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Abstract 
In 2020, the COVID-19 pandemic has impacted the world, affecting health, economy, education, and social 
behavior. Much concern was raised about the role of mobility in the diffusion of the disease, with particular 
attention to public transport. Indeed, understanding the relationship between mobility and the pandemic is key for 
developing effective public health interventions and policy decisions. 
In this work, we aim to understand how mobility, and more specifically mobility by public transport, has affected 
the diffusion of the pandemic at the regional scale. We focus our attention on Lombardy, the most populated 
Italian region severely hit by the pandemic in 2020. We explore static mobility data provided by Regione 
Lombardia, the regional service district, and dynamic mobility data provided by Trenord, a railway operator 
which serves Lombardy and neighboring areas. We develop an inventive pipeline for the dynamic estimation of 
Origin-Destination matrices obtained from tickets and passenger counts. This allows us to spot potential triggers 
in pandemic diffusion enhanced by the concept of proximity induced by mobility. We also develop a novel 
perspective for assessing the relationship between mobility and overall mortality based upon a functional 
approach combined with a spatial correlation analysis aimed at identifying the diversified effects on mortality in 
small geographical areas as a result of the restrictions on mobility introduced to contrast the pandemic. 
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1 Introduction  

The outbreak of the COVID-19 pandemic in 2020 has had a substantial impact on societies 
worldwide, posing significant challenges for public health systems and necessitating the 
implementation of unprecedented measures such as lockdowns, travel restrictions, and social 
distancing. Understanding the dynamics of epidemics and their relationship with various factors, 
including human mobility, is crucial for effective policymaking and outbreak response.1 Mobility 
patterns play a critical role in the transmission and spread of infectious diseases as they determine 
the opportunities for contact and potential pathways for disseminating pathogens.2 Analyzing the 
relationship between mobility flows and epidemic phenomena can provide valuable insights into the 
underlying mechanisms driving disease transmission and aid in formulating targeted intervention 
strategies. 

Traditional approaches to study the link between mobility and epidemics have often relied on 
analyzing epidemiological data, such as the number of confirmed cases or mortality rates, together 
with variables or functions describing mobility flows as a whole, such as the total number of trips 
within the network, 3–5 indexes representing mobility for each area6–9 or network characteristics like 
strength node centrality10 or network efficiency.11 While these approaches have proven helpful in 
understanding the broader dynamics of epidemics, they often overlook the spatial dimension and the 
intricate interplay between mobility and disease spread in the whole mobility network. The spatial 
dimension of epidemics refers to the geographic distribution of cases and the transmission patterns 
within and between different areas. Incorporating spatial analysis techniques into the study of 
epidemics can provide a more comprehensive understanding of how mobility influences disease 
propagation across different regions. These techniques are based on the definition of a nearness 



notion which could be either based on the geographical closeness of such areas or induced by 
mobility, following the idea that the mobility-induced nearness is proportional to the number of 
movements between two areas. According to this new notion, two municipalities can be tightly 
related despite their distance. 

In recent years, advancements in data collection and analysis techniques have opened up new 
possibilities for investigating the relationship between mobility and epidemics. The availability of 
large-scale mobility datasets, such as GPS traces from mobile devices, mobile phone network data, 
smart card data from public transportation systems, and geolocation data from social media 
platforms, has enabled researchers to capture fine-grained details of human movements.12–15 These 
datasets provide a wealth of information that can be leveraged to quantify and model mobility 
patterns and explore their implications for disease transmission.1 

This study proposes an innovative approach for analyzing the relationship between an epidemic 
phenomenon, specifically the COVID-19 pandemic, and mobility flows. We hypothesize that 
mortality rates should not be spatially correlated in times with no epidemic infections in the 
territory. On the contrary, in the case of perturbations caused by the pandemic (a spatially spreading 
phenomenon), we expect mortality rates to exhibit a positive spatial autocorrelation, with higher 
mortality rates in nearby areas. The motivation is that the epidemic spatially coordinates mortality, 
increasing it in nearby locations when it strikes. To validate our hypothesis, we analyze spatial 
autocorrelation in the mortality rates through global and local Moran indexes.16,17 We focus on 
developing a notion of nearness induced by mobility flows as described by Origin-Destination (OD) 
matrices which represent the movement of individuals between different locations in a 
transportation network. We will compare this new notion of nearness with the geographical 
contiguity baseline, given that the epidemic spreads through proximity between individuals, and 
assess if mobility's proximity changes our analytical perspective. 

To demonstrate the effectiveness of our approach, we apply it to two areas within the Lombardy 
region of Italy, which was severely affected by the COVID-19 pandemic. The first area covers the 
entire Lombardy region with fine spatial granularity, using static mobility data. The second area 
focuses on a smaller subset of Lombardy, specifically the provinces of Brescia, Bergamo, and 
Milano, and analyzes dynamic railway mobility flows. Dynamic data were obtained by data 
provided by Trenord, the local railway operator, about tickets and subscriptions sold together with 
data collected by the Automatic Passenger Counting (APC) system, now installed on a growing 
fraction of bus, metro and train rides worldwide and whose information is increasingly used to 
estimate mobility network dynamics.18,19  By comparing the results obtained from these two areas, 
we can assess the robustness and generalizability of our approach across different spatial scales and 
types of mobility. 

The objective of this study is threefold: (i) to investigate the relationship between mobility flows 
and the epidemic phenomenon by assessing spatial autocorrelation patterns induced by mobility; (ii) 
to compare the performance of mobility-based spatial weights with traditional contiguity-based 
spatial weights in capturing the spatial dynamics of the epidemic; and (iii) to explore the potential 
of dynamic mobility data (specifically railway mobility data) in enhancing our understanding of the 
temporal dynamics of the epidemic. 

The rest of the paper is organized as follows: Section 2 describes the data used in the study and 
the statistical methodology related to spatial data analysis. Section 3 presents the obtained results in 
the two study areas, which are then discussed in Section 4. Finally, Section 5 summarizes our 
work's conclusion and spots relevant take-home messages. 



2 Material and Methods 
 

2.1 Data 

To investigate the impact of mobility flows on the COVID-19 pandemic throughout 2020, we 
require data representing both epidemic and mobility aspects. 

We employ mortality rates from all deaths’ causes among individuals within each geographical 
area to model the epidemic response. The mortality rate mi

[w] is defined as the sum of deaths in area 
𝑖𝑖 between the current week 𝑤𝑤 and a specific number of weeks before that week 𝑤𝑤 −  𝑒𝑒 +  1, 
divided by the population of area 𝑖𝑖: 

 𝑚𝑚𝑖𝑖
[𝑤𝑤] =

∑ 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑ℎ𝑠𝑠𝑖𝑖
[𝑞𝑞]𝑞𝑞=𝑤𝑤

𝑞𝑞=𝑤𝑤−𝑒𝑒+1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑖𝑖𝑝𝑝𝑛𝑛𝑖𝑖
 (1) 

The daily death data for each day and each Italian municipality, as well as data about the 
population of each Italian municipality as of January 1, 2020, are publicly available from ISTAT, 
the Italian national institute of statistics. We experimented with different values for the aggregation 
parameter 𝑒𝑒 in { 1,2,3,4 } trying to find a compromise between removing anomalies while avoiding 
over-smoothing in the data. Values of 𝑤𝑤 <  0 encode the weeks of 2019, and values of 𝑤𝑤 >  52 
encode the weeks of 2021. 

To derive mobility-based spatial descriptions, we need data about mobility flows in the form of 
OD matrices, which describe mobility in a transportation network. The cells 𝑑𝑑𝑖𝑖𝑖𝑖 of these matrices 
represent the number of trips starting from zone 𝑖𝑖 and ending in zone 𝑗𝑗 within a specific time frame. 
We employ two sources of such data: one from the Regione Lombardia (RL) Open Data program, 
which provides an OD matrix describing people's average movements during a workday in 2020, 
and another derived by us to capture the dynamic mobility changes during 2020 in a portion of the 
Trenord railway network. 

The RL OD matrix, released in 2019, represents people's expected movements during a workday 
in 2020. 20 It provides estimates of movements divided into origin, destination, time slot, reason, 
and means of transport. It considers 1525 areas, with 1450 internal to Lombardy, while the others 
represent neighboring Italian provinces, non-neighboring Italian regions, neighboring Swiss 
districts, and foreign countries. The data account for 8 means of transport (car driver, car passenger, 
public transport by road, public transport by rail, motorcycle, bicycle, on foot, and others) and 5 
reasons for movement (work, study, occasional, business, return). The spatial granularity mainly 
refers to municipalities, although some small towns are aggregated, and some large cities are 
distributed over multiple areas. We aggregate the time slots to represent mobility throughout the day 
and compute the sum of all movements for each reason and means of transport. We remove all OD 
couples concerning areas outside Lombardy and aggregate the zones referring to disaggregated 
large municipalities. The final OD matrix describes the total movements between 1360 zones 
representing the 1504 municipalities in Lombardy within a single workday. 

Moreover, we derived a dynamic representation of weekly mobility flows within a specific area 
in Lombardy using data provided by Trenord. This type of data focuses on a peculiar kind of 
transport among those mentioned above, i.e., the public railway, being one of the most adopted by 
commuters, and allows to accurately represent and capture the fluctuations in mobility caused by 
the restrictions and behavior changes throughout the year.  



The proposed method enhances the estimation of weekly OD matrices representing actual 
movements by train in a limited portion of the Trenord railway network. Two datasets were used for 
this purpose: one describing tickets and subscriptions purchased in December 2019 and throughout 
2020, and the other reporting passengers boarding and dropping train rides for six train lines 
traveling within the provinces of Brescia, Bergamo, and Milano. The data from trains equipped with 
the APC system cover the 2020 period, except for July and August. As a result, we derived 41 OD 
matrices, each representing one week of 2020 within the available data period. Figure 1 provides a 
visual representation of the area covered by the Trenord network analyzed in our study, while 
Figure 2 graphically depicts the estimation pipeline. 

 

Figure 1: Map of the Trenord network. The train lines covered by data in our study are colored 
in yellow. 

 



Figure 2: Estimation pipeline to obtain dynamical OD matrices taking in input ticket and 
counter data. The pipeline is based on the Furness method 21 for trip distribution modeling.  

Notice that when estimating the Trenord OD matrices, we aggregated the 15 stations internal to 
the Milan and Monza provinces. This choice has been taken because we miss data about several 
train lines traveling within this area (lines S5, S6, S7, S8, S9, S11, RE8 and RE80 in Figure 1), 
making it impossible to represent the totality of movements by train. Since this would bias the 
mobility-based spatial weights we will define in the next station, we aggregate all the stations for 
which we do not have data about all the train lines traveling to or from other stations belonging to 
the selected portion of the network.   

Both the static and dynamic representations will be employed in the spatial analysis described in 
Section 2.2 to define spatial weights for each area induced by mobility flows, enabling the 
assessment of local and spatial autocorrelation in the areal epidemic response.  

To match the spatial granularity of the Trenord OD matrices, which refer to stations, with the 
granularity of the mortality response referring to municipalities, we utilize a dataset from ISTAT, 
providing distances in meters and minutes between Italian towns. The set of cities with the same 
closest station is considered the station basin for that particular station. Additionally, municipalities 
with a travel time exceeding 30 minutes to the nearest station are excluded since we evaluated that 
residents in those areas were more likely to opt for other means of transport than the train.  

Following this procedure, we obtained the area shown in Figure 3, enclosing 261 towns divided 
into 28 station basins in the provinces of Brescia, Bergamo, and Milano, named "BreBeMi" from 
now on.  

 

Figure 3: Map of the BreBeMi area induced by the Trenord mobility data, divided into station 
basins. 



2.2 Spatial data analysis  

To analyze the relationship between mobility flows and the epidemic response, we make use of 
spatial data analysis techniques16,17,22,23. We define a spatial metric describing closeness between the 
areas in the form of weight matrices induced by mobility and then identify global and local spatial 
autocorrelation in the areal epidemic feature (the mortality rates) according to this notion of 
proximity. Suitable spatial weights22,23 quantify the relationship between each data point in a spatial 
dataset and its neighboring data points in the form of a matrix 𝛿𝛿, with each element of the matrix δ𝑖𝑖𝑖𝑖 
indicating the strength of the relationship between the two data points.  

We define two spatial weight matrices in our analysis, one based on contiguity and the other 
derived from mobility: 

1. Contiguity-based spatial weights: A purely geographical description is adopted: two areas 
are contiguous if they share a common border or vertex; in this case, we set δ𝑖𝑖𝑖𝑖 =  1. 
Otherwise, we set  δ𝑖𝑖𝑖𝑖 =  0. 

2. Mobility-based spatial weights: The mobility flows between two areas are used. Suppose 
we have an OD matrix describing, for each ordered couple of areas (𝑖𝑖, 𝑗𝑗), the number of 
movements 𝑑𝑑𝑖𝑖𝑖𝑖 from 𝑖𝑖 to 𝑗𝑗 during a specific period. Then, we can define spatial weights in 
the given period as  

𝛿𝛿𝑖𝑖𝑖𝑖 =
𝑑𝑑𝑖𝑖𝑖𝑖

∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖
 

The spatial weights are row-standardized, dividing 𝑑𝑑𝑖𝑖𝑖𝑖 for the total number of outgoing trips 
from 𝑖𝑖 , ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖 . This definition is asymmetrical since usually 𝑑𝑑𝑖𝑖𝑖𝑖 ≠ 𝑑𝑑𝑖𝑖𝑖𝑖. This kind of spatial 
weights, as opposed to contiguity-based ones, has rarely been applied in past studies mainly 
because of the difficulty in obtaining accurate mobility data and inferring spatial relations 
based on mobility flows.24 An application can be found in Zhu et al.25, where spatial weights 
are defined from mobility flows similarly and used to build spatial econometric models for 
the diffusion of COVID-19 in China. 
 
Lastly, when dealing with dynamic mobility data (i.e., the Trenord OD matrices), a further 
parameter 𝑏𝑏 varying in { 1,2,3,4 } defines an aggregation of the mobility data between the 
current week 𝑤𝑤 and a specific number of weeks before that week 𝑤𝑤 −  𝑏𝑏 + 1. More 
precisely: 

δ𝑖𝑖𝑖𝑖
[𝑤𝑤] =

∑ 𝑑𝑑𝑖𝑖𝑖𝑖
[𝑞𝑞]𝑤𝑤

𝑞𝑞=𝑤𝑤−b+1

∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
[𝑞𝑞]𝑤𝑤

𝑞𝑞=𝑤𝑤−b+1𝑖𝑖≠𝑖𝑖
 

This aggregation aims at smoothing fluctuations in the weekly mobility data.  

In the analyses, we consider the spatial autocorrelation displayed by the weekly mortality rate 
𝑚𝑚𝑖𝑖

[𝑤𝑤] according to the contiguity or mobility-induced spatial description 𝛿𝛿. We employ global and 
local Moran indexes to analyze global and local spatial autocorrelation, hypothesizing that positive 
spatial autocorrelation reveals an ongoing epidemic phenomenon. Moran's index16 is one of the 
most commonly used indicators for spatial autocorrelation. It is defined as: 

 𝐼𝐼[𝑤𝑤] =
𝑛𝑛
𝑆𝑆0

∑ ∑ δ𝑖𝑖𝑖𝑖 �𝑚𝑚𝑖𝑖
[𝑤𝑤] −𝑚𝑚[𝑤𝑤]������� �𝑚𝑚𝑖𝑖

[𝑤𝑤] −𝑚𝑚[𝑤𝑤]�������𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

∑ �𝑚𝑚𝑘𝑘
[𝑤𝑤] −𝑚𝑚[𝑤𝑤]�������

2
𝑛𝑛
𝑘𝑘=1

 (2) 



where 𝑆𝑆0 = ∑ ∑ δ𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 . In the case the dynamic Trenord OD matrices are used, a further 

parameter is introduced (𝑝𝑝𝑑𝑑𝑙𝑙 in {1,2, … ,10}), defining the delay between the mobility and mortality 
data. In this case, the Moran index becomes: 

 𝐼𝐼[𝑤𝑤] =
𝑛𝑛
𝑆𝑆0

∑ ∑ δ𝑖𝑖𝑖𝑖
[𝑤𝑤−𝑙𝑙𝑙𝑙𝑙𝑙] �𝑚𝑚𝑖𝑖

[𝑤𝑤] −𝑚𝑚[𝑤𝑤]������� �𝑚𝑚𝑖𝑖
[𝑤𝑤] −𝑚𝑚[𝑤𝑤]�������𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

∑ �𝑚𝑚𝑘𝑘
[𝑤𝑤] −𝑚𝑚[𝑤𝑤]�������

2
𝑛𝑛
𝑘𝑘=1

 (3) 

Figure 4 provides a visual representation of the three parameters introduced 𝑒𝑒, 𝑝𝑝𝑑𝑑𝑙𝑙 and 𝑏𝑏. 

 

Figure 4: Graphical representation of the parameters e, lag and b. 

We compute the global Moran indexes for each week of the mortality data and each dynamic 
mobility representation. We apply a permutational approach26 to test for weeks showing positive 
spatial autocorrelation, adjusting the p-values for multiple testing through the False Discovery Rate 
procedure. Spanning 𝑤𝑤 in [1, … ,52] (i.e., the entire 2020), we get a sequence of Moran indexes. We 
then analyze the sequence to spot periods showing positive spatial autocorrelation and interpret 
them in light of the epidemic development. 

Finally, local Moran indexes17 allow us to reveal spatial clusters (i.e., areas with very similar 
neighbors) and spatial outliers (i.e., areas with very different neighbors). Also in this case, starting 
from the traditional definition: 

 𝐼𝐼𝑖𝑖
[𝑤𝑤] =

𝑛𝑛
𝑆𝑆0

�𝑚𝑚𝑖𝑖
[𝑤𝑤] −𝑚𝑚[𝑤𝑤]�������∑ 𝛿𝛿𝑖𝑖𝑖𝑖 �𝑚𝑚𝑖𝑖

[𝑤𝑤] −𝑚𝑚[𝑤𝑤]�������𝑛𝑛
𝑖𝑖=1

∑ �𝑚𝑚𝑘𝑘
[𝑤𝑤] −𝑚𝑚[𝑤𝑤]�������

2
𝑛𝑛
𝑘𝑘=1

 (4) 

The spatial weights 𝛿𝛿𝑖𝑖𝑖𝑖 can be either static or dynamic, considering the 𝑝𝑝𝑑𝑑𝑙𝑙 value (𝛿𝛿𝑖𝑖𝑖𝑖
[𝑤𝑤−𝑙𝑙𝑙𝑙𝑙𝑙]). 

We also test for significant values of the local indexes, adjusting the p-values through the False 
Discovery Rate procedure as in the global case. Index 𝑖𝑖 varies in the number of areas defined from 
the spatial granularity, [1,1360] for the RL data and [1,28] for the Trenord one. Coupling the 
significance level with the interpreted Moran scatterplot,22 we can identify spatial clusters and 
outliers. In particular, high-high spatial clusters highlight areas heavily affected in mortality whose 
neighboring areas also show higher mortality rates than average, indicating epidemic hotspots.  



3 Results  

In this Section, we show the results obtained by applying the spatial data analysis techniques in 
Section 2.2 to the two areas identified by the mobility datasets described in Section 2.1. First, we 
analyze the area of the Lombardy region, comparing the mobility spatial weights derived by the RL 
static OD matrix describing overall mobility in the area with the spatial weight matrix induced by 
contiguity. Then, we consider the BreBeMi area: we motivate the need for dynamic mobility data 
and reproduce the spatial analysis of mortality rates through the dynamic railway mobility spatial 
weights, comparing the results with the static railway RL mobility data in the same area.  

For each of the two levels of analyses, we always consider the mortality rate 𝑚𝑚𝑖𝑖
[𝑤𝑤] accounting 

only for people aged 70 or more. This choice was taken based on the work done by Scimone et al. 
27, which highlighted that this age class suffered the highest mortality risk caused by the pandemic 
and expressed the epidemic dynamics through 2020 in two waves of higher-than-average mortality 
rates. Considering the aggregation parameter in the mortality rates described by Equation (1), we 
select 𝑒𝑒 =  3 as it provides a compromise between smoothing fluctuations and capturing weekly 
trends of increasing or decreasing mortality rates.   

3.1 Analysis of Lombardy area  

In this first level of analysis, we focus on the Lombardy area, considering the spatial granularity 
induced by the RL dataset, which roughly corresponds to municipalities. We compare two spatial 
weights: the static weight matrices defined from the OD RL dataset and the classical contiguity 
weights. We will refer to the RL mobility data with the term static overall mobility to highlight that 
data do not change in time and represent mobility from any transportation methods. We aim to 
identify weeks with positive spatial autocorrelation in mortality rates through global Moran indexes 
and to identify hotspots or influential areas through local Moran indexes, interpreting the indexes 
together with the pandemic development in 2020. 

We compute global and local Moran indexes describing spatial autocorrelation in the mortality 
rates 𝑚𝑚𝑖𝑖

[𝑤𝑤] and for each week 𝑤𝑤 of 2020 (𝑤𝑤 ∈ [0,52]) and each of the 1360 areas under 
investigation (𝑖𝑖 ∈ [1,1360]). Figure 5 shows the values of the global Moran indexes for each week 
of 2020, comparing mobility-based and contiguity-based spatial weights. The red points on the 
graph indicate a significantly positive spatial autocorrelation for the epidemic phenomenon 
described by 𝑚𝑚𝑖𝑖

[𝑤𝑤] in a given week (i.e., adjusted p-values smaller than 0.05). 



 

Figure 5: Global Moran indexes in the Lombardy area through 2020, comparing mobility-based 
and contiguity-based spatial weights. Red points indicate adjusted p-values < 0.05. Orange bands 
highlight the two lockdown periods in Lombardy.  

The phenomenon exhibits a strong dependence on both spatial weights during the epidemic 
outbreak (March) and immediately after, with positive spatial autocorrelation observed from the 
beginning of March until the end of May. After May, neither spatial weights reveals significantly 
positive spatial autocorrelation in the mortality indexes. This coincides with the end of the national 
lockdown, suggesting that the substantial restrictions implemented during the lockdown period 
eliminated the spatial pattern of mortality. Comparing the two spatial weights, we observe that the 
corresponding Moran indexes are significantly greater than 0 in approximately the same weeks 
during the first wave. Both weights are nearly equivalent in revealing the epidemic phenomenon, 
but the Moran indexes induced by contiguity weights are greater than those generated by mobility 
weights. 

Starting from the first week of November, we observe another period of positive spatial 
autocorrelation that continues until the end of the year, corresponding to the second wave period. 
There is a clear increase in the curve depicting the evolution of the global Moran index, although 
the curves are more oscillating and less pronounced than what is observed during the first wave. 
This trend persists, although it is arguable that the projected RL OD matrix no longer describes 
mobility trends after March. However, while the contiguity-based spatial weights flag a more 
extended period of positive spatial autocorrelation starting in October, the spatial weights derived 
from the RL OD matrix still highlight some positive spatial autocorrelation in the epidemic 
phenomenon. This could be interpreted as either suggesting that the projected movements may still 
provide valuable insights into mobility patterns or that during the second wave, mobility may no 
longer be the source of infections and the cause behind the positive spatial autocorrelation flagged 
by the mobility-based spatial weights is their similarity to other spatial weights effectively capturing 
the epidemic phenomenon. 

The analysis of local Moran indexes allows us to highlight positive spatial clusters known as 
high-high areas, i.e., areas with mortality rates higher than average whose neighbors (according to 
the notion of nearness induced by mobility or contiguity spatial weights) also experience higher-
than-average mortality rates. We focus on high-high areas because of their potential impact on the 



spread of the pandemic. Figure 6 depicts the map representing significant areas revealed by the 
local Moran indexes in the second week of March, again comparing the mobility-based and 
contiguity spatial descriptions. Some red zones can be observed in the Val Seriana area, Codogno 
and its surroundings, and the Brescia province. These extensive high-high areas are visible in the 
maps from the beginning of March until mid-April, although the Codogno area disappears from the 
maps at the end of March, much earlier than the others. We notice that mobility-based spatial 
weights reveal larger clusters than contiguity-based weights throughout the first wave period: this 
suggests that mobility-based spatial weights provide insights into the dynamics of the epidemic 
phenomenon that are less captured by geographical metrics like contiguity. No extended spatial 
clusters are detected during the second wave period. 

This first level of analysis indicates that mobility flows contain relevant information about 
epidemic dynamics in the local Lombardy area. However, despite the fine spatial granularity of the 
RL data, their static nature represents a significant limitation in our reasoning. This limitation led us 
to introduce dynamic OD data into the analysis. 

 

Figure 6: Spatial clusters and outliers identified in Lombardy during the 2nd week of March 
2020 (from March 3 to March 15). The left panel shows the results induced by mobility-based 
spatial weights, while the right panel considers contiguity-based spatial weights. 

3.2 Analysis of Brescia-Bergamo-Milano (BreBeMi) area 

Having established the connection between local mobility flows in Lombardy and the evolution 
of mortality rates in 2020, our analysis expands to focus on a specific type of mobility profoundly 
affected by restrictions and subjected to behavioral changes after the pandemic: public railway 
mobility. To investigate this aspect, we employ dynamic OD matrices that depict railway mobility 
within a limited portion of the Trenord network. The Trenord data enables us to overcome the 
significant limitation of the RL data, which are static and do not capture variations in mobility flows 
over time. This limitation is crucial because restrictions and the fear of the disease caused 
significant fluctuations in mobility flows throughout 2020. 28 Therefore, we aim to extend our 
analysis by considering these mobility variations and investigating their impact on the epidemic 
phenomenon. To accomplish this, we turn to Trenord, a private company that operates the majority 
of railway mobility in Lombardy. We leverage their precise data to derive weekly OD matrices 
describing railway mobility flows within a limited area in Lombardy according to the pipeline 
reported in Figure 2. 



Initially, we explore the relationship between the movements represented by the dynamic 
Trenord matrices and the static RL matrix, which portray average workday flows at the beginning of 
2020. To this purpose, we select and aggregate the RL OD matrix to match the same area and spatial 
granularity of the Trenord data, considering only movements by train. We estimate linear regression 
models for each of the 41 weeks covered by the Trenord data, aiming to model each Trenord OD 
cell using the corresponding cell of the RL static data as a predictor. Figure 7 illustrates the 𝑅𝑅2 
coefficient of the regression models, while Figure 8 shows the regression coefficient’s values. 

 

Figure 7: 𝑅𝑅2 of the regression models predicting the dynamic Trenord OD cells through the 
corresponding static RL OD matrix cells. Lockdown periods are highlighted in orange. 

 

Figure 8: 𝛽𝛽 regression coefficient of the models predicting the dynamic Trenord OD matrices 
through the corresponding static RL OD matrix cells. Lockdown periods are highlighted in orange. 



The average value of the 𝑅𝑅2 coefficient is 0.59, indicating a reasonably strong predictive power 
of the RL mobility data for Trenord movements. The 𝑅𝑅2 index varies throughout 2020, exhibiting 
initially high values in January and February and lower ones during the first lockdown period 
(March to June). However, it is notable that the 𝑅𝑅2 index returns to assume high values in the 
October, November and December months. This could indicate that after the beginning of October, 
people returned to use public railway transport in similar proportions to the face of the year, albeit 
the traffic volumes have decreased significantly compared to January and February, as seen in 
Figure 8. The close linear relationship between the two mobility data at the beginning of the year 
confirms the validity of our estimation procedure in deriving dynamic railway mobility flows 
closely resembling the reality described by the RL data. After this period, the changes in the 𝑅𝑅2 
index show the evolution of mobility and underscore the need for dynamic mobility data in 
analyzing the epidemic phenomenon. Consequently, we replicate the spatial analysis of the 
epidemic indicators within the area induced by the Trenord data, incorporating dynamic spatial 
weights. Notice that the RL data represent a single workday, while Trenord matrices refer to weeks. 
Thus, if the two data were perfectly coherent, we would expect  5 <  𝛽𝛽 < 7. 

When working with dynamic spatial weights derived from the Trenord dynamic OD matrices, 
we introduce two additional parameters into the analysis, as described in Section 2.2: 𝑏𝑏 and 𝑝𝑝𝑑𝑑𝑙𝑙. 
After analyzing values of 𝑏𝑏 within the range {1,2,3,4}, we determine that setting 𝑏𝑏 =  2 minimizes 
anomalies in the weekly mobility trends while dynamically representing changes in railway flows. 
The 𝑝𝑝𝑑𝑑𝑙𝑙 parameter assumes particular significance, as it estimates the delay between the mobility 
phenomenon and its effect on the epidemic response as reflected in mortality rates. Consequently, 
we explore various values of 𝑝𝑝𝑑𝑑𝑙𝑙, ranging from 1 to 10. 

Figure 9 reports the curves obtained by computing the global Moran indexes for the weeks 
covered by the Trenord data and comparing them with the corresponding railway RL mobility data 
in the same area and spatial granularity.  

 

Figure 9: Global Moran indexes in the BreBeMi area, comparing two mobility data sources 
(Trenord and RL) and considering 𝑝𝑝𝑑𝑑𝑙𝑙 in {1,2,3,4,5} for the dynamic Trenord data. Red points 
indicate adjusted p-values < 0.05. Lockdown periods are highlighted in orange. 



The figure reveals two peaks in the global Moran indexes values, indicated by both the RL and 
Trenord railway mobility-based spatial weights, albeit at different times. The index values decrease 
after the beginning of the first lockdown, highlighting its role in breaking the connection between 
mobility and the epidemic. In November, the curves rise again, even though we cannot refuse the 
hypothesis of spatial randomness with the permutational tests. Notice that when comparing the RL 
railway mobility-based spatial weights with the Trenord ones, we notice that while both the weights 
reveal peaks in the first wave period, the peaks happen at different times: the RL data reach the 
maximum value of the global Moran index in the second week of March and then drops after the 
third, while the Trenord weights show their peak in the last week of March, some weeks delayed 
than the RL data. The peak in the second wave period is reached for both spatial weights in the third 
week of November. 

The parameter lag introduced for the dynamical Trenord data also influences the analysis. In 
Figure 9, we plot only the lag values revealing similar trends in the curves and highlighting the 
same weeks of positive spatial autocorrelation. For values of 𝑝𝑝𝑑𝑑𝑙𝑙 ≤ 5, we always observe three 
weeks in March where the hypothesis of spatial randomness can not be refused. The curves' shapes 
look very similar in all these cases. 

4 Discussion 

In this paper, we proposed an innovative approach for analyzing the relationship between an 
epidemic phenomenon (COVID-19) as described by mortality rates and mobility flows. We aim to 
demonstrate that accurate and reliable mobility data are crucial in providing valuable insights to 
guide policymakers in making informed decisions regarding future lockdown and restriction 
policies. 

This work assessed global and local spatial autocorrelation in an areal epidemic indicator using 
Moran indexes and retrieving spatial weights from OD matrices. We tested this approach in two 
areas within the Lombardy region: one covering the entire region with fine spatial granularity using 
static mobility data and the other focusing on a limited portion of Lombardy and analyzing dynamic 
railway mobility flows. 

The developed pipeline is entirely general, as it establishes a connection between an areal 
epidemic indicator and OD matrices describing different forms of mobility in one or more 
transportation networks. By modifying the type of mobility data and epidemic indicators, we can 
analyze various aspects of the pandemic: while mortality rates of people aged 70 or older have 
proven to be representative in past studies, other areal epidemic data, such as positive swab rates, 
quarantined individuals, or occupancy of intensive care units, can be considered to represent 
different responses associated with an epidemic phenomenon. When analyzing pandemic evolution 
beyond 2020, it is essential to note that subsequent waves have primarily impacted peak infection 
rates rather than mortality rates. 10 Thus, it may be necessary to employ different epidemic 
indicators when examining later periods. 

In the Lombardy area, we compared the static mobility spatial weights based on overall mobility 
described by the static RL data with classical contiguity-based ones. Both spatial weights identified 
positive spatial autocorrelation in the epidemic feature during similar periods corresponding to the 
first and second wave periods. However, contiguity-based spatial weights exhibited higher global 
Moran index values than mobility-based ones. The power of mobility-based spatial weights 
emerged in detecting spatial clusters, with mobility-based weights revealing larger positive spatial 
clusters during the first wave period. The role of the flagged high-high areas in epidemic diffusion 
requires further investigation to determine if these areas acted as starting locations for the spread 



through their outbound mobility flows. The flagged high-high areas in both maps (obtained 
applying the mobility or contiguity based spatial weights) correspond to the Val Seriana area, 
Codogno and its surroundings, and some towns in Brescia province, already highlighted as areas 
heavily affected by the epidemic by other works in the field. 27 Analyzing the dynamic maps 
produced by the local Moran indexes according to the mobility or contiguity spatial weights, we 
notice how the Codogno area disappear from the map some weeks before the others, coherently 
with early mobility restrictions applied in this territory, which was placed under lockdown two 
weeks earlier than the rest of Lombardy. This shows our method's capability to detect phenomena 
consistent with known pandemic dynamics. We point out that the mobility-based spatial weights 
signal the non-significance of the Codogno area one week earlier than the contiguity-based ones. 

In summary, the analysis of the Lombardy area concludes that mobility-based spatial weights 
can highlight ongoing epidemic phenomena through global Moran indexes and provide insights into 
local patterns that cannot be identified using classical contiguity-based weights. 

Moreover, the spatial analysis highlighted the role of the first national lockdown in breaking the 
positive spatial autocorrelation. Indeed, the global Moran indexes decrease in this period. After a 
while, no positive spatial autocorrelation is detected in the mortality rates: the restrictions had a 
consequence in the spatial patterns of the mortality rates. Moreover, the high-high areas flagged in 
the local spatial analysis disappeared sometime after the beginning of the first lockdown. This is 
evidence confirming the hypothesis presented in the Introduction: pandemic outbreaks introduce 
positive spatial autocorrelation in the mortality rates, while when the epidemic subsides, the 
mortality rates return to being spatially uncorrelated.  

Thus, we turned to the dynamic Trenord data. We developed a pipeline to construct dynamic OD 
matrices representing movements by train, selecting only a limited portion of the network (six train 
lines) because of the avability of these data. Despite the small area covered, these data allow us to 
describe actual mobility trends throughout 2020 and examine the role of a specific type of public 
transport heavily impacted by restrictions. Comparing the dynamic Trenord mobility data with the 
static RL data describing railway mobility in the same area and spatial granularity, we observed a 
strong relationship between the two early in the year (R2 ≥ 0.65 in January and February). This 
confirms the validity of the Trenord data, as they closely match the RL data in periods unaffected by 
pandemic-related disruptions. However, deviations between the two data sources emerged during 
the initial weeks of the pandemic outbreak and subsequent restrictions, supporting the adoption of 
dynamic data describing mobility after March 2020. As a result, we repeated the spatial 
autocorrelation analysis between mobility data and mortality rates in the restricted BreBeMi area, 
focusing solely on railway mobility. Moreover, dynamic mobility analysis allowed us to model the 
𝑝𝑝𝑑𝑑𝑙𝑙 representing the delay in weeks between mobility flows and their influence on the epidemic 
phenomenon. Accurate estimates of this parameter are crucial for policymakers to evaluate the 
timeframe for mobility restrictions to show their impact on the pandemic response.  

Another advantage of dynamic OD matrices lies in their ability to reveal the temporal evolution 
of mobility patterns, allowing us to identify shifts in travel behavior and potential spreading events 
in response to changes in the epidemiological situation. Traditional static OD matrices may not 
adequately capture human movement dynamics, especially during rapidly changing circumstances 
like an ongoing epidemic. Incorporating dynamic OD matrices into the analysis of epidemic 
dynamics opens avenues for future research and policy development. As the world faces recurrent 
outbreaks and potential future epidemics, monitoring human mobility through dynamic OD 
matrices can assist policymakers in making data-driven decisions on implementing targeted 
restrictions, contact tracing efforts, and vaccination campaigns. Moreover, the application of 



dynamic OD matrices is not limited to COVID-19 alone; it can be extended to monitor the spread of 
other infectious diseases, enhancing our preparedness and response to future health crises. 

Our analysis of the BreBeMi area revealed that mobility flows were still associated with two 
peaks in the values of the global Moran index, showing an effect of railway mobility flows on the 
epidemic phenomenon. However, there were noticeable differences when comparing the curves 
with those observed in the Lombardy area. In the BreBeMi area, the curves displayed oscillations 
and lower index values, with fewer weeks flagged for significant spatial autocorrelation than the 
corresponding dataset using Lombardy data. These observations can be partially attributed to the 
limited spatial coverage and granularity of the BreBeMi area, representing only a smaller portion of 
Lombardy. Both areas exhibited peaks in the Moran index values corresponding to the first and 
second wave periods, although they occurred at different times for the RL and Trenord railway 
mobility-based spatial weights: the peak in the first lockdown shown by the Trenord data was 
delayed compared to those computed according with the RL data. We noticed that we did not 
observe any lag between the contiguity and RL mobility-based spatial weights in the Lombardy 
area. Coupling these observations together, we could hypothesize that the RL dataset accurately 
captures commuter traffic, generating a nearness metric more similar to contiguity than the Trenord 
data. On the other hand, Trenord data better depicts occasional traffic and enhances the relevance of 
mobility to and from the Milan area, as emerged from our analysis of the Trenord data. This aspect 
may be investigated through the fusion of actual data with different further dynamic sources, like 
cellphone data collected by mobile operators or GPS positions.15,29 Moreover, the BreBeMi area 
considered in the second level of analysis was heavily affected by the epidemic in terms of 
mortality during the first wave. Thus, the second wave was lightly perceived in the area, likely 
because the population at high risk had already significantly shrunk, and survivors had developed 
natural immunity due to the large circulation of the virus during the first wave, as suggested by 
Scimone et al.27 This could explain why the permutation tests do not flag any weeks showing 
significantly positive spatial autocorrelation during the second wave period.  

By analyzing the role of the 𝑝𝑝𝑑𝑑𝑙𝑙 parameter, we highlighted that values of 𝑝𝑝𝑑𝑑𝑙𝑙 ≤ 5 gave 
evidence of positive spatial autocorrelation in the same three weeks of the first wave period and 
resulted in extremely similar curves. Our estimates of mobility's impact on pandemic flows within 
six weeks provides a starting point for future analyses on the matter, which are crucial for 
policymakers to put in place effective mobility restrictions. Moreover, our findings are coherent 
with other works in the field estimating the impact between reductions in mobility and their effect 
on mortality rates and new confirmed cases. 9,10 

There are limitations to our work that have to be acknowledged. First, our spatial analysis 
pipeline relies on the assumption that we have reliable OD matrices accurately describing mobility 
flows. While the OD matrices obtained from Trenord data contain valuable dynamic information, 
our analysis revealed some estimation problems, such as potential overestimation of flows at certain 
stations, like the Milan area and Verona. Despite these limitations, the data align with reality-
induced principles, showing intense fluxes between connected stations and fluctuations 
corresponding to lockdown periods or easing of restrictions. Improvements in estimation procedures 
can be explored in future research, considering other methods in trip distribution models such as 
gravity models. 30 This is not an easy point to accomplish, especially in the dynamic case where 
tickets and passenger counters over impose numbers of simplification. Additionally, the limited data 
coverage of dynamic mobility data and the coarse spatial granularity pose further limitations. 
However, a strength of the pipeline developed is the possibility to scale it to cover the entire 
Trenord network or to adapt it to other transportation networks, provided that seed OD matrices and 
estimates of trips beginning and ending in each zone are available. The relevance of the estimation 
pipeline extends beyond our research, as dynamic OD matrices provide a real-time representation of 



mobility patterns that could be useful to address themes related to transportation or assessing socio-
economic trends.31 

5 Conclusion 

In this study, we have introduced an innovative approach to analyze the relationship between 
mobility flows and epidemic phenomena. By employing mobility-based spatial weights induced by 
static and dynamic OD matrices, we have successfully identified spatial autocorrelation patterns 
using global and local Moran indexes, offering valuable insights into the patterns and impacts of 
mobility on epidemics. We have applied our methodology to two distinct areas within the Lombardy 
region: one encompassing the entire region with fine spatial granularity, albeit relying on static 
mobility data, and the other focusing on a smaller area comprising the provinces of Brescia, 
Bergamo, and Milano, where we compared static and dynamic railway mobility flows. 

The results of our analysis have revealed a robust relationship between mobility-based spatial 
weights and mortality rates in the examined areas. The curves of global Moran indexes exhibit two 
distinct peaks of positive spatial autocorrelation, consistently corresponding to the two epidemic 
wave periods, regardless of the mobility description (static or dynamic) or the specific focus on 
railway or overall mobility. Notably, within the Lombardy area, mobility-based spatial weights have 
allowed us to identify larger hotspot areas compared to classical contiguity weights, underscoring 
the potential of spatial descriptions based on mobility to uncover hidden patterns within the 
epidemic phenomenon. Furthermore, the comparison between Trenord dynamic mobility data and 
RL static data in the BreBeMi area has provided distinct perspectives, revealing temporal shifts in 
the peaks of global spatial autocorrelation compared to static data. Additionally, our investigation 
into the lag between dynamic mobility flows and their impact on mortality rates has led us to argue 
that such lag is less than six weeks. 

Despite the inherent limitations and challenges encountered throughout our study, our approach 
presents promising avenues for future research aimed at comprehending and managing the intricate 
relationship between mobility flows and epidemics. Investigating further methods for deriving 
accurate mobility data is crucial, as this would significantly enhance our understanding of epidemic 
dynamics. In this framework, we developed a pipeline to exploit data collected by Trenord, the local 
railway operator, and derive dynamic OD matrices, highlighting some benefits and limitations of 
our procedure. 

Lastly, by modifying the type of mobility data and epidemic indicators, our spatial analysis 
pipeline can be readily adapted to explore various aspects of the pandemic, offering indispensable 
information for policymakers and researchers. This valuable knowledge can better equip us to 
tackle future epidemics, ensuring we are prepared to address and mitigate their impact effectively. 
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