
MOX-Report No. 79/2022

Agglomeration of Polygonal Grids using Graph Neural Networks

with applications to Multigrid solvers

Antonietti, P. F.; Farenga, N.; Manuzzi, E.; Martinelli, G.; Saverio, L.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it

Agglomeration of Polygonal Grids using Graph Neural
Networks with applications to Multigrid solvers

P. F. Antoniettia,1, N. Farengaa, E. Manuzzia,1,∗, G. Martinellia, L. Saverioa

aMOX, Department of Mathematics, Politecnico di Milano, p.zza Leonardo da Vinci, 32,
I-20133 Milano, Italy

Abstract

Agglomeration-based strategies are important both within adaptive refinement

algorithms and to construct scalable multilevel algebraic solvers. In order to

automatically perform agglomeration of polygonal grids, we propose the use

of Graph Neural Networks (GNNs) to partition the connectivity graph of a

computational mesh. GNNs have the advantage to process naturally and simul-

taneously both the graph structure of mesh and the geometrical information,

such as the areas of the elements or their barycentric coordinates. This is

not the case with other approaches such as METIS, a standard algorithm for

graph partitioning which is meant to process only the graph information, or the

k-means clustering algorithm, which can process only the geometrical informa-

tion. Performance in terms of quality metrics is enhanced for Machine Learning

(ML) strategies, with GNNs featuring a lower computational cost online. Such

models also show a good degree of generalization when applied to more com-

plex geometries, such as brain MRI scans, and the capability of preserving the

quality of the grid. The effectiveness of these strategies is demonstrated also

⋆Abbreviations: Machine Learning (ML), Graph Neural Networks (GNNs), Polygonal Dis-
continuous Galerkin (PolyDG), Finite Element Methods (FEMs), MultiGrid (MG).

∗Corresponding author
Email addresses: paola.antonietti@polimi.it (P. F. Antonietti),

nicola.farenga@mail.polimi.it (N. Farenga), enrico.manuzzi@mail.polimi.it (E.
Manuzzi), gabriele2.martinelli@mail.polimi.it (G. Martinelli),
luca.saverio@mail.polimi.it (L. Saverio)

1P. F. Antonietti and E. Manuzzi are members of INDAM-GNCS. P.F. Antonietti has been
partially supported by the Ministero dell’Università e della Ricerca [PRIN grant numbers
201744KLJL and 20204LN5N5].

Preprint submitted to Journal of Computational Physics October 31, 2022

when applied to MultiGrid (MG) solvers in a Polygonal Discontinuous Galerkin

(PolyDG) framework.

Keywords: Agglomeration, Polygonal Grids, Graph Neural Networks,

K-means, Multigrid solvers, Polygonal Discontinuous Galerkin.

1. Introduction

Many applications in the fields of Engineering and Applied Sciences, such

as fluid-structure interaction problems, flow in fractured porous media, crack

and wave propagation problems, are characterized by a strong complexity of

the physical domain, possibly involving moving geometries, heterogeneous me-5

dia, immersed interfaces and complex topographies. Whenever classical Finite

Element Methods (FEMs) are employed to discretize the underlying differen-

tial model, the process of grid generation can be the bottleneck of the whole

simulation, as computational meshes can be composed only of tetrahedral, hex-

ahedral, or prismatic elements. To overcome this limitation, in the last years10

there has been a great interest in developing FEMs that can employ general

polygons and polyhedra as grid elements for the numerical discretizations of

partial differential equations. We mention the mimetic finite difference method

[1, 2, 3, 4], the hybridizable discontinuous Galerkin method [5, 6, 7, 8], the Poly-

hedral Discontinuous Galerkin (PolyDG) method [9, 10, 11, 12, 13, 14, 15], the15

Virtual Element Method (VEM) [16, 17, 18, 19, 20, 21] and the Hybrid High-

Order method [22, 23, 24, 25, 26]. This calls for the need to develop effective

algorithms to handle polygonal and polyhedral (polytopal, for short) grids and

to assess their quality (see e.g. [27]). For a comprehensive overview we refer

to the monographs and special issues [4, 14, 25, 28, 20, 21] and the references20

therein. Among the open problems, there is the issue of efficiently handling

polytopal mesh agglomeration, i.e., merging mesh elements to obtain coarser

grids [29, 30, 10, 31, 32]. Mesh agglomeration can be used to obtain a coarser

discretization of the differential problem at hand, in order to reduce the number

of degrees of freedom where not needed and therefore also the computational25

2

effort. This operations can be naturally performed in the context of polygonal

and polyhedral grids, because of the flexibility in the definition of the shape

of mesh elements. This approach has multiple applications in the numerical

solution of partial differential equations, for example:

• it can be used, with adaptive procedures, to reduce the number of degrees30

of freedom where not needed because in certain parts of the domain the

error is already under control;

• it can be used to generate a hierarchy of (nested) coarser grids starting

from a fine mesh of a complex physical domain of interest, in order to

employ them in multigrid solvers [10, 33, 34, 35, 36, 37, 38] to accelerate35

the converge of iterative algebraic;

• it can be employed together with domain decomposition techniques [39,

40, 41, 42] to obtain a meaningful decomposition of the domain, starting

from a fine discretization.

Grid agglomeration is a topic quite unexplored, because it is not possible to40

develop such kind of strategies within the framework of classical FEMs. During

this operation it is important to preserve the quality of the underlying mesh,

since this might affect the overall performance of the method in terms of sta-

bility and accuracy. Indeed a suitable adapted mesh may allow to achieve the

same accuracy with a much smaller number of degrees of freedom when solving45

the numerical problem, hence saving memory and computational power. How-

ever, since in such a general framework mesh elements may have any shape,

there are no well established strategies to achieve effective agglomeration with

an automatic, fast and simple approach.

50

In recent years there has been a great development of Machine Learning (ML) al-

gorithms, a framework which allows to extract information automatically from

data, to enhance and accelerate numerical methods for scientific computing

[43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. In this work, we propose to use ML-

3

based strategies to efficiently handle polygonal mesh agglomeration, in order55

to fully exploit all of the benefits of the above mentioned numerical methods,

such as geometrical flexibility and convergence properties. The core concept

lies in learning the ”shape” of mesh elements in order to perform the desired

operations accordingly. Such a learning needs to be performed in an automatic

and flexible way, because of the too high variability of geometries of interest,60

tailoring the approach to a wide range of different possible situations. Rather

than simply trying to decide a priori criteria to perform agglomeration, which

would inevitably result in poor performance or high computational cost due to

the impossibility of capturing all of the possible situations, ML strategies ex-

ploit and process automatically the huge amount of available data to learn only65

the distribution of the features of interest for the application, leading to high

performance and computational efficiency. By combining the a priori approach

of classical numerical methods, with the a posteriori approach of ML-strategies,

it is possible to not only to boost existing algorithms but also to develop new al-

gorithms capable to work in more general frameworks. In particular, we propose70

the use of Graph Neural Networks (GNNs) [53, 54, 55, 56, 57], that are deep

learning architectures specifically meant to work with graph-structured data.

The problem of mesh agglomeration can be re-framed as a graph partitioning

problem, by exploiting the connectivity structure of the mesh. In particular,

the graph representation of the mesh is obtained by assigning a node to each75

element of the mesh, and connecting with an edge the pair of nodes which are

relative to adjacent elements in the original mesh. By exploiting such a repre-

sentation, GNNs can be applied to solve a node classification problem, where

each element is assigned to a cluster, which corresponds an element of the ag-

glomerated mesh. GNNs can process naturally and simultaneously both the80

graph structure of mesh and the geometrical information that can be attached

to the nodes, such the elements areas or their barycentric coordinates. This

is not the case of other approaches such as METIS [58], a standard solver for

graph partitioning which can process only the graph information, or k-means,

which can process only the geometrical information. The proposed GNN-based85

4

algorithms exploit an unsupervised training procedure, where parameters are

set to minimize the expected value of the normalized cut, over a database of

polygonal grids. To investigate the capabilities of the proposed approaches, we

consider a second-order model problem discretized by the PolyDG method in a

multigrid framework. We measure effectiveness through an analysis of quality90

metrics and number of iterations of the the algebraic iterative solver. We also

consider the generalization capabilities over a human brain MRI scan section.

The paper is organized as follows. In Section 2 we present possible agglom-

eration criteria for polytopes. In Section 3 we propose a general framework95

to perform mesh agglomeration using GNNs. In Section 4 we measure the ef-

fectiveness of the proposed agglomeration strategies in terms of computational

cost, quality metrics and generalization capabilities over unseen complex phys-

ical domains. In Section 5 we present some computations obtained by applying

the considered agglomeration strategies to multigrid solvers in a PolyDG frame-100

work. In Section 6 we draw some conclusions.

2. Mesh agglomeration strategies

We recall that the problem of mesh agglomeration can be re-framed as a

graph partitioning problem, by exploiting the connectivity structure of the mesh.

In particular, the graph representation of the mesh is obtained by assigning a105

node to each element of the mesh, and connecting with an edge the pair of

nodes which are relative to adjacent elements in the original mesh, i.e. polygons

that share at least one edge. Moreover, features can be assigned to each node,

storing geometrical information such as the area of the element or its barycentric

coordinates. Finally, partitioning the nodes of the mesh into proper clusters110

using a suitable algorithm allows to obtain an agglomerated representation of

the original mesh.

5

Figure 1: Example of graph partitioning into three sets. Left: original graph. Right: parti-

tioned graph into three subsets S1, S2, S3.

2.1. Graph Partitioning

Let N > 0 be the number of graph nodes. Given a graph G = (V,E), where

V = {vi}Ni=1 and E = {e(vi, vj) : vi, vj ∈ V } are the sets of nodes and the set115

of edges, respectively. The problem of graph partitioning consists in finding M

disjoint sets of nodes S1, ..., SM such that ∪Mi=1Si = V and ∩Mi=1Si = ∅, see,

e.g., Figure 1. We restrict our framework to undirected graphs, i.e. e(vi, vj) ∈

E ⇐⇒ e(vj , vi) ∈ E. We will use the following notation:

• A ∈ RN×N is the adjacency matrix, i.e. Ai,j = 1 if e(vi, vj) ∈ E and 0120

otherwise;

• X ∈ RN×F is the features matrix of the nodes, which may represent any

information such as coordinates, where F is the number of features;

• N (vi) = {vj ∈ V : e(vi, vj) ∈ E} denotes the neighborhood of the i-th

node, containing the nodes vj directly adjacent to vi.125

We can define the cut of a graph, representing the number of edges connecting

the disjoint sets of nodes resulting from the paritioned graph. In the case of two

partitions, it can be defined as:

cut(S1, S2) = |{e(vi, vj) ∈ E : vi ∈ S1, vj ∈ S2}|, (1)

and can be easily generalized to the case of M partitions, as

cut(S1, ..., SM) =
1

2

M∑
k=1

cut(Sk, S
C
k) with SC

k = V \ Sk. (2)

6

The normalized cut is defined as

Ncut(S1, ..., SM) =

M∑
k=1

cut(Sk, S
C
k)

vol(Sk, V)
, (3)

where the volume of the partition Sk is defined as

vol(Sk, V) = |{e(vi, vj) ∈ E : vi ∈ Sk, vj ∈ V }|. (4)

It represents the total degree of all nodes of the k-th partition. Depending on the

application of interest, different notions of volume can be used. The normalized

cut, contrary to the standard cut, allows to take into account partitions where

the number of nodes is balanced between the different sets. Let Yij be the

probability for node i of belonging to partition j. The expected cut, given two

partitions Sk and its complement SC
k , is defined as

E[cut(Sk, S
C
k)] =

N∑
i=1

∑
vj∈N (vi)

Yik(1− Yjk) =

N∑
i=1

N∑
j=1

Yik(1− YkjT)Aij . (5)

Let D be the column vector of the degrees of the nodes, i.e. Di = vol({vi}, V).

Then

E[vol(Sk, V)] = (Y TD)k = Γk. (6)

The expected normalized cut can be defined as

E[Ncut(S1, ..., SM)] =
∑

(Y ⊘ Γ)(1− Y)T ⊙A, (7)

where⊘ and⊙ denote the element-wise division and multiplication, respectively,

and the summation is over all the entries of the resulting matrix.

2.2. METIS

A standard algorithm for partitioning large graphs or meshes and computing

fill-reducing orderings of sparse matrices is METIS [58]. As depicted in Figure 2,130

METIS graph partitioning algorithm is based on a multi-level graph bisection

procedure, consisting of the following main steps:

1. Graph coarsening phase: from the input graph successively smaller graphs

are derived by collapsing adjacent pairs of vertices, until the size of the

graph is sufficiently small.135

7

Figure 2: Scheme of the METIS graph bisection algorithm, taken from [58].

2. Initial partitioning phase: a partition of the coarsest graph is computed

my minimizing the edge cut.

3. Uncoarsening phase: the partitioning of the smallest graph is projected

back to the successively larger graphs, by assigning the pairs of vertices

that were collapsed together to the same partition.140

4. Refinement phase: after each uncoarsening step the partition is refined,

adjusting nodes close to the interface of the two sets.

Once the graph has been divided into two sets, METIS applies the same al-

gorithm recursively on the new sub-graphs, until the desired number of sets is

reached.145

2.3. Machine learning-based graph partitioning

We propose to employ ML-based bisection models of the formM(G,X) = Y ,

that take as input a graph G together with a set of features X attached to each

node, such as the barycentric coordinates or the area of the mesh elements,

and output the vector of probabilities Y of each node belonging to cluster 1150

or cluster 2. In order to apply such models for mesh agglomeration, we can

use Algorithm 1, that recursively bisect the connectivity graph of the input

mesh until the agglomerated elements have the desired size. We recall that the

8

diameter of a domain D is defined, as usual, as diam(D) := sup{|x− y|, x, y ∈

D}. Given a polygonal mesh, i.e. a set of non-overlapping polygonal regions155

Th = {Pi}NP
i=1, NP ≥ 1, that covers a domain Ω, we can define the mesh size

h = maxi=1:NP
diam(Pi). Algorithm 1 automatically generates a hierarchy of

nested grids with different sizes, to be employed e.g. within multigrid solvers.

If the modelM does not return a valid partition Y , e.g., because within a set

Algorithm 1 General mesh agglomeration strategy

Input: mesh Th, target mesh size h∗, bisection modelM.

Output: agglomerated mesh Th∗ .

Function agglomerate (Th, h∗)

1: if diam(Th) ≤ h∗ then

2: return Th
3: else

4: Extract the connectivity graph G and features X from Th
5: Y ←M(G,X)

6: Refine partition Y , by minimizing the length of the boundary of the ag-

glomerated polygons.

7: Partition Th into sub-meshes T (1)
h , T (2)

h according to Y .

8: T (1)
h∗ ← agglomerate(T (1)

h , h∗)

9: T (2)
h∗ ← agglomerate(T (2)

h , h∗)

10: Th∗ ← merge T (1)
h∗ , T (2)

h∗

11: end if

the graph is not connected, a suitable fixing procedure is required. This can be160

done, for example, by considering the largest suitable connected components as

new clusters. Possible choices for the bisection model M are, but not limited

to, the k-means clustering algorithm and GNNs, as we will see in the following.

9

3. The k-means clustering algorithm

The k-means clustering algorithm [59, 60, 61], is an iterative procedure for165

partitioning a set of input points in Rn, where n ≥ 1 is the number of fea-

tures, into k parts, as described in Algorithm 2. It is an unsupervised learning

algorithm, as no labels are provided together with the data. It relies on the

definition of k centroids and each point is assigned to the closest centroid. The

location of the centroids is chosen in such a way to minimize the euclidean170

distance between centroids and points within the clusters. In order to apply

Algorithm 2 k-means clustering

Input: set of points {xi}Ni=1 ⊂ Rn, number of clusters k.

Output: set of labels for each point {ℓi}Ni=1.

1: Randomly sample k points and label them centroids c1, c2, ..., ck.

2: Compute labels {ℓi}Ni=1 by assigning each point to the cluster with the closest

centroid in L2 norm.

3: Compute the average of points in each cluster to obtain new centroids

c1, c2, ..., ck.

4: Repeat steps 3 and 4 until cluster assignments do not change, or the maxi-

mum number of iterations is reached.

the k-means algorithm for graph bisection within Algorithm 1, we simply use

Algorithm 2 employing only two clusters and using as features the barycentric

coordinates of the mesh elements. This strategy tends to produces ”rounded”

(star-shaped) agglomerated elements of similar size. Notice that no information175

on the connectivity graph is taken into account directly. However, for a regular

mesh with elements of similar size, barycentric coordinates are usually strongly

correlated with elements being adjacent.

10

Figure 3: General framework for mesh agglomeration via GNNs.

4. Graph neural networks-based agglomeration strategies

In order to perform grid agglomeration by exploiting effectively both the180

graph representation and the geometrical features of meshes, we employ GNNs

as bisection model in Algorithm 1. Examples of GNNs-based models directly

applied to the original grid are [54, 55], which employ additional processing

based on the graph spectrum to perform a preliminary embedding step, in order

to extract features that can later be fed to a GNN-based partitioning module.185

In our case, the graph extraction of geometrical features such the elements area

or their barycentric coordinates can be leveraged to perform a classification

task, therefore avoiding the need for an additional spectral embedding module.

The graph-bisection model performs a classification task, by taking as input

the graph G = (V,E) and the features related to its nodes X ∈ RN×F , and190

outputting a probability tensor Y ∈ RN×2, where Yij represents the probability

that the node vi ∈ V belongs to the partition Sj , with j = 1, 2. This approach

can be obviously generalized to an arbitrary number of partitions. However, this

would require a specific GNN model for each fixed number of classes, while the

2-classes case can be easily extended to a multi-class case by recursively calling195

the bisection model on the graphs of each partition. The general framework for

mesh agglomeration via GNNs is shown in Figure 3.

4.1. Unsupervised learning for graph partitioning

In a unsupervised learning framework, we are given an unlabelled dataset,

in our case of the form {(Ai, Xi)}NG
i=1 where NG ≥ 1 is the number of graphs

11

in the database, for which we want to find a different representation. For the

case of mesh agglomeration, these graphs represent the elements connectivity

of different computational grids. We consider then a node classifier F , which

in our case will be a GNN, parameterized by a set of weights W , that takes as

input the adjacency matrix A and the nodes features X of a graph and outputs

the probability Yij for node i of belonging to partition j. Our goal is to tune

W so that F minimizes the following loss function

L =

NG∑
i=1

ℓ(Ai, Y i;W), (8)

where Y i = F (Ai, Xi;W) and

ℓ(A, Y ;W) =

M∑
k=1

N∑
i,j=1

Yik(1− Y T
kj)Aij

Γk
(9)

is the expected normalized cut of the graph.

4.2. Graph neural networks200

GNNs are deep learning architectures specifically meant to work with graph-

structured data within the framework of Geometrical Deep Learning, that con-

cerns the application of neural networks to non-Euclidean data structures. Map-

ping, or layers, that can be combined to construct the GNN architecture are the

following.205

Graph convolutional layers. These layers take as input a graph G = (V,E),

consisting of an adjacency matrix A together with features attached to nodes,

edges or the global graph, and returns a graph with the same connectivity

structure while progressively transforming the information of the features, as

shown in Figure 4. These mappings are permutation-invariant with respect to

the order of the nodes. Let X denote the nodes features matrix, or the initial

representations, related of the input graph G, and let Hk denote the hidden

representation of those features after applying the k-th convolutional layer. At

12

Figure 4: General GNN framework, consisting of an input graph G together with its features

matrix X, and an output hidden representation H related to the same graph structure.

step k, the hidden representation Hk
i for the node vi is computed as:

aki = Φk({Hk−1
j : vj ∈ N (vi)}), (10)

Hk
i = Ψk(Hk−1

i , aki), (11)

whereH0 = X for the initial layer, Φ is the aggregation function that defines how

the information coming from the neighborhood N (vi) of node vi is aggregated,

and Ψ is the combination function that defines how the aggregated information

aki is combined with the one stored in vi. Different definitions of aggregation and

combination functions leads to different GNN architectures. In particular, we

re-frame equations (10) and (11) by considering the mean aggregation function,

as follows:

H l+1
i = σ(H l

iW
l
1 + (meanj∈N (vi) H

l
j)W

l
2), (12)

where σ(·) is a non-linear activation function, such as the REctified Linear Unit

(ReLU) or the hyperbolic tangent (tanh), and W k
1 ,W

k
2 ∈ RFk×Fk+1 are weight

matrices associated to the l-th layer, representing a trainable linear transforma-

tion, where Fk and Fk+1 are the features dimensions for the current and next

layers, respectively. We refer to (12) as SAmpling-and-aggreGatE Convolutional210

(SAGEConv) layer [53] followed by activation function σ. Such layers also ac-

count for the possibility of sub-sampling the neighbourhood of a node during the

aggregation process, leveraging the information coming from features to better

generalize to unseen nodes, while keeping the computational cost under control.

13

Input normalization layer. We consider a mapping of the form INorm : RN×F →

RN×F , where N is the number of nodes and F is the number of features, that

normalizes the input feature matrix X = [x1| . . . |xF]. The normalization is per-

formed differently for each type of feature, i.e. column-wise: for strictly positive

features, such as the mesh elements areas, we simply rescale to [0, 1]

x̃i =
xi

max(xi)
, i = 1, ..., F,

while for other features, such as barycentric coordinates, we first center them,

by subtracting the mean, and then rescale to [−1, 1]

x̃i =
yi

max(|yi|)
, yi = xi −mean(xi), i = 1, ..., F.

Dense layers. Dense layers are generic linear maps of the form Linear : Rm →215

Rℓ, m, ℓ ≥ 1 defined by parameters to be tuned. They are used to separate

graph features extracted in the previous layers.

Softmax. We define the function Softmax : Rℓ → (0, 1)ℓ, where ℓ ≥ 2 is the

number output classes,

[Softmax(x)]i =
exi∑ℓ
j=1 e

xj

.

They are used to assign a probability to each class.

4.3. Graph neural network training220

The input features matrix is X ∈ RN×3, where the first columns contains

the area of each mesh element followed by the two coordinates of its barycen-

ter. The GNN architecture we employed first applies a INorm layer, then four

SAGEConv layer with features dimensions 64, then three Linear layer with

progressively decreasing output dimensions (32, 8 and 2) and finally a Soft-225

max layer. Each SAGEConv layer is followed by a tanh activation function to

keep the features inside the interval [−1, 1], so that the geometrical information

14

Figure 5: GNN model structure, consisting of a normalization module, responsible of rescaling

the features extracted from the input mesh, and of a partitioning module made of a stack of

graph convolutions and a dense classifier. The output is a matrix of probabilities Y ∈ RN×2,

containing the probabilities of belonging either to one of the two classes for each node.

regarding the re-scaled coordinates will be kept in the same domain, as informa-

tion flows through the layers. To further simplify the classification process, the

INorm layer also rotates of 90 degrees the barycentric coordinates if the input230

mesh is more stretched along the y-axis rather than the x-axis. The resulting

model consists of approximately 28k parameters, where roughly 25k resulting

from the SAGEConv layers and the remaining from the Linear layers. A

scheme of the described GNN model is shown in Figure 5.

235

The training of the models has been performed by employing an unsuper-

vised approach by minimizing the expected normalized cut, as described in

Section 2. To perform the training a train and a validation datasets were gen-

erated. The training dataset consists of meshes of the following type: grids of

regular squares, grids of regular triangles, grids of triangles with random per-240

turbation of the vertices, grids of Voronoi with random location of the seeds.

The database is composed of 800 meshes, with 200 meshes per type, while the

validation dataset consists of 200 meshes, 50 per type. The cardinality of the

datasets has been chosen to keep a 80-20 split ratio between train and validation

respectively. Training has been performed using the Adam optimizer [62] with245

a learning rate 1e-5, L2 regularization coefficient 1e-5 and mini-batch size 4.

Training was performed for 300 epochs in approximately 35 minutes on Google

15

Colab cloud platform, using a 2.20GHz Intel Xeon processor, with 12GB of

RAM memory and NVIDIA Tesla T4 GPU with 16GB of GDDR6 memory.

5. Validation on a set of polyhedral grids250

In this section we compare the performance of the proposed algorithms. To

evaluate the quality of the refined grids, we employ the following quality metrics

introduced in [27]:

• Uniformity Factor (UF): ratio between the diameter of an element P and

the mesh size

UF(P) =
diam(P)

h
.

This metric takes values in [0, 1]. The higher its value is the more mesh

elements have comparable sizes.255

• Circle Ratio (CR): ratio between the radius of the inscribed circle and the

radius of the circumscribed circle of a polyhedron P

CR(P) =
max{B(r)⊂P} r

min{P⊂B(r)} r
,

where B(r) is a circle of radius r. For the practical purpose of measuring

the roundness of an element the radius of the circumscribed circle has

been approximated with diam(P)/2. This metric takes values in [0, 1].

The higher its value is the more rounded mesh elements are.

We consider four different grids of domain (0, 1)2: a grid of regular triangles,260

a grid of triangles with random location of the vertices, a Voronoi grid with

random location of the seeds, and a grid of regular squares. In Figure 6 these

grids have been agglomerated using METIS, k-means and GNNs strategies.

For METIS the target number of mesh elements is N0/16, where N0 is the

initial number of elements, while for k-means and GNN the target mesh size in265

Algorithm 1 is h0/4, where h0 is the initial mesh size. As we can see, the k-means

and the GNN algorithms are capable to recover a regular grid of squares when

starting from regular meshes (triangles and squares), while this is not the case

16

Figure 6: Initial grids (first column) and corresponding agglomerated versions (second to

fourth column) obtained based on employing different strategies. Each row corresponds to the

same initial grid (from top to bottom: regular triangles, random triangles, Voronoi, squares)

while each column corresponds to the same agglomeration strategy (from left to right: initial

grids, METIS, k-means, GNN).

17

Figure 7: Box plots of the computed quality metrics (UF and CR) for the agglomerated

grids reported in Figure 6 (second to fourth column), obtained based on employing different

agglomeration strategies (METIS, k-means, GNN). Some box plots collapse into a single line

because the corresponding metric has the same value for all mesh elements.

for METIS. In Figure 7 we show the box plots of the computed quality metrics

for the selected grids. In general, quality metrics are lower for the METIS270

algorithm, while k-means and GNNs have comparable performance. This is

further confirmed by Tables 1 and 2, where we report the average values of

UF and CR. In particular, the performance difference is much more evident for

regular grids. In Tables 3 and 4 we also report the relative performance with

respect to METIS, i.e., the ratio between the average UF and CR metrics of275

the ML-strategies (k-means and GNN) and METIS. This further highlights the

gain is using ML-based strategies. In general, ML-based strategies (either the

18

UF metis k-means GNN

triangles 0.7648 1.0000 1.0000

random 0.6115 0.7003 0.7418

Voronoi 0.7605 0.8105 0.8225

squares 0.7725 1.0000 1.0000

Table 1: Average values of the UF for the agglomerated grids reported in Figure 6, obtained

based on employing different agglomeration strategies (METIS, k-means, GNN).

CR metis k-means GNN

triangles 0.3447 0.7071 0.7071

random 0.3399 0.4190 0.3928

Voronoi 0.3056 0.4509 0.4845

squares 0.3733 0.7071 0.7071

Table 2: Average values of the CR for the agglomerated grids reported in Figure 6, obtained

based on employing different agglomeration strategies (METIS, k-means, GNN).

UF relative k-means/metis GNN/metis

triangles 1.3076 1.3076

random 1.1452 1.2130

Voronoi 1.0658 1.0815

squares 1.2945 1.2945

Table 3: Relative UF: performance improvement with respect to METIS, i.e., ratio between

the average UF of the ML-strategies (k-means and GNN) and METIS, for the agglomerated

grids reported in Figure 6.

19

CR relative k-means/metis GNN/metis

triangles 2.0512 2.0512

random 1.2327 1.1554

Voronoi 1.4755 1.5853

squares 1.8940 1.8940

Table 4: Relative CR: performance improvement with respect to METIS, i.e., ratio between

the average CR of the ML-strategies (k-means and GNN) and METIS, for the agglomerated

grids reported in Figure 6.

k-means and the GNN algorithms), seem to preserve the initial geometry and

quality of the grids, because the geometric information attached to the nodes is

taken into account, making them suitable for adaptive mesh coarsening. This is280

not the case for the METIS algorithm, because it processes only the information

coming from the graph topology of the mesh.

5.1. Application to a computational mesh stemming from a human brain MRI-

scan

In order to further test the generalization capabilities of our models, we apply285

them on a much more complex domain with respect to the meshes considered

so far. In particular, we consider the mesh of a section of a human brain coming

from an MRI-scan, consisting of 14372 triangular elements. The domain is

highly non-convex and presents many constrictions and narrowed sections. We

agglomerated such a grid using METIS, k-means and GNN algorithms: the290

result is reported in Figure 8. For k-means and GNN the target mesh size

in Algorithm 1 is 0.2D, where D is the maximum distance between any two

vertices of the initial mesh. For METIS the target number of mesh elements

is 50, which corresponds approximately to the same mesh size. In Figure 9 we

show also the corresponding box plots of the quality metrics and in Table 5 we295

report the average values. As we can see, performance are comparable in terms

of UF, while the ML-based strategies achieve on average a higher ”roundness”,

measured in terms of CR. This indicates good generalization capabilities of

20

Figure 8: Agglomerated meshes using different strategies (METIS, k-means, GNN), starting

from an initial grid of a human brain MRI-scan, consisting of 14372 triangular elements as

shown in the top-left figure.

metric metis k-means GNN

UF 0.7808 0.7875 0.7672

CR 0.4134 0.5146 0.4841

UF relative 1 1.0085 0.9826

CR relative 1 1.2449 1.1712

Table 5: Average and relative values (with respect to METIS) of the UF and the CR for

different agglomeration methods (METIS, k-means, GNN), applied to the section of the MRI

brain scan, for the agglomerated MRI brain scan meshes reported in Figure 8.

21

Figure 9: Box plots of the computed quality metrics (UF and CR) for the agglomerated MRI

brain scan meshes reported in Figure 8, obtained based on employing different agglomeration

strategies (METIS, k-means, GNN).

the GNN algorithm, as the considered mesh was very different from the ones

included in the training set, both in terms of shape, dimensions and number300

of elements. The k-means reasonably performs slightly better than the GNN,

because it does not require prior information coming from a database at the

cost of having a higher online computational cost, as we will see in the next

section.

5.2. Runtime performance305

The main advantage in using Neural Network-based solutions is the low

computational cost for online inference, with respect to k-means or METIS. We

measured the computational cost of the different graph partitioning algorithms

on 21 random Voronoi meshes with an increasing number of elements from 25

to 5000. Since the runtimes are not deterministic, we performed a sampling of310

20 runtimes for each mesh. Results are shown in Figure 10. As we can see,

the GNN algorithm outperforms the METIS and the k-means ones. For a mesh

with 5000 elements we have that GNN is 4.4836 times faster than Metis and

3.5670 times faster than k-means. Such a performance improvement is expected

to grow asymptotically, due to the fact that the computational complexity of315

the Neural Network mainly scales with the dimension of the data manifold [63],

22

Figure 10: Runtime performance for different graph bisection models (METIS, k-means, GNN)

as a function of the number of nodes in the connectivity graph of Voronoi meshes. The y-axis

is in logarithmic scale.

while METIS and k-means mainly scale with the dimension of the graph. Being

able to compute the solution in fast manner, even with a slight loss of accuracy,

can be particularly beneficial when using multigrid scheme as preconditioners.

6. Applications to agglomeration-based multigrid methods320

In this section we test the effectiveness of the proposed agglomeration strate-

gies, to be used in combination with polygonal finite element discretizations

within a MultiGrid (MG) framework [10, 33, 34, 35, 36, 37, 38]. We consider

the following model problem: find u ∈ V = H2(Ω) ∩H1
0(Ω) such that∫

Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ V, (13)

with Ω and f ∈ L2(Ω) the forcing term, selected in such a way that the exact

solution is given by u(x, y) = sin(πx) sin(πy). We consider the V-cycle MG algo-

rithm with additive Schwarz smoothing within a PolyDG discretization frame-

work, as described in [38]. We employ the initial grids shown in the first column

23

of Figure 6 (triangles, random, Voronoi, squares), agglomerated using the pro-325

posed strategies (METIS, k-means, GNNs). In particular, for each initial mesh

we construct three agglomerated grids of increasing size: for METIS the target

numbers of mesh elements are N0/64, N0/16, N0/4, where N0 is the initial num-

ber of elements, while for k-means and GNN the target mesh sizes in Algorithm

1 are h0/8, h0/4, h0/2, where h0 is the initial mesh size. These correspond to the330

different levels of the V-cycle algorithm, where level 1 corresponds to the initial

grid (level 3 grids are the ones reported in Figure 6). As performance metric,

we consider the Iteration count of the MG algorithm to reduce the (relative)

residual below 10−6 in solving the algebraic formulation of problem (13). We

vary the following parameters: number of levels employed ℓ, polynomial degree335

p, number of smoothing steps m. In Table 6 we report the iteration count when

varying the number of levels ℓ = 2, 3, 4 with m = 3 and p = 1.

We can observe the following:

• The iteration count of the MG methods are significantly lower than the

ones the of the classical Conjugate Gradient (CG) method, meaning the340

considered MG implementation is indeed effective.

• The iteration count of the k-means and GNN algorithms are lower than

the ones of METIS, meaning the higher grid quality provided by the ML-

based agglomeration strategies can help accelerating the convergence of

the numerical method, with GNN having the best performance.345

• The iteration count required when varying the number of levels ℓ is con-

stant, meaning it is independent of the granularity of the underlying grid

and therefore scalable in terms of mesh size.

In Table 7 we also consider the case for m = 1. Despite using such a low value,

the MG method still converges in all cases. As expected, the iteration count350

increases but the iteration count of the ML strategies is still lower with respect

to the ones of the CG, while this is not the case for the METIS algorithm.

In Table 8 we report the iteration count when varying the number of smoothing

24

grids ℓ
Agglomeration-based MG

CG
metis k-means GNN

2 21 9 9

triangles 3 21 9 9 114

4 21 9 9

2 46 41 32

random 3 46 41 32 655

4 46 41 32

2 19 16 15

Voronoi 3 19 16 15 348

4 19 16 15

2 20 17 17

squares 3 20 17 17 109

4 20 17 17

Table 6: Iteration count of the MG algorithm to reduce the (relative) residual below 10−6

employing different initial grids (triangles, random, Voronoi, squares) agglomerated with dif-

ferent strategies (METIS, k-means, GNN) with ℓ = 2, 3, 4, p = 1, m = 3. As a comparison,

the iteration count of the Conjugate Gradient (CG) method are reported in the last column.

25

grids ℓ
Agglomeration-based MG

CG
metis k-means GNN

triangles
3 230 67 67

114
4 227 66 66

random
3 706 551 405

655
4 708 577 407

Voronoi
3 154 143 129

348
4 154 143 131

squares
3 178 162 162

109
4 180 162 162

Table 7: Iteration count of the MG algorithm to reduce the (relative) residual below 10−6

employing different initial grids (triangles, random, Voronoi, squares) agglomerated with dif-

ferent strategies (METIS, k-means, GNN) with ℓ = 3, 4, p = 1, m = 1. As a comparison, the

iteration count of the Conjugate Gradient (CG) method are reported in the last column.

steps m = 3, 5 with ℓ = 3 and p = 1. As we can see, when the number of steps

increases the iteration count decreases, as well as the performance difference355

between the different methods. In Table 9 we report the iteration count when

varying the polynomial dgree p = 1, 2, 3 with ℓ = 3 and m = 3. As expected,

since m is fixed, when p increases also the iteration count increases, because

more degrees of freedom are involved in the formulation of the problem [38].

In general, the considered experiments highlights that when employing ML-360

based agglomeration strategies a lower iteration count is required by the MG

solver with respect to METIS, thanks to the higher quality of the produced

grids, with GNN having the best performance.

7. Conclusions

We presented a new ML-based framework to efficiently handle the open prob-365

lem of mesh agglomeration for polygonal grids. It is based on the concept of

learning the geometrical information contained in the shape of mesh elements,

26

grids m
Agglomeration-based MG

CG
metis k-means GNN

triangles
3 21 9 9

114
5 10 5 5

random
3 46 41 32

655
5 20 18 15

Voronoi
3 19 16 15

348
5 10 8 8

squares
3 20 17 17

109
5 9 8 8

Table 8: Iteration count of the MG algorithm to reduce the (relative) residual below 10−6

employing different initial grids (triangles, random, Voronoi, squares) agglomerated with dif-

ferent strategies (METIS, k-means, GNN) with ℓ = 3, p = 1, m = 3, 5. As a comparison, the

iteration count of the Conjugate Gradient (CG) method are reported in the last column.

in an automatic and cost effective manner in order to tailor the approach a

wide range of possible situations, which would not be possible using classical

strategies. The novelty of the proposed method consists in improving classi-370

cal methods for mesh agglomeration using GNN architectures and the k-means

clustering algorithm. Advantages include computational efficiency, handling a

wider range of data variability, independence from the differential model and

the numerical method at hand, flexibility in exploiting additional geometrical

information and higher grid quality.375

We first re-framed the problem of mesh agglomeration as a graph partitioning

problem, by exploiting the graph representation of the connectivity structure of

mesh elements. We then developed in this context a framework to employ ML-

based strategies, such as k-means and GNNs which can exploit the geometrical380

information of the grid. We trained GNNs to perform graph partitioning over a

suitably constructed database of meshes. We compared the performance of the

ML-based strategies with METIS, a classical algorithm for graph partitioning,

27

grids p
Agglomeration-based MG

CG
metis k-means GNN

1 21 9 9 114

triangles 2 49 10 10 355

3 63 17 17 1101

1 46 41 32 655

random 2 89 76 53 4425

3 115 102 64 9893

1 19 16 15 348

Voronoi 2 36 25 25 987

3 39 33 27 3235

1 20 17 17 109

squares 2 45 34 34 365

3 46 52 52 703

Table 9: Iteration count of the MG algorithm to reduce the (relative) residual below 10−6

employing different initial grids (triangles, random, Voronoi, squares) agglomerated with dif-

ferent strategies (METIS, k-means, GNN) with ℓ = 3, p = 1, 2, 3, m = 3. As a comparison,

the iteration count of the Conjugate Gradient (CG) method are reported in the last column.

28

over a set of different grids, featuring also complex real domains such a brain

MRI-scan. Results show that ML-based strategies are more robust and can385

better preserve mesh quality, making them suitable for adaptive mesh coarsen-

ing. We also employed the proposed algorithms in the context MG methods in

PolyDG framework, showing a lower iteration count for ML-based strategies,

with GNN having the best performance. Indeed, GNNs have the advantage to

process naturally and simultaneously both the graph structure of mesh and the390

geometrical information, such the elements areas or their barycentric coordi-

nates. This is not the case of METIS [58], which is meant to process only the

graph information, or k-means, which can process only the geometrical infor-

mation. Moreover, GNNs have a significantly lower online computational cost.

Being able to compute the solution in fast manner, even with a slight loss of395

accuracy, can be particularly beneficial when using multigrid scheme as precon-

ditioners.

Future developments certainly include fostering the generalization capabilities

of the GNNs, by generating a larger database of grids or by considering differ-400

ent geometrical features, such as quality metrics or error estimators. Another

possibility is to reframe the approach in a reinforcement learning framework, as

proposed by [55]. The extension to three dimensional agglomeration strategies

should certainly be explored, where the low online computational cost of GNNs

will play a key role. It is worth noticing that all of the proposed agglomera-405

tion strategies can be applied to the three dimensional case with little or no

modification, as they mainly rely on the connectivity graph structure of the

mesh, which is a dimensionless entity, or on geometrical quantities with natural

extensions such the area/volume of polytopes of their barycentric coordinates.

From a point of view of numerical applications several options can be explored:410

adaptive mesh coarsening, domain decomposition, using MG schemes as pre-

conditioners, considering discretization frameworks other than the PolyDG ones

such as the one of Virtual Element Methods. Finally it would be interesting

to consider more complex scenarios, for example geophysical numerical simula-

29

tions, including fluid-structure interaction with complex and moving geometries.415

Preliminary results of agglomeration of the brain obtained from medical images

are encouraging.

30

CRediT authorship contribution statement

P. F. Antonietti: Conceptualization, Methodology, Resources, Writing - re-

view and editing, Supervision, Project administration, Funding acquisition.420

N. Farenga, G. Martinelli, L. Saverio: Methodology, Software, Validation,

Formal analysis, Investigation, Data curation, Visualization.

E. Manuzzi: Conceptualization, Methodology, Software, Validation, Formal

analysis, Investigation, Data curation, Visualization, Supervision, Writing –

original draft.425

Declaration of competing interest

The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported

in this paper.

Acknowledgements430

Funding: P.F. Antonietti has been partially supported by the Ministero

dell’Università e della Ricerca [PRIN grant numbers 201744KLJL and 20204LN5N5].

P. F. Antonietti and E. Manuzzi are members of INDAM-GNCS.

31

References435

[1] J. Hyman, M. Shashkov, S. Steinberg, The numerical solution of diffu-

sion problems in strongly heterogeneous non-isotropic materials, Journal

of Computational Physics 132 (1) (1997) 130–148.

[2] F. Brezzi, K. Lipnikov, V. Simoncini, A family of mimetic finite difference

methods on polygonal and polyhedral meshes, Mathematical Models and440

Methods in Applied Sciences 15 (10) (2005) 1533–1551.

[3] F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of the mimetic finite dif-

ference method for diffusion problems on polyhedral meshes, SIAM Journal

on Numerical Analysis 43 (5) (2005) 1872–1896.

[4] L. Beirao da Veiga, K. Lipnikov, G. Manzini, The mimetic finite difference445

method for elliptic problems, Vol. 11, Springer, 2014.

[5] B. Cockburn, B. Dong, J. Guzmán, A superconvergent ldg-hybridizable

galerkin method for second-order elliptic problems, Mathematics of Com-

putation 77 (264) (2008) 1887–1916.

[6] B. Cockburn, J. Guzmán, H. Wang, Superconvergent discontinuous450

galerkin methods for second-order elliptic problems, Mathematics of Com-

putation 78 (265) (2009) 1–24.

[7] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of dis-

continuous galerkin, mixed, and continuous galerkin methods for second

order elliptic problems, SIAM Journal on Numerical Analysis 47 (2) (2009)455

1319–1365.

[8] B. Cockburn, J. Gopalakrishnan, F.-J. Sayas, A projection-based error

analysis of hdg methods, Mathematics of Computation 79 (271) (2010)

1351–1367.

[9] J. S. Hesthaven, T. Warburton, Nodal discontinuous Galerkin methods:460

algorithms, analysis, and applications, Springer Science & Business Media,

2007.

32

[10] F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, P. Tesini, On the flexibil-

ity of agglomeration based physical space discontinuous galerkin discretiza-

tions, Journal of Computational Physics 231 (1) (2012) 45–65.465

[11] P. F. Antonietti, S. Giani, P. Houston, hp-version composite discontinu-

ous galerkin methods for elliptic problems on complicated domains, SIAM

Journal on Scientific Computing 35 (3) (2013) A1417–A1439.

[12] A. Cangiani, E. H. Georgoulis, P. Houston, hp-version discontinuous

galerkin methods on polygonal and polyhedral meshes, Mathematical Mod-470

els and Methods in Applied Sciences 24 (10) (2014) 2009–2041.

[13] P. F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E. H. Georgoulis, S. Gi-

ani, P. Houston, Review of discontinuous galerkin finite element meth-

ods for partial differential equations on complicated domains, in: Building

bridges: connections and challenges in modern approaches to numerical475

partial differential equations, Springer, 2016, pp. 281–310.

[14] A. Cangiani, Z. Dong, E. H. Georgoulis, P. Houston, hp-Version discon-

tinuous Galerkin methods on polygonal and polyhedral meshes, Springer,

2017.

[15] P. F. Antonietti, C. Facciolà, P. Houston, I. Mazzieri, G. Pennesi, M. Ve-480

rani, High–order discontinuous galerkin methods on polyhedral grids for

geophysical applications: seismic wave propagation and fractured reservoir

simulations, Polyhedral Methods in Geosciences (2021) 159–225.

[16] L. Beirão da Veiga, F. Brezzi, A. Cangiani, L. D. Manzini, Gi-

anM.and Marini, A. Russo, Basic principles of virtual element methods,485

Mathematical Models and Methods in Applied Sciences 23 (01) (2013) 199–

214.

[17] L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The hitchhiker’s

guide to the virtual element method, Mathematical models and methods

in applied sciences 24 (08) (2014) 1541–1573.490

33

[18] L. Beirão da Veiga, F. Brezzi, L. Marini, A. Russo, Virtual element method

for general second-order elliptic problems on polygonal meshes, Mathemat-

ical Models and Methods in Applied Sciences 26 (04) (2016) 729–750.

[19] L. Beirao da Veiga, F. Brezzi, L. D. Marini, A. Russo, Mixed virtual element

methods for general second order elliptic problems on polygonal meshes,495

ESAIM: Mathematical Modelling and Numerical Analysis 50 (3) (2016)

727–747.

[20] L. Beirao da Veiga, N. Bellomo, F. Brezzi, L. Marini, Recent results and

perspectives for virtual element methods, Mathematical Models and Meth-

ods in Applied Sciences (2021) 1–6.500

[21] P. F. Antonietti, L. Beirão da Veiga, G. Manzini, The Virtual Element

Method and its Applications, Springer International Publishing, 2022.

[22] D. A. Di Pietro, A. Ern, S. Lemaire, An arbitrary-order and compact-stencil

discretization of diffusion on general meshes based on local reconstruction

operators, Computational Methods in Applied Mathematics 14 (4) (2014)505

461–472.

[23] D. A. Di Pietro, A. Ern, A hybrid high-order locking-free method for linear

elasticity on general meshes, Computer Methods in Applied Mechanics and

Engineering 283 (2015) 1–21.

[24] D. A. Di Pietro, A. Ern, Hybrid high-order methods for variable-diffusion510

problems on general meshes, Comptes Rendus Mathématique 353 (1)

(2015) 31–34.

[25] D. A. Di Pietro, A. Ern, S. Lemaire, A review of hybrid high-order meth-

ods: formulations, computational aspects, comparison with other methods,

in: Building bridges: connections and challenges in modern approaches to515

numerical partial differential equations, Springer, 2016, pp. 205–236.

[26] D. A. Di Pietro, J. Droniou, The Hybrid High-Order method for polytopal

meshes, Vol. 19, Springer, 2019.

34

[27] M. Attene, S. Biasotti, S. Bertoluzza, D. Cabiddu, M. Livesu, G. Patanè,

M. Pennacchio, D. Prada, M. Spagnuolo, Benchmark of polygon quality520

metrics for polytopal element methods, arXiv preprint arXiv:1906.01627.

[28] D. A. Di Pietro, L. Formaggia, R. Masson, et al., Polyhedral methods in

geosciences.

[29] T. F. Chan, J. Xu, L. Zikatanov, An agglomeration multigrid method for

unstructured grids, Contemporary Mathematics 218 (1998) 67–81.525

[30] P. F. Antonietti, P. Houston, G. Pennesi, E. Süli, An agglomeration-

based massively parallel non-overlapping additive schwarz preconditioner

for high-order discontinuous galerkin methods on polytopic grids, Mathe-

matics of Computation.

[31] Y. Pan, P.-O. Persson, Agglomeration-based geometric multigrid solvers530

for compact discontinuous galerkin discretizations on unstructured meshes,

Journal of Computational Physics 449 (2022) 110775.

[32] J. R. Gilbert, G. L. Miller, S.-H. Teng, Geometric mesh partitioning: Imple-

mentation and experiments, SIAM Journal on Scientific Computing 19 (6)

(1998) 2091–2110.535

[33] F. Bassi, L. Botti, A. Colombo, S. Rebay, Agglomeration based discon-

tinuous galerkin discretization of the euler and navier–stokes equations,

Computers & fluids 61 (2012) 77–85.

[34] P. F. Antonietti, M. Sarti, M. Verani, Multigrid algorithms for hp-

discontinuous galerkin discretizations of elliptic problems, SIAM Journal540

on Numerical Analysis 53 (1) (2015) 598–618.

[35] P. F. Antonietti, P. Houston, X. Hu, M. Sarti, M.and Verani, Multigrid

algorithms for hp-version interior penalty discontinuous galerkin methods

on polygonal and polyhedral meshes, Calcolo 54 (4) (2017) 1169–1198.

35

[36] J. Xu, L. Zikatanov, Algebraic multigrid methods, Acta Numerica 26 (2017)545

591–721.

[37] T. F. Chan, S. Go, L. Zikatanov, Multilevel elliptic solvers on unstructured

grids, in: Computational Fluid Dynamics Review 1998: (In 2 Volumes),

World Scientific, 1998, pp. 488–511.

[38] P. Antonietti, G. Pennesi, V-cycle multigrid algorithms for discontinu-550

ous galerkinmethods on non-nested polytopic meshes, Journal of Scientific

Computing 78 (2019) 625–652.

[39] P. F. Antonietti, B. Ayuso, Schwarz domain decomposition precondition-

ers for discontinuous galerkin approximations of elliptic problems: non-

overlapping case, ESAIM: Mathematical Modelling and Numerical Analysis555

41 (1) (2007) 21–54.

[40] P. F. Antonietti, S. Giani, P. Houston, Domain decomposition precondition-

ers for discontinuous galerkin methods for elliptic problems on complicated

domains, Journal of Scientific Computing 60 (1) (2014) 203–227.

[41] A. Toselli, O. Widlund, Domain decomposition methods-algorithms and560

theory, Vol. 34, Springer Science & Business Media, 2004.

[42] X. Feng, O. A. Karakashian, Two-level additive schwarz methods for a dis-

continuous galerkin approximation of second order elliptic problems, SIAM

Journal on Numerical Analysis 39 (4) (2001) 1343–1365.

[43] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural net-565

works: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, Journal of Computational

Physics 378 (2019) 686–707.

[44] M. Raissi, G. E. Karniadakis, Hidden physics models: Machine learning of

nonlinear partial differential equations, Journal of Computational Physics570

357 (2018) 125–141.

36

[45] F. Regazzoni, L. Dedè, A. Quarteroni, Machine learning for fast and reliable

solution of time-dependent differential equations, Journal of Computational

Physics 397 (2019) 108852.

[46] F. Regazzoni, L. Dedè, A. Quarteroni, Machine learning of multiscale ac-575

tive force generation models for the efficient simulation of cardiac elec-

tromechanics, Computer Methods in Applied Mechanics and Engineering

370 (2020) 113268.

[47] J. S. Hesthaven, S. Ubbiali, Non-intrusive reduced order modeling of non-

linear problems using neural networks, Journal of Computational Physics580

363 (2018) 55–78.

[48] D. Ray, J. S. Hesthaven, An artificial neural network as a troubled-cell

indicator, Journal of Computational Physics 367 (2018) 166–191.

[49] P. F. Antonietti, M. Caldana, L. Dede, Accelerating algebraic multigrid

methods via artificial neural networks, arXiv preprint arXiv:2111.01629.585

[50] F. Regazzoni, M. Salvador, L. Dedè, A. Quarteroni, A machine learning

method for real-time numerical simulations of cardiac electromechanics,

arXiv preprint arXiv:2110.13212.

[51] P. Antonietti, E. Manuzzi, Refinement of polygonal grids using con-

volutional neural networks with applications to polygonal discontinuous590

galerkin and virtual element methods, Journal of Computational Physics

452 (2022) 110900.

[52] P. Antonietti, F. Dassi, E. Manuzzi, Machine learning based refinement

strategies for polyhedral grids with applications to virtual element and

polyhedral discontinuous galerkin methods, Journal of Computational595

Physics (2022) 111531.

[53] W. L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning

on large graphs (2017). arXiv:arXiv:1706.02216.

37

http://arxiv.org/abs/arXiv:1706.02216

[54] A. Gatti, Z. Hu, T. Smidt, E. G. Ng, P. Ghysels, Deep learning and spectral

embedding for graph partitioning (2021). arXiv:arXiv:2110.08614.600

[55] A. Gatti, Z. Hu, T. Smidt, E. G. Ng, P. Ghysels, Graph partitioning and

sparse matrix ordering using reinforcement learning and graph neural net-

works (2021). arXiv:arXiv:2104.03546.

[56] H. Xu, Z. Duan, Y. Wang, J. Feng, R. Chen, Q. Zhang, Z. Xu, Graph

partitioning and graph neural network based hierarchical graph matching605

for graph similarity computation, Neurocomputing 439 (2021) 348–362.

[57] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553) (2015)

436–444.

[58] G. Karypis, V. Kumar, Kumar, v.: A fast and high quality multilevel

scheme for partitioning irregular graphs. siam journal on scientific com-610

puting 20(1), 359-392, Siam Journal on Scientific Computing 20. doi:

10.1137/S1064827595287997.

[59] J. Macqueen, Some methods for classification and analysis of multivariate

observations (1967).

[60] J. A. Hartigan, M. A. Wong, Algorithm as 136: A k-means clustering615

algorithm, Journal of the royal statistical society. series c (applied statistics)

28 (1) (1979) 100–108.

[61] A. Likas, N. Vlassis, J. J. Verbeek, The global k-means clustering algorithm,

Pattern recognition 36 (2) (2003) 451–461.

[62] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv620

preprint arXiv:1412.6980.

[63] P. C. Petersen, Neural network theory, University of Vienna.

38

http://arxiv.org/abs/arXiv:2110.08614
http://arxiv.org/abs/arXiv:2104.03546
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997

MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

78/2022 Bucelli, M.; Gabriel, M. G.; Gigante, G.; Quarteroni, A.; Vergara, C.

A stable loosely-coupled scheme for cardiac electro-fluid-structure interaction

77/2022 Ziarelli, G.; Dede', L.; Parolini, N.; Verani, M.; Quarteroni, A.

Optimized numerical solutions of SIRDVW multiage model controlling SARS-CoV-2 vaccine roll

out: an application to the Italian scenario.

76/2022 Spreafico, M.; Ieva, F.; Fiocco, M.

Longitudinal Latent Overall Toxicity (LOTox) profiles in osteosarcoma: a new taxonomy based

on latent Markov models

71/2022 Calabrò, D.; Lupo Pasini, M.; Ferro, N.; Perotto, S.

A deep learning approach for detection and localization of leaf anomalies

74/2022 Salvador, M.; Regazzoni, F.; Dede', L.; Quarteroni, A.

Fast and robust parameter estimation with uncertainty quantification for the cardiac function

70/2022 Andrini, D.; Balbi, V.; Bevilacqua, G.; Lucci, G.; Pozzi, G.; Riccobelli, D.

Mathematical modelling of axonal cortex contractility

69/2022 Franco, N.R; Manzoni, A.; Zunino, P.

Learning Operators with Mesh-Informed Neural Networks

68/2022 Orlando, G.; Benacchio, T.; Bonaventura, L.

An IMEX-DG solver for atmospheric dynamics simulations with adaptive mesh refinement

72/2022 Spreafico, M.; Ieva, F.; Arlati, F.; Capello, F.; Fatone, F.; Fedeli, F.; Genalti, G.; Anninga, J.;

Gelderblom, H.; Fiocco, M.

Novel longitudinal multiple overall toxicity score to quantify adverse events experienced by

patients during chemotherapy treatment: a retrospective analysis of the MRC BO06 trial in

osteosarcoma

73/2022 Spreafico, M.; Gasperoni, F.; Barbati, G.; Ieva, F.; Scagnetto, A.; Zanier, L.; Iorio, A.; Sinagra,

G.; Di Lenarda, A.

Adherence to disease-modifying therapy in patients hospitalized for HF: findings from a

community-based study

	qmox79-copertina
	mox-20221031181553
	Introduction
	Mesh agglomeration strategies
	Graph Partitioning
	METIS
	Machine learning-based graph partitioning

	The k-means clustering algorithm
	Graph neural networks-based agglomeration strategies
	Unsupervised learning for graph partitioning
	Graph neural networks
	Graph neural network training

	Validation on a set of polyhedral grids
	Application to a computational mesh stemming from a human brain MRI-scan
	Runtime performance

	Applications to agglomeration-based multigrid methods
	Conclusions

	qmox79-terza_di_copertina

