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Abstract

We propose an innovative statistical-numerical method to model spatio-temporal
data, observed over a generic two-dimensional Riemanian manifold. The proposed
approach consists of a regression model completed with a regularizing term based
on the heat equation. The model is discretized through a finite element scheme set
on the manifold, and solved by resorting to a fixed point-based iterative algorithm.
This choice leads to a procedure which is highly efficient when compared with a
monolithic approach, and which allows us to deal with massive datasets. After a
preliminary assessment on simulation study cases, we investigate the performance
of the new estimation tool in practical contexts by dealing with neuroimaging and
hemodynamic data.

1 Introduction

This work proposes a statistical-numerical methodology to analyze spatio-temporal data
measured on general two-dimensional Riemanian manifold domains. These kinds of data
are very common in diverse contexts, from Engineering to Applied Sciences. In an Engi-
neering design process, for instance, it is standard to study time- as well as space-varying
quantities of interest observed over the surface of a three-dimensional prototype in order
to optimize the design pipeline (e.g., the aerodynamic forces exerted on the surface of an
airfoil, when dealing with the design of an airplane). In Environmental Science, it is of
paramount importance to accurate model space-time data distributed over regions charac-
terized by a complex orography, for example, in order to better understand the earth pro-
cesses, or to control pollution or global climate changes, or to optimize the exploitation of
natural resources. In this paper, we focus on some applications which arise from Life Sci-
ence. Figure 1 refers to one of the analyzed contexts. The panel on the left shows the mesh
approximating the cortical surface of a brain, on which the hemodynamic signal, induced
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Figure 1: Neuroimaging signal on a cerebral cortex: triangular mesh modeling the cortical
surface (left); fMRI signal associated with neuronal activity distributed over the cortex at a
certain temporal instant (right).

by the neuronal activity on the cortical surface, shown in the right panel has been observed,
at a certain time. Standard spatio-temporal techniques, that rely on the Euclidean distance,
are not suited, in general, to handle data such as the ones in Figure 1. Due to folded ge-
ometry of the domain, such methods can yield highly inaccurate estimates, by incorrectly
identifying as close, data locations that actually are far apart on the real geometry. Thus,
values observed over two distinct gyri could be artificially linked each other, although, in
practice, separated by a sulcus. As a consequence, in order to obtain accurate estimates
on complex manifolds, it becomes mandatory to appropriately comply with the complex
geometry of the domain.

The diversified demands characterizing a so large number of different application fields
justify the strong interest for data analysis over two-dimensional Riemannian manifolds,
both in the statistical and in the numerical literature. Nevertheless, the available method-
ologies are so far confined to special manifolds, such as spheres or sphere-like domains
(see, e.g., [4, 5, 20, 21, 27, 28, 34] and the references therein), or to the spatial dimension
only (see, e.g., [6, 7, 10, 11, 15, 17, 22, 35]).
The challenge tackled in this paper is consequently twofold, since dealing with space-time
data over a general two-dimensional manifold. To this aim, we propose a computational
procedure which belongs to, and further strongly advances, the class of Spatial Regression
with PDE regularization (SR-PDE) methods reviewed in [31]. In particular, we adopt an
estimation functional which combines a least-square data-fidelity criterion with a regular-
izing term based on the heat equation. The work is inspired by the regression model for
spatial data over manifold domains considered in [15], as well as to the spatio-temporal
model for planar domains proposed in [2]. In more detail, here we discretize the problem
directly on the manifold instead of resorting to a conformal flattening of the domain as
in [15]. This allows us to avoid the approximation error characterizing the flattening step.
Moreover, we use an iterative fixed-point scheme to solve the discrete problem instead of
the monolithic approach adopted in [2]. Such a choice ensures a highly computational ef-
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ficiency, and makes it possible to handle massive datasets, such as those characterizing the
applied problems mentioned above.
The paper is organized as follows. Section 2 introduces the proposed PDE-regularized
spatio-temporal smoothing method. Section 3 details the discretization used to solve the
estimation problem, by distinguishing between the monolithic approach and the new fixed
point-based algorithm. Section 4 shows the good performances of the new method through
simulation study cases, whereas Section 5 focuses on two in Life Science applications, by
considering neuroimaging data and the study of cerebral aneurysms. Finally, Section 6
outlines possible directions for a future research.

2 Regression analysis with PDE regularization

We consider a two-dimensional Riemannian manifold, M ⊂ R3, with n data locations,
{pi, i = 1, . . . , n}, and a time window, I = [0, T ], with m temporal instants, t1, t2,
. . . , tm, where 0 = t1 < t2 < . . . < tm = T . We denote by zij the value of a real-
valued random variable of interest, when observed at the space-time location (pi, tj), for
i = 1, . . . , n and j = 1, . . . ,m. We assume that the random variable coincides with a
noisy observation of a smooth function, f :M× [0, T ] −→ R, according to the model

zij = f(pi, tj) + εij for i = 1, . . . , n, j = 1, . . . ,m, (1)

where εij are independent measurement errors characterized by a zero mean and a finite
variance. Additionally, we assume that f is twice continuously differentiable in space and
continuously differentiable in time.

Our goal is to estimate the space-time field f in (1) in the presence of an a priori knowl-
edge on the phenomenon of interest. In particular, as in [2], we assume that the problem
under study can be described in terms of a time-dependent law, represented by a parabolic
partial differential equation (PDE). The problem-specific information may include also the
boundary conditions (B.C.) whenM is an open manifold, and the initial condition (I.C.),
that model the behaviour of the field f at the boundary, ∂Ω × {0, T}, of the space-time
domain of interest.
We propose to estimate f by minimizing the regularized sum of squared function errors

Jλ(f) =
∑

i=1,...,n

∑
j=1,...,m

[
zij − f(pi, tj)

]2
+ λ

∫ T

0

∫
M

(
∆Mf −

∂f

∂t

)2

dpdt, (2)

where ∆M is the Laplace-Beltrami operator defined onM, λ is a positive smoothing pa-
rameter, and (p, t) denotes the generic space-time coordinate varying inM× I .
Functional Jλ formalizes a trade-off between a data fitting and a model fidelity criterion.
On the one hand, the sum of the squared function errors pushes the solution to the min-
imization problem, denoted by f̂ , close to the observed data zij when evaluated at the
space-time locations (pi, tj). On the other hand, the penalizing term controls the regu-
larity, in space and time, of f̂ . In particular, the Laplace-Beltrami operator generalizes
the standard Laplacian to the case of a function defined over a manifold, by providing a
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simple measure of the local curvature of such a function. Operator ∆M is invariant with
respect to Euclidean transformations (rotations, translations and reflections) of the spatial
coordinates. This ensures that the smoothness of f̂ does not depend on the orientation of
the coordinate system we adopt or of the domain. Finally, parameter λ tunes the trade-off
between data fidelity and regularity, so that the higher the parameter λ, the more regular
the estimate; vice versa, the lower the parameter λ, the closer the fit to the observed data.
Now, we establish the function setting associated with the minimization of functional Jλ.
With this aim, we introduce the Sobolev space Hk(M) of the functions, u : M −→ R,
which belong to L2(M) together with the associated partial derivatives up to the order k
(L2(M) coinciding with H0(M)), and the space L2(0, T ;Hk(M)) of the functions u de-
fined over (0, T ) and taking values in Hk(M), such that

∫ T
0 ‖u(t)‖2

Hk(M)
dt < +∞ [13].

It can be checked that the estimation problem

find f̂ such that f̂ = argmin
f

Jλ(f) (3)

is well-defined in the space V 2
T (M), with

V s
T (M) =

{
v ∈ L2(0, T ;Hs(M)∩C0(M)) :

∂v

∂t
∈ L2(0, T ;L2(M)) + B.C. and I.C.

}
,

(4)
s ∈ N+, and where, here and below, the space, C0(M), of the functions continuous onM
has to be meant associated with the closure ofM whenM coincides with an open mani-
fold. Moreover, boundary and initial conditions will be properly included in the definition
of space V s

T (M), according to the specific problem at hand.
In this paper, we focus on the proposal of an efficient numerical approximation for the

estimation problem (3). It turns out that the estimator f̂ minimizing the cost functional Jλ
in V 2

T (M) satisfies the identity

∑
i=1,...,n

∑
j=1,...,m

f̂(pi, tj)q(pi, tj) + λ

∫ T

0

∫
M

(
∆Mf̂ −

∂f̂

∂t

)(
∆Mq −

∂q

∂t

)
dpdt

=
∑

i=1,...,n

∑
j=1,...,m

q(pi, tj)zij

(5)
for any function q ∈ V 2

T (M). Equation (5) can be rewritten as a system of coupled
parabolic problems, by introducing a suitable auxiliary function g defined on M [15].
Thus, we look for the pair (f̂ , g) ∈ V 1

T (M)× V 1
T (M), with V 1

T (M) defined according to
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(4), such that,

∫ T

0

∫
M
ν g dpdt+

∫ T

0

∫
M

(
∇Mf̂ · ∇Mν +

∂f̂

∂t
ν

)
dpdt = 0

∑
i=1,...,n

∑
j=1,...,m

f̂(pi, tj)q(pi, tj)− λ
∫ T

0

∫
M

(
∇Mg · ∇Mq −

∂g

∂t
q

)
dpdt

=
∑

i=1,...,n

∑
j=1,...,m

q(pi, tj)zij ,

(6)

with (ν, q) ∈ V 1
T (M)× V 1

T (M), and where ∇M denotes the gradient operator associated
with the manifold M. We remark that the first problem in (6) coincides with a standard
(forward) parabolic PDE, whereas the problem associated with g constitutes a backward
parabolic PDE, since the time derivative and the diffusive term are characterized by an
opposite sign. As a consequence, the initial condition f̂(p, 0) = f̃0 is added to the first
equation, while the ending condition g(p, T ) = g̃T completes the second PDE.
Concerning the conditions to be assigned on ∂Ω, we will select the boundary data according
to the test case at hand. In particular, the essential boundary conditions will be explicitly
included in the definition of space V 1

T (M).
Formulation (6) turns out to be instrumental in view of the discrete counterpart of

problem (3). In particular, the numerical procedure proposed in the next section will be
characterized by a considerable computational efficiency, thanks to the introduction of an
ad-hoc iterative algorithm. This feature will allow us to handle massive datasets, typical of
several applicative contexts.

3 Discretization of the estimation problem

This section represents the methodological core of the paper. We provide an improvement
in terms of computational efficiency of the approach used in [2] to tackle system (6) in the
simplified case of data distributed over a planar domain according to specific sampling de-
signs (e.g., pointwise spatial/interval temporal data, areal spatial/pointwise temporal data,
areal spatial/interval temporal data). The final goal is to finalize a handy and accurate pro-
cedure able to efficiently analyze considerable amount of space-time data, observed over
general two-dimensional Riemannian manifold domains.

In particular, to approximate the system of parabolic PDEs in (6), we have to define a
discretization both in space and time. To discretize the space, we introduce a conformal
triangulation, Th = {K}, of the manifold M, h being the characteristic mesh size. To
discretize the time dependence, we consider a partition, τ1 = 0 < τ2 < . . . < τM = T ,
of the time window (0, T ] into (M − 1) subintervals, (τk−1, τk], of length ∆t, with k =
2, . . . ,M . For simplicity of exposition, we assume that the vertices of Th exactly coincide
with the data locations pi, and that the times when data are collected identify the time
partition, so that M ≡ m and τj ≡ tj for j = 1, . . . ,m.
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Then, we define the finite element space, V r
h (M) =

{
vh ∈ C0(M) : vh

∣∣
K
∈

Pr(K),∀K ∈ Th
}

, associated with the tessellation Th, where Pr(K) denotes the space
of the polynomials of degree r defined on K. Notice that the (essential) boundary condi-
tions characterizing space V 1

T (M) are inherited by the discrete space V r
h (M).

We consider a Lagrangian basis B = {ψ1, . . . , ψNT } of the space V r
h (M), associated with

the nodes ξ1, . . . , ξNT of the triangulation, being dim(V r
h (M)) = NT (we remind that the

nodes are, in general, a super-set of the mesh vertices; only for linear finite elements (r =
1), the nodes exactly coincide with the vertices of Th). Thus, each function vh ∈ V r

h (M)

can be expressed in terms of this basis as vh(x) =
∑NT

i=1 vh(ξi)ψi(x) = vTψ(x), where
vector ψ(x) = [ψ1(x), . . . , ψNT (x)]T collects the NT finite element basis functions at
the generic point x ∈ M, while vector v = [vh(ξ1), . . . , vh(ξNT )]T ∈ RNT gathers the
evaluation of function vh at the NT nodes.
In addition, if we define the vector vn = [vh(p1), . . . , vh(pn)]T ∈ Rn of the evaluations of
function vh at the n data locations, p1, . . .pn, the matrix Ψ = (ψT (p1), . . . ,ψ

T (pn)) ∈
Rn×NT of the evaluations of the basis functions at the same points, we can relate vectors v
and vn via the equality vn = Ψv. In particular, for r = 1, matrix Ψ reduces to the identity
matrix, I ∈ Rn×n, and v ≡ vn.
By extending the notation above, we denote by

vk = [vh(ξ1, tk), . . . , vh(ξNT , tk)]
T ∈ RNT , vkn = [vh(p1, tk), . . . , vh(pn, tk)]

T ∈ Rn
(7)

the vectors gathering the values taken at time tk by vh at the finite element nodes and at
the data locations, respectively so that vkn = Ψvk, where, for r = 1 it holds vk ≡ vkn with
k = 1, . . . ,m, being ξi ≡ pi.

In the next sections, we introduce two different approximations based on the above
space-time discretization. The former has been recently proposed in the literature in the
simpler case of space-time data observed over planar domains [2] and represents the refer-
ence context for the numerical assessment of this paper; the latter coincides with the new
proposed approach which aims at being computationally highly more effective.

3.1 A monolithic approach

We provide here the space-time discretization scheme proposed in [2]. The authors employ
finite elements of degree r to approximate the space, combined with the θ-method for the
time discretization. This leads to discretize time derivatives through an incremental ratio,
whereas the other time-dependent terms are replaced by a convex linear combination of
their values at times tk and tk+1 [29]. In particular, in [2] the authors resort to the backward
Euler scheme (θ = 1), so that, for each k = 1, . . . ,m − 1, the following system is solved
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for f̂k+1
h , gkh ∈ V r

h (M)

∫
M
ρh g

k
h dp +

∫
M
∇Mf̂k+1

h · ∇Mρh dp +

∫
M

f̂k+1
h − f̂kh

∆t
ρh dp = 0

ϕTn f̂
k+1
n + λ

∫
M

gk+1
h − gkh

∆t
ϕh dp − λ

∫
M
∇Mgkh · ∇Mϕh dp = ϕTnz

k+1
n

f̂1h = f̃h,1, gmh = g̃h,m,

(8)

with ρh, ϕh ∈ V r
h (M), where f̂ jh = f̂h(p, tj), gjh = gh(p, tj) ∈ V r

h (M) denote the finite
element approximation for function f̂ and g, respectively at time tj , with j = 1, . . . ,m,
f̃h,1 and g̃h,m are suitable approximations in V r

h (M) of the initial data f̃1 and of the ending
data g̃m, where we have introduced the vectors f̂k+1

n = [f̂h(p1, tk+1), . . . , f̂h(pn, tk+1)]
T ,

zk+1
n = [z1k+1, . . . , znk+1]

T , ϕn = [ϕh(p1), . . . , ϕh(pn)]T ∈ Rn. Notice that, according
to this space-time approximation, the test functions are only space-dependent, in contrast
to formulation (6) (and to the discretization adopted in the next section).
Following [15, 2], in order to provide the algebraic counterpart of system (8), we introduce
the matrices of dimensionality NT

R0 =

∫
M
ψψT dp, R1 =

∫
M
∇MψT (∇Mψ)T dp,

where (∇Mψ)T is the transpose of the array ∇Mψ(p) = [∇ψ1(p), . . . ,∇ψNT (p)]T

collecting the gradient of theNT finite element basis functions at the generic point p ∈M,
whereas ∇MψT = ∇MψT (p) = [(∇ψ1)

T (p), . . . , (∇ψNT )T (p)]T . It follows that, for
any uh, wh ∈ V r

h (M),∫
M
uhwh dp = uTR0w,

∫
M
∇Muh · ∇Mwh dp = uTR1w,

vectors u = [uh(ξ1), . . . , uh(ξNT )]T , w = [wh(ξ1), . . . , wh(ξNT )]T ∈ RNT gathering
the values taken by functions uh and wh at the mesh nodes.
From now on, we take r = 1, so that NT = n. Thus, the algebraic counterpart of the
space-time discretization in (8) turns out to be

R0g
k
n +R1f̂

k+1
n +R0

f̂k+1
n − f̂kn

∆t
= 0

ΨTΨf̂k+1
n + λR0

gk+1
n − gkn

∆t
− λR1g

k
n = ΨT zk+1

n ,

(9)

with k = 1, . . . ,m−1, f̂1n = [f̃h,1(p1), . . . , f̃h,1(pn)]T , gmn = [g̃h,m(p1), . . . , g̃h,m(pn)]T ∈
Rn, and where, in accordance with the notation in (7), f̂kn = [f̂h(p1, tk), . . . , f̂h(pn, tk)]

T ,
gjn = [gh(p1, tj), . . . , gh(pn, tj)]

T ∈ Rn for j = k, k + 1.
System (9) is sparse since the Lagrangian basis B is locally supported. Nevertheless,

the system is fully coupled due to the opposite time direction characterizing the equations
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for f̂h and gh. Such a coupling leads to adopt a monolithic approach when solving (9),
which considers all the involved times, simultaneously [2]. This approach might represent
an issue from a computational viewpoint, in particular when dealing with large datasets
(i.e., for large values of m and n). Indeed, the dimensionality of system (9) turns out to
be equal to 2mn. As a consequence, complex geometries or long time-series are ruled
out by the monolithic method, which, in such contexts, becomes very time- and memory-
consuming. This is the case of the applications tackled in Section 5 which are out of reach
for the monolithic approach when codes are run on a standard laptop1.
These restrictions justify the proposal in the next section of a new procedure, which offers
us an alternative to the monolithic approach.

3.2 A new fixed point-based algorithm

The procedure here proposed aims at commuting the whole system (9) into m smaller
problems in order to make affordable the management of complex amounts of data.
To tackle the coupling between the two equations in (9), we resort to a fixed point ap-
proach [29]. Additionally, we adopt a space-time discretization alternative to the one char-
acterizing the monolithic approach. In particular, to be compliant with the weak formu-
lation in (6), where the trial and the test functions depend both on the space and time,
we employ space-time finite elements, continuous in space and time [33, 12]. Thus, in
the generic time interval, (τk−1, τk], a fully discrete function, wh, can be expanded as∑s

j=0 t
jwh,j(p), i.e., as a linear combination of functions, wh,j , belonging to the finite

element space, V r
h (M), with coefficients coinciding with suitable powers of the time inde-

pendent variable, t. Throughout the paper, we make the choice r = 1, s = 0 in view of a
fair comparison between the monolithic and the new approach.
We replace the algebraic system (9) with the new one

R0g
k+1
n +R1f̂

k+1
n +R0

f̂k+1
n − f̂kn

∆t
= 0

ΨTΨf̂kn + λR0
gk+1
n − gkn

∆t
− λR1g

k
n = ΨT zkn,

(10)

with k = 1, . . . ,m−1, f̂1n = [f̃h,1(p1), . . . , f̃h,1(pn)]T , gmn = [g̃h,m(p1), . . . , g̃h,m(pn)]T ∈
Rn, and where the same notations as in (9) are here adopted. Analogously to a semi-
implicit scheme, all the time-dependent terms in the equation associated with f̂ are eval-
uated at time tk+1, whereas the time-dependent contributions in the equation to be solved
for g are considered at time tk.

Now, for each k = 1, . . . ,m, we yield a sequence of approximations {(f̂k,jn ,gk,jn )} for
the solution (f̂kn ,g

k
n) of system (10) via an iterative fixed point algorithm, j being the fixed

point iteration index. Then, a check on the accuracy, combined with a maximum number
of iterations, is used to stop the iterative procedure.
To start the algorithm, we have to select the initial guess. In particular:

1The computations of the paper have been run on a Asus Intel Core i7-7700HQ 2.80GHZ 16GB desktop
computer.
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1. we compute the values f̂k,0n , for k = 2, . . . ,m, by referring to the steady case (see
Proposition 2 in [15]), i.e., by solving the (m− 1) problems

(ΨTΨ + λR1R
−1
0 R1) f̂

k,0
n = ΨT zkn; (11)

2. we compute the values gk,0n , for k = m− 1, . . . , 1, by solving the (m− 1) problems

ΨTΨ f̂k,0n + λR0
gk+1,0
n − gk,0n

∆t
− λR1g

k,0
n = ΨT zkn (12)

by using the values obtained in (11) for the vectors f̂k,0n , for k = 2, . . . ,m, and by
setting, for simplicity, gm,0n = 0 and f̂1,0n = f̂1n.

Then, at the generic iteration, j (with j ≥ 1), of the fixed point scheme, we update the pair
(f̂k,j−1n ,gk,j−1n ), for k = 1, . . . ,m, by computing the new pair (f̂k,jn ,gk,jn ), such that:

i) for k = 1, 
f̂1,jn = f̂1n

λ
(
R1 +

1

∆t
R0

)
g1,j
n =

λ

∆t
R0g

2,j−1
n + ΨT (Ψf̂1n − z1n);

ii) for k = 2, . . . ,m− 1, R1 +
1

∆t
R0 R0

ΨTΨ −λ
(
R1 +

1

∆t
R0

)

 f̂k,jn

gk,jn

 =


1

∆t
R0f̂

k−1,j−1
n

ΨT zkn −
λ

∆t
R0g

k+1,j−1
n

 ;

iii) for k = m, 
(
R1 +

1

∆t
R0

)
f̂m,jn =

( 1

∆t
R0f̂

m−1,j−1
n −R0g

m,j−1
n

)
gm,jn = 0.

The decoupling effect introduced by the fixed point iterations allows us to carry out all the
computations in i)-iii) simultaneously, in the spirit of a Jacobi solver.
The algorithm is stopped by introducing a tolerance, TOL, on the relative variation of the
cost functional Jλ in (2), when evaluated on two consecutive approximations, and after
setting a maximum number, NMax, of iterations.

The two next sections are meant to numerically investigate the reliability and the effi-
ciency of the fixed point-based algorithm, first when applied to simulation case studies and
then by considering a real datasets.
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Figure 2: Geometries for the simulation studies. Geometry 1: a benchmark geometry. Ge-
ometry 2: simplification of a patient-specific inner carotid artery affected by an aneurysm.

4 Simulation studies

In this section we assess the performances of the new algorithm introduced in Section 3.2
when applied to spatio-temporal data. We compare the proposed method with kriging, the
most commonly used technique to analyze spatial and spatio-temporal data (see, e.g., [8]
and the references therein). Kriging does not work on generic manifolds. For this reason,
to perform the comparison with the new fixed point-based procedure, we combine kriging
with a conformal flattening map approach, as detailed below.

Figure 2 shows the two test domains we considered for comparison purposes. The first
domain is a benchmark geometry, employed, for instance, in [15], here discretized by a
mesh with 340 vertices. The second domain coincides with the geometry of a vessel, ob-
tained after simplifying the patient-specific morphology of an inner carotid artery affected
by an aneurysm, shown in the left panel of Figure 8 [1]. This geometry is of relevance for
the investigation carried out in Section 5.1. The mesh in the right panel of Figure 2, which
discretizes the vessel geometry, is characterized by 600 vertices.
To generate data, over each manifold we consider 50 smooth functions defined by

f(p, t) = a1 cos

(
2π p[1]

(
1 +

t

0.2

))
+a2 cos

(
2π p[2]

t

0.2

)
+a3 cos(2π p[3]) cos

(
2π

t

0.2

)
,

(13)
with p = [p[1], p[2], p[3]]

T , and where the coefficients aj , for j = 1, 2, 3, are randomly
generated from independent normal distributions, with mean equal to 0 and standard de-
viation equal to 1. Then, these functions are evaluated at the mesh vertices (so that the
data locations, p1, . . . ,pn, coincide with mesh vertices/nodes), in correspondence with 31
equispaced times in the time window [0, 0.3]. The collected values are hence corrupted by
an additive independent Gaussian noise, with mean equal to 0 and variance equal to 0.5.
The noise level ranges approximately from 0% to 60% of the true signal.
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The first column in Figures 3 and 4 shows the first smooth function generated according
to (13) at different times, over Geometry 1 and 2, respectively. The second column in the
same figures provides the corresponding sampled noisy data, at the same times.

Now, starting from the noisy data, we resort to the fixed-point based algorithm proposed
in Section 3.2 to estimate the fifty smooth functions generated over the two benchmark
geometries. To this aim, for both the test domains and for each simulation repetition, we
select the smoothing parameter λ in (2) via 5-fold cross validation [19], while constraining
the fixed-point iterations with parameters TOL= 5e-04 and NMax= 30. The fixed point
algorithm converges, on average, after 5 and 6 iterations for Geometry 1 and 2, respectively.
The third columns in Figures 3 and 4 show the corresponding estimation, at the different
times. The matching with the original data is very good, despite the noise characterizing
the sampled data.

For the sake of comparison, we compute now the estimates by kriging.
The bi-dimensional spatial domains kriging is able to handle are planar or spherical. This is
not the case of Geometries 1 and 2. As a consequence, to implement kriging, we resort to a
conformal flattening procedure according to what described in [18]. In more detail, follow-
ing [15], we introduce a continuously differentiable map which changes the Riemannian
manifoldM⊂ R3 into a planar domain Ω ⊂ R2. As an example, Figure 5 shows the result
of the conformal flattening when applied to Geometry 1. Note that kriging does not em-
ploy the flattened mesh. This simply provides the location of the data on the conformally
flattened domain, the data being located at the vertices of the planar mesh. Kriging is thus
implemented over the flattened Geometries 1 and 2, by using the R package gStat [25]. In
particular, we consider a separable variogram, marginally exponential in space and Gaus-
sian in time, whose parameters, for each simulation replicate, are estimated starting from
the values of the empirical variogram, as it is a standard practice for kriging.
Moreover, spatio-temporal kriging cannot handle too large datasets. This justifies the sim-
plification we have applied to the original geometry of the patient-specific inner carotid
artery (with an associated original mesh of 6017 vertices) to yield the mesh in Figure 2,
right panel, consisting of 600 vertices only. The mesh simplification has been performed by
exploiting the algorithm in [10]. The fourth columns in Figures 3 and 4 provide the spatio-
temporal kriging estimates at the considered times. A qualitative cross comparison among
the third and the fourth columns in the two figures highlights the superior performances of
the new algorithm proposed in Section 3.2.

We enrich the comparative analysis between the fixed point-based procedure and krig-
ing by including the monolithic method adopted in [2] and summarized in Section 3.1.
The monolithic approach yields estimates which, from a qualitative viewpoint, are fully
comparable with the results provided by the fixed point-based algorithm. Nevertheless, a
quantitative investigation highlights that the method proposed in this paper outperforms
the monolithic formulation in terms of computational efficiency. The quantitative analysis
is carried out by computing, for each test domain and for each simulation repetition, the
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Figure 3: Geometry 1: true function f (first column) generated in the first simulation
repetition, at time t = 0[s] (first row), 0.05[s] (second row), 0.1[s] (third row) and 0.15[s]
(last row); noisy data (second column); estimate provided by the proposed fixed point-
based algorithm (third column) and by the spatio-temporal kriging (fourth colum).
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Figure 4: Geometry 2: true function f (first column) generated in the first simulation
repetition, at time t = 0[s] (first row), 0.05[s] (second row), 0.1[s] (third row); noisy data
(second column); estimate provided by the proposed fixed point-based algorithm (third
column) and by the spatio-temporal kriging (fourth colum).
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Figure 5: Geometry 1: original geometry (left); conformal flattening of the geometry used
for the implementation of kriging (right).

Mean Square Error,

MSE =

n∑
i=1

m∑
j=1

[
f(pi, tj)− f̂(pi, tj)

]2
nm

,

associated with the corresponding estimate, f̂ , and the CPU time required by the compu-
tational procedure. Figure 6 collects the box plots for the MSE characterizing the three
methods here compared, and for both the geometries. The performance of the fixed point-
based algorithm and of the monolithic approach in terms of MSE is essentially the same.
Instead, kriging is characterized by a significantly higher MSE, with a large dispersion and
several outliers associated with very high MSE values. As expected, the estimates yielded
by the new and by the monolithic algorithms turn out to be more robust, as highlighted by
the contained dispersion of the associated MSEs.
Figure 7 displays the box plots for the execution time, measured in seconds ([s]), demanded
by the fixed point-based and by the monolithic methods, when run on the two test geome-
tries. This check reveals the evident superiority of the new algorithm with respect to the
monolithic approach in terms of numerical efficiency, with a reduction of the execution
time, on average, of about 5 times for both the geometries. Kriging has not been included
in the figure, due to the remarkably higher time characterizing such a method (around 4
minutes for both the geometries instead of few seconds).

5 Case studies

We here illustrate the effectiveness of the fixed point-based method through two applied
case studies, after having verified the reliability and the computational efficiency of such
an approach in the previous section.
The first case study concerns the analysis of the shear-stress exerted by the blood-flow over
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Figure 6: Geometries 1 and 2: box plots for the Mean Square Error (MSE) associated with
the estimates provided by the fixed point-based method, by the monolithic approach and
by kriging, over the 50 simulation repetitions with test functions generated as in (13).
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Figure 7: Geometries 1 and 2: box plots for the execution time ([s]) associated with the
estimates provided by the fixed point-based and by the monolithic approach over the 50
simulation repetitions with test functions generated as in (13).

the wall of an inner carotid artery. The second application comes from the neurosciences
and deals with the study of the neuronal activity on the cerebral cortex. Standard kriging
cannot be used in these real-word applications (not even disregarding the complex geome-
try of the domains), due to the high dimensionality of the data.

5.1 Study of heamodynamic forces on the arterial walls

As a first practical case study, we consider a medical disease whose incidence in the pop-
ulation is very high (around 10 cases per 100000 people, with mortality or serious health
conditions in 60% of cases [30]). We are referring to the rupture of a cerebral aneurysm,
namely, of a large bulge that may modify the standard shape of a vessel wall in the brain.
These deformations are very common in the adult population. In the vast majority of cases,
cerebral aneurysms are totally asymptomatic and innocuous. The rupture of an aneurysm
is an infrequent event, but unfortunately characterized by a very high mortality.
The origin of this pathology is still largely unknown. The study of the factors causing the
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development and the possible rupture of aneurysms has attracted lot of interest in the scien-
tific and medical community (see, e.g., [24, 3]). It is believed that one of the main features
influencing the aneurysm pathogenesis is the shear-stress exerted by the blood flow on the
arterial wall. In particular, a strong variation of the shear-stress in space, and over the time
of the heart-beat, is conjectured to be associated with the aneurysms formation, develop-
ment and possible rupture; moreover, very low values of shear-stress are thought to be very
dangerous (see [3] and references therein). This haemodynamic stress is in turn dependent
on the complex morphology of the vessel. For this reason, the study of the spatio-temporal
behavior of the shear-stress in patient-specific geometries of arteries affected by cerebral
aneurysms, is of great interest for advancing the knowledge on this pathology.

Figure 8 shows the considered medical configuration. It coincides with a patient-
specific inner carotid artery affected by a large aneurysm. In particular, the wall of the
artery has been discretized by a triangular mesh consisting of 6017 vertices (see Figure 8,
left). Actually, we are dealing with the same manifold as in Section 4 (Geometry 2). How-
ever, the computational efficiency of the fixed point-based algorithm allows us to involve
here a finer discretization of such a geometry, with a consequent higher reliability of the
associated analysis. Concerning the analyzed data, we refer to the AneuRisk project [1]. In
particular, we consider the modulus of the wall shear-stress obtained from computational
fluid dynamics simulations [23, 26]. This quantity is available at the mesh vertices, at 100
temporal instants, that cover a full heart-beat. A first analysis of these data has been carried
out in [15], although restricted to a single time-instant.

Now, we exploit the fixed point-based approach to estimate the spatial wall shear-stress
distribution over the inner carotid artery at two distinct times during the heart beat. For
this purpose, we choose the smoothing parameter λ by 5-fold cross validation, while se-
lecting values 1e-04 and 50 for parameters TOL and NMax, respectively. Six fixed point
iterations are demanded, on average, to ensure the convergence at each time, leading to
a total elapsed time equal to 16.28 seconds. Figure 8 compares the raw (middle panels)
with the estimated (right panels) wall shear-stress. A visual inspection does not highlight
differences between the observed and the smoothed data. This is due to the fact that these
data, obtained by computational fluid dynamics simulations, are characterized by very low
noise, i.e., order of magnitude lower than the data values. For this reason, the proposed
algorithm, that correctly identifies the very high signal-to-noise ratio in the data, only fil-
ters out the high-frequency variation in the observations. Of course, a higher value of the
smoothing parameter λ could be used to return a smoother estimate, that highlights only
the main patterns of the signal. The displayed temporal instants are characterized by a
significative variation in the shear-stress distribution, in particular with low values of the
shear stress within the aneurysmal sac. Independently of the selected time instants, it can
be checked that in this location the wall shear-stress remains always very low and fluctu-
ating, thus supporting the conjecture that low values of this stress play a major role in the
aneurysmal pathogenesis.
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Figure 8: Heamodynamic case study: discretization of the inner carotid artery (left); ob-
served wall shear-stress (middle) and corresponding estimate provided by the fixed point-
based approach (right) at two different temporal instants (top-bottom) during the heart beat.
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5.2 Study of neuronal activity on the cerebral cortex

The cerebral cortex is the outermost part of the brain - a thin layer of neural tissue where
most of the neuronal activity takes place. From a geometric viewpoint, the cerebral cortex
coincides with a highly tangled surface. It can be approximated by a triangular mesh which,
unavoidably, turns out to be very complex, as shown in left panel of Figure 1. On the top
of this two-dimensional manifold domain, it can be observed a time-varying hemodynamic
signal associated with the neuronal activity on the cerebral cortex. Figure 1 shows one
temporal snapshot of such a hemodynamic signal, measured during a functional Magnetic
Resonance Imaging (fMRI) scan. The propagation of this signal constitutes the object of
our investigation.

The data here analyzed come from the Human Connectome Project, a wide public
database of resting-state and task-based fMRI scans, structural scans, diffusion MRI scans,
from a large number of volunteers [14]. Currently, there is a strong effort in the scientific
community in setting up methods for the analysis of this kind of data (see, e.g., [6, 9, 36]),
with the common goal of advancing the knowledge on cerebral functioning and diseases.
Despite this considerable interest, the most part of neuroimaging studies is still carried out
either by disregarding the spatial dependence in the signal, or by employing basic methods
which exploit the standard Euclidean distance. These simplified endeavours may lead to
inaccurate estimates, for instance since functional distinct areas, that are apart over the
cortex, result close in three-dimensional space due to the presence of a sulcus. Actually, it
has been proved that the possibility to include the highly complex brain anatomy in the data
analysis turns out to be a necessary step in order to guarantee a reliable investigation [16,
22]. The method adopted in this paper offers a spatio-temporal smoothing procedure able
to correctly comply with the cerebral cortex morphology.

Figure 9: Neuroimaging case study: observed signal at a fixed temporal instant (left) and
corresponding estimate provided by the fixed point-based approach (right).

To assess the fixed point-based algorithm, we start from the data associated with the
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triangular mesh in the left panel of Figure 1, consisting of 32492 vertices. The data coin-
cide with the fMRI signals induced over a patient-specific cerebral cortex by the neuronal
activity, at 30 temporal instants. The left panel in Figure 9 shows a specific temporal
snapshot of this signal. Starting from these noisy data, we run the algorithm proposed in
Section 3.2 to estimate the underlying smooth spatio-temporal signal on the cerebral cor-
tex. To this aim, we select the smoothing parameter in (2) by 5-fold cross validation and
we set the two parameters, NMax and TOL, characterizing the stopping check to 50 and
1e-04, respectively. The fixed point algorithm converges, on average, within 15 iterations,
while the whole estimation process takes 400.16 seconds. Figure 9, compares the raw data
(left panel) with the smooth estimate provided by fixed point algorithm (right panel), at the
considered temporal instant. A visual comparison between the two panels highlights the
accuracy of the estimate, that is able to efficiently smooth the data, appropriately filtering
out the noise without generating any artifact. In particular, notice that the data values ob-
served over nearby gyri are not artificially linked by the algorithm.
Finally, we remark that higher values for parameter λ could also be used in order to yield an
estimate that only captures the macroscopic features of the original signal, thus returning
the corresponding main pattern.

6 Discussion and possible enhancements

The proposed fixed point-based approach turns out to be an ideal tool to analyze large
amount of spatio-temporal data over general manifolds in R3. The numerical assessment
in Section 4 shows the superiority of such a new method when compared both with krig-
ing (combined with a conformal flattening of the domain to manage generic manifolds)
and with the monolithic procedure proposed in [2], here adapted to non-planar domains.
In particular, the fixed point-based algorithm is considerably more reliable than kriging
(Figures 3, 4, 6). On the other hand, when compared with the monolithic approach, the
new method reveals to be significantly more efficient in terms of computational time (Fig-
ure 7) without waiving the estimate accuracy (Figure 6), and allows us to handle data over
general two-dimensional Riemannian manifolds. The gained effectiveness guarantees the
possibility to estimate massive datasets as corroborated by the applicative settings analyzed
in Section 5.

The method introduced in this paper enables several extensions. Among the most inter-
esting ones, we cite the inclusion of space-varying covariates in a semi-parametric setting,
analogously to what discussed in [32, 15] for the simplified case of spatial data only. In
the heamodynamic framework, this feature would allow us to include into the estimation
process the space-varying radius and the curvature of the vessel, to study the role played
by these geometrical features in cerebral aneurysm pathology. In the application to neu-
roimaging data, we would take into account the space-varying cortical thickness, which
may have an effect on the hemodynamic signal here considered.
Another interesting generalization concerns the adopted finite element discretization which
could be replaced by an isogeometric analysis, thus generalizing what done in [35] in a
steady setting.
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