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Abstract

The numerical simulation of several virtual scenarios arising in cardiac mechanics poses a computational
challenge that can be alleviated if traditional full-order models (FOMs) are replaced by reduced order models
(ROMs). For example, in the case of problems involving a vector of input parameters related, e.g., to material
coefficients, projection-based ROMs provide mathematically rigorous physics-driven surrogate ROMs. In
this work we demonstrate how, once trained, ROMs yield extremely accurate predictions (according to a
prescribed tolerance) — yet cheaper than the ones provided by FOMs — of the structural deformation of the left
ventricular tissue over an entire heartbeat, and of related output quantities of interest, such as the pressure-
volume loop, for any desired input parameter values within a prescribed parameter range. However, the
construction of ROM approximations for time-dependent cardiac mechanics is not straightforward, because
of the highly nonlinear and multiscale nature of the problem, and almost never addressed. Our approach
relies on the reduced basis method for parameterized partial differential equations. This technique performs
a Galerkin projection onto a low-dimensional space for the displacement variable; the reduced space is built
from a set of solution snapshots — obtained for different input parameter values and time instances — of the
high-fidelity FOM, through the proper orthogonal decomposition technique. Then, suitable hyper-reduction
techniques, such as the Discrete Empirical Interpolation Method, are exploited to efficiently handle nonlinear
and parameter-dependent terms. In this work we show how a fast and reliable approximation of the time-
dependent cardiac mechanical model can be achieved by a projection-based ROM, taking into account both
passive and active mechanics for the left ventricle providing all the building blocks of the methodology, and
highlighting those challenging aspects that are still open.

1 Introduction

The heart is a hollow, muscular organ that receives blood from the veins and pumps it out through the arteries,
back into the circulatory system. Its activity between two consecutive heartbeats is referred to as the cardiac
cycle, which consists of a sequence of alternating contraction (systole) and relaxation (diastole) of the cardiac
chambers. The active left ventricular systole is the main agent of blood ejection in the circulatory system
and results, at the macroscopic level, in a longitudinal shortening, a wall thickening and a torsion around
the longitudinal axis. This latter is due to the particular fiber distribution of the cardiac muscle cells, the
cardiomyocytes, which highly influences the mechanical response of the heart. Although different physical
phenomena occur in the cardiac function - namely, the propagation of the electrical potential, ion dynamics,
active contraction of cardiomyocytes, tissue mechanics and blood circulation, see, e.g. [Il [2] - in this article
we focus on the mechanical activity of the cardiac tissue. In particular, we take into account both the passive
response of the tissue, and the active shortening of the muscular fibers, by adopting the finite elasticity models
to describe the heart contraction and relaxation.

Describing the mechanics of the cardiac tissue requires complex constitutive laws, characterized by an
exponential strain energy function and the presence of muscular fibers and sheets. For this reason, the passive
myocardium is modeled as an hyperelastic orthotropic material, ultimately yielding highly nonlinear mechanical
problems to be solved. The numerical approximation of these problems through high-fidelity, full order models
(FOMsS) such as those built on the finite element method entails severe computational costs, because of the need to
account for complex geometrical configurations, and suitable spatial and temporal discretizations. Computational

*ludovica.cicci,stefania.fresca,stefano.pagani,andreal.manzoni,alfio.quarteroni@polimi.it



complexity is even more exacerbated if one is interested in going beyond a single, direct simulation. Indeed,
when simulating cardiac mechanics, several input data — ultimately depending on a set of parameters — affect
the problem under investigation, often varying within a broad range, and possibly hampered by uncertainty.

Addressing the impact of input parameters variation on mechanical outputs of clinical interest thus plays a
key role in order to explore the tissue response in many different conditions [3, 4], to calibrate the numerical
solver and, ultimately, to obtain personalized models taking into account inter-patient variability [5]. From a
numerical perspective, those tasks yield the solution of parameter estimation, sensitivity analysis, and uncertainty
quantification problems; all these tasks share the need of multiple queries of the parameter-to-solution map, in
accurate (and possibly very fast) way. However, often the construction of a surrogate model for the input-
output map, which directly approximates the quantity of interest as a function of the input (possibly, random)
parameters, is preferred to a reduced order approximation of the field variables. For instance, the effect
of uncertainty of both global myocardial material properties and the local variability of the microstructure
orientation on the left ventricular function has been considered in [6] using meta-models built through a
polynomial chaos expansion; similarly, in [4] both sensitivity analysis and forward UQ methods have been applied
to investigate the left ventricular function during the full cardiac cycle also involving a circulatory model, to
assess the effect of regional wall thickness, fiber orientation, passive material parameters, active stress and the
circulatory model, again using polynomial chaos expansion surrogate models. However, despite being more
intrusive to implement, ROMs obtained through a projection process on the equations governing the FOM yield
more accurate approximations than data fits and usually generate more significant computational gains than
lower-fidelity models, requiring less training data [7].

In this paper we adapt ROMs developed in the last decade [8, ] for parameterized PDEs to the case of
time-dependent nonlinear problems arising in cardiac mechanics. We consider projection-based ROMs built
through the reduced basis method, suitably equipped with hyper-reduction strategies to assemble nonlinear terms
efficiently. Exploiting proper orthogonal decomposition (POD) for the construction of the reduced spaces, we can
rely on completely physics-based ROMs, rather than on data-driven strategies such as the ones recently proposed
and exploiting, e.g., a fully-automatic deep learning (DL) workflow to generate both volumetric parameters and
strain measures from cine-MRI data [10], Gaussian process interpolations [I1], 12} [I3], or physics-informed neural
networks [14]. Indeed, despite their nonlinear nature, parameterized problems in elastodynamics such as those
arising from cardiac modeling do not pose serious issues regarding the dimensionality of the reduced spaces,
the slow decay of singular values when considering POD, or the assumption stated by the reduced basis (RB)
method entailing a linear superimposition of modes.

The construction of projection-based reduced order models addressing nonlinear unsteady problems related
with cardiac mechanics has been considered in very few contributions so far. A quasi-static model was employed
in [I5] to describe the contraction of an idealized left ventricle geometry with few degrees of freedom, where
a POD-Galerkin ROM was used at each time step, also exploiting further hyper-reduction techniques such as
the discrete empirical interpolation (DEIM) and its matrix version (MDEIM) to efficiently assemble the residual
vectors and the Jacobian matrices, respectively, required by Newton iterations at the ROM level. In this case,
the activation of the heart contraction was given by the solution of a high-fidelity electrophysiology model,
whilst the pressure caused by the presence of blood in the ventricular chamber was neglected. An extension to
quasi-Newton methods can be found in [I6]. A POD-Galerkin ROM for a patient-specific biventricular cardiac
model has been introduced and analyzed in [I7], for the sake of parameter estimation based on medical images.
More recently, the inverse analysis of large nonlinear cardiac simulations has been considered in [I8], where
POD-Galerkin ROMs have been built for the contraction of a four-chambers cardiac model built over a patient-
specific cardiac geometry, involving a monolithic coupling between a POD-reduced three-dimensional structural
model — however treating the passive myocardium as isotropic — and a zero-dimensional Windkessel model for
the blood circulation. In this latter case, a speedup ranging from 5 to 13 times compared to the FOM is
achieved by the ROM, when dealing with the evaluation of cardiac outputs as functions of the contractility, the
myofiber activation/deactivation rate, the onset of ventricular systole/diastole. No hyper-reduction strategies
are considered, in this latter examples, to enhance the construction of the ROM.

In this paper we build POD-Galerkin-DEIM reduced order models, relying on (i) POD for finding a low-
dimensional trial subspace, (i) Galerkin projection to generate, in a physically consistent way, a reduced order
model, and (i) hyper-reduction techniques, through the discrete empirical interpolation method (DEIM),
to accelerate the assembling of nonlinear (with respect to the solution, input parameters, or both) terms.
Such hyper-reduced ROMs are thus exploited for the efficient and accurate solution to the time-dependent
cardiac mechanics problem, on idealized and patient-specific left ventricle geometries, albeit using a relative low
number of degrees of freedom for practical reasons. Our mechanical problem is uncoupled from both cardiac
electrophysiology and blood dynamics. However, we employ suitable analytical time-dependent functions to



mimic the influence of both the active stress and the blood circulation, to assess the performance of the proposed
methodology when the whole cardiac cycle is taken into account. Treating the passive myocardium as transversely
orthotropic makes the problem much more challenging compared to the case where the material is treated as
isotropic, concerning the efficiency of the hyper-reduction stage. Indeed, if the construction of a reduced subspace
to approximate the problem solution does not pose serious issues, resulting in extremely low dimensional spaces
even for complex material laws, the bottleneck is represented by the assembling of reduced operators, and the
projection of the approximated operators through DEIM.

The structure of this paper is as follows. After a brief recall (Sect. [2]) on the mathematical modeling of cardiac
mechanics, we describe the high-fidelity finite element (FE) approximation we start from (Sect. . We then
introduce the key tools of the proposed ROM technique (Sect. : the POD-Galerkin method and suitable hyper-
reduction strategies, to tackle nonlinear time-dependent problems. Numerical results dealing with a benchmark
prolate spheroid geometry — concerning the passive inflation without and with the active contraction — and the
full cardiac cycle of a patient-specific left ventricle geometry are then shown (Sect. . Finally, open critical
issues and future perspectives are outlined (Sect. @

2 Mathematical models for cardiac mechanics

After introducing a basic setting for solid mechanics, in this section we provide the formulation of the mathematical
problems we are interested in. Given a continuum body B embedded in a three-dimensional Euclidean space, let
us denote by Qy C R3 its reference configuration at time ¢ = 0 and by Q, C R? its current configuration at time
t > 0. The motion of the body x : Q¢ x Rt — R? is defined as a function which takes a generic material point
X € Qp and maps it onto the corresponding spatial point x = x(X,t) € €, for all times ¢ > 0. The displacement
field is defined as

u(X,t) =x(X,t) - X,

for all times ¢ > 0, and represents the unknown of the problem we are interested in. A central quantity in finite
deformations theory is the so-called deformation gradient,

0x(X, 1) 0z;(X, 1)
F(X,t) = X, t) = ——= =

( ) ) VOX( ’ ) 59X ’ J an
which describes the relationship between quantities in the undeformed and the deformed configurations of the
body, and can be expressed in terms of the displacement field as

F(X,t) =1+ Vou(X, ),

where I is the identity matrix and V denotes the material gradient. The change in volume between the reference
and the current configurations at time ¢ > 0 is given by the determinant of the deformation tensor,

J(X.1) = det F(X, 1),

also known as volume ratio. If there is no motion, i.e. x = X, we obtain the consistency condition J = 1. In
general, a motion for which this condition holds is said to be isochoric.

Another measure of deformation is the right Cauchy-Green deformation tensor C = FTF, whilst a common
measure of the strain is the Green-Lagrange strain tensor

1
E= §(C_I)a

which is defined in the reference configuration and is zero in absence of motion. All these kinematic quantities
are commonly used to express constitutive equations describing the relationship between mechanical forces and
the material motion. We will restrict ourselves to the case of hyperelastic materials, for which we can assume
that there exists a strain energy density function WV such that

P(F) = avgé}?)

gives the functional stress-strain relationships, where P is the first Piola-Kirchhoff stress tensor.



2.1 Passive and active mechanics

We assume the myocardium to be hyperelastic, with nonlinear passive behavior and not isotropic, as experiments
have shown higher material stiffness and mechanical response along the cardiac fibers. Many constitutive laws
have been derived for both its passive and active description — see, e.g., [19, 20, 211, 22| 23] 24] — taking into
account varying material symmetries. In this work, we adopt the relation proposed in [19] and commonly referred
to as the Guccione law, which assumes the material to be transversely isotropic, with its primary material axis
oriented along the local fiber direction. The corresponding strain-energy density function is given by

W) = (2 1), 1)

where the three-dimensional transverse isotropy with respect to the fiber coordinate system is accounted by
choosing

Here, E;j, 1,7 € {f,s,n} are the components of the Green-Lagrange strain tensor E, the material constant C
scales the stresses and the coefficients by, bs, b, are related to the material stiffness in the fiber, sheet and
cross-fiber directions, respectively.

Since biological tissues are mostly composed of water, the material density pg is often taken constant in time
[23] so that the conservation of mass implies J = 1 and an incompressible formulation is adopted. However,
as often done in cardiac mechanics [25] 26], incompressibility is weakly imposed, and an isochoric-volumetric
decoupling of the strain energy function is employed, yielding

W) = 5 (%) 1) £ Wo (7).

The volumetric term W, (J) is chosen to penalize large volume variations, so that it is usually a convex function
with global minimum in J =1, e.g.

Wvol(J) - %(J — ].) III(J)

Another crucial aspect is the inclusion of the active contractile forces in the constitutive equation. Active
properties are time-dependent and anisotropic, with more active stress generated along the local muscle fiber
direction [27]. Active tension can be integrated into the passive stress tensor in different ways, among which the
active stress and the active strain represent the most common approaches [28]. Here, we adopt the former, and
add to the passive first Piola-Kirchhoff stress tensor a time-dependent active tension T, (¢; pt), which is assumed
to act only in the fiber direction,

PF) = g (G~ 1+ 57 = Diog(0) )+ Tt (PFo . 5) )

where f; € R? denotes the reference unit vector in the fiber direction. Since F can be written in terms of the
displacement field u, in the following we will write P = P(u).

2.2 Parameterized problems in cardiac mechanics

We have now all the ingredients required to formulate the mathematical model to describe the motion of a body,
specifically the cardiac left ventricle, in terms of an initial boundary-value problem (IBVP) for the elastodynamics
equation, that is, the equation of motion for continuum mechanics.

To account for inter-patient variability, different scenarios can be described by assuming the dependence of the
mechanical displacement on a set of input parameters, collectively denoted as u € P C R, where P is a suitable
compact set. For the application at hand, possible parameters of interest are the coefficients of the constitutive
law, such as those related to the stiffness of the cardiac muscle in different direction or the bulk modulus K
related to the material incompressibility; fibers orientation is highly patient-specific and have a crucial impact
on the torsion and shortening of the ventricle; moreover, the pressure exerting on the endocardium or the active
tension greatly affects the mechanical behavior; see Section [



The parameterized IBVPs of interest in cardiac mechanics can be stated in general form as follows: given
p € P, a body force field by = bo(X,t;u), a prescribed displacement 1 = a(X,t; u) and surface traction
T = T(X,t,N; ), find the displacement field u(p): Qo x [0,7) — R? such that

podiu(X, t; p) — Vo - P(u(X, t;p)) = bo(X,t; ) in Qo x (0,T)
u(X, t;p) =u(X, t; @) on TP x (0,7)
P(u(X,t; pu))N = T(X,t,N; ) on I x (0,T) (3)

Pu(X,t; u))N + au(X, t;p) + Bou(X,t; ) =0 on 'l x (0,7)
u(X,0; ) =up(Xs ), Opu(X,0;u) =up(X; ;) in Qo x {0},

where o, f € R, TP UTY UTE = 09 and Ty, N T = 0 for i,j € {D, N, R}. These equations are inherently
nonlinear and an additional source of (exponential) nonlinearity is introduced in the material law . Hence,
suitable discretization techniques are required for the solution of the IBVP.

3 High-fidelity approximation

Before addressing the construction of ROMs for the mechanical problem , we introduce its full-order approximation,
upon which the ROMs will be built. In this work we rely on the finite element method (FEM) for the space
discretization, and on backward differentiation formula (BDF) schemes for time discretization. In particular, we
neglect the external body forces by, assume homogeneous Dirichlet boundary conditions, i.e. 1 = 0, and set

a = (3 = 0, thus obtaining homogeneous Neumann boundary conditions on T'§¥. Moreover, the boundaries I'},

') and Tf represent the base (representing the artificial boundary resulting from truncation of the heart below
the valves in a short axis plane), the endocardium and the epicardium, respectively.

First of all, let us introduce the weak formulation for in material description [29]. By setting

V(90) = [Hp (20)° = {n € [T (Q)P: n=0on TP},

multiplying the equation of motion (3); by a test function n € V() and integrating over €y, we obtain the
weak formulation of as follows

| mopulti) a0+ [ Pluttip): Vnd2— [ TN mdl =0 e V() (4)
Qo QO I‘lN

From , we can set the finite element (FE) discretization of the problem. Let us denote by T;, a hexahedral
mesh of )y such that UreTh 7 is an approximation of the domain €y, where h > 0 denotes the grid size, and
define the FE space of dimension r > 1

X ={veC’(Q): v, €Q.(r) VT €Th},

where Q,.(7) is the set of polynomials of degree smaller than or equal to r on each element 7 and dim(X}) = N, ;f‘;nf
denotes the total number of degrees of freedom (dofs). The FE space of vector-valued functions is defined as

Vi = V(Q0) N [X7]* = span {p, } 1",

whose dimension N, = 3N Zlorf corresponds to the total number of structural dofs, including those associated with
the Dirichlet boundary conditions, and ¢,: Qo — R3, for i = 1,..., N}, are the vector-valued basis functions.
Given w(t) € V(Qyp), its approximation Wy (¢) &~ w(t) in V}, can be expressed as a linear combination of the basis

. N
functions {¢;};" as

Np,
Wa(t) =D wWnilt) @i,
=1

where wy, (1) = [wp(1)]N", € RN" denotes the corresponding vector of coefficients in the expansion with respect
to the FE basis, that is, the unknown of our high-fidelity FOM.

We can now introduce the semi-discrete Galerkin-FE approximation of the problem, which takes the form of
a second-order dynamical system: for each ¢t € (0,7), find up(t; u) € V(o) such that

{ poMOFwy (t; ) + S(up(t)) = F (1) (5)
urp(0) =up0, Oup(0) =0



Where uh70 = [(u0,<pi)[L2(QO)]3]f\Q1, 8tuh70 = [(ilo,ga )[LQ(QO)]S] ’1 and
[M]ij:/ goj-goidQ, VLjZL...,Nh,
Qo

(Ston(t )l = [ Plunti): Voo, Vi= L. Vi,

Qo

Fert (1 ) = /F TNl Vi= 1 N

For the time discretization of the dynamlcal system (5| . we consider a uniform partition {t" = nAt, n =
N;} of the interval (0,T), where At = ﬁ is the time step length. To approximate the first and the second
derlvatlve at time t", we employ the following BDF schemes of order 1

n—1 n n—2
Nuh—uh uh—2u —|—uh

i (1) M () ST

respectively, where the superscripts n, n — 1 and n — 2 denote the solution u;, computed at time ¢”, t*~! and
t"=2 e.g. u,(t") = uy. From now on, we indicate all the quantities computed at time ¢ with the superscript
n, for n =0, ..., N;. Note that we employ implicit time integration schemes in order to avoid restrictions on the
time step due to the highly nonlinear terms of the strain energy density function considered in .

Finally, we obtain the following fully-discrete approximation of : for each n = 1,..., Ny, find uj} € RN~
such that

R(uj, (p),t"; ) = 0, (6)
where ugl and ug are given, and
n n 2p0 ext,n
R(} (1), 175 1) 5= 0 M () + S (i (1) — 20 Mg (12) + L% M2 () = Fo ()

For the solution of the nonlinear problems arising at each time step, we use the Newton method, turning
the nonlinear problem @ into a sequence of linear problems of the following form: given pu € P, for each

n=1,..., Ny, given an initial guess uh’( )( ), for k >0, find 5u§f)(u) € RMr such that

{ I(uy ™ () 1

n,(k n
e Jow! () = —R(u (), 175 ),
uy’ (1) 7

) (11) + 5ul® (), S

"
_ n

until ||R(uZ’(k+1)(u),t”;u)||2/||R(uZ’(0) (p),t™; )2 < e, where € > 0 is a prescribed tolerance. Here, J €
RN»XNn denotes the Jacobian matrix, whose components are given by

. 0 .,
I(up P (), " 1) = 5 —R(up @ (), 17 ).

3uh
The initial guess uZ’(O)(u) is set equal to the initial guess uy o(p), when n = 1, and is equal to the solution at
previous time iteration uj~ Y(w), for n = 2,...,N,. From now on, we will refer to as to the FOM for our
problem.

Remark 1 As an alternative to Newton iterative scheme is, e.g., Broyden’s quasi-Newton method [30], as done,
e.g, in [16, [31)] for the construction of ROMs in nonlinear elasticity problems. In this way we can avoid the
computation of the Jacobian matriz at each iteration k > 0 by replacing it with rank-one updates, based on
residuals computed at previous iterations.

4 Projection-based model order reduction

To mitigate the computational cost associated with the FOM solution, we introduce a projection-based ROM, by
relying on the reduced basis (RB) method [§]. To make this paper self-contained, in this section we describe the
construction of a POD-Galerkin-DEIM ROM for nonlinear time-dependent problems arising in cardiac mechanics,
generalizing the strategies proposed in [I5]. Details related to both POD and DEIM methods are reported in
the Appendix [6]



4.1 POD-Galerkin method for solution-space reduction

The goal of the RB method for parameterized PDEs is to approximate the Nj-dimensional solution manifold
My ={ut(pw) eRM | peP, n=1,...,N;} Cc RN

with a low number N (less than a few dozens, or hundreds at most) of basis functions, forming the so-called
reduced basis, whose nodal values are collected column-wise in the RB matrix V € RV»*¥  This is usually done
by performing a Galerkin projection of the high-fidelity problem onto the N-dimensional subspace spanned by
the reduced basis functions, obtaining a reduced problem facing a much lower computational complexity, still
respecting the structure of the underlying PDE and retaining the essential features of the parameter-to-solution
map. More precisely, the reduction procedure consists of:

1. the construction of a reduced basis V = [¢1]. .. [éx] € RV» XN from FOM solution snapshots
Su = |:u111(l*"1) | Tt () | () | g () (8)
obtained for different parameter values u, € P, £ =1,...,ng, suitably sampled over P;

2. the definition of the ROM by forcing the high-fidelity residual vector R € R computed over the RB
solution to be orthogonal to the subspace spanned by the columns of V, that is

VIR(Vuly (), t";pu) =0, n=1,...,Ng (9)

3. the solution of @D for a given pu € P, so that, at the end, u}(p) = Vuy (), n=1,..., N,

Two popular methods for the construction of the RB basis are the greedy algorithm [32], based on an a
posteriori error estimator, and the proper orthogonal decomposition (POD), based on a singular value decomposition
(SVD) of the snapshots matrix. Since for time-dependent, nonlinear problems error bounds are usually extremely
difficult to obtain, in this work we rely on the POD method, which Section is devoted to.

The solution to @ can be found by employing Newton method, obtaining a sequence of N-dimensional linear
systems: given u € P and, for n = 1,..., Ny, the initial guess uz,’(o) (p) = uy H(p), find 5u%<k) (1) € RY such
that, for £ > 0,

VII(Vuy ™ (), 17 ) Vouy™ (p) = ~VIR(Vay™ (), 17 ), 10)
n,(k+1) _ ..n,(k) n,(k)
uy () = uy () £ duy (),
until ||VTR(VuK,’(kH)(u)7 " u)||2/||VTR(VuK;(O) (1), t"; ) |l2 < €nawt, where €, > 0 is a chosen tolerance.

The efficiency of the RB method relies, mainly, on two assumptions. First, that the solution manifold M}, has
low-dimension; second, that the reduction procedure can be split into offline and online stages, where the latter
is completely independent of the high-fidelity dimension [33]. The first hypothesis concerns the approximability
of the solution set, and is verified in the case of the problems we are focusing on, as shown in Section [5} the
second assumption, unfortunately, does not hold for nonlinear problems as the ones we are considering. In fact,
since both the residual vector R and the Jacobian matrix J in depend on the solution at the previous
iteration Vu;z,’(k)(p/), they need to be assembled at each Newton step. This means that, in order to set up the
reduced system 1, we need to assemble the high-dimensional arrays before projecting them onto the reduced
space spanned by the columns of V| entailing a computational complexity that still depends on (suitable powers
of) Ny,. To overcome this issue, a further level of approximation, know as hyper-reduction, must be introduced,
thus pursuing an approximate-then-reduce strategy.

4.2 Reduced basis construction

For the construction of the reduced basis V. € R¥»*N introduced in Section we use the POD. Due to its
ease of implementation, and its deep mathematical root (related to the analysis of compact operators, to matrix
SVD, and to dimensionality reduction in data analysis, just to mention a few links), POD has been applied in a
broad range of engineering fields to reduce the dimension of a given data set, in an optimal sense. In this work,
POD is used to build the RB basis V, as well as for the construction of the DEIM basis ®5 for the nonlinear

terms (see Section [4.3)).



Given the snapshot matrix S, defined in 7 with ny; < Np, POD aims at approximating the solution
manifold with a low-dimensional linear subspace, retaining as much as possible of the information gathered in
the snapshots. In particular, the N-dimensional POD basis is obtained by computing the SVD of S,,,

S, =Uxz",
and then collecting the first N columns of U € RV»*Nr corresponding to the left singular vectors, i.e.

V:[£1| |‘£N}'

The singular values 01 > -+ > 0, > 0, where r < min(NVy, ns) is the rank of S, provide a heuristic criteria for
choosing the basis dimension N, which can be computed as the minimum integer satisfying the condition

N
Zi:l 01‘2

s
Dict 01‘2

where epop > 0 is a given tolerance. Further details are reported in Appendix [A]

A rapid decay of the singular values means that a limited number of POD modes is potentially sufficient to
represent the entire manifold, so that the problem is reducible. This is exactly the kind of situation faced when
dealing with the reduction of the solution space related to a problem in nonlinear elastodynamics. Moreover,
an efficient, non-deterministic version of POD can be obtained by relying on the so called randomized-SVD
(see Appendix , which offers a powerful tool for performing low-rank matrix approximation, especially when
dealing with massive data sets, as in the cases we have considered.

2
> 1- €pPoD>

4.3 DEIM for hyper-reduction/system approximation

In the case of PDEs featuring nonaffine dependence on the parameters and/or nonlinear (high-order polynomial,
or non-polynomial) dependence on the field variable, a further level of reduction must be introduced to guarantee
the offline-online decoupling in the ROM construction [33]. To recover the ROM efficiency, state-of-the-art
methods, such as the empirical interpolation method (EIM) [34], B5], B6], the discrete empirical interpolation
method (DEIM) [37], its variant matrix DEIM [38, B9, 40], the missing point estimation [41] and the Gauss-
Newton with approximated tensors [42], aim at recover an affine expansion of the nonlinear operators by
computing only a few entries of the nonlinear terms.

Although originally developed in the context of nonaffine operators, DEIM represents a valid hyper-reduction
technique also for nonlinear parameterized PDEs (see, e.g., [43], 44}, [45], [31] [46], 15]), employing an interpolation
scheme for the approximation of the nonlinear function. The key idea of DEIM is to replace the nonlinear arrays
in with a collateral reduced-basis expansion, computed through a (hopefully, inexpensive) interpolation
procedure. In the case of DEIM, the construction of the interpolation points, commonly referred as magic points,
is based on a greedy algorithm, while the (prior) construction of the reduced basis is obtained by performing
POD (or randomized-SVD) on a set of proper snapshots; in the case of EIM, both tasks are performed at the
same time, exploiting a greedy algorithm. The DEIM algorithm, as originally proposed in [37], is outlined in
Appendix [C]

For the case at hand, the high-dimensional residual R is projected onto a reduced subspace of dimension
m < Nj, spanned by a basis & € RN»xm

R(Vuy™ (), 1" ) = ®rc(Vay™ (u), % ),

where ¢ € R™ is the vector of the unknown amplitudes. The matrix ®x can be pre-computed offline by
performing POD on a set of high-fidelity residuals collected when solving for n/, training input parameters
(different from the one used for the RB basis construction),

'=1:n/,

Sp = [R(Vuxw)(w,),tn; o)), k> o} B (11)

Remark 2 In addition to the set of snapshots , we can consider the FOM residuals collected when solving
@ during the RB-basis construction, i.e.

SR — SII;OM U SgOI\/[

= (RO (1), 17 1)), e > 0]

l=1:ng Z’:l:ng

U [ROVAEY (1), 175 ),k = 0

n=1:Ng n=1:Ng '



Taking into account both FOM and ROM residuals entail no extra computational cost and usually improves the
overall accuracy, assuming n’, > ns. On the contrary, collecting FOM residuals only gave inaccurate results for
all the performed test cases, as shown, for the stationary case, in [15]. In fact, DEIM aims at approzimating the
nonlinear operators evaluated at the ROM solution, rather than at the FOM solution. Therefore, the construction
of the reduced space and system approxrimation must be performed sequentially.

For every new instance of the parameter, the p-dependent coefficient vector c is efficiently evaluated online
by collocating the approximation at the m components selected by a greedy procedure, that is,

F)

where ®%|, and R(-)
define the hyper-reduced residual vector approximating VTR(VuE(k) (), t"; w) as

are the restrictions of @ and R(-) to the subset of indices Z, respectively. We thus

Iz

J(k n — n,(k n
Ry (Vuy™ (1), 17 1) :=VT @ (@ 1), R(Vuy™ 7 1),

During the online phase we need to assemble the p-dependent quantities R(Vu;i;(k),t”; )|, only, which are
vectors of (possibly small) dimension m. All other quantities are constant (in fact, ®x does not depend on
t > 0, nor on g € P) and can be pre-computed and stored offline. Finally, the Jacobian approximation to
VTJ(VuE(k),t"; ©)V can be computed as the derivative of RN,m(VuT]i,’(k),t”; @) with respect to the reduced

displacement, that is,

_ IRy (Vay ™ (), 1% 1)
8uN

Inn(Vay™ (n), " ) -

8R(Vu7;,’(k), " )

Jun 2= V(@)

VT (®r 1), IV ™ ), v

|z
or by relying on the MDEIM algorithm, as done in [I5]. However, since we employ automatic differentiation
to get (an approximation of) the Jacobian matrices, we adopt the former approximation. As before, the only
quantity that must be computed online is the restriction of the Jacobian matrix to the rows corresponding to
the magic points, i.e. J(Vu;i,’(k), ")), € R™*Nr Note that employing DEIM can be regarded as the use of an

exact Newton method on the reduced problem RN,m(VuX,’(k)(u), t"; i) = 0, such that the k-th Newton iteration
for its solution reads

J N,ﬁ(lV)UE(k)(u), b u)5u7ﬁ(k)(/:)) = —Ryu (Vg™ (), 1" ), (12)
n,(k+ n, n,
uy T () = uy® () + sy ().

DEIM thus avoids any full-order evaluation, highly decreasing the computational effort, provided its dimension
is not too large [9]. Unfortunately, as we will see in the following section, when dealing with problems arising
in nonlinear elastodynamics characterized by highly nonlinear constitutive laws, the DEIM dimension cannot be
kept small, if aiming at ensuring a sufficient accuracy level.

In Algorithm [I and [2| we report the offline stage and the online stage of the POD-Galerkin-DEIM ROM,
respectively.

Remark 3 The m points selected by the DEIM algorithm correspond to a subset of nodes of the computational
mesh, which, together with the neighboring nodes (i.e. those sharing the same cell), form the so-called reduced
mesh (see Figure . Since the entries of any FE-vector are associated with the dofs of the problem, Ry, and
Jn,m can be computed by integrating the corresponding FOM residual and Jacobian only on the quadrature points
belonging to the reduced mesh, respectively.



Algorithm 1 POD-Galerkin-DEIM for nonlinear time-dependent problems. Offline stage.
INPUT: p,, for £ =1,...,ns, and p,, for & =1,...,n)
OUTPUT: V € RViXN & c RNwX™M T = Ly .. iy}

1: for{=1,...,ns do

2: forn=1,...,N; do

3 for k£ > 0 until convergence do

4: Assemble and solve problem

5 Collect S,, + S, U {uZ’(k)(pg) columns-wise

6: Collect Sg <~ Sp U [R(uZ’(k)(u@), " H@/)] columns-wise (see Remark
7: Construct V = POD(S,,cpop) (see Algorithm [3)

g for ¢/ =1,...,n} do

9: forn=1,...,N; do

10: for k > 0 until convergence do

11: Assemble and solve reduced problem ((10])

12: Collect Sg <~ Srp U {R(Vu%(k)(ug,)J”;u@,)] columns-wise

13: Construct (®r,Z) = DEIM(Sg,eprrm) (see Algorithm

Algorithm 2 POD-Galerkin-DEIM for nonlinear time-dependent problems. Online stage.
INPUT: p e P
OUTPUT: Vuy(u) € RM forn=1,...,N;

1: forn=0,...,N; —1do

2 for k£ > 0 until convergence do

3: Assemble and solve hyper-reduced problem

4: Recover Vuly(p), forn=1,..., N

Figure 1: Sketch of a reduced mesh for an hexahedral computational grid in a two-dimensional case. The red
dots represent the magic points selected by the DEIM algorithm.

Remark 4 We recall that both the FOM and the ROM arrays, such as the solution and the residual vectors, are
column vectors whose elements are the values of the associated quantities evaluated on the dofs of the physical
mesh. Therefore, when assembling the snapshots matrices in order to compute the RB and the DEIM basis, the
corresponding arrays are stacked column-wise.

5 Numerical results

In this section we investigate the performances of POD-Galerkin-DEIM on the solution to the parameterized
nonlinear time-dependent mechanical problem , focusing on cardiac applications, namely:

(i) two test cases on an idealized left ventricle geometry, simulating cardiac relaxation and contraction,
respectively; the steady-state versions of these test cases have been introduced in [47] as benchmarks
for the validation of cardiac mechanics software;

(ii) an idealized full cycle of a patient-specific left ventricle, where both pressure and active stress are imposed.
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In all these scenarios, the traction vector T is given by
T(X,t,N; p) = —g(t; u) JF'N,

where g(¢; ) represents blood pressure exerting on the endocardium and will be further specified, according
to the application at hand. As a measure of the accuracy of the ROM with respect to the FOM, for a given
parameter instance, we consider time-averaged L2-errors of the displacement vector, that are,

Ny
1
5abs(u) = ﬁt § ||uh('7tn§l"') - VuN('atn;N)”Q?
n=1

Ny
1 up (-t ) — Vun (-, ty;
o) = L3 i) ~ Vst )l
N, 2 lun Gt )2

The CPU time ratio, i.e. the ratio between FOM and ROM computational times, is used to measure the ROM
efficiency, since it represents the speed-up of the ROM with respect to the FOM. The code is implemented in
Python in our software package pyfe*, which contains a Python binding with the in-house Finite Element library
life* (https://lifex.gitlab.io/lifex), a high-performance C++ library developed within the iHEART
projeciEl and based on the deal.II (https://www.dealii.org) Finite Element core [48]. All the computations
have been performed on a PC desktop computer with 3.70GHz Intel Core i5-9600K CPU and 16GB RAM.

5.1 Benchmark problems with a prolate spheroid geometry

We first investigate the performances of a POD-Galerkin-DEIM reduced order models to address benchmark
problems in cardiac mechanics. In both cases, the reference geometry €y C R? is that of a truncated ellipsoid
and the material law adopted is the nearly-incompressible Guccione relation 7 although different parameter
values are taken into account, according to [47]. For what concerns the boundary condition of problem , we
apply a linear external pressure
g(tim) =p t/T

at the endocardium (i.e. T'}'), with p > 0, simulating the presence of blood inside the cardiac chamber, and
consider homogeneous Neumann and Dirichlet conditions at the epicardium (i.e. I'§ with a = 8 = 0) and on the
base (i.e TP), respectively, the latter representing the artificial boundary resulting from truncation of the heart
below the valves in a short axis plane.

The FOM is built on a hexahedral mesh with 4804 elements and 6455 vertices, depicted in Figure[2] resulting
in a high-fidelity dimension Nj = 19365, since Q;-FE (that is, bilinear FE on a hexahedral mesh) are used. We
point out that having chosen a rather coarse computational mesh results in moderate speed-ups of the ROM
with respect to the FOM in the considered test cases. However, taking into account finer meshes, thus larger
high-fidelity dimensions Ny, higher speed-ups can be achieved by the POD-Galerkin-DEIM ROMs, since the
reduced basis dimension N remains small (see Section [5.1.2)).

Figure 2: Test case 1. Idealized truncated ellipsoid geometry and computational grid.

HHEART - An Integrated Heart Model for the simulation of the cardiac function, European Research Council (ERC) grant
agreement No 740132, P.I. Prof. A. Quarteroni
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5.1.1 Passive inflation of a ventricle

In this first case, we do not account for anisotropy and only consider the passive contribution of the Piola tensor,
so that the obtained deformation pattern simulates passive ventricular diastole. As unknown parameters, we
consider

e the material stiffness in fiber and cross-fiber directions by, b, € [0.8,1.2],
e the multiplicative factor C' € [8- 103,12 - 10?] Pa.

All other parameters are fixed to their reference values: by = bfs = by = by = 1, K = 50 - 10® Pa and
p = 10-103. For the time setting, we choose t € (0,0.25) s and a uniform time step At = 5-1073 s, resulting
in a total number of 50 time instances. In Figure [3] we report the high-fidelity displacement at different time
instants. In order to compute the FOM solution, almost 340 s are required in average.

For ns = 50 points sampled in the parameter space P through latin hypercube sampling, we collect the
solution snapshots in order to compute the RB basis V € RV»*N | The singular values arising from the SVD of
the snapshots matrix S,, are reported in Figure [4] where a rapid decay of the reported quantity is observed. We
expect that a small number of basis functions is sufficient for the ROM to guarantee a good approximation of
the high-fidelity solution manifold. To assess the performance of the method with respect to the dimension of
the reduced subspace, we consider the following POD tolerances:

epop € {1072,5-107*,107*,5-107°,107°,5-107°,107°},

corresponding to a RB dimension of N =5, 7, 12, 16, 26, 32 and 55, respectively.

First, we investigate the performance of the ROM without hyper-reduction. Figure [5] shows the error and
the CPU time ratio over eppop, where the average is computed over a testing set of 20 parameters, different
from those used for the generation of FOM snapshots. The plot confirms that few basis functions are required
to accurately approximate the high-fidelity displacements. In particular, we observe that the relative error €,¢;
associated with the ROM approximation decreases of almost three orders of magnitude when going from N =5
to N = 55. However, since at each Newton step we need to assemble high-dimensional arrays before projecting
them onto the reduced space, the CPU time required by the ROM for all RB dimensions, despite decreasing as
N becomes smaller, is almost comparable to the one of the FOM.

Then, we investigate the impact of hyper-reduction on the ROM solution error and efficiency. In order to
build the POD-Galerkin-DEIM hyper-ROM, we consider N = 16 basis functions for state reduction, obtained
for epop = 107°. For the construction of the residual basis ®xr € RV *™  we rely on a snapshots set computed
for n/, = 50 points in P and apply POD on Sg using

epprv € {5-1074,107%,5-1075,107°,5-1075,107°},

t =0 ms t = 50 ms t =125 ms t = 250 ms

displacement (m)

o} 0.002 0.004 0.006 0.008 1.1e-02

—— ‘ b —

Figure 3: Test case 1, passive inflation of a ventricle. FOM solution computed at different times for u =
[0.881,1.171,11650] (top) and p = [1.007,0.853,8610] (bottom).
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FOM-solution snapshots: singular values decay

10° =T
1072
1010
10° 1(".)1 162 163

Figure 4: Test case 1, passive inflation of a ventricle. Decay of the singular values of the FOM solution snapshots
matrix.
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Figure 5: Test case 1, passive inflation of a ventricle. Average over 20 testing parameters of relative error €,
(left) and average speed-up (right) of the POD-Galerkin ROM without hyper-reduction.

corresponding to m = 84, 127, 148, 207, 239 and 368, and compare these options. As shown in Table [I] and
Figure [6] no loss of accuracy is experienced when decreasing the number of DEIM interpolation points m.
However, higher tolerances e pgras on the DEIM error would not ensure the convergence of the reduced Newton
system for all testing parameters, such that no higher speed-up can be achieved by further reducing the size
of the residual basis. Furthermore, we point out that m > N, meaning that the residual vector shows higher
variability with respect to the displacement. To conclude, the POD-Galerkin-DEIM hyper-ROM with m = 84 is
able to achieve a speed-up of x9.3 compared to the FOM, still achieving an approximation error equals to the
projection error, that is €,.¢; ~ 1073,

5.1.2 Passive inflation and active contraction of a ventricle

The second benchmark takes into account both a varying fiber distribution and contractile forces, dealing with the
inflation and the active contraction of an idealized left ventricle with transversely isotropic material properties.
Although it is still an idealized test case, the displacement field reproduces the typical twisting motion of the
systole in the left ventricle, caused by the distribution of the muscular fibers. To compute the fiber orientation in
cardiac geometries, suitable rule-based methods have been developed [49, 50} 5T, [52], which usually depend on a
set of parameter angles. In this particular case, we consider the method proposed in [53], where a®?® and a"%°
represent possible values of the rotation angle of the fibers on the epicardium and endocardium, respectively.
Moreover, we surrogate the presence of the active generation forces driving the contraction mechanics exploiting
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Table 1: Test case 1, passive inflation of a ventricle. Computational data related to POD-Galerkin-DEIM with
N = 16 and different values of m.

[ | m=84 [ m=127 [ m =368 |
Computational speed-up %x9.3 x8.0 x4.3
Avg. CPU time 36 s 42's 7S
Time-avg. L?(Qg)-absolute error || 5.3-107° [ 2.9-107° [ 2.9-107°
Time-avg. L*(Qo)-relative error || 5.3-107% [ 2.9-107* | 2.8-10*

1072 | 10
= -8-m=284
S 9l|l-B-m=127
1031 ] - m=148
= 8 +|=m=207
P g ——7 = m=239 o
=10 -6-m=84 & 7rP=m=368
o ~8-m=127 g
m=148 2 6
107} “Fe-m=207 1 - &
m=239 B 5t
~p-m=368 < /
10°° : : 4 ' ‘
10® 10 104 10°° 107 104
DEIM tolerance eprra DEIM tolerance epgra

Figure 6: Test case 1, passive inflation of a ventricle. Average over 20 testing parameters of relative error €,

(left) and average speed-up (right) of the POD-Galerkin-DEIM hyper-ROM with N = 16 and different values of
m.

an active stress approach, and considering anisotropic active tension applied in the fiber direction only, see
Section In particular, the parameterized active tension Ty, = T, (¢; i) in the fiber direction is modeled as a
linear function of the form

To(t; ) =T, t)T.

To assess the performance of a POD-Galerkin-DEIM hyper-ROM to reduce the myocardium contraction, we
consider as unknown parameters:

e the maximum value of the active tension T}, € [49.5 - 10%,70.5 - 10%] Pa,
e the fiber angles a®?’ € [~105.5, —74.5]° and a®"% ¢ [74.5,105.5]°,

both related to the active components of the strain energy functions. In particular, higher values of the active
tension correspond to a greater contraction of the cardiac muscle, whilst the fiber angles influence the twisting
motion. All other parameters are fixed to their reference values, namely by = 8, by = b, = bep = 2, by = bypp, = 4,
C =2-10% Pa, K = 50-10% Pa and p = 15 - 103. Regarding time discretization, we choose ¢ € (0,0.25) s and a
uniform time step At = 5-1072 s. Given a training set of n, = 50 points obtained by sampling the parameter
space P, we perform a convergence analysis of the ROM without hyper-reduction by constructing the reduced
basis V € RV»*N for different values of N and computing the associated approximation errors.

From Figure [7] we observe a slower decay of the singular values of S,, with respect to the previous test case
of passive inflation (note the different values on the y axis). In fact, using POD tolerances

epop € {1073,5-107*,107,5-107°,107°,5- 107,107},

we obtain the RB dimensions N = 16, 22, 39, 50, 87, 109 and 178, respectively, much larger than the ones
obtained for similar tolerances on the previous test case. This behavior is somehow expected, as the underlying
system dynamics, simulating ventricular contraction and associated torsion, is more involved than the idealized
diastole, in which tissue anisotropy is neglected. As shown by the results obtained so far, the construction of a
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FOM-solution snapshots: singular values decay
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Figure 7: Test case 1, passive inflation and active contraction of a ventricle. Decay of the singular values of the
FOM solution snapshots matrix.

ROM is highly problem dependent, since the parameters considered, e.g., in the constitutive relation, strongly
influence the form of the solution manifold, thus the RB dimension necessary to obtain comparable accuracy
between the different ROMs.

The error and the CPU speed-ups averaged over a testing set of 20 parameters are both shown in Figure
as functions of the POD tolerance epop. As already discussed, although we observe lower online CPU times
when smaller RB dimensions N are employed, the speed-up achieved by the ROM without hyper-reduction is
negligible. For what concerns the approximation error, we observe a reduction of almost two orders of magnitude
when going from N =16 to N = 178.

Given V € RV»*¥ with N = 16, we construct the POD-Galerkin-DEIM approximation by considering
n’. = 200 parameter samples. Figure @ shows the decay of the singular values of Sg, that is, the snapshots
matrix of the residual vectors R(Vu;i,’(k (pgr),t"™; e ). We observe that the reported curve decreases very slowly,
so that we expect a large number of basis functions to be required to correctly approximate the nonlinear
operators. In fact, by computing ®x € RV *™ using

epprv € {5-1074,107%,5-107°,107°,5-107°,1075},

as DEIM tolerances, we obtain m = 303, 456, 543, 776, 902 and 1233, respectively. Higher values of epprps
(related to hopefully smaller dimensions m) were not sufficient to guarantee the convergence of the reduced
Newton problem for all the parameter combinations considered. The average relative error over a set of 20

102 , | 1.4

1.3} /.__.

Z
o
=
+
::.n +
2 _ -6-N=16 & / -6-N=16
<104 v ~B-N=22 212 - —&-N=22
O / N=39 T“" N=39
~#=N=50 g ~#e-N=50
105+ N=87 | 211t N=87
—p~N=109 > ~P=N=109
—A-N=178 o —A-N=178
10°° : : | |
-6 -5 -4 -3 1
10 10 10 10 10°° 107 107 1073

POD tolerance epop POD tolerance pop

Figure 8: Test case 1, passive inflation and active contraction of a ventricle. Average over 20 testing parameters
of relative error €, (left) and average speed-up (right) of ROM without hyper-reduction.
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ROM-residual snapshots: singular values decay
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Figure 9: Test case 1, passive inflation and active contraction of a ventricle. Decay of the singular values of the
ROM residual snapshots matrix.
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Figure 10: Test case 1, passive inflation and active contraction of a ventricle. Average over 20 testing parameters
of relative error €, (left) and average speed-up (right) of POD-Galerkin-DEIM with N = 16.

parameters and the computational speed-up are both reported in Figure In particular, we observe that the
relative error is between 4-1072 and 8-1073, indeed quite close to the ones reported in Figure|8l In this respect,
provided a sufficient DEIM dimension is considered, hyper-reduction does not impact significantly on the ROM
accuracy. DEIM performances are not influenced by the size of the sample considered for the residual arrays.
Indeed, collecting a smaller number n/, of samples would only have small effects on the approximation error, as
shown in Figure

Similar results are obtained when using a finer mesh with 13025 vertices, corresponding to N = 39075 dofs
for the FOM. In this case, a reduced basis of dimension N = 16 is computed using e pop = 1073, while the POD
tolerance epgras for the approximation of the nonlinear arrays has to be chosen no larger than 10~ to ensure
Newton convergence, obtaining m = 385 DEIM terms and a corresponding approximation error €,.; ~ 5 - 1072.
Also in this case, the highest speed-up achieved by the ROM is greater than that obtained for the coarser
mesh (i.e. X8 against x6), suggesting that the POD-Galerkin-DEIM convenience grows as the dimension of the
underlying FOM increases.

Indeed, when a larger reduced basis is considered, such as in the case of N = 39 basis functions obtained
for epop = 107* in the case of a FOM with dimension N; = 19365, a remarkable improvement in accuracy
is achieved, as shown in Figure [[2] and Table 2] However, a higher number of DEIM magic points is required
for the solution of the reduced nonlinear system, ultimately doubling the online CPU time required to solve the
hyper-ROM for each parameter instance.
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Figure 11: Test case 1, passive inflation and active contraction of a ventricle. Average on 20 testing parameters of
the time-averaged L?(Qq)-absolute error (left), the time-averaged L?(Qq)-relative error (center) and the average
speed-up (right) over epgrar with respect to the FOM, when n/, = 50 (blue circle), 100 (red square), 150 (green
diamond), 200 (orange downward facing triangle) training samples are used.
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Figure 12: Test case 1, passive inflation and active contraction of a ventricle. Evolution in time of the average
L?(Qy)-relative error for (N, m) = (16,303) (blue squares) and (N, m) = (39, 767) (green circles).

Table 2: Test case 1, passive inflation and active contraction of a ventricle. Computational data related to
POD-Galerkin-DEIM with (N, m) = (16, 303) and (N, m) = (39, 767).

| epop | 103WN=16) [ 107" (N=39) |
| epmim [ 5-107* (m=303) | 10~° (m = 767) |
Computational speed-up X 6.2 x2.9
Avg. CPU time 58 s 124 s
Time-avg. L%(Qg)-absolute error 1-1073 210714
Time-avg. L?(Q)-relative error 7-1073 1-1073

As a matter of fact, the residual basis dimension m is highly influenced by the size N of the reduced subspace
for the solution, so that a larger basis V requires a greater number of interpolation points to correctly approximate
the reduced nonlinear operators, thus reducing the overall speed-up of the ROM. Therefore, choosing N = 16
represents a good trade off between accuracy and efficiency. The FOM and the POD-Galerkin-DEIM ROM
solutions computed using m = 303 at different time instants are shown in Figures [13] and [14] for two parameter
values, together with their point-wise difference. We observe a good agreement between the high-fidelity and
the reduced dynamics, with the greatest pointwise approximation error located near the apex, that is where
the greatest displacement is experienced. About 6 minutes are required in average to solve the FOM for each
instance of the parameter, while the solution of the hyper-ROM requires less than a minute, thus achieving a
speed-up equal to x6.2.
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Figure 13: Test case 1, passive inflation and active contraction of a ventricle. FOM (top) and POD-Galerkin-
DEIM (middle) displacements computed at different times for p = [61942.5, —77.5225,87.9075] and difference
between them (bottom).

At last, we consider the case of a higher dimensional parameter space, taking now 12 input parameters,
p=1[bs,bsbn,bre, by, ban, K, C, Ty, p, aP, a"%] € P C R?,
as follows:
e the material stiffness in different directions by € [6.6,9.4], bs, by, by, € [1.65,2.35], by, by, € [3.3,4.7],
e the bulk modulus K € [4-10%6 - 10%] Pa,
the multiplicative constant C' € [1.5 - 103,2.5 - 10%] Pa,

e the maximum active tension T, € [49.5-103,70.5 - 10°] Pa,
e the fiber angles a®?® € [~105.5, —74.5]° and a*"% € [74.5,105.5]°,
e the steepness of the pressure ramp p € [14 - 103,16 - 10%] Pa.

For the construction of the FOM solution and the ROM residual snapshots matrices, we consider ns = 50 and
n, = 75 training parameters, respectively. Further details are summarized in Table Despite increasing the
number of unknown parameters from 3 to 12, the hyper-ROM dimension N is almost unaffected by the choice of
a higher dimensional parameter space, as the mechanical behavior is mostly influenced by the active parameters
T,, a?’ and a®" previously considered.
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Figure 14: Test case 1, passive inflation and active contraction of a ventricle. FOM (top) and POD-Galerkin-
DEIM (middle) displacements computed at different times for p = [59737.5, —102.3225,91.1625] and difference
between them (bottom).
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\
' \

Table 3: Test case 1, passive inflation and active contraction of a ventricle, case size(p) = 12. Computational
data related to POD-Galerkin-DEIM with N = 19 and m = 574.

| epop | 1e-3 (N =19) |
| epBIM | 1e-4 (m =574) |
Computational speed-up x4.1
Avg. CPU time 87 s
Time-avg. L*(Q)-absolute error 3-1073
Time-avg. L%(Qo)-relative error 21073

5.2 Idealized full cycle of the left ventricle with a patient specific geometry

Finally, we want to analyze the performances of the POD-Galerkin-DEIM method when the whole cardiac cycle
is taken into account. For the sake of simplicity, we employ suitable analytical time-dependent functions to
represent the influence of the active stress model and blood circulation.
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Figure 15: Test case 2, idealized full cycle of the left ventricle with a patient specific geometry. Space-averaged
active tension (left) and blood pressure (right) computed during a EM simulation and the corresponding fitted
curves.

In particular, the active tension T, (¢; u) and the pressure g(¢; i) are computed as follows:

1. for a fixed set of physiological parameters, we solve the cardiac electromechanics (EM) problem coupled
with a lumped-parameter model for hemodynamics, as done in [54].

2. by performing a cubic spline interpolation of the space-averaged active tension 7™ (¢) and of the pressure
gPM (t) coming from the EM simulation, we obtain the corresponding analytical surrogate functions T.M (t)
and g (t), reported in Figure

3. to take into account a parameter-dependence, we define

T p
a TM . — M
max TM(t) ¢ ®), gt 1) max gM t)g ®),
te[0,T) te[0,T]

To(t;p) =

in order to model different maximum active tensions and loading conditions.

The reference geometry )y C R3 is a patient-specific left ventricle, pre-processed from the Zygote Solid 3D
heart model [55] reconstructed from an high resolution computed tomography scan, whose associated hexahedral
mesh with 6167 vertices is reported in Figure The FOM is built using Q:-FE, such that the high-fidelity
dimension is N, = 18501. Differently from all other test cases considered so far, we assume the following
boundary conditions, according to [50]:

e Robin boundary conditions at the epicardium D& (or TE)
P(u)N=-(N@N)(K u+C 0u)— (I-N&N)(Kju+ Cjonu),
with K| =2-10°, K =C. =2-10* and ) = 2- 10%;
e Neumann boundary conditions at the endocardium T'§"#° (or T'{Y)

P(u)N = —g(t; ) JE"N;

e cnergy-consistent boundary conditions [57] at the base ['j2¢

|JE~TN|| /
- P(u)NdT.
frgase JFiTN”dP ando

This choice of boundary conditions do not affect the construction of the ROM, since no assumptions about the
form of the FOM are made in the reduction strategy. As for the previous test cases, we consider the nearly-
incompressible Guccione law and adopt the active stress approach. Regarding the fiber distribution, we employ
the rule-based method proposed in [49], depending on parameter angles a®’, o™ G%" and 3°"%. For time
discretization, we consider a uniform time step At =5-1073 s and set T = 0.8 s, corresponding to the duration
of a single heartbeat, resulting in a total number of 160 time iterations.

P(u)N =
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Figure 16: Test case 2, idealized full cycle of the left ventricle with a patient specific geometry. Unloaded
geometry and computational grid.

We choose, as unknown parameters, those most affecting cardiac deformation during systole and diastole,
that are,

e the multiplicative factor of the constitutive law C' € [0.44 - 103,1.32 - 10%] Pa;
e the active tension parameter T, € [49.5 - 103,70.5 - 10%] Pa;
e the fiber angle at the epicardium o € [-75, —45]°.

The active tension and the fiber angle influence the contraction and the twisting motion typical of the ventricular
systole, whereas C' is related to the stiffness of the tissue. All other parameters are fixed to their reference values,
namely by = 8, by = 6, b, = by, = bsp = 3, by, = 12, K = 50-10° Pa, p = 15 - 10> Pa, a®?’ = 60°, 3" = 20°
and B°"%° = —20°. Computing the high-fidelity solution for each instance of the parameter required almost 15
minutes.

Remark 5 Due to the fact that we are neglecting the coupling between mechanics and circulation, non-physiological
pressure-volume loops are obtained, especially in the first time steps of the heartbeat, corresponding to ventricular
systole, which lacks of the isometric contraction phase. In addition to this, the end-diastolic configuration of the
left ventricle should be recovered before starting the mechanical simulation. However, we point out that our aim
is to test and analyze the reduction methodology on parameterized time-dependent nonlinear PDEs. Moreover,
the simulated cardiac cycle can be regarded as a sufficiently accurate reproduction of both systole and diastole
deformations for the purpose at hand.

For the construction of the reduced basis V, we collect ng = 20 FOM solutions and perform POD with
epop = 1073, obtaining a reduced subspace of dimension N = 28. To build the residual basis, we perform
n’. = 50 ROM simulations and collect the residual snapshots. Since we are using N; = 160 and n/, = 50, and at
least two Newton iterations are performed at each time step, we end up with a residual snapshots matrix Sg of
more than 16000 columns. For this reason, we rely on randomized-SVD to speed-up the computation of &%, by
choosing a priori the number of DEIM basis, rather the the POD tolerance epgrar (see Algorithm . Table EI
summarizes the average errors computed over a testing set of 20 random parameters and the CPU times obtained
using m = 850, 1000 and 1200, while volume and pressure-volume loop for m = 850 are reported in Figure
Here, POD-Galerkin-DEIM outputs are compared to those of the FOM for two different values of the parameters
vector. We point out that no convergence of the reduced Newton system has been obtained for all testing
parameters when using smaller residual basis. In Figures[1§ and [I9] we report the POD-Galerkin-DEIM solutions
at four time instants, for two different values of the parameter vector u = [C,T,, a’!], respectively. Moreover,
the corresponding pointwise difference between the high-fidelity solution and its reduced-order approximation is
also reported, showing that the error does not increase over time.
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cav1ty volume (left) and pressure-volume loop (right) for parameter values p; =

= [0.682,69.975, —54.75] (bottom).

=04s

Test case 2, idealized full cycle of the left ventricle with a patient specific geometry. Ventricular
[1.078,50.025, —66.75] (top) and

t=038s

displacement (m)

0 0.005

00]

00]5

difference FOM-| ROM (m)

1e-5 1.5e-5 2e-5 2.5e-5 3e-5 3.5¢-5

Figure 18: Test case 2, idealized full cycle of the left ventricle with a patient specific geometry. POD-Galerkin-
DEIM solution (top) and error (bottom) computed at different times for p =

Table 4: Test case

0.02

2.4e-02

4.5e-05
|

data related to POD-Galerkin-DEIM with N = 28 and different values of m.

[1.078, 50.025, —66.75].

2, idealized full cycle of the left ventricle with a patient specific geometry. Computational

[ m =850 | m = 1000 | m = 1200 |

Computational speed-up x3.0 x2.8 x2.7
Avg. CPU time 285 s 303 s 311 s
Time-avg. L*(Qp)-absolute error || 1-107% | 1-1073 1-1073
Time-avg. L?(Q)-relative error 81072 | 8-1073 81073
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Figure 19: Test case 2, idealized full cycle of the left ventricle with a patient specific geometry. POD-Galerkin-
DEIM solution (top) and error (bottom) computed at different times for p = [0.682, 69.975, —54.75].

6 Conclusions

In this paper we have introduced and investigated a projection-based reduced order modeling framework to deal
with problems arising in cardiac mechanics, which present great challenges from a numerical standpoint due to
the complex material behavior. The POD-Galerkin ROM, equipped with DEIM hyper-reduction, has enabled
to accurately approximate the high-fidelity solution of parameterized nonlinear, time-dependent problems in
elastodynamics. Examples have been shown related to test cases reproducing different phases of the cardiac
cycle on both idealized and realistic left ventricle geometries. The hyper-ROMs proposed rely on (i) POD for the
construction of a low-dimensional trial subspace to represent the problem solution, (ii) a Galerkin projection to
generate, in a physically consistent way, the reduced order model, and (iii) suitable hyper-reduction techniques
such as the discrete empirical interpolation method to enhance the assembling of nonlinear terms (with respect
to the solution, to input parameters, or to both). In the considered test cases, POD provides low-dimensional
subspace, still preserving a sufficient fidelity: despite their highly nonlinear nature, elastodynamics problems
can be effectively reduced by exploiting projection-based strategies, with POD-Galerkin ROMs showing very
good accuracy even in presence of a handful of basis functions. In this respect, mechanical problems do not
pose the same issue as transport, wave, or convection-dominated phenomena, such as those related with cardiac
electrophysiology, where coherent structures propagate over time and the RB method may yield inefficient ROMs,
necessitating a high number of basis functions.

Performing hyper-reduction by means of the DEIM technique allows to achieve good results in terms of
computational speed-ups of the ROMs with respect to the FOM without affecting the overall approximation
error. In particular, since only a handful of basis functions is required for solution-space reduction, we expect even
higher gains when finer computational meshes are used. Furthermore, we point out that relying on randomized-
SVD allows to deal with massive datasets of nonlinear arrays which would be otherwise difficult to handle with
deterministic techniques, such as POD.

A serious issue is instead represented by the assembling of reduced operators in this framework, and the
projection of the approximated operators through DEIM onto the RB space. In fact, even if the nonlinear
quantities are assembled onto a reduced mesh, a large residual basis may be needed to ensure the convergence of
Newton method for complex applications, overall compromising the ROM efficiency, as most of the online CPU
time is required for assembling the reduced residual vector. In addition to the fact that hyper-reduction aims at
approximating vanishing terms with a global basis, the highly nonlinear nature of the constitutive laws makes
the residual terms orders of magnitude more expensive to be approximated than the parameter-to-solution map,
regarding both the number of basis functions involved in their expansions, and the computational time required
at the offline and the online stages.
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This observation suggests the idea of relying on surrogate models to perform operator approximation,
overcoming the need to assemble the nonlinear terms onto the computational mesh. Pursuing this strategy,
will allow us to rely on physics-based (thus, consistent) ROMs built through a POD-Galerkin RB method,
however avoiding the computational burden entailed by classical hyper-reduction strategies. The analysis and
the application of deep learning-based methods to perform hyper-reduction will make the object of forthcoming
publications.
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Appendix

A Proper orthogonal decomposition

Let s, : P — Vj, be a parameter-dependent function and s;(u) € RV the corresponding vector of dofs, where
Np = dim(V4). For a given set of training parameters S = {ul, e 7an} C P, with ng < Nj, we define the
snapshots matrix

S=[s1| ... |sn]€RNwxns

where s; = sp,(1;), . = 1,...,ns. Proper Orthogonal Decomposition (POD) aims at approximating the manifold
identified by the image of sy, i.e.
Mg ={sp(p) €V), : pePl,

with a low-dimensional linear subspace, retaining as much as possible of the information gathered in the
snapshots. To achieve this goal, the singular value decomposition (SVD) of S,

s=uxz",

is computed, where U = [£,]...|€y,] € RV"*Nr and Z = [{]...|¢,.] € R™*" are orthogonal matrices
collecting column-wise the left and the right singular vectors, respectively. The diagonal matrix

S = diag(oy, ..., 0,) € RN#Xns
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contains all singular values of S, sorted in descending order o1 > --- > o, > 0, where r < min(Ny, ny) is the
rank of S, so that we can write

S=7) o€
j=1
The N-dimensional POD basis is then obtained by collecting the first N columns of U

V=& ... |&n],

corresponding to the N largest singular values (see Algorithm . At the basis of the POD algorithm stands the
Schmidt-Eckart-Young theorem, originally introduced for integral operators, which provides a criterion for the
best low-rank approximation of a given matrix of rank r. In fact, the basis V.€ R™*¥ is such that

N
VVTS =3 "o¢,¢]
j=1

has rank N < r and satisfies the following optimality property:

IS=VVTS[E= min [S—AfZ= Y o2 (13)
AcRNYRXNp -
rank(A)<N J=N+1

where ||-||F is the Frobenius norm. Thus, V is optimal in the sense that, among all possible N-dimensional
subspaces, minimizes the least square error of snapshot reconstruction. Furthermore, thanks to , the singular
values of the snapshots matrix provide an heuristic criteria for choosing the basis dimension IV, which can be
computed as the minimum integer satisfying the condition

N
2 im0

2
RIC(N) = L >1—¢chop, (14)

where epop > 0 is a given tolerance. The left-hand side of is the relative information content (RIC) and
represents the ratio between the modeled and the total snapshots information content.

Algorithm 3 Proper orthogonal decomposition (POD)
INPUT: S € RN»Xns QUTPUT: V € RV» XN

1: Perform SVD of S, i.e., S = URZT
2: Select basis dimension N as the minimum integer fulfilling condition
3: Construct V collecting the first N columns of U

B Randomized singular valued decomposition

Randomized Singular Valued Decomposition (randomized-SVD) provides a non-deterministic alternative to POD.
Randomization offers, in fact, a powerful tool for performing low-rank matrix approximation, especially when
dealing with massive data sets. The randomized approach usually beats its classical competitors in terms of
computational speed-up, accuracy and robustness [58]. The key idea of randomized SVD is to split the task
of computing an approximated singular value decomposition of a given matrix into a first random stage, and a
second deterministic one, see Algorithm[4] The former exploits random sampling to construct a low-dimensional
subspace that captures most of the action of the input matrix; the latter is meant to restrict the given matrix
to this subspace and then manipulate the associated reduced matrix with classical deterministic algorithms, to
obtain the desired low-rank approximations.
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Algorithm 4 Randomized-SVD

INPUT: S € R™*", target rank k € N
OUTPUT: UXZ” ~ S
stage 1

1: Generate a Gaussian matrix ® € RV»xk
2: Compute Q € RV»** whose columns form an orthonormal basis for the range of S® and such that
IS-QQ"S[a < min_[IS—X|l2,
rank(X)<k
e.g., using the QR factorization.
stage 2
1: Form S = QTS ¢ kai
2: Compute SVD of S = Uuxz”
3: Set U =QU

This randomized approach is particularly convenient when the snapshots matrix is high-dimensional, i.e.
when Np and ng are large. In fact, finding the first £ dominant singular-values for a dense input matrix of
dimension Nj, X ng, requires O(Npnglog(k)) floating-point operations for a randomized algorithm, in contrast
with O(Npnsk) flops for a classical one. Finally, Algorithm [4 can be adapted to solve the following problem:
given a target error tolerance ¢ > 0, find k = k(¢) and Q € RV»*¥ gatisfying

IS - QQ"S|> <e.

C Discrete empirical interpolation method (DEIM)

The DEIM algorithm for the approximation of a generic nonlinear function f : P — R¥» f = f(7) (where 7 = ¢
and/or pu), as originally proposed in [37], is outlined as followsﬂ

1. construct a set of snapshots obtained by sampling f(7) at random values 7i,...,7,, and apply POD to
extract a basis from these snapshots, i.e.

RN“XM S5Pr= POD([f(Tl), ceey f(TnS)] 7€P0D)7
where epop > 0 is a given tolerance such that holds;

2. iteratively select m < Ny, indices Z C {1,..., Ny}, corresponding to a subset rows of ®x, using a greedy
procedure, which minimizes the interpolation error over the snapshots set;

3. given 7 ¢ {71,...,7,, }, impose the interpolation conditions at the selected entries Z
S, c(r)=f(7),, (15)

stating that the DEIM approximation ®xc(7) and the original function f(7) must match at the magic
points. Here @7, € R™*™ is the matrix formed by the Z rows of ®; as a result, we obtain

f(r) = £,(7) = <I>;<I>]__-1|If(r)‘z.

Algorithm [ illustrates the greedy procedure to determine the DEIM interpolation points. The first magic
point is the degree of freedom, in the physical domain, corresponding to the largest absolute value of the first basis
vector of ® . For k € {2,...,m}, the k-th magic point added to the set is the quadrature point corresponding
to the largest absolute value of the difference between the current basis vector ¢, and its current approximation
P x(:,1: k—1)1, based on the k—1 computed interpolation points. In this way, the magic points are hierarchical
and non-repeated.

2For the sake of simplicity, we directly consider the vector representation of a function, assuming that all the quantities introduced
in this procedure have been discretized on a FE mesh.
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Algorithm 5 Discrete empirical interpolation method (DEIM)

INPUT: ®5 = [p,,...,,,] € RN»x™
OUTPUT: Z = {i1,...,im}

1
2
3
4
5:
6
7
8

Find i1 = arg max;{|¢, |:}
Set T = {i1}
for k=2,...,m do
: Solve ®7(:,1: k— 1), = ¢y,
Compute r = ¢y, — ®r(: ,1: k—1)7
Find iy = arg max;{|r|;} 11y
: Set T < T U {ix}
: end for

We remark that the interpolation condition can be generalized to the case where more sample indices

than basis function are considered, leading to a gappy POD reconstruction. The solution to the least-squares
problem

would yield, in this case, f,,(r) = ®x®} £(r)

c(r) = arg}gﬂn”f(r)h — ‘I>].-‘Ix||2
xeR™

|z» where the Moore-Penrose inverse of a full column rank matrix

A € R"™™™ is defined as At := (ATA)71AT.
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