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ABSTRACT

EEG is a non-invasive powerful system that finds applications
in several domains and research areas. Most EEG systems
are multi-channel in nature, but multiple channels might in-
clude noisy and redundant information and increase compu-
tational times of automated EEG decoding algorithms. To
reduce the signal-to-noise ratio, improve accuracy and reduce
computational time, one may combine channel selection with
feature extraction and dimensionality reduction. However, as
EEG signals present high inter-subject variability, we intro-
duce a novel algorithm for subject-independent channel se-
lection through representation learning of EEG recordings.
The algorithm exploits channel-specific 1D-CNNs as super-
vised feature extractors to maximize class separability and re-
duces a high dimensional multi-channel signal into a unique
1-Dimensional representation from which it selects the most
relevant channels for classification. The algorithm can be
transferred to new signals from new subjects and obtain novel
highly informative trial vectors of controlled dimensionality
to be fed to any kind of classifier.

Index Terms— EEG Signals, EEG Channel Selection,
Representation Learning, Dimensionality Reduction

1. INTRODUCTION

ElectroEncephaloGraphy (EEG) is a non-invasive system that
places external electrodes along the scalp, and measures volt-
age fluctuations resulting from ionic current within the neu-
rons of the brain. This powerful technology finds applica-
tions in several fields [1, 2], all relying on EEG technology
because of its high portability, relative low cost, high tempo-
ral resolution and few risk to users. All these aspects could
drive the development of portable devices to assist impaired
patients, medical systems for early detection and personal-
ized treatment of neurological diseases [3, 4] and useful tools
for clinical decision making. However, irrespectively of the
specific application, to achieve good performance in EEG de-
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coding, patients are required to wear several electrodes (chan-
nels). Applying a large number of channels presents several
drawbacks: it could (i) include noisy and redundant signals
affecting analysis; (ii) lead to higher computational time in
the automated processing of signal data for classification pur-
poses and (iii) strongly affect the performance of any Sta-
tistical or Machine Learning approach. The development of
effective channel selection algorithms is a way to overcome
all the aforementioned issues at once [5]. However, EEG
data is known to be highly non-stationary and subject vari-
ant, i.e. there exists inter-subject variability wherein the best-
performing channels for one user may not be the same for
another user. Unsurprisingly, most existing literature focuses
on subject-dependent channel selection strategies, where the
specific subset of channels or the ranking of channels’ impor-
tance is performed for each subject independently [2, 4–9] or
at a group level, where the same set of channels is selected
across an entire group of subjects, but the selection remains
valid - and is evaluated - for new signals from the same group
of subjects [6, 10–12]. Some attempts of cross-subject selec-
tion exist [7, 13, 14], but either performance is quite low or the
number of selected channels high, or the methods tailored to
specific EEG study paradigms. Despite the complexity of the
task, it has become apparent that crucial medical applications
call for automated EEG decoding via different Statistical and
Machine Learning approaches [15], that in turn need strate-
gies to reduce signal-to-noise ratio and improve classification
accuracy of EEG recordings. To this end, besides - and com-
bined to - effective channel selection, feature extraction from
the selected raw signals is another indispensable step of EEG
decoding tasks, to reduce dimensionality and foster classifi-
cation performance [5]. Feature-based methods, where typi-
cally handcrafted and a priori selected features represent the
data, are the most widely adopted, but rely on domain exper-
tise of the researcher [15]. Conversely, End-to-End decoding
methods accept raw or minimally preprocessed data as input
and automatically extract features that are relevant for the spe-
cific classification task. However, they are oftentimes less in-
terpretable and very expensive in computation and memory
requirement terms, due to the complexity of the underlying
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models [15]. Finding the most effective and generalizable
combination of features extraction and channel selection can
balance both needs for performance and convenience of po-
tential real-life applications of EEG-based systems and over-
come all the aforementioned complexities in automated EEG
analysis implementations. For this reason, in this study we fo-
cus on the development of an algorithm that combines a Rep-
resentation Learning (RL) method for signals’ feature extrac-
tion (namely 1D Convolutional Neural Network - 1DCNN),
with a novel channel selection method. Indeed, we present
here ERNEST, EEG EmbeddeR aNd channEl SelecTor: a ro-
bust, generalizable, simple and lightweight End-to-End algo-
rithm for EEG channel selection and signal decoding. As a
first proof of concept of our algorithm we decided to focus
on a specific EEG classification setting, namely alcoholism
detection. This case study may serve as an interesting exper-
iment due to the relevance of this problem in the medical do-
main, as testified by the several previous studies that tried to
tackle this classification task by means of different channel se-
lection approaches. In [16] a thorough review of previous at-
tempts is presented. However, these previous examples, most
of which with very high accuracy performances, mainly focus
on selecting channels for classification in a group-dependent
fashion. A subject-agnostic channel selection in this context
could instead be a valuable component of a clinical decision
support system for the early detection of predisposition to al-
coholism on new patients.

2. METHODS

The aim of this paper is to present ERNEST, an End-to-End
RL-based algorithm to reduce signal dimensionality in a
channel-wise fashion and select the most relevant electrodes
to perform classification across subjects. In other words, re-
gardless of the subjects employed during the training phase,
the algorithm should learn an effective mapping from the
multi-channel EEG signals to a reduced 1-dimensional rep-
resentation (retaining information from the most relevant
channels only) that provide a sufficient accuracy on new sig-
nals from any patient. ERNEST is composed of modules
tailored to address different parts of the process. Indeed, the
algorithm follows a multi-step process as depicted in Figure
1. Note that the algorithm works on set of signal recordings
that we will here define generally trials, i.e. fixed length
multi-dimensional signals recorded simultaneously from sev-
eral electrodes: one trial might be one stimulus of a visual or
auditory Event-Related-Potential (ERP), or an epoch within
a Motor Imagery (MI) experiment, or a chunk of recordings
for patients’ classification.

2.1. Channel-wise feature extraction

First of all, ERNEST exploits a 1D-CNN to automatically ex-
tract channel-specific features from signals. To do that, it
parametrizes a set of channel-specific embedding models op-

timized to separate between different classes of trials. The
aforementioned classes might represent the health status of
a patient, the onset of an epileptic seizure, the different re-
sponses to stimuli in an ERP trial or the imaginated motor
task in a MI experiment. As mentioned, a notable aspect of
the algorithm is the lack of signal preprocessing because of
the end-to-end nature of 1DCNNs.
In particular, we can consider each 1DCNN as composed of
an encoder and a subsequent classifier. The encoder maps
the signals from the J-dimensional input space, into an M -
dimensional embedding space, where M < J . The whole
model is parametrized with supervised training to classify the
signals in the classes of interest. After training, the embed-
ded M -dimensional vectors from each of the C channels are
extracted from the encoder, and the algorithm builds a unique
1D representation of each trial by concatenating the C em-
beddings into a trial vector t ∈ IR1×(M×C).
The choice of training several parallel models was led by the
idea that parametrizing in a supervised channel-wise fashion
would generate rich embeddings for all channels and better
capture the independent relationship each of those electrode
locations has with the target. However, the information ly-
ing in the combination of several recording sources and their
inter-relationships is not lost, as it is considered in the subse-
quent Autoencoder ensemble-based Channel Selection (CS)
module applied to trial vectors, as described in the following.

2.2. Channel selection

The CS module relies on a supervised filtering (i.e. classifier-
agnostic) Feature Selection method developed in [17]. This
method exploits an Ensemble of Deep Sparse AutoEncoders
(DSAEE) to select the most relevant features to discriminate
between classes in a binary setting. The algorithm is adapted
to select channels instead of single features and its AE-based
nature is suited to consider complex non-linear inter-channel
relationships while performing selection. In particular, after
training of the Feature Extraction module, all training trial
vectors t together form the matrix T ∈ IRN×(CM), where
CM is the product between the number of channels and the
embedding dimension, that will be used to select the most rel-
evant channels via DSAEE. We supply T to the algorithm that
(repeating for each of the B ensemble components) (i) builds
the test set (Ttest) by sampling a subset with the same number
L of observations from each class, (ii) builds the training set
Ttrain = {ti|yi = 0,∀i /∈ Ttest} with all observations from
only one of the classes (yi = 0) not included in the test set.
Then (iii) it trains the DSAE to reconstruct Ttrain, and col-
lects the Reconstruction Error (RE) on Ttest as the Squared
Error between the input and its reconstruction. The final RE
matrix R ∈ IR2BL×CM is the final output, 2BL being the total
number of tested observations by the ensemble of models, and
the features represent the testing RE committed by the DSAE
on the C concatenated M -dimensional channel-specific vec-
tors. The RE by class for channel c is then computed sum-



Fig. 1. ERNEST process flow

ming over the M -dimensional block in R associated with c
and taking the mean of the BL trials of the class:
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where the class subscript represents the levels of y ∈ {0, 1},
and each vector r(c)i ∈ IRM is the block of RE associated to
channel c for each trial i. The final metric to evaluate chan-
nels’ relevance is the difference in RE between classes, i.e.
∆RE(c) = RE

(c)
1 −RE

(c)
0 . We rank order channels on such

metric, and we select the top k as the most salient to discrim-
inate between the two classes of trials.

2.3. New trials representation through selected-channel
dimensionality reduction

Once the top K most relevant channels have been selected,
ERNEST tackles the classification of new trials by exploiting
the pretrained models associated to each selected channel. In-
deed, at the end of the training phase, each channel is associ-
ated with an embedding function φc parametrized with super-
vision to maximize class separability. Given an unseen test
set of (trial, target) pairs, for each trial the algorithm filters
on the selected K channels, and concatenates the representa-
tions obtained applying φk to the corresponding signal, with
k = (1, ...,K). By doing that, we strongly reduce the dimen-
sionality of the problem by transforming a high-dimensional
multi-channel representation of each trial into a single vector
of controlled size that is highly informative w.r.t. the task at
hand. Indeed, we end up with the matrix A ∈ IRP×(KM),
where P is the number of new trials, K is the number of se-
lected relevant channels and M is the representation dimen-
sion. As mentioned, each trial is associated to a target, that
constitutes the vector ynew ∈ IRP associated to A. The ma-
trix A and the associated target vector can then be supplied to
any classifier.

3. CASE STUDY APPLICATION: EARLY
DETECTION OF ALCOHOLISM PREDISPOSITION

Besides the general description of the algorithm, in this work
we aim at testing its potential and proving some details of
its conceptualization by running an experiment on real data.
The dataset we use is a large public EEG database, available
through UCI Machine Learning Repository1. This dataset
was developed to examine genetic predisposition, through
EEG signals, to alcoholism. To elicit the Event-Related Po-
tential (ERP), a modified delayed Visually Evoked Potential
(VEP) matching-to-sample task was used, in which two pic-
ture stimuli appeared in succession: a first picture stimulus
(S1) was followed by a second stimulus (S2) either match-
ing or non-matching the first picture. The database includes
122 subjects, equally splitted between alcoholic and controls.
Each subject completed 120 trials. The signal acquisition
is performed according to the 10–20 International System
with 64 electrodes placed on the scalps of the subjects and
recordings were sampled at 256 Hz (3.9-msec epoch) for
1 second. The analysis on this specific dataset reported in
[18] clearly shows the presence of eye-blink and motion and
muscle artifacts affecting raw signals.

3.1. Experimental and Implementation Details

Considering that VEP are generally known to grant higher ac-
curacies compared to other paradigms, for this proof of con-
cept experiment we focused on a more complex task by trying
to classify trials (the class is determined by the subject asso-
ciated to each trial) on the basis of the brain signals produced
as response to the first visual stimulus (S1) only. Moreover,
we avoided any preprocessing or artifacts removal as in [18],
since we aimed at proving the potential of the Feature Extrac-
tion module working on noisy raw data. We splitted the 122
subjects in training (102 subjects, equally divided between al-

1https://archive.ics.uci.edu/ml/datasets/EEG+Database



Fig. 2. (a) Architectural details of the 1D-CNNs employed
for the described experiment. (b) DSAE components’ archi-
tectural details. DSAEs are exploited for channel selection
from embedded trial vectors.

coholics and controls) and test group (20 new subjects, 50%
alcoholics and 50% controls). The former group with all its
trials was exploited for channel-wise 1DCNNs training and
channel selection, while the latter was supplied to the algo-
rithm to test the cross-subject classification performance. To
perform the channel-wise embedding of the EEG recordings
we had to train several channel-specific models. We opted for
a shallow 1D-CNN and the specific architectural details are
reported in Figure 2.(a). Notably, signals from each channel
were reduced to the very low dimension of M = 4. Hyper-
parameters were chosen by randomly sampling 10,000 train-
ing signals irrespectively of the channel - to make the tun-
ing generalizable across electrodes - equally splitted between
classes, and performing random search of the best combina-
tion. After setting hyperparameters, each channel-specific
1D-CNN was trained for 200 epochs with a batch size of
1,000 signals. For what concerns the channel selection mod-
ule, details are reported in Figure 2.(b). Each DSAE model
in the Ensemble (30 components in total) was trained for 300
epochs with a batch size of 500 training trials. The whole
algorithm was implemented in Python 3.7, exploiting Keras
framework with Tensorflow backend and scikit-learn. The
code is available upon request to allow for reproducibility of
results. To evaluate the performance on test set we adopted
several classifiers, namely Support Vector Machines (SVM),
Random Forests (RF) and Logistic Regression (LR). We eval-
uated whether the channel reduction would impact the perfor-
mance of the classifiers by first trying to classify trials us-
ing all 61 channels (after their embedding via 1DCNNs and
transformation into trial vectors) and then with smaller sub-
sets of K = {30, 20, 15, 10, 5} most relevant channels. The
resulting performance was measured using the Area Under
the ROC curve (AUROC) and Accuracy metrics by cross-
validating 10 times. Whenever possible, we will include in
the following results the empirical comparison to the lim-

Detection Performance
SVM RF LR

AUROC
K Mean Std Mean Std Mean Std
61 0.905 0.013 0.826 0.018 0.890 0.014
30 0.895 0.018 0.834 0.018 0.841 0.019
20 0.879 0.020 0.835 0.018 0.822 0.015
15 0.862 0.016 0.842 0.022 0.799 0.013
10 0.872 0.021 0.846 0.028 0.800 0.018
5 0.858 0.018 0.808 0.032 0.759 0.021

ACCURACY
K Mean Std Mean Std Mean Std
61 0.807 0.015 0.736 0.018 0.808 0.014
30 0.816 0.017 0.766 0.020 0.787 0.016
20 0.798 0.023 0.766 0.011 0.765 0.019
15 0.793 0.024 0.763 0.017 0.740 0.021
10 0.786 0.025 0.766 0.019 0.726 0.032
5 0.762 0.015 0.733 0.020 0.716 0.017

Table 1. Trial classification results with SVM, RF and LR

Detection Performance w/o DSAEE CS Module
SVM RF LR

AUROC
K Mean Std Mean Std Mean Std
30 0.877 0.017 0.792 0.022 0.833 0.019
20 0.859 0.020 0.783 0.023 0.826 0.016
15 0.815 0.020 0.762 0.021 0.806 0.016
10 0.801 0.022 0.758 0.024 0.793 0.022
5 0.778 0.020 0.754 0.026 0.773 0.021

ACCURACY
K Mean Std Mean Std Mean Std
30 0.786 0.020 0.709 0.019 0.756 0.023
20 0.768 0.025 0.709 0.024 0.748 0.024
15 0.744 0.025 0.687 0.019 0.724 0.020
10 0.730 0.026 0.695 0.024 0.714 0.022
5 0.713 0.021 0.689 0.024 0.704 0.021

Table 2. Trial classification results with SVM, RF and LR
classifiers (AUROC and Accuracy) without ERNEST Chan-
nel Selection module. Performance for K=61 is the one re-
ported in Table 1.

ited literature pursuing cross-subject channel selection on this
data. However, note that those results are based on the simpler
classification on S2 stimuli as well. Nonetheless, with this
first case study application of ERNESTwe are more interested
in proving the underlying hypotheses of the algorithm, while
attaining a satisfactory classification performance. Indeed, we
include in our experiment an ablation study that aims at ver-
ifying the value added by the DSAEE-based CS Module. To
do that, we rank order channels on the basis of the accuracy of
channel-specific 1D-CNNs in classifying alcoholics and con-
trols during Feature Extraction Module training. Then, we
build the trial vectors by concatenating the top K (in terms of
accuracy) channel-specific embeddings, and we feed them to
the group of classifiers.

3.2. Results

Results for this experiment are reported in Table 1. This ex-
perimental setting is lightly comparable to [11, 19] and bench-
mark algorithms therein, even though performance measure-
ments and data splitting criteria are not always clear from the
original papers. Our algorithm obtains a satisfactory accu-
racy, and a very high AUROC performance, indicating a great



Fig. 3. t-SNE plots of trial vectors with K = {30, 15} of a
sample of training and test trials.

precision in identifying the positive class (i.e. alcoholics).
Our best classifier (SVM) with only 5 electrodes surpasses
the performance in [11] with 4 channels (75.13% average ac-
curacy). However, in this work the authors exploit PCA for
channel selection applied to the whole dataset, and the lack
of information on splitting criteria or performance standard
deviations suggest that they are reporting training accuracy
measures, which are overestimated compared to our test val-
ues. The average accuracy reported more recently in [19] with
11 channels (∼ 93% ± 3.3 with the best proposed approach
and SVM classifier) is therein defined as the state-of-the-art
on this data. Their performance is higher compared to ours
with a similar number of channels. However, note that their
performance reflects the easier task including S2 stimuli, and
they perform channel selection evaluating the mean-variance
of each channel for all subjects in the dataset before proceed-
ing with feature extraction and classification, therefore their
selection is not comparable to our subject-agnostic approach.
In Figure 3 we plot the 2D t-SNE representations of 200 sam-
pled trial vectors, that seem consistently separable in both
training and test trials from new subjects. Finally, in Table
2 we report the results of the ablation study without the use
of the AE-based CS Module. SVM remains the best classi-
fier for this task, but the performance drop can be recognized
consistently across all classifiers. Moreover, note that while
in both cases the reduction in number of channels leads to a
decrease in performance, when including the CS module the
drop is significantly smaller: from 0.905 mean AUROC with
K = 61 to 0.858 mean AUROC for ERNEST with CS mod-
ule and 0.778 mean AUROC for ERNEST w/o CS module for
K = 5. This testifies for this module’s capability to effec-
tively consider inter-channel relationships when selecting the
relevant channels for classification, identifying the smallest
most informative subset.

4. DISCUSSION AND CONCLUSIONS

In this work we proposed ERNEST, an end-to-end RL-based
algorithm for EEG feature extraction and channel selec-
tion. We empirically demonstrated its potential by running
a case study experiment on real data in which ERNEST
yielded good performance results, supporting the underlying
hypothesis that grounded its design. Besides classification
performance - which is hard to benchmark with other exist-

ing approaches because of the multi-step and multi-purpose
nature of its building blocks - the algorithm presents several
additional advantages one should consider. First of all, the
supervised channel-specific 1D-CNNs of its Feature Extrac-
tion module seem to capture the needed information for class
separation into very small signal embeddings (4 dimensions
per channel only) fed with raw signals in the presence of
clear artifacts [18]: this allows users to avoid cumbersome
and knowledge-intensive data preprocessing, while keeping
a manageable dimensionality of the resulting concatenated
trial vectors, that can be easily exploited for any following
ML or statistical task. Larger embedding dimensions M
might have granted even more competitive accuracy results,
but would have reduced this added value. Of course, a limit
of the algorithm resides in the need for larger amounts of
data to improve in generalizability and obtain effective rep-
resentations. We tried to limit the impact of this aspect by
keeping the models in ERNEST RL module shallow and opt-
ing for CNNs, that by weight-sharing reduce the number
of parameters to learn. Indeed, in the described case study
each CNN have only ∼ 1000 parameters. Moreover, the
novel approach of parametrizing channel-specific models in-
creases the distance between each channel’s embedding and
enriches their representations, forcing each 1D-CNN to learn
precise representations of each electrode and their role in
determining the target, reducing the risk of losing precious
information in the noise of recording simultaneous signals.
ERNEST combines these independently learnt representa-
tion with a CS module (i.e. the DSAEE), that is meant to
re-capture the complex relationships between channels that
might per se contain useful information to separate classes.
Of course this approach negatively impacts computational
time, but a further advantage of parametrizing separate mod-
els is the possibility - after channel selection - to store and
apply only a smaller subset of them for the embedding of
new trials, reducing each high-dimensional multi-channel
trial observation into unique vector of controlled size that is
highly informative w.r.t. the task at hand. This aspect quali-
fies ERNEST as a smart supervised dimensionality reduction
technique, counterbalancing the time complexity of the train-
ing phase with an extremely fast transformation of new trials:
this is indeed the step where its proven cross-subject gen-
eralizability provides value to real-life applications on new
subjects. We applied ERNEST to the very specific clinical
task of early diagnosis of predisposition to alcoholism, but
several other medical fields share the need for a powerful
cross-subject channel selection method. Moreover, a limit
of this preliminary proof of concept study on the algorithm
is the application on a unique EEG recording paradigm (i.e.
VEP), while others may present even stronger inter-subject
variability or the need for prior domain knowledge in channel
selection, which would require adjustments to the present
algorithm. Nonetheless, the promising performance yielded
in this first application makes it an interesting starting point



for future developments.
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