framework for bivariate PDFs, that
allows studying the dependence between the target random variables, grounding
on the geometry of the Bayes space. We provide new meaningful notions of com-
positional marginals (so-called geometric marginals), which play the roles of the
marginal distributions, consistent with the Bayes geometry. We further derive
an orthogonal decomposition of bivariate PDFs in terms of independence and
interaction parts, generalizing the well-known results developed in the discrete
case (i.e., for compositional tables, [6, 7]). To allow for explicit computations
of the marginals and of the latter representation, we develop a novel B-spline
representation for bivariate PDFs, compatible with the compositional nature of
the data.

The methodological results of our work shed light on the structure of mul-
tivariate Bayes spaces, suggesting a direction to create connections between the
theory of Bayes spaces and the theory of copulas [24], which are widely used
to build multivariate PDFs from marginals. Note that the theory of copulas
is well-established and allows one to describe the joint distribution function
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of two random objects under very general assumptions. Our work is mostly
focused on density functions (PDFs) instead, entailing a difference in the ap-
proaches in terms of (i) the assumptions made on the distribution at hand and
(ii) the theoretical properties of the object being studied. In this sense, this
work presents the initial steps in the direction of a new framework for depen-
dence modeling, for which the extension to more general distributions (e.g., not
absolutely continuous) is foreseen. On the other hand, this work is primarily
aimed to build an analytical framework for datasets made of multivariate dis-
tributional objects, within the context of Functional Data Analysis (FDA, [31]).
In this view, building the dependence modelling on PDFs might be preferable,
and this would be consistent with the usual practice in FDA, where regularity
assumptions (continuity, boundedness, squared-integrability) are typically made
on data. In this context, the appealing properties of the Bayes space approach
which are discussed in this work (resulting, e.g., from the orthogonal decomposi-
tion of the bivariate density into independent and interactive parts), are seen as
key factors potentially fostering the development and interpretation of new FDA
methods for multivariate distributional observations. In this sense, the method-
ology presented in the paper is going to offer an alternative viewpoint to the
standard copula theory by providing an orthogonal decomposition of bivariate
PDFs, while opening a novel frontier to analyse samples of bivariate densities
using methods of FDA.

The remaining part of this work is organized as follows. In Section 2, the
Bayes space methodology is recalled from [40], with particular reference to bi-
variate densities. This enables us to develop an orthogonal decomposition of
bivariate densities into independent and interactive parts, thoroughly discussed
in Section 3 and demonstrated with simulated truncated Gaussian densities in
Section 4. In Section 5, a spline representation for bivariate densities mapped
in the L2 space is introduced; such representation is relevant to allow processing
raw data, and to develop efficient computational methods. In Section 6 the theo-
retical framework is applied to a time series of bivariate densities coming from an
anthropometric cross-sectional study. The final Section 7 concludes with some
overview comments and further perspective.

2 PDFs as elements of a Bayes space

Bayes spaces are designed to provide a geometrical representation for density
functions characterized by the property of scale invariance [40]. The latter
property assumes that, given a domain Ω and a positive real multiple c, two
proportional positive functions f(x) and g(x) (i.e., such that g(x) = cf(x), for
c > 0) carry essentially the same, relative information [40]. This follows also
the common strategy used in Bayesian statistics where multiplying factors are
typically dropped from computations, as these are not essential to the definition
of the distributions at hand. Note that the scale invariance of a density f is
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a direct consequence of the same property of the associated measure µ, i.e., of
the σ-finite measure µ such that f = dµ/dP for a reference measure P. In this
context, we refer to the so-called B-equivalence of measures (and densities): two
measures µ and ν are B-equivalent if they are proportional, i.e., there exists a
positive real multiple c such that ν(A) = c · µ(A) for any A ∈ A, A being a
sigma-algebra on Ω.

Given a σ-finite measure P, the Bayes space B2(P) is a space of B-equivalence
classes of σ-finite positive measures µ with square-integrable log-density w.r.t.
P, i.e.,

B2(P) =

{
µ ∈ B2(P) :

∫ ∣∣∣∣ln dµdP
∣∣∣∣2 dP < +∞

}
.

From the practical point of view, an important role is played by the reference
measure P, as thoroughly investigated in [37]. The choice of the reference mea-
sure determines a weighting of the domain Ω of the PDF, which can be used to
give more relevance to certain regions of Ω when conducting FDA, according to
the purpose of the analysis [40, 5]. Given that the weighting of the domain is not
of primary interest here and one would intuitively resort simply to the Lebesgue
reference measure, the discussion on P might seem somehow lateral to the main
focus of this work. Nevertheless, as we will see already in Theorem 3.2, the scale
of P indeed matters for a meaningful decomposition of a bivariate density into
independent and interactive parts. For this reason, we here limit to mention two
key points which shall be useful in the following. First, in general, an analysis
based on a reference measure P does not provide the same results as an analysis
based on cP, for c > 0. Indeed, using P or cP typically leads to a difference
in the scale of the result. Second, to change the reference measure from λ to a
measure P with strictly positive λ-density p = dP/dλ, the well-known chain rule
can be used. For a generic measure µ one has

µ(A) =

∫
A

dµ

dλ
dλ =

∫
A

dµ

dλ
· dλ
dP

dP =

∫
A

dµ

dλ
· 1

p
dP.

The Bayes space, as described above, can also be defined for the case when
the domain Ω is a Cartesian product of two domains ΩX and ΩY , i.e., Ω =
ΩX×ΩY . In this case, the reference measure P can be decomposed as a product
measure P = PX ×PY and the Hilbert space structure of the Bayes space B2(P)
[40, 5] can be built accordingly. In this case, the operations of perturbation and
powering can be defined for any two bivariate densities f, g with respect to P,
i.e., f, g ∈ B2(P), and a real constant α as

(f ⊕ g)(x, y) =B2(P) f(x, y) · g(x, y) and (α� f)(x, y) =B2(P) f(x, y)α,

respectively. The lower index in =B2(P) means that the right hand side of the
equations can be arbitrarily rescaled without altering the relative information
that the resulting density in B2(P) contains. The Hilbert space structure is
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completed by defining the inner product,

〈f, g〉B2(P) =
1

2P(Ω)

∫∫
Ω

∫∫
Ω

ln
f(x, y)

f(s, t)
ln
g(x, y)

g(s, t)
dP(x, y) dP(s, t) =

=
1

2P(Ω)

∫
ΩX

∫
ΩY

∫
ΩX

∫
ΩY

ln
f(x, y)

f(s, t)
ln
g(x, y)

g(s, t)
dPX(x) dPY (y) dPX(s) dPY (t),

(1)

which implies in the usual way also the norm and the distance,

||f ||B2(P) =
√
〈f, f〉B2(P), dB2(P)(f, g) = ||f 	 g||B2(P), (2)

where f 	 g = f ⊕ [(−1)� g] is the perturbation-subtraction of densities. Here,
the definition of the inner product (1) is presented according to [5]. While the
scale of the reference measure P does not have any impact for the operations
of perturbation and powering, it does influence the inner product because the
scale corresponds to shrinkage (or expansion) of the Bayes space (for details, see
[37]).

The usual strategy when dealing with the Bayes spaces [40, 20, 12] is not
to process densities directly in the original space but to map them into the
standard L2 space where most of the widely-used methods of functional data
analysis (FDA, [31]) can be employed. The clr transformation of a bivariate
density f(x, y) ∈ B2(P) is a real function f c : Ω → R, f c ∈ L2

0(P), defined –
using Fubini’s theorem – as

f c(x, y) = ln f(x, y)− 1

P(Ω)

∫∫
Ω

ln f(x, y) dP = (3)

= ln f(x, y)− 1

P(Ω)

∫
ΩX

∫
ΩY

ln f(x, y) dPXdPY .

Similarly as for perturbation and powering, the scale of P does not play any role
in (3), too. On the other hand, one should note that the resulting function f c

is expressed with respect to reference P. As a consequence, using any measure
other than the Lebesgue λ leads to clr-transformations defined over a weighted
L2 space L2(P) [5]. Moreover, one should also take into account the zero-integral
constraint of clr transformed densities, i.e.,∫

ΩX

∫
ΩY

f c(x, y) dPXdPY = 0. (4)

In the following, we shall indicate by L2
0(P) the subspace of the L2(P) space of

(equivalence classes of) functions having zero integral; in particular, one clearly
has that f c(x, y) ∈ L2

0(P). Nevertheless, previous works focused on the univari-
ate case demonstrate that this constraint usually does not represent any serious
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obstacle for the application of FDA methods, especially if a proper spline repre-
sentation of the densities is used [12, 17, 36]. Since a reliable and flexible spline
representation forms a cornerstone in a large number of computational methods
for FDA [31], we shall pay special attention in developing a bivariate B-splines
basis suited to represent clr transformation of bivariate densities in Section 5.

3 Decomposition of bivariate densities

One of the key goals in probability theory is to study dependence structure
between two random variables. A systematic approach to the analysis of depen-
dence structure is represented by the theory of copulas [24], firstly introduced
by Sklar [34]. The well-known Sklar’s theorem provides a decomposition of any
PDF into its interactive and independent parts, the latter being built as the
product of the respective marginal PDFs. Relying on the Bayes space method-
ology allows one to provide a similar decomposition which is now, however,
orthogonal. This important property enables for an elegant geometrical repre-
sentation of the decomposition, and for a powerful probabilistic interpretation if
a normalized reference measure is used, with direct consequences from the statis-
tical viewpoint. For example, the proposed decomposition allows one to derive
a measure of dependence called simplicial deviance, defined as the squared norm
of the density expressing (solely) relationships between both variables (factors).

The orthogonal decomposition of bivariate densities grounds on a novel defi-
nition of marginals, named geometric marginals, which are built upon marginal-
izing the bivariate clr transformation as follows. Given x ∈ ΩX and y ∈ ΩY , we
define the clr marginals as

f cX(x) =

∫
ΩY

f c(x, y) dPY =

∫
ΩY

ln f(x, y) dPY −
PX(ΩX)

P(Ω)

∫
ΩX

∫
ΩY

ln f(x, y) dPXdPY

(5)
and

f cY (y) =

∫
ΩX

f c(x, y) dPX =

∫
ΩX

ln f(x, y) dPX−
PY (ΩY )

P(Ω)

∫
ΩX

∫
ΩY

ln f(x, y) dPXdPY ,

(6)
respectively. It is easily seen that f cX ∈ L2

0(ΩX) and f cY ∈ L2
0(ΩY ), where L2

0(Ωi)
stands for the subspace of L2(Ωi) whose elements integrate to zero. We define
the geometric marginals fX ∈ B2(ΩX) and fY ∈ B2(ΩY ) as the elements of
B2(ΩX) and B2(ΩY ) associated with the clr-marginals f cX , f cY , respectively, i.e.,

fX(x) =B(PX) exp {f cX(x)} =B(PX) exp

{∫
ΩY

ln f(x, y) dPY

}
, (7)

fY (y) =B(PY ) exp {f cY (y)} =B(PY ) exp

{∫
ΩX

ln f(x, y) dPX

}
.
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In the following, the terms marginal, X-marginal and Y -marginal will always
refer to the geometric notion of marginals given in (7).

In probability theory, independence of random variables corresponds to the
possibility of expressing a joint density as a product of its marginals. In a setting
where the latter are defined as the geometric marginals (7), the independent and
interactive parts of f(x, y) ∈ B2(P) can be defined, respectively, as

find(x, y) = fX(x)fY (y), (x, y) ∈ Ω (8)

and

fint(x, y) =
f(x, y)

fX(x)fY (x)
= f(x, y)	 find(x, y), (9)

where fX(x) and fY (y) are the geometrical marginals defined above. The first
and foremost important property of the proposed decomposition

f(x, y) = find(x, y)⊕ fint(x, y) (10)

for a bivariate density f(x, y) is the orthogonality its parts. In the following, the
geometrical marginals will be formally taken as bivariate functions, i.e. fX(x) ≡
fX(x, y) and fY (y) ≡ fY (x, y), and considered as elements of B2(P); similarly for
their clr counterparts. This enables, among others, to express the independence
density find as sum (perturbation) of the geometric marginals, i.e.,

find(x, y) = fX(x, y)⊕ fY (x, y). (11)

Theorem 3.1. For the independent and interactive parts of a bivariate density
f(x, y), it holds that
(i) 〈find, fint〉B2(P) = 0, or, equivalently that
(ii) 〈f cind, f

c
int〉L2

0(P) = 0.

The proof of Theorem 3.1 – as well as those of the following theorems – is
reported in Supplementary Material. Note that, from the orthogonality of the
decomposition f = find ⊕ fint, the Pythagorean theorem follows directly, i.e.,
||f ||2B2(P) = ||find||2B2(P) + ||fint||2B2(P).

A further important property of independence densities find is the following.
Call arithmetic marginals the usual marginal distributions (a similar notation
being used in the discrete case of compositional tables [7])

fX,a(x) =

∫
ΩY

f(x, y)dPY , fY,a(y) =

∫
ΩX

f(x, y)dPX .

It is clear that, if the theory were built on arithmetic marginals, the above
decompositions (10) and (11) together with the statement of Theorem 3.1 would
not be achieved. On the other hand, there is an interesting link between the
two types of marginals (geometric or arithmetic) when the independent part
is concerned. Indeed, the following result states that, whenever the random
variablesX,Y are independent, the bivariate PDF coincides with its independent
part defined in (8). In this case, if the reference measure is a probability measure
(i.e., it is normalized), the arithmetic and the geometric marginals coincide.
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Theorem 3.2. Let f be an independence density and let the reference measure
P = PX × PY be the product measure of probability measures PX , PY . Then the
arithmetic and geometric marginals of f coincide.

As such, the independent part built through the geometric marginals enables
one to fully capture the joint distribution of two random variables when these
are independent.

The next theorem states the mutual orthogonality between the geometric
marginals (fX(x, y) and fY (x, y)) and the interaction density fint(x, y).

Theorem 3.3. The X-marginal and Y -marginal are orthogonal with respect to
the Bayes space B2(P), i.e., 〈fX , fY 〉B2(P) = 0. Moreover, the marginals are also
orthogonal to the interaction density, i.e., 〈fX , fint〉B2(P) = 0 and 〈fY , fint〉B2(P) =
0.

The relations 〈f c, f cX〉L2
0(P) = ||f cX ||2L2

0(P)
, 〈f c, f cY 〉L2

0(P) = ||f cY ||2L2
0(P)

and

〈f cX , f cY 〉L2
0(P) = 0 nicely illustrate that X- and Y - marginals of the density

f(x, y) represent its orthogonal projections. In addition, the Pythagorean theo-
rem between the independence density and its projections holds, ||find||2B2(P) =

||fX ||2B2(P) + ||fY ||2B2(P).
As a consequence of Theorems 3.2-3.3, one can conclude that, in case of

independence, arithmetic and geometric marginals coincide, and the interaction
part is null (i.e., it is the neutral element of perturbations). More in general,
the next result states that the geometric marginals are completely determined
by the independent part of the bivariate density. Here, the clr marginals of fint

are defined as

f cint,X =

∫
ΩY

ln fint(x, y)dPY −
PY (ΩY )

P(Ω)

∫∫
Ω
fint(x, y)dP,

f cint,Y =

∫
ΩX

ln fint(x, y)dPX −
PX(ΩX)

P(Ω)

∫∫
Ω
fint(x, y)dP,

and the geometric marginals fint,X ,fint,Y are the associated densities in B2(P).

Theorem 3.4. Whenever the reference measure is the product measure of prob-
ability measures PX , PY , the geometric marginals fint,X ,fint,Y of the interaction
part fint coincide with the neutral element of perturbation, i.e., for any f in
B2(P) one has

f ⊕ fint,X = f ; f ⊕ fint,Y = f. (12)

Theorem 3.4 motivates the name interaction density. Indeed, decomposition
(10) applied to fint reads

fint = 0⊕ ⊕ fint,

where 0⊕ is the neutral element of perturbation (with respect to probability
reference measure P). Accordingly, the independent part of an interaction den-
sity is the null element 0⊕. On the other hand, for an independent density, the
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interaction part is null. More in general, for any bivariate density f , the nearest
independence density is find, and its distance from it is precisely ||fint||B2(P). The
squared norm ||fint||2B2(P) can be thus taken as a proper measure of dependence.

For consistency with the discrete case [7], we shall name it simplicial deviance,
∆2(f) = ||fint||2B2(P). Dividing the simplicial deviance by the squared norm of
the bivariate density, one obtains a relative measure of dependence, hereafter
named relative simplicial deviance,

R2(f) =
||fint||2B2(P)

||f ||2B2(P)

, 0 ≤ R2(f) ≤ 1. (13)

Note that R2(f) captures the amount of information contained in the inter-
action part with respect to the overall information within the density. If R2(f)
is small (R2(f) ∼ 0), it means that most of the density is described by the
independent part, and vice versa. A further advantage of the use of R2(f) is
its relative character: R2(f) does not rely on the norm of the bivariate density
which might be in practice influenced by the sample size of data being aggregated
in the density.

Further, it can be proven that fint is marginal invariant, i.e., when the bi-
variate density f is perturbed marginally (i.e., by marginal densities gX and
gY ), the interaction part fint is not changed. This important property [42] is
formulated in the next theorem.

Theorem 3.5. Let P = PX×PY be a probability measure, f ∈ B2(P) a bivariate
density with the orthogonal decomposition f = find ⊕ fint and gX , gY marginal
densities, in the sense that these latter are bivariate densities in B2(P), constant
in one argument, i.e.,

gX(x, y) = g̃X(x), gY (x, y) = g̃Y (y), (x, y) ∈ Ω.

Then, the marginally perturbed density, h = gX ⊕ gY ⊕ f , has the orthogonal
decomposition h = hind ⊕ hint, where hint = fint and hind = gX ⊕ gY ⊕ find.

4 An example with a truncated Gaussian Density

For the sake of illustration, we present an example of application of the proposed
framework to densities in the Gaussian family, where computations can be made
explicitly. Given that, in general, one may not expect to be able to perform this
type of computations explicitly, in Section 5 we develop a B-spline basis repre-
sentation for bivariate distributions, from which the interactive and independent
parts can be directly computed. We first consider a univariate Gaussian density,
similarly as in [12, 3]. For the sake of simplicity, we set the reference measure
to the Lebesgue measure, and consider a zero-mean Gaussian density, truncated
over the interval I = [−T, T ], T = 5. In this case, the density f reads

f(x) =B2(λ) exp

{
− x2

2σ2

}
, x ∈ I.
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The (univariate) clr-transformation of f is defined as

f c(x) = − x2

2σ2
+
T 2

6σ2
, x ∈ I.

Increasing the dimensionality of the sample space, we consider a zero-mean
bivariate Gaussian densityN2(µ,Σ) with respect to the (product) Lebesgue mea-
sure λ[I] = λ[I1] × λ[I2], truncated on a rectangular domain I = I1 × I2 ⊂ R2,
with I1 = I2 = [−T, T ], T = 5. In this case, the density is defined, for
x = (x, y) ∈ I, as

f(x, y) =B2(P) exp
{
x>Σ−1x

}
= exp

{
− 1

2(1− ρ2)

[
x2

σ2
1

− 2ρ
xy

σ1σ2
+
y2

σ2
2

]}
,

with σ2
i = Σii and ρ ∈ [0, 1] being the correlation coefficient. In this setting, the

clr transformation of f is

f c(x, y) = − 1

2(1− ρ2)

[
x2

σ2
1

− 2ρ
xy

σ1σ2
+
y2

σ2
2

]
+

T 2

6(1− ρ2)

(
1

σ2
1

+
1

σ2
2

)
.

Marginalizing the clr transformation with respect to x and y yields the clr-
marginals

f cX(x) = − 1

2(1− ρ2)
· 2Tx2

σ2
1

+
T 3

3(1− ρ2)
· 1

σ2
1

, x ∈ I1,

f cY (y) = − 1

2(1− ρ2)
· 2Ty2

σ2
2

+
T 3

3(1− ρ2)
· 1

σ2
2

, y ∈ I2.

On this basis, the geometric marginals are easily obtained – following (5) and
(6) – as

fX(x) =B2(P) exp

{
− 1

2(1− ρ2)
· 2Tx2

σ2
1

}
, x ∈ I1,

fY (y) =B2(P) exp

{
− 1

2(1− ρ2)
· 2Ty2

σ2
2

}
, y ∈ I2.

Note that both marginals still belongs to a Gaussian family, with parameters
µX = µY = 0 and σ2

X = σ2
1(1− ρ2)/2T , σ2

Y = σ2
2(1− ρ2)/2T .

Given the marginals, the independence and interactive parts are built as in
(8) and (9), leading to

find(x, y) =B2(P) exp

{
− 2T

2(1− ρ2)

[
x2

σ2
1

+
y2

σ2
2

]}
;

fint(x, y) =B2(P) exp

{
− 1

2(1− ρ2)

[
(1− 2T )x2

σ2
1

− 2ρ
xy

σ1σ2
+

(1− 2T )y2

σ2
2

]}
.
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The clr transformations of the latter parts are found as

f cind(x, y) =− T

1− ρ2

(
x2

σ2
1

+
y2

σ2
2

)
+

T 3

3(1− ρ2)

(
1

σ2
1

+
1

σ2
2

)
;

f cint(x, y) =− 1

2(1− ρ2)

(
(1− 2T )x2

σ2
1

− 2ρ
xy

σ1σ2
+

(1− 2T )y2

σ2
2

)
+

+
T 2(1− 2T )

6(1− ρ2)

(
1

σ2
1

+
1

σ2
2

)
.

Note that, in case of independence (ρ = 0),

f cint(x, y) =
3

2

(
3x2 + T 2

σ2
1

+
3y2 + T 2

σ2
2

)
,

which is non-zero. This does not stand in contradiction with Theorem 3.2, since
the previous computations are indeed referred to the Lebesgue measure, which
is not a probability measure (it is not normalized). Analogous computations
made in the case of a uniform measure (i.e., the product measure U [I] built
upon uniform measures P1 = U [I1], P2 = U [I2]) lead to a null f cint for ρ = 0.
Indeed, in this case one has that the clr geometric marginals are defined as

f cX(x) = − 1

2(1− ρ2)
· x

2

σ2
1

+
T 2

6(1− ρ2)
· 1

σ2
1

, x ∈ I1, (14)

f cY (y) = − 1

2(1− ρ2)
· y

2

σ2
2

+
T 2

6(1− ρ2)
· 1

σ2
2

, y ∈ I2, (15)

leading to the following forms for the independent and interaction clr-densities

f cind(x, y) = − 1

2(1− ρ2)

(
x2

σ2
1

+
y2

σ2
2

)
+

T 2

6(1− ρ2)

(
1

σ2
1

+
1

σ2
2

)
;

f cint(x, y) =
1

(1− ρ2)

(
ρ
xy

σ1σ2

)
.

It is then clear that the interaction part precisely captures the terms in f c

depending on the mixed polynomial xy (i.e., the interaction between x and y),
and its magnitude is controlled by the magnitude of ρ. In case of independence
(ρ = 0), f cint is null, and fint = 0⊕. Moreover, in this case, the geometric
marginals and the arithmetic marginals coincide. Note that the former are found
by normalizing the exponential of the first terms of f cX and f cY in (14)-(15). In the
degenerate case of a perfect linear dependence between the marginal variables
X and Y (|ρ| = 1), f cint is indeed degenerate as well. In fact, for |ρ| = 1 not
only f cint is not defined, but f does not belong to B2(U [I]), nor to B2(λ[I]) (the
logarithms of the corresponding densities are not in L2(U [I]) nor in L2(λ[I])).

Figure 1 reports the contour plots associated with the bivariate Gaussian
density with σ1 = 2, σ2 = 3 and ρ = 0.75, when the reference measure is the
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Lebesgue measure. Figure 2 reports the analogue contour plots when the quan-
tities are computed w.r.t. a Uniform measure. For the sake of clarity, quantities
referred to the Uniform reference are reported with a subscript w in Figure 2.
The figures clearly show that the scale of the reference measure plays indeed a
role, particularly for the shape of fint (Figures 1c-f and 2c-f). This is in agree-
ment with the conclusions of [37], where the effect of the reference measure on
the geometry of (univariate) Bayes spaces is discussed. Given the statistical
consequences of Theorems 3.2 and 3.4, the representation based on a normalized
reference shall be here preferred. In the latter case (Figure 2), the independent
part represents the (unique) distribution which would be built upon the geomet-
ric marginals – fX being B2-equivalent to a truncated N(0, 4(1 − 0.752)), and
fY the B2-equivalent to a truncated N(0, 9(1− 0.752)). The simplicial deviance
∆2(f) = ‖fint‖2B2(P) is in this case ∆2(f) = 5.66. The value of the relative sim-

plicial deviance R2(f) represents the proportion of the norm of f which can be
attributed to the interaction part (i.e., to the deviation from independence). In
this example, such proportion is 51%, indicating that the dependence between
the two variables is indeed relevant in the definition of the bivariate distribution.
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Figure 1: A simulated example with a truncated Gaussian density, with respect
to the Lebesgue product measure λ[I] = λ[I1] × λ[I2], with I1 = I2 = [−5, 5],
σ1 = 2, σ2 = 3, ρ = 0.75.
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Figure 2: A simulated example with a Gaussian density, with respect to the
Uniform product measure P = U [I1] × U [I2], with I1 = I2 = [−5, 5], σ1 = 2,
σ2 = 3, ρ = 0.75.

5 A spline representation for bivariate densities and
their decompositions

Computational methods of FDA for the statistical analysis of datasets of bi-
variate densities are often based on basis representations for the data. In this
section, we develop a spline representation for densities, which is based on a B-
spline approximation for clr transformed data. This will allow for the smoothing
of bivariate splines, and the direct computations of geometric marginals, inde-
pendence and interaction parts, as well as of the relative simplicial deviance. On
one hand, this avoids the necessity of developing splines directly in B2(P); on
the other one, it implies that the zero integral constraint needs to be taken into
account.

This goal is here achieved by using tensor product splines [2, 4, 32] which
are an established tool in the field and, in principle, enable a generalization to
k dimensions. However, for the purpose of this paper and for ease of notation,
we shall focus on bivariate splines only. We also avoid considering the general
reference measure P and focus on the Lebesgue measure (or its normalized coun-
terpart, the uniform measure), although the case of a generic P-reference can be
reformulated as well [37]. We shall base our developments on [15, 16] – the same
representation being used for approximation of PDFs, e.g., in [17, 12, 36, 22];
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this setting is recalled in the Supplementary Material. Hereafter in this section,
we limit to present the key points and results of our construction, leaving the
details and proofs to the Supplementary Material.

We consider two strictly increasing sequences of knots

∆λ := {λi}g+1
i=0 , λ0 = a < λ1 < . . . < λg < b = λg+1, (16)

∆µ := {µj}h+1
j=0 , µ0 = c < µ1 < . . . < µh < d = µh+1 (17)

and denote by S∆λ,∆µ
kl (Ω) the vector space of tensor product splines on Ω =

[a, b]× [c, d] of degree k > 0 in x and l > 0 in y, with knots ∆λ in the x-direction
and ∆µ in y-direction. As usual in spline theory, to get a unique representation
additional knots are considered, namely

λ−k = · · · = λ−1 = λ0 = a, b = λg+1 = λg+2 = · · · = λg+k+1, (18)

µ−l = · · · = µ−1 = µ0 = c, d = µh+1 = µh+2 = · · · = µh+l+1. (19)

The general goal here explored is that of smoothing the values fij at points
(xi, yj) ∈ Ω = [a, b] × [c, d], i = 1, . . . , n, j = 1, . . . ,m using a tensor-product
spline. The values fij will be the clr-transformation of a discrete representation
of the bivariate densities (i.e., histogram data), as showcased in Section 6. For
the strictly increasing sequences of knots (16) and (17), a parameter α ∈ (0, 1)
and arbitrary u ∈ {0, 1, . . . , k − 1} and v ∈ {0, 1, . . . , l − 1}, we aim to find a

spline skl(x, y) ∈ S∆λ,∆µ
kl (Ω) which minimizes the functional

Juv(skl) = α
n∑
i=1

m∑
j=1

[fij − skl(xi, yj)]2 + (1−α)

∫∫
Ω

[
s

(u,v)
kl (x, y)

]2
dx dy, (20)

where the upper index (u, v) stands for the derivative, specifically

s
(u,v)
kl (x, y) =

∂u

∂xu
∂v

∂yv
skl(x, y).

Clearly, the choice of the parameter α and of the derivative orders (u, v) af-
fects the smoothness of the resulting spline. For the optimal choice of α, the
generalized cross-validation (GCV) criterion is used here, similarly as in [18].

Given that we aim to reconstruct clr-transformed PDFs, the zero-integral
constraint needs to be incorporated into the tensor product splines. Accordingly,
we here aim to find a spline skl(x, y) ∈ S∆λ,∆µ

kl (Ω), Ω = [a, b] × [c, d], which
minimizes the functional (20) and satisfies the additional condition∫∫

Ω

skl(x, y) dx dy = 0. (21)

We thus generalize to tensor product splines the idea presented in [17] for one-
dimensional splines. To state the solution of the problem, and the conditions for
its well-posedness, we need to introduce additional notation, that follows.
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We express the tensor spline skl(x, y) appearing in (20) as

skl(x, y) =

g∑
i=−k

h∑
j=−l

bij B
k+1
i (x)Bl+1

j (y), (22)

where Bk+1
i (x), Bl+1

j (y) are (univariate) B-splines defined on the sequence of
knots {λi} or {µj} and bij are the coefficients of this spline. The tensor spline
in (22) can be expressed in matrix notation as skl(x, y) = Bk+1(x)BB>l+1(y),

where B is a matrix of B-spline coefficients B = (bij)
g,h
i=−k,j=−l, Bk+1(x) =(

Bk+1
−k (x), · · · , Bk+1

g (x)
)

is the collocation matrix of the B-splines Bk+1
i (x), and

Bl+1(y) =
(
Bl+1
−l (y), · · · , Bl+1

h (y)
)

is the collocation matrix of the B-splines

Bk+1
j (y). This admits also a tensor product representation, as

skl(x, y) = Bk+1(x)BB>l+1(y) = (Bl+1(y)⊗Bk+1(x)) cs(B) =

= B(x, y) cs(B),
(23)

where B(x, y) := Bl+1(y) ⊗ Bk+1(x) and cs(B) is the vectorized form of the
matrix B (columnwise).

Let Su = Dx
uL

x
u · · ·Dx

1L
x
1 ∈ Rg+k+1−u,g+k+1, with Dx

j = (k+1−j) diag(dx−k+j , . . . , d
x
g),

dxi =
1

λi+k+1−j − λi
, i = −k + j, . . . , g, and

Lxj =

 −1 1 .
. . .

. . .

−1 1

 ∈ Rg+k+1−j,g+k+2−j .

Similarly, let Sv = Dy
vL

y
v · · ·Dy

1L
y
1 ∈ Rh+l+1−v,h+l+1, with Dy

j = (l + 1 −

j) diag(dy−l+j , . . . , d
y
h), dyi =

1

µi+l+1−j − µi
, i = −l + j, . . . , h, and

Lyj =

 −1 1 .
. . .

. . .

−1 1

 ∈ Rh+l+1−j,h+l+2−j .

Denote by S the tensor product between Sv and Su, S := Sv ⊗Su and define
the matrices of inner products between u-th and v-th derivatives of the spline

basis elements, Mx
k,u =

(
mx
ij

)g
i,j=−k+u

, My
l,v =

(
my
ij

)h
i,j=−l+v

, with

mx
ij :=

b∫
a

Bk+1−u
i (x)Bk+1−u

j (x) dx, my
ij :=

b∫
a

Bl+1−v
i (y)Bl+1−v

j (y) dy.
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Finally, let M := My
l,v ⊗Mx

k,u. Regarding the condition (21), by using the
well-known properties of the splines (see, e.g., [2, 32]), it is possible to write

b∫
a

d∫
c

skl(x, y) dy dx =

b∫
a

[sk,l+1(x, y)]dc dx =

b∫
a

sk,l+1(x, d) dx−
b∫
a

sk,l+1(x, c) dx =

= [sk+1,l+1(x, d)]ba − [sk+1,l+1(x, c)]ba =

= sk+1,l+1(b, d)− sk+1,l+1(a, d)− sk+1,l+1(b, c) + sk+1,l+1(a, c) =

= cg,h − c−k−1,h − cg,−l−1 + c−k−1,−l−1

using the notation sk+1,l+1(x, y) =
g∑

i=−k−1

h∑
j=−l−1

cij B
k+2
i (x)Bl+2

j (y) and the

coincident additional knots (18), (19). Accordingly, the condition (21) is fulfilled
if and only if

c−k−1,−l−1 = c−k−1,h + cg,−l−1 − cg,h. (24)

There is a useful relation between the B-spline coefficients of skl(x, y) and
sk+1,l+1(x, y), which can be expressed in matrix notation as B = DxKxCK>y D

>
y ,

where C = (cij) ∈ Rg+k+2,h+l+2,

Dx = (k + 1) diag

{
1

λ1 − λ−k
, . . . ,

1

λg+k+1 − λg

}
,

Dy = (l + 1) diag

{
1

µ1 − µ−l
, . . . ,

1

µh+l+1 − µh

}
,

Kx =

 −1 1
. . .

. . .

−1 1

 ∈ Rg+k+1,g+k+2, Ky =

 −1 1
. . .

. . .

−1 1

 ∈ Rh+l+1,h+l+2.

By using notation D := Dy ⊗Dx, K := Ky ⊗Kx and relation (24) to elide the
coefficient c−k−1,−l−1 we have

cs(B) = D K̃ cs(C̃), (25)

where cs(C̃) = (c−k,−l−1, · · · , cg,−l−1, · · · , c−k−1,h, · · · , cg,h)T . Having set this
notation, we can now state explicitly the minimizer of (20), under the zero-
integral constraint.

Theorem 5.1. The tensor smoothing spline skl(x, y) ∈ S∆λ,∆µ
kl (Ω), which min-

imizes the functional (20) under the condition (21) is obtained as

skl(x, y) = B(x, y)D K̃ cs(C̃∗), (26)

where

cs(C̃∗) =
[
K̃>D>

[
(1− α) S>MS + αB> B

]
DK̃
]+
α K̃>D>B> cs(F), (27)

F = (fij) and cs(F) denotes its vectorized form.
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As a by-product of the derivations leading to Theorem 5.1, one indeed ob-
tains the following result, which states the necessary and sufficient condition for
bivariate splines to have zero integral (the proof is provided in the Supplemen-
tary Material).

Theorem 5.2. For every spline skl(x, y) ∈ S∆λ,∆µ
kl (Ω), with the representation

skl (x, y) =
g∑

i=−k

h∑
j=−l

bij B
k+1
i (x) Bl+1

j (y), the condition
∫∫
Ω

skl(x, y) dxdy = 0

is fulfilled if and only if

g∑
i=−k

h∑
j=−l

bij (λi+k+1 − λi) (µj+l+1 − µj) = 0.

The next important result is that, if using the proposed spline representa-
tion for the bivariate densities, the spline representations of the corresponding
geometrical marginals in the clr space can be explicitly computed, and carry
automatically the zero integral constraint, as stated in the next theorem.

Theorem 5.3. Let skl(x, y) ∈ S∆λ,∆µ
kl (Ω) such that

∫∫
Ω

skl(x, y) dx dy = 0 be

given. Let sk(x) ∈ S∆λ
k [a, b], sl(y) ∈ S∆µ

l [c, d] be defined as sk(x) =
d∫
c
skl(x, y)dy,

and sl(y) =
b∫
a
skl(x, y)dx. Then

sk(x) =

g∑
i=−k

viB
k+1
i (x), sl(y) =

h∑
j=−l

ujB
l+1
j (y)

with

vi =
bih
th

+ · · ·+
bi,−l
t−l

; tj′ =
l + 1

µj′+l+1 − µj′
, j′ = −l, · · · , h,

uj =
bjg
dg

+ · · ·+
bj,−k
d−k

; dj′ =
k + 1

λj′+k+1 − λj′
, j′ = −k, · · · , g.

Moreover, the splines sk(x), sl(y) fulfil the zero-integral constraint, i.e.,

b∫
a

sk(x)dx = 0 and

d∫
c

sl(y)dy = 0.

The proof of Theorem 5.3 is reported in the Supplementary Material. We
finally introduce a spline representation for independent and interactive parts of
the bivariate densities.

17



Theorem 5.4. Let skl(x, y) ∈ S∆λ,∆µ
kl (Ω), skl(x, y) =

g∑
i=−k

h∑
j=−l

bijB
k+1
i (x)Bl+1

j (y),

such that
∫∫
Ω

skl(x, y) dx dy = 0 be given. Let sk(x) ∈ S∆λ
k [a, b], sl(y) ∈ S∆µ

k [c, d]

be defined as

sk(x) :=

d∫
c

skl(x, y)dy, sl(y) :=

b∫
a

skl(x, y)dx

with representation in the form

sk(x) =

g∑
i=−k

viB
k+1
i (x), sl(y) =

h∑
j=−l

ujB
l+1
j (y).

Then the independent part of the bivariate density skl(x, y) admits the spline
representation

sindkl (x, y) = sk(x) + sl(y) =

g∑
i=−k

h∑
j=−l

(vij + uij)B
k+1
i (x)Bl+1

j (y),

and the interactive part is expressed as the spline

sintkl (x, y) = skl(x, y) − sindkl (x, y) =

g∑
i=−k

h∑
j=−l

(bij − vij − uij)Bk+1
i (x)Bl+1

j (y),

where vij :=
1

d− c
vi, uij :=

1

b− a
uj ∀i, j.

The proof of Theorem 5.4 is again reported to the Supplementary Material.

We remark that the results presented in this section form a computational
cornerstone for the theoretical framework proposed in this work. Indeed, they
not only allow for a complete characterization of bivariate densities though
splines, but also for an explicit spline representation of the geometric marginals,
as well as of the independence and interaction densities. Lastly, the spline rep-
resentation enables one to compute the deviance and relative deviance from the
interaction density sintkl (x, y) simply as

∆2(sintkl (x, y)) =

b∫
a

d∫
c

[
sintkl (x, y)

]2
dx dy.

This result follows from an analogous development as that leading to the proof
of Theorem 5.1 (namely, the derivation of J1 by setting u = 0, v = 0, see the
Supplementary Material for further details).

The next section showcases the application of the proposed methodology to
a real dataset dealing with anthropometric measurements.
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6 An application to anthropometric densities

Periodic collection and reporting of anthropometric data such as body height
and weight is essential to measure time trends in the prevalence of overweight
and obesity at the population level. To this aim, a representative dataset of
4,436 Czech adolescents and young adults aged 15–31 years was collected as
part of a large cross-sectional study (the reader may refer to [9, 10] for further
details on the study). Participants to the study were selected on a volunteer
basis among university students, staff and attendants to university open-house
days and education exhibitions. The sample sizes were, however, not distributed
uniformly throughout the age intervals, mainly due to a broader participation
by university students, see Table 1.

Table 1: Sample sizes for age groups in anthropometric data.
Age interval [15, 16) [16, 17) [17, 18) [18, 19) [19, 20) [20, 21)
Sample size 95 126 234 492 686 516

Age interval [21, 22) [22, 23) [23, 24) [24, 25) [25, 26) [26, 27)
Sample size 443 450 385 318 220 155

Age interval [27, 28) [28, 29) [29, 30) [30, 31)
Sample size 108 99 79 90

Body height was measured with a precision of 0.1 cm by anthropometer P-
375 (Trystom, Olomouc, Czech Republic) and body weight was measured using
the InBody 720 device (Biospace Co., Ltd.; Seoul, Korea). Histogram data were
then obtained from raw data, separately in each of N = 16 age groups, i.e.
[15, 16) , [16, 17) , . . ., [30, 31). Note that the same age range was used also in
[18]. The support of the marginal distribution of weights (X) and heights (Y )
was set to the respective interval of observation, namely to I1 = [40, 100] for
X and I2 = [155, 195] for Y ; the Sturge’s rule was used to select the number
of classes K,L along the variable X,Y , respectively, in each of the histograms.
Possible (count) zeros in the histograms were imputed as advocated in [19];
more precisely, a zero value in the class k, l of a histogram was set to 2/3nkl,
where nkl stands for the number of observations within the class. For each age
group, this led to the discrete representation {fkl, k = 1, . . . ,K, l = 1, . . . , L} of
the bivariate distributions, which were referred to the midpoints of the classes
{tkl = (xk, yl), k = 1, . . . ,K, l = 1, . . . , L}. The associated discrete bivariate clr
transformations were computed as

clr(f)kl = ln fkl −
1

KL

K∑
k=1

L∑
l=1

ln fkl.

These clr transformations were smoothed by using the tensor product smooth-
ing splines with zero integral introduced in Section 5, considering a rectangular
domain Ω = [40; 100] × [155; 195]. For each age class, the following strategy
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was considered to set the parameters for the smoothing procedure. Quadratic
smoothing splines were employed in each direction, setting the knots to equis-
paced sequences in both directions, with spacing of 15 kg along X and 10 cm
along Y . The order of derivative in the penalty term was set to u = 1, v = 1.
The smoothing parameter α was determined by means of GCV errors over all
sampled bivariate densities, resulting in α = 0.0496, see Figure 3. The ma-

Figure 3: The mean GCV errors for the choice of the smoothing parameter α for
fitting the anthropometric data by smoothing tensor splines with zero integral.

trix B∗t = (btij), t = 1, . . . , 16, of coefficients for the smoothing spline stkl(x, y)
with zero integral were finally obtained by (26). A subset of the resulting clr
densities, expressed with respect to the uniform measure on Ω, are displayed
in Figure 4a. The corresponding densities (obtained by exponentiating the clr-
transformations) are reported in Figure 4b. The complete set of smoothed data
and clr-transform is available in the Supplementary Material. One can clearly
see the bimodal character of the densities, which is probably due to the presence
of both males and females in the sample. In addition, some dependence between
heights and weights is apparent, without a substantial difference between the
two modes, for most densities.

From the smoothed data, the decomposition of the bivariate densities into
their independent and interactive parts was computed using the results detailed
in Section 5, based on the corresponding B-spline coefficients (see Theorem 5.4).
The independent and interactive parts of the densities in Figure 4b are reported
in Figures 4c and 4d. It is interesting to observe that the bimodal character of
the densities almost disappears in the independent densities, as this feature is
mostly captured by the interaction densities. Apart of that, it is obvious that
upper/lower/combined extreme values in the variables heights and weights have
a relevant contribution on the dependence between the variables in the data set.
This can be seen on the uplifted values appearing in corners of the majority of
the interaction densities (Figure 4d).

We now aim to investigate whether the dependence between height and
weight changes with ageing of the population. For this purpose, the simpli-
cial deviances ∆2(fi) and the relative simplicial deviances R2(fi), i = 1, . . . , 16,
were computed as described in Section 5, see Table 2. Inspection of Table 2
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Figure 4: Anthropometric data: part of the smoothed data and their decom-
position in independent and interactive part. (a) Smoothed clr-densities; sym-
bols represent the discrete clr transformation at mid-points of histogram classes,
the smooth surfaces represent the smoothed PDFs reconstructed via smoothing
splines. (b) Smoothed densities. (c) Independent part. (d) Interactive part.
Computations refer to the uniform reference measure.

suggests that simplicial deviances are clearly influenced by the sample sizes in
the age intervals, yielding higher values of ∆2(fi) between ages 18 and 24, due
more local effects resulting from the smoothing of histograms with more classes.
These effects are filtered out in the relative simplicial deviances, whose time
series is reported in Figure 5 (upper figure).

A stationarity check performed with the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test [14] yields a narrow rejection of the stationarity assumption (p-value
p = 0.0482). As a consequence, (slightly) non-stationary effects emerge in the
time series of relative simplicial deviances. A major such effect can be observed
at the beginning of the time series; here the relative simplicial deviance slightly
increases and gets stabilized around the nineteenth year. This development can
be easily explained by pubertal and postpubertal changes in height and weight,
which still occur in the mentioned time period.

It is interesting to compare the relative simplicial deviance with the well-
known Spearman and Kendall correlation coefficients, which both are closely
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Table 2: Values of norms of the bivariate densities and their decomposition
together with the derived coefficients for all age groups in anthropometric data.
i age group ||fi||B2(P) ||f iind||B2(P) ||f iint||B2(P) ∆2(fi) R2(fi)

1 [15,16) 44.786 34.853 28.125 791.007 0.394
2 [16,17) 40.437 31.518 25.333 641.772 0.392
3 [17,18) 49.403 32.794 36.948 1365.180 0.559
4 [18,19) 55.132 34.132 43.296 1874.570 0.617
5 [19,20) 63.097 40.634 48.271 2330.051 0.585
6 [20,21) 58.650 36.198 46.147 2129.520 0.619
7 [21,22) 54.236 32.744 43.236 1869.361 0.636
8 [22,23) 54.305 34.407 42.014 1765.162 0.599
9 [23,24) 52.934 31.971 42.189 1779.876 0.635
10 [24,25) 52.647 29.572 43.557 1897.188 0.684
11 [25,26) 45.313 26.604 36.680 1345.455 0.655
12 [26,27) 40.893 24.782 32.528 1058.088 0.633
13 [27,28) 34.739 21.963 26.915 724.405 0.600
14 [28,29) 33.712 19.344 27.610 762.289 0.671
15 [29,30) 31.862 20.223 24.621 606.206 0.597
16 [30,31) 30.849 17.031 25.722 661.618 0.695

connected to the copula theory [24]. Their time series are displayed in Figure
5 (dashed and dotted lines, respectively) and they look pretty similar. The ef-
fect of (post)pubertal changes is no more visible here; we can rather observe a
slightly decreasing trend from around 24 years, which, interestingly, corresponds
to border age of the “Youth” age group according to World Health Organization
[41]. This would indicate that since then the strength of the monotonic depen-
dence between height and weight slightly weakens. This result reflects the fact
that unlike both the mentioned correlation coefficients, the relative simplicial de-
viance captures the whole “mass” of the interactions between height and weight
distributions, thus also including effects like possible tail dependence. Note that
a similar idea of using a norm for development of a dependence measure is fol-
lowed in [38] with the Sobolev metric, thought there with the aim to capture
rather solely monotone dependence.

We now further investigate the non-stationarity effects being observed for
the time series of relative simplicial deviances. For this purpose, we formu-
late a compositional regression model with functional response [36] and scalar
regressors (i.e., the time t of observation) which results in the linear model

fint,i = β0 ⊕ β1 � ti ⊕ εi, (28)

for i = 1, . . . , 16, with β0, β1 unknowns coefficients in B2(P) and εi a zero-
mean random error. Note that, by linearity, the properties of fint,i (as stated
in Theorems 3.1, 3.3 and 3.4) are inherited by β0, β1, as E[fint] = β0 ⊕ β1 � t.
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Figure 5: Time series of the relative simplicial deviances (solid line), the Spear-
man (dashed line) and the Kendall (dotted line) correlation coefficients for an-
thropometric data.

Applying the clr transformation (3) to both sides of the model (28) yields

f cint,i(x, y) = βc0(x, y)+βc1(x, y)ti+εci (x, y), i = 1, . . . , 16, (x, y) ∈ I1×I2. (29)

For the estimation of the functional regression parameters using the least squares
criterion the smoothing tensor spline coefficients (Theorem 5.4) can be utilized.
Similarly as in [36], the spline coefficients of the regression estimates (clr trans-
formed densities) β̂c0(x, y) and β̂c1(x, y) fulfill the condition from Theorem 5.2.

These estimated parameters β̂0, β̂1 are reported in Figure 6. A permutation test
on the global significance of the parameter β1 – run using a Freedman and Lane
scheme [8, 30] with test statistics T 2 = ‖β̂1‖2B2(P) – confirms the statistical sig-

nificance of this parameter (p-value 0.032), suggesting that the time variation
in the interaction between the random variables is indeed relevant. In the light
of the shape of β̂c1 (Figure 6) one can conclude that, along time, the interaction
between weights and heights tends to get more concentrated at medium-high
values or low values of the height, whereas it deflates for medium-low values of
the height. A less pronounced time variation is instead observed for different
values of the weight, suggesting that the highest variability in the dependence
between these variables is indeed observed across values of the other variable.

7 Conclusions

The Bayes spaces methodology provides a robust and flexible framework for
modelling data with relative character, including measures, probability density
functions as well as compositional data. It can serve for many different purposes,
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Figure 6: Clr-transformation of the estimated parameters β̂c0(x, y) and β̂c1(x, y).

from geometrical representation of the Bayes theorem to functional data analy-
sis of a sample of densities. In this paper, its potential was further extended to
bivariate density functions. Their decomposition into independent and interac-
tive parts has a solid geometrical basis and allows for an appealing probabilistic
interpretation if a normalized reference measure is used. This opens new per-
spectives for both further generalization to multivariate densities as well as to
dependence modelling, with the aim to provide an alternative viewpoint than
that offered by the widely-used copula theory. Note that the Bayes space theory
is built for general types of positive measures (not necessarily absolutely continu-
ous); we here foresee clear perspectives of development for a general Bayes space
approach for distributions, in contexts and assumptions even closer to those of
the well-established theory of copulas. Other important envisioned impacts of
this work are worth to be mentioned. For instance, the spline smoothing here
developed may be used for a non-parametric estimate of PDFs, directly allowing
for further data processing in the view of FDA, although at the expense of pos-
sible lower convergence rate than empirical distribution functions or empirical
copulas constructed using ranks. In fact, from the application viewpoint and in
the light of the promising theoretical properties presented in Section 3, the Bayes
space approach could be used to develop novel FDA methods for bivariate den-
sities, and provide a broader statistical framework to pioneering applications as
those developed in [11]. An instance of this has been shown in Section 6, where
a linear regression model for interaction densities has been formulated to further
investigate the variability of the interaction between two random variables along
time. Such linear modeling would not be easy in other settings, based on non-
linear and non-orthogonal relations between independent and interaction parts.
More in general, in this first work, we outlined a number of novel views allowed
by the proposed spline representation, with particular reference to the statistical
analysis of bivariate densities in Bayes spaces. In fact, we here envision a great
potential of this framework, which can be used to provide a mathematical setting
for the statistical processing of samples of bivariate densities in varied contexts.
Note that distributional datasets are becoming increasingly available in the ap-
plications, as these could result from aggregation of massive data coming from
large-scale studies or automated collection of data. Despite this, the statistical
methods available for their analysis (particularly in the multivariate case) are
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still limited. Depending on whether such densities form a random sample, re-
gionalized observations or time series, appropriate methods of FDA far beyond
those explicitly mentioned in this work can be built, precisely grounding upon
the presented theory and the associated spline representations.
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Statistics, 53(1):1–26, 2019.

[2] C. de Boor. A Practical Guide to Splines. Springer, New York, 1978.

[3] P. Delicado. Dimensionality reduction when data are density functions.
Computational Statistics and Data Analysis, 55:401–420, 2011.

[4] P. Dierckx. Curve and Surface Fitting with Splines. Clarendon Press, 1993.

[5] J. J. Egozcue and V. Pawlowsky-Glahn. Changing the reference measure in
the simplex and its weighting effects. Austrian Journal of Statistics, 45(4):
25–44, 2016.

[6] J. J. Egozcue, J. L. Diaz-Barrero, and V. Pawlowsky-Glahn. Compositional
analysis of bivariate discrete probabilities. In Proceedings of CODAWORK
08, 2008.

[7] J. J. Egozcue, V. Pawlowsky-Glahn, M. Templ, and K. Hron. Indepen-
dence in contingency tables using simplicial geometry. Communications in
Statistics - Theory and Methods, 44:3978–3996, 2015.

[8] D. Freedman and D. Lane. A nonstochastic interpretation of reported sig-
nificance levels. Journal of Business & Economic Statistics, 1(4):292–298,
1983.
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Bivariate densities in Bayes spaces: orthogonal de-
composition and spline representation- supplementary
material

Supplement A: Spline representation of univariate clr
transformed densities

In this supplementary section the terminology and basics for the spline represen-
tation of clr transformed univariate densities as L2 functions with zero integral
are recalled. Let the sequence of knots ∆λ := {λi}g+1

i=0 , λ0 = a < λ1 < . . . <
λg < b = λg+1 be given. The symbol S∆λ

k [a, b] denotes the vector space of
polynomial splines of degree k > 0, defined on a finite interval [a, b] with the
sequence of knots ∆λ. It is known that dim

(
S∆λ
k [a, b]

)
= g+ k+ 1. Then every

spline sk(x) ∈ S∆λ
k [a, b] has an unique representation

sk (x) =

g∑
i=−k

biB
k+1
i (x) .

For generalization of splines to the bivariate density case the following the-
orem, which was published in [36], is of paramount importance.

Theorem 7.1. For a spline sk(x) ∈ S∆λ
k [a, b], sk (x) =

g∑
i=−k

biB
k+1
i (x), the

condition
b∫
a
sk(x) dx = 0 is fulfilled if and only if

g∑
i=−k

bi (λi+k+1 − λi) = 0.

Proof. From the spline theory it is known that
∫
sk(x) dx = sk+1(x). If the

notation sk(x) =
g∑

i=−k
biB

k+1
i (x) is used, sk+1(x) =

g∑
i=−k−1

ciB
k+2
i (x), there is

known the relationship between their B-spline coefficients in the form

bi = (k + 1)
ci − ci−1

λi+k+1 − λi
, ∀i = −k, . . . , g.

Thus the coefficients ci can be expressed as

ci = ci−1 +
bi
di
, ∀i = −k, . . . , g

with di =
k + 1

λi+k+1 − λi
and it means that

cg =
bg
dg

+ · · · +
b−k
d−k

+ c−k−1.
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According to the coincident additional knots, see [17] for details, it holds

b∫
a

sk(x) dx = [sk+1(x)]ba = sk+1(b)− sk+1(a) = cg − c−k−1, (30)

and it is obvious that

0 =

b∫
a

sk(x) dx ⇔ cg = c−k−1 ⇔ bg
dg

+ · · · +
b−k
d−k

= 0.

Finally, the definition of di implies that the following sequence of equivalences
can be formulated,

0 =

b∫
a

sk(x) dx ⇔
g∑

i=−k

bi
di

= 0 ⇔
g∑

i=−k
bi (λi+k+1 − λi) = 0.

Algorithm
The algorithm to find a spline sk(x) ∈ S∆λ

k [a, b] with zero integral, i.e., the
respective vector b = (b−k, · · · , bg)>, can be summarized as follows:
1. choose g+k arbitrary B-spline coefficients bi ∈ R, i = −k . . . , j−1, j+1, . . . , g,
2. compute

bj =
−1

λj+k+1 − λj

g∑
i=−k
i 6=j

bi (λi+k+1 − λi) .

Supplement B: Proofs

Proof of Theorem 3.1. The clr transformation of the independence density find(x, y)
can be written as

f cind(x, y) = ln[fX(x)fY (y)]− 1

P(Ω)

∫
ΩX

∫
ΩY

ln[fX(x)fY (y)] dPXdPY . (31)

This is invariant under rescaling of the product fX(x)fY (y). By choosing the
following representations of fX(x) and fY (y),

fX(x) = exp[f cX(x)], fY (y) = exp[f cY (y)],

the second term in (31) equals zero. Thus (31) can be rewritten as

f cind(x, y) = ln{exp[f cX(x) + f cY (y)]} = f cX(x) + f cY (y).
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For the sake of simplicity in notation, arguments are hereafter omitted. Consider

f cint = f c − f cind = f c − f cX − f cY ,

then

〈f cint, f
c
ind〉L2

0(P) = 〈f c − f cX − f cY , f cX + f cY 〉L2
0(P) =

= 〈f c, f cX〉+ 〈f c, f cY 〉L2
0(P) − ||f cX ||2L2

0(P) − ||f
c
Y ||2L2

0(P) − 2〈f cX , f cY 〉L2
0(P).

For the first scalar product one has

〈f c, f cX〉L2
0(P) =

∫
ΩX

∫
ΩY

f c(x, y)f cX(x) dPXdPY =

=

∫
ΩX

f cX(x)

∫
ΩY

fc(x, y) dPXdPY =

∫
ΩX

[f cX(x)]2 dPX = ||f cX ||2L2
0(P),

similarly also 〈f c, f cY 〉L2
0(P) = ||f cY ||2L2

0(P)
. Finally,

〈f cX , f cY 〉L2
0(P) =

∫
ΩX

∫
ΩY

f cX(x)f cY (y) dPXdPY =

∫
ΩX

f cX(x) dPX ·
∫

ΩY

f cY (y) dPY = 0,

which completes the proof.

Proof of Theorem 3.2. In case of independence, one may decompose a bivariate
density as the product of its arithmetic marginals as f(x, y) = fX,a(x)fY,a(y).
In Bayes spaces, this is reformulated as in (11). Call f cX(x), f cY (y) the clr-
representation of the marginals, i.e., fX,a(x) = exp[f cX,a(x)] and similarly fY,a(y) =
exp[f cY,a(y)]. Using (11), one may build the independent component as f cind(x, y) =
f cX,a(x) + f cY,a(y), which clearly coincides with f itself. The clr representation of
the geometric X-marginal is derived – by definition (5) – as∫

ΩY

f cind(x, y) dPY =

∫
ΩY

f cX,a(x) dPY = PY (ΩY )f cX,a(x).

By considering that PY (ΩY ) = 1, the geometric X-marginal is obtained by
applying the exponential as fX(x) = exp[f cX,a(x)], i.e., it coincides with the
arithmetic marginal fX,a(x). The case of Y -marginals would be proven analo-
gously.

Proof of Theorem 3.3. The orthogonality of the marginals is easy to be proven
in the clr space. Specifically,

〈f cX , f cY 〉L2
0(P) =

〈∫
ΩX

f c(x, y) dPX ,

∫
ΩY

f c(x, y) dPY

〉
L2
0(P)

=

=

∫
ΩX

∫
ΩY

[∫
ΩX

f c(x, y) dPX

] [∫
ΩY

f c(x, y) dPY

]
dPXdPY =

=

∫
ΩY

[∫
ΩX

f c(x, y) dPX

]
dPY ·

∫
ΩX

[∫
ΩY

f c(x, y) dPY

]
dPX = 0
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from the fact that f cX ∈ L2
0(ΩX) and f cY ∈ L2

0(ΩY ). In the next step the
orthogonality between fint ≡ fint(x, y) and the X-marginal is proven. Using
the first part of this theorem and the relation 〈f c, f cX〉L2

0(P) = ||f cX ||2L2
0(P)

from

the proof of Theorem 3.1 it holds

〈f cint, f
c
X〉L2

0(P) = 〈f c − f cind, f
c
X〉L2

0(P) = 〈f c − f cX − f cY , f cX〉L2
0(P) =

= 〈f c, f cX〉L2
0(P) − ||f cX ||2L2

0(P) − 〈f
c
X , f

c
Y 〉L2

0(P) =

= ||f cX ||2L2
0(P) − ||f

c
X ||2L2

0(P) = 0.

Proof of Theorem 3.4. Equation (12) can be equivalently stated in terms of the
clr marginals as

f c + f cint,X = f ; f c + f cint,Y = f c, (32)

f c denoting the clr transformation of f . In this case, one has

f c + f cint,X = f c +

∫
ΩX

f cintdPX =

= f c +

∫
ΩX

f c dPX −
∫

ΩX

f cXdPX −
∫

ΩX

f cY dPX =

= f c + f cY − f cY · PX(ΩX) = f c,

where the last equality holds true if the measure PX(ΩX) is normalized. With
analogous argument, the same equality is proven for f cint,Y .

Proof of Theorem 3.5. From (11) and the expression gind = (gX⊕fX)⊕(gY ⊕fY )
it follows that gind is an independence density of g. Therefore

gint = g 	 gind = f 	 find = fint.

Proof of Theorem 5.1. Let the first term in (20) be denoted as

J1 = α
n∑
i=1

m∑
j=1

[fij − skl(xi, yj)]2 (33)

and the second one as

J2 = (1− α)

∫∫
Ω

[
s

(u,v)
kl (x, y)

]2
dx dy (34)

We can express the functional J1 from (33) in matrix notation as

J1 = α
n∑
i=1

m∑
j=1

[fij − skl(xi, yj)]2 = α [cs(F)− B cs(B)]> [cs(F)− B cs(B)] =

= α (cs(F))> cs(F)− 2α (cs(B))> B> cs(F) + α (cs(B))> B> B cs(B),
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where F = (fij), B := Bl+1(y)⊗Bk+1(x), y = (y1, · · · , ym), x = (x1, · · · , xn).
Now we consider the derivative of the spline. Similarly as in case of one- di-
mensional splines, [17, 15], the derivative can be expressed by using (22), (23)
as

s
(u,v)
kl (x, y) =

∂u

∂xu
∂v

∂yv

g∑
i=−k

h∑
j=−l

bij B
k+1
i (x)Bl+1

j (y) =

=
∂u

∂xv
∂v

∂yv
(Bl+1(y)⊗Bk+1(x)) cs(B) =

= [Bl+1−v(y)Sv ⊗Bk+1−u(x)Su] cs(B).

(35)

With respect to the properties of tensor product, and using the notation Bu,v(x, y) :=
Bl+1−v(y) ⊗ Bk+1−u(x), the derivative given in (35) can be reformulated as

s
(u,v)
kl (x, y) = Bu,v(x, y) S cs(B). Note that the flexibility in the choice of the

orders u, v in the derivatives s
(u,v)
kl (x, y) can be considered as an element of in-

novation with respect to the classical tensor smoothing spline approach [4]. Then
the functional J2 from (34) can be rewritten as

J2 = (1− α)

∫
Ω

[
s

(u,v)
kl (x, y)

]2
dx dy =

= (1− α)

b∫
a

d∫
c

[Bu,v(x, y) S cs(B)]> Bu,v(x, y) S cs(B) dy dx =

= (1− α) (cs(B))> S>
b∫
a

d∫
c

(Bu,v(x, y))> Bu,v(x, y) dy dx S cs(B).

Further,

b∫
a

d∫
c

(Bu,v(x, y))> Bu,v(x, y) dy dx =

=

b∫
a

d∫
c

[Bl+1−v(y)⊗Bk+1−u(x)]> [Bl+1−v(y)⊗Bk+1−u(x)] dy dx =

=

b∫
a

d∫
c

[
B>l+1−v(y)Bl+1−v(y)

]
⊗
[
B>k+1−u(x)Bk+1−u(x)

]
dy dx =

= My
l,v ⊗Mx

k,u.

This yields, J2 = (1−α) (cs(B))> S>MS cs(B). By putting together the matrix
forms of J1 and J2, the functional Juv(skl(x, y)) from (20) can be expressed as
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a function of unknown B-spline parameters bij , specifically

Juv (cs(B)) = α (cs(F))> cs(F)− 2α (cs(B))> B> cs(F) + α (cs(B))> B> B cs(B)+

+ (1− α) (cs(B))> S>MS cs(B).

(36)

The fulfilment of the zero integral condition (21) is based on relation (25). By
using this the function Juv(cs(B)) can be reformulated as

Juv

(
cs(C̃)

)
=α (cs(F))> cs(F) − 2α

(
D K̃ cs(C̃)

)>
B> cs(F) +

+ α
(
D K̃ cs(C̃)

)>
B> BD K̃ cs(C̃) +

+ (1− α)
(
D K̃ cs(C̃)

)>
S>MSDK̃ cs(C̃).

(37)

Thus, the necessary and sufficient condition for the minimum of function Juv(cs(B))

is
∂ Juv(cs(B))

∂ cs(B)
= 0. By applying this condition to (37) the following equation

is obtained,

K̃>D>
[
(1− α)S>MS + αB> B

]
D K̃ cs(C̃) = α K̃>D>B> cs(F).

Then the solution to this system is given by

cs(C̃∗) =
[
K̃>D>

[
(1− α)S>MS + αB> B

]
DK̃
]+
α K̃>D>B> cs(F) (38)

And finally, the matrix B∗ of coefficients for the resulting smoothing spline with
zero integral is obtained by

cs(B∗) = D K̃ cs(C̃∗). (39)

Proof of Theorem 5.2. The spline skl(x, y) ∈ S∆λ,∆µ
kl (Ω) can be expressed as

skl (x, y) =

g∑
i=−k

h∑
j=−l

bij B
k+1
i (x) Bl+1

j (y) =

g∑
i=−k

sil(y)Bk+1
i (x) ,

where sil(y) :=
h∑

j=−l
bij B

l+1
j (y), i = −k, · · · , g, are in fact one-dimensional

splines of order l+ 1 for the y-variable with coefficients bij , j = −l, · · · , h. Then∫
skl(x, y) dy =

∫ g∑
i=−k

sil(y)Bk+1
i (x) dy =

g∑
i=−k

Bk+1
i (x)

∫
sil(y) dy
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and ∫
sil(y) dy = sil+1(y), with sil+1(y) =

h∑
j=−l−1

uij B
l+2
j (y).

By considering the case of one-dimensional splines, specifically the proof of The-
orem 7.1, it holds

uij = ui,j−1 +
bij
tj
, where tj =

l + 1

µj+l+1 − µj
, j = −l, · · · , h, (40)

i.e.

uih =
bih
th

+ . . .+
bi,−l
t−l

+ ui,−l−1, ∀i. (41)

Altogether∫
skl(x, y) dy =

g∑
i=−k

Bk+1
i (x)

h∑
j=−l−1

uij B
l+2
j (y) =

=

g∑
i=−k

h∑
j=−l−1

uij B
k+1
i (x)Bl+2

j (y) =: sk,l+1(x, y).

Subsequently, using the last expression, the integral can be expressed as

d∫
c

skl(x, y) dy = [sk,l+1(x, y)]dc = sk,l+1(x, d)− sk,l+1(x, c) =

=

g∑
i=−k

h∑
j=−l−1

uij B
k+1
i (x)

(
Bl+2
j (d)−Bl+2

j (c)
)

=

=

g∑
i=−k

Bk+1
i (x) (uih − ui,−l−1) =

g∑
i=−k

viB
k+1
i (x) =: sk(x),

(42)

for
vi := uih − ui,−l−1 ∀i = −k, · · · , g, (43)

because with coincident additional knots (18), (19) it holds

Bl+2
j (d) =

{
1 if j = h
0 otherwise

Bl+2
j (c) =

{
1 if j = −l − 1
0 otherwise.

Finally, according to (42) and (30), there is

b∫
a

d∫
c

skl(x, y) dy dx =

b∫
a

sk(x) dx = [sk+1(x)]ba =

= sk+1(b)− sk+1(a) = wg − w−k−1,

(44)
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where sk+1(x) =
g∑

i=−k−1

wiB
k+2
i (x) and

wi = wi−1 +
vi
di
, with di =

k + 1

λi+k+1 − λi
∀i = −k, · · · , g, (45)

i.e.
wg =

vg
dg

+ · · ·+ v−k
d−k

+ w−k−1. (46)

As a direct consequence the following equivalences can be formulated

b∫
a

d∫
c

skl(x, y) dy dx = 0 ⇔ wg = w−k−1 ⇔ vg
dg

+ · · ·+ v−k
d−k

= 0.

By using (43) and (41),

vg
dg

+ · · ·+ v−k
d−k

=

g∑
i=−k

uih − ui,−l−1

di
=

=

g∑
i=−k

1

di

(
bih
th

+ · · ·+
bi,−l
t−l

)
=

g∑
i=−k

h∑
j=−l

bij
di tj

,

and altogether

b∫
a

d∫
c

skl(x, y) dy dx = 0 ⇔
g∑

i=−k

h∑
j=−l

bij (λi+k+1 − λi) (µj+k+1 − µj) = 0.

Proof of Theorem 5.3. Let skl(x, y) ∈ S∆λ,∆µ
kl (Ω), with the given representation

skl (x, y) =
g∑

i=−k

h∑
j=−l

bij B
k+1
i (x) Bl+1

j (y), and let
∫∫
Ω

skl(x, y) dx dy = 0. Then

from Theorem 5.2 it is

g∑
i=−k

h∑
j=−l

bij (λi+k+1 − λi) (µj+k+1 − µj) = 0. (47)

By using (42), (43) from the proof of Theorem 5.2 it is obtained that sk(x) =
g∑

i=−k
viB

k+1
i (x), where vi = uih − ui,−l−1. According to (41) it holds

vi =
bih
th

+ · · ·+
bi,−l
t−l

. (48)

36



Next, by considering (44),

b∫
a

sk(x) dx = [sk+1(x)]ba = wg − w−k−1,

where sk+1(x) =
g∑

i=−k−1

wiB
k+2
i (x). But with respect to (45), (46), (48) and

(47) this difference equals to

wg − w−k−1 =
vg
dg

+ · · ·+ v−k
d−k

=

g∑
i=−k

vi
di

=

g∑
i=−k

1

di

h∑
j=−l

bij
tj

=

=

g∑
i=−k

h∑
j=−l

bij (λi+k+1 − λi) (µj+l+1 − µj)
(k + 1)(l + 1)

= 0,

and consequently also
b∫
a
sk(x)dx = 0. The second statement can be proven

analogously.

Proof of Theorem 5.4. Every bivariate spline skl(x, y) ∈ S∆λ,∆µ
kl (Ω) can be ex-

pressed as

skl(x, y) =

g∑
i=−k

h∑
j=−l

bijB
k+1
i (x)Bl+1

j (y) =

g∑
i=−k

ciB
k+1
i (x),

where ci =
h∑

j=−l
bijB

l+1
j (y). For given univariate spline sk(x) =

g∑
i=−k

viB
k+1
i (x)

we can define coefficients

vij := vi, ∀j = −l, . . . , h.

Then sk(x) can be expressed as a bivariate spline which is constant in variable
y and which uses B-spline bases functions Bl+1

j (y) in the form

sk(x) =

g∑
i=−k

h∑
j=−l

vijB
k+1
i (x)Bl+1

j (y),

since with respect to the properties of B-splines, [2, 4, 32], we have

h∑
j=−l

vijB
l+1
j (y) = vi

h∑
j=−l

Bl+1
j (y) = vi · 1 = vi.

The rest of proof is obvious with respect to the addition or subtraction of two
splines.
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Supplement C: Algorithm

Theorem 5.2 enables to formulate an algorithm for finding a bivariate tensor
spline skl(x, y) ∈ S∆λ,∆µ

kl (Ω) with zero integral over Ω. This task is equivalent
to finding the matrix B = (bij), i = −k, · · · , g, j = −l, · · · , h of the B-spline
coefficients:
1. choose (g + k + 1)(h + l + 1) − 1 arbitrary B-spline coefficients bij ∈ R, for
i = −k . . . , β − 1, β + 1, . . . , g and j = −l . . . , γ − 1, γ + 1, . . . , h,
2. compute

bβγ =
−1

(λβ+k+1 − λβ) (µγ+l+1 − µγ)

g∑
i=−k
i6=β

h∑
j=−l
j 6=γ

bij (λi+k+1 − λi) (µj+l+1 − µj) .

Supplement D: Complete set of anthropometric data

Figure 7: Anthropometric data: smoothed clr transformed densities for all age
intervals together with data points resulting from he discrete clr transformation
at mid-points of histogram classes. The choice of the scale of the reference
measure (uniform measure) does not play any role here.
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Figure 8: Anthropometric data: smoothed original bivariate densities for all age
intervals.

Figure 9: Anthropometric data: smoothed independent densities for all age
intervals.
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Figure 10: Anthropometric data: smoothed interaction densities for all age in-
tervals.
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