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Abstract

We propose a new model reduction technique for multiscale scalar transport prob-
lems that exhibit dominant axial dynamics. To this aim, we rely on the separation
of variables to combine a Hierarchical Model (HiMod) reduction with a two-scale
asymptotic expansion. We extend the two-scale asymptotic expansion to an arbitrary
order and exploit the high-order correctors to define the HiMod modal basis which
approximates the transverse dynamics of the flow, while we adopt a finite element
discretisation to model the leading stream. The resulting method, which is named
HiPhomε (HIgh-order Projection-based HOMogEnisation), is successfully assessed
both in steady and unsteady advection-diffusion-reaction settings. The numerical re-
sults confirm the very good performance of HiPhomε which improves the accuracy
and the convergence rate of HiMod and extends the reliability of the standard ho-
mogenised solution to transient and pre-asymptotic regimes.
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1 Introduction

In the last decades, computational science has progressed in becoming a reliable prediction
tool for the analysis of real-world phenomena. To solve complex problems accurately yet
efficiently, numerical methods often need to resort to strategies that can reduce model com-
plexity, and thus the computational burden, while carefully balancing the computational
power and fidelity to a high-complexity reference model. Model Order Reduction (MOR)
methods include a wide class of numerical and analytical methodologies [10, 16, 30, 31]
which achieve this goal, for instance, by reducing the dimension of the state space of the
problem, leading to an improvement in the computational performance with respect to
classical numerical methods, such as finite elements or finite volumes. This approach has
proven successful in reducing the computational burden associated with complex dynam-
ical systems, e.g., in fluid dynamics applications, high-dimensional inverse problems and
uncertainty quantification [6, 17, 19].

Efficient numerical simulations and MOR techniques turn out to be particularly relevant
in the presence of dynamic processes acting on space and time scales much smaller than
those tied to the final quantities of interest. In such cases, a Direct Numerical Simulation
of such fine-scale dynamics would constrain the resolution of the space-time discretisa-
tion to a level at which the computational cost becomes unaffordable. This is the case,
for example, of porous media [5], where the fine-scale features have characteristic spatial
dimensions much smaller than the ones associated with the problem of interest (e.g., single
pore versus aquifer/reservoir scales). These problems are typically tackled by resorting to
averaged models, that implicitly represent pore-scale features through effective parameters.
This unavoidably leads to a loss of information which, sometimes, may limit the modelling
properties of averaged models.

In this work, we propose a new numerical approach that is aimed at capturing efficiently
small- and large-scale dynamics, combining MOR with a proper multiscale formulation.
We consider, as a first application, standard advection-diffusion-reaction equations. Our
approach is based on the consideration that often the advective field is characterized by
a preferential direction and yet exhibits smaller but non-negligible local fluctuations and
variations in intensity along the other directions. This is the case, for example, of geophys-
ical flows, such as in rivers and aquifers, or fluid dynamics in pipes and blood vessels. In
these cases, transport exhibits large scale dynamics along the flow stream direction and fine
scale transverse dynamics in the directions perpendicular to the flow. Thanks to the multi-
scale structure, the problem can be tackled by a two-scale expansion or a volume-averaging
technique to derive macroscopic transport equations where the effect of the velocity spatial
variations are taken into account through an effective diffusion term [3, 28, 21], known as
hydrodynamic (or Taylor) dispersion [35]. This upscaling is based on retaining the lowest
order terms in a two-scale asymptotic expansion. Extensions of upscaling approaches, that
can accurately approximate pre-asymptotic and high-order features such as mixing and re-
actions (see, e.g., [29, 34]), are of great relevance in many applications, such as chemically
or biologically activated reactive processes, and can be coupled with solute transport [8].
In this context, the key challenge is to be able to capture not only the average concentration
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in the system but also local time- and space-dependent fluctuations induced by small-scale
features of the problem, e.g., the advective field spatial arrangement or the local geometry.

The method presented in this work stems from the Hierarchical Model (HiMod) re-
duction introduced in [25] and combines it with two-scale asymptotic expansions and ho-
mogenisation theory. This combination allows us to take advantage of the mathematical
structure of the problem at hand to build an optimal reduced setting. In line with our objec-
tives, HiMod focuses on problems where a dominant direction can be recognized. Model
reduction is achieved by splitting the solution into longitudinal and transverse components,
by employing a separation of variables. In the original formulation in [25], HiMod em-
ploys finite elements along the longitudinal axis and a spectral approximation along the
transverse direction. For the spectral approximation, we propose here a problem-specific
set of modal basis functions derived from the homogenisation procedure, tailored to ap-
proximating the transverse dynamics. The use of homogenisation and perturbation ex-
pansions to derive multiscale numerical methods has been extensively investigated in the
literature across fluid and solid mechanics applications [1, 11, 14, 21]. Here, we consider
a formulation tailored for directional transport settings. Taking advantage of this partic-
ular setup, we analytically derive a set of recursive equations that can be used to obtain
effective transverse modes for the spectral expansion employed by HiMod. This combined
approach is named here HIgh order Projection-based HOMogEnisation, here introduced
as HiPhomε model reduction, where ε is the standard symbol used in perturbation-based
expansions. Through this approach, an enriched one-dimensional model is obtained, which
is significantly less computationally intensive than the full two- or three-dimensional ap-
proximations, while being richer than a simple one-dimensional approximation, such as
the one yielded by a standard two-scale homogenisation approach. Notably, HiPhomε ap-
proach includes the effects of the transverse dynamics through high-order modes allowing
a very accurate description of the transitions towards the self-similar asymptotic long-time
long-space concentration profiles.

The work is organized as follows. In section 2 we introduce the two reduction ap-
proaches HiPhomε relies on, namely the HiMod formulation in section 2.1 and the ho-
mogenisation approach in section 2.2. The reference setting is a standard scalar advection-
diffusion-reaction problem. In section 3 we generalize the two-scale expansion carried out
in section 2.2 to an arbitrary order, and we explicitly prove a recursive formula to com-
pute the physic-based modal basis characterizing a HiPhomε expansion. We formalize the
HiPhomε approach in section 4, while we numerically assess the associated performance
in section 5, both in a steady and in an unsteady regime. The outperformance of HiPhomε
with respect to a standard HiMod reduction is verified for all the considered case studies.

2 Problem statement and background

We identify the computational domain with a long and thin rectangle defined by

Ωε :=
{
(x, z) ∈ R2 : 0 < x < L, − l

2
< z <

l

2

}
, (1)
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where the length L and the width l of the domain are such that ε := l/L≪ 1. In particular,
we distinguish the following three portions of the boundary, ∂Ωε, of Ωε

Γi
ε :=

{
(x, z) ∈ R2 : x = 0, − l

2
≤ z ≤ l

2

}
,

Γw
ε :=

{
(x, z) ∈ R2 : 0 < x < L, z = − l

2
,
l

2

}
,

Γo
ε :=

{
(x, z) ∈ R2 : x = L, − l

2
≤ z ≤ l

2

}
,

(2)

coinciding with the inflow, the wall and the outflow boundary, respectively.
As a reference differential problem, we consider a standard unsteady scalar advection-
diffusion-reaction (ADR) problem, namely

∂tc+ Lzc = f in Ωε × (0, T ]

Dε∇νεc = 0 on Γw
ε × (0, T ]

c = cB on Γi
ε × (0, T ]

Dε∇νεc = 0 on Γo
ε × (0, T ]

c = c̃ in Ωε × {t = 0},

(3)

where c = c(x, z, t) is the (unknown) solute concentration; Lz is the spatial differential
operator defined by

Lz := −∇ · (Dε∇) + uuu · ∇+ σ, (4)

with Dε ∈ R the diffusion coefficient, uuu = [u(z), 0]T the advective field, here assumed
to coincide with an axial flow, σ ∈ R the reaction coefficient; f ∈ R denotes the forcing
term; cB ∈ R is the non-homogeneous Dirichlet data; c̃ ∈ R identifies the initial value
of the concentration, here taken identically null for simplicity; ∇νε denotes the gradient
along the normal direction to the boundary of Ωε, νε being the unit outward normal vector
to ∂Ωε. In particular, we consider advection-dominated problems, so that the global Péclet
number for mass transfer

Pe :=
ūL

2Dε
(5)

with u the average axial velocity, becomes larger and larger for ε going to zero, where
we have assumed both u and L to be O (1) and Dε := εD, with D = O (1) (namely,
Dε = O (ε)), so that Pe = O

(
ε−1

)
.

2.1 HiMod reduction

Hierarchical Model (HiMod) reduction applies to the weak form of the full problem of
interest, i.e., with reference to problem (3), to the formulation

∀t > 0 find c(t) ∈ V :
(
∂tc(t), v

)
+ a(c(t), v) = F(v) ∀v ∈ V, (6)
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with c(0) = 0, and where V is the Sobolev space, H1
Γi
ε
(Ωε), of the H1(Ωε)-functions with

null trace on the inflow boundary [13]; a(·, ·) : V × V → R is the bilinear form given by

a(c(t), v) =

∫
Ωε

[
Dε∇c(t) · ∇v + uuu · ∇c(t)v + σc(t)v

]
dΩε;

F(·) : V → R is the linear form defined by

F(v) =

∫
Ωε

fv dΩε − a(RcB , v) dΩε,

with RcB the lifting of the boundary value cB in (3). Suitable regularity hypotheses are
advanced on the problem data in order to ensure the existence and the uniqueness of the
solution to the weak form (6) by the Lax Milgram lemma [13].

The domain geometry HiMod reduction moves from the assumption that the computa-
tional domain exhibits a fibre-bundle layout. We observe that domain Ωε in (1) is compliant
with this requirement. This geometric hypothesis leads us to distinguish between a one-
dimensional (1D) supporting fibre, aligned with the main dynamics of the problem, and a
set of transverse fibres, parallel to the secondary dynamics. Thus, domain Ωε in (3) can be
characterized by the relation

Ωε =
⋃

x∈Ω1D
ε

{x} × γx, (7)

with Ω1D
ε the supporting fibre, and γx ⊂ R the transverse fibre associated with the generic

point x ∈ Ω1D
ε . For simplicity, fibre Ω1D

ε is here taken rectilinear, i.e., Ω1D
ε = [xi, xo] ⊂ R,

where subscript i and o stands for inflow and outflow, respectively. We refer to [23, 9] for
the case of a bent supporting fibre.

Successively, HiMod reduction simplifies computations by mapping the physical do-
main Ωε into a reference environment, Ω̂. This is performed first by introducing, for any
x ∈ Ω1D

ε , the map ψx : γx → γ̂ between the transverse fibre γx and the reference one
γ̂ = [0, 1]. Then, maps ψx are exploited to define the global map Ψ : Ωε → Ω̂, with
Ω̂ = ∪

x∈Ω̂1D{x} × γ̂, Ω̂1D being the reference supporting fibre. In particular, we assume
that map Ψ does not modify the such a fibre, so that Ω̂1D ≡ Ω1D

ε and the generic point
(x, z) in Ωε is associated with the point (x̂, ẑ) in Ω̂, with x̂ = x and ẑ = ψx(z). In addition,
since we limit to the 2D case, map ψx coincides with the linear transformation

ẑ = ψx(z) =
1

|γx|
z, (8)

with |γx| the length of the transverse fibre. Some regularity assumptions are advanced
on maps ψx and Ψ (i.e., ψx is assumed to be a C1-diffeomorphism, while Ψ is taken
differentiable) in order to avoid the presence of irregularities (such as kinks) along ∂Ωε.
Finally, the fibre decomposition characterising Ωε is inherited by the domain boundary so
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that the three boundary portions in (2) can be defined as

Γi
ε = {xi} × γxi , Γw

ε =
⋃

x∈Ω1D
ε

{x} × ∂γx, Γo
ε = {xo} × γxo , (9)

and, analogously for the corresponding boundaries, Γ̂i, Γ̂w, Γ̂o, in Ω̂.

The HiMod space HiMod reduction approximates the dynamics aligned with the main
and with the transverse fibres by means of a different discretisation, according to a separa-
tion of variables paradigm.
Following the seminal papers [12, 25], we employ a finite element discretisation along the
x-axis, while resorting to a modal expansion to describe the dynamics parallel to the z-
direction. With this aim, we associate the discrete space V1D of the continuous piecewise
linear polynomials with a partition, Th, of the supporting fibre Ω1D

ε into subintervals, and
the basis {φk}k∈N of modal functions which satisfy an L2(γ̂)-orthonormality condition
with the reference transverse fibre. Approximations alternative to finite elements can be
adopted to discretise the mainstream dynamics (we refer, for instance, to [9] where the au-
thors employ an isogeometric approximation of the leading dynamics for haemodynamic
modelling in 3D patient-specific geometries).
The boundary conditions on Γi

ε and Γo
ε are properly included in the space V1D, while

boundary data on Γw
ε have to be taken into account by the modal functions. In particular,

the imposition of the conditions on the lateral boundary via functionsφk deserves particular
care. To this aim, we adopt the educated basis approach proposed in [2] and successfully
validated in several practical contexts [15, 9]. The idea is to identify the modal functions
with the solution to an auxiliary (1D) Sturm-Liouville eigenvalue problem

Lsφk(ẑ) = λkφk(ẑ), (10)

solved on the reference fibre γ̂ and endowed with the same boundary conditions imposed
on Γw

ε . The modal basis φk imposes in an essential way the data to be assigned on the wall
boundary. In general, the differential operator Ls in (10) coincides with the symmetric part
of the operator Lz in (4). In the sequel, for simplicity, we choose Ls = ∂zz . A rigorous
convergence analysis for the educated HiMod reduction is available in [2].

Thus, the HiMod reduced space can be formalized as

Vm =

{
vm(x, z) =

m−1∑
k=0

ṽk(x)φk (ψx(z)) : ṽk ∈ V1D, x ∈ Ω1D
ε , z ∈ γx

}
. (11)

The modal indexm categorizes the space Vm in the hierarchy of reduced spaces. In particu-
lar, the value form is set by the user according to an a priori knowledge of the phenomenon
at hand or, rather, by means of an automatic selection driven, for instance, by an a poste-
riori modelling error analysis [26, 27, 24]. Moreover, the user can adopt the same number
of modal functions along the whole domain (uniform HiMod reduction), or locally tune
such a number in order to describe spatial heterogeneities without overloading the whole
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computational effort (we refer the interested reader to the piece-wise and to the point-wise
HiMod formulations in [22, 24, 27]).

Finally, conformity and spectral approximability hypotheses are introduced on the Hi-
Mod space Vm, together with a standard H1(Ω1D

ε )-density requirement on the discrete
space V1D in order to make the HiMod formulation well-defined.

The HiMod reduced problem The HiMod formulation of problem (6) can be stated as

∀t > 0 find cm(t) ∈ Vm :
(
∂tcm(t), vm

)
+ a(cm(t), vm) = F(vm) ∀vm ∈ Vm, (12)

where cm(0) = 0.The assumptions advanced on spaces Vm and V1D ensure the well-
posedness of problem (12), together with the convergence of the HiMod solution cm(t) to
the weak solution c(t) in (6), for any t > 0 (for more details, we refer to [25]).

The computational advantage of the HiMod reduction becomes evident when consid-
ering the algebraic counterpart of formulation (12). To this aim, we exploit the modal
expansion

cm(t)(x, z) =

m−1∑
k=0

c̃k(t)(x)φk(ψx(z)) =

m−1∑
k=0

Nh∑
s=1

c̃ks(t)θs(x)φk(ψx(z)) (13)

for the HiMod concentration in (12) in terms of the modal functions and of the finite ele-
ment basis, {θs}Nh

s=1 with Nh = dim(V1D), and we pick the test function vm as θiφj , with
i = 1, . . . , Nh and j = 0, . . . ,m − 1. Concerning the time-dependence, we resort to a
standard θ-method, after discretising the time window [0, T ] with the times {tn} (see [27]
for an alternative time discretisation based on finite elements).
Thus, at each tn, we are led to solve a linear system of order mNh whose unknowns coin-
cide with the coefficients c̃nks = c̃ks(t

n), for k = 0, . . . ,m − 1 and s = 1, . . . , Nh. This
is equivalent to state that, for each time tn, the full order problem (6) reduces to a system
of m coupled 1D problems, which are solved along the supporting fibre Ω1D

ε , and whose
coefficients collect information along the transverse fibres γx.
In particular, the HiMod stiffness matrix exhibits a block-sparsity pattern to be advanta-
geously exploited when solving the reduced system [25].

We remark that the inclusion of the transverse dynamics in the HiMod model auto-
matically promotes the HiMod approximation in terms of reliability when compared with
standard 1D reduced models. In addition, the possibility to deal with 1D problems instead
of higher-dimensional settings relieves the user from certain computationally demanding
steps, such as the meshing of the computational domain (now limited to a 1D partition of
Ω1D
ε ), with a consequent meaningful gain in terms of efficiency, in particular when com-

pared with full 3D models [2, 15, 7, 9].

2.2 Homogenisation via a two-scale asymptotic expansion

In this section, we highlight how a standard homogenisation technique leads to separate
variables, analogously to a HiMod reduction. This compliance will provide us the motiva-
tion to formalize the HiPhomε method.
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According to a standard homogenisation process for axial flows [18], problem (3) is
decomposed into a macro-scale contribution, associated with the main flow dynamics, i.e.,
parallel to the x-direction, and a micro-scale term, which takes into account the local fluc-
tuations along the perpendicular z-direction. By means of the multiscale parameter ε, the
dependence of the solution c in (3) on the macro- and on the micro-scale is explicitly taken
into account by introducing the rescaled transverse (or fast) variable y := z

ε so that now
c = c (x, y, t; ε).
Consistently, domain Ωε in (1) and the boundaries in (2) are redefined as

Ω := (0, L)×
(
−L
2
,
L

2

)
,

Γi := {0} ×
(
−L
2
,
L

2

)
, Γw := (0, L)×

{
−L
2
,
L

2

}
, Γo := {L} ×

(
−L
2
,
L

2

)
.

In this new coordinate system, the first order transverse derivative in (3) can be expressed
as ∂z · = ∂zy ∂y · = ε−1∂y ·, so that the differential operator Lz in (4) changes into

L := −εD(∂xx + ε−2∂yy) + u∂x + σ, (14)

where the specific choice made in (4) for the advective field (uuu = [u(z), 0]T ) together with
the assumption D = O (1) are exploited. Thus, problem (3) can be rewritten as

∂tc+ Lc = f in Ω× (0, T ]

εD∇νc = 0 on Γw × (0, T ]

c = cB on Γi × (0, T ]

εD∇νc = 0 on Γo × (0, T ]

c = 0 in Ω× {t = 0},

(15)

where ν denotes the unit outward normal vector to the boundary ∂Ω of Ω.
Now, by assuming c to be regular enough with respect to ε, we asymptotically expand the
solution to problem (15) as

c(x, y, t; ε) = c0(x, y, t) + εc1(x, y, t) + ε2c2(x, y, t) +O(ε3). (16)

A similar expansion could be adopted also with respect to the time variable. However,
following [3], we neglect such an issue, being beyond the goal of the paper.
It is standard to prove that the first term in the expansion depends only on the macro-scale,
namely c0 = c0(x, t) (see (21)).

Goal of the homogenisation process is to exploit expansion (16) to commute prob-
lem (15) into an averaged equation which models the effective concentration ce(x, t) :=
c0(x, t) + εc1(x, t), with

c1(x, t) :=
1

L

∫ L
2

−L
2

c1(x, y, t) dy, (17)
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the y-average of c1(x, y, t) in (16). The dependence of ce on the fast variable y is removed,
the micro-scale contribution being approximated by the averaged term c1(x, t). We will
show that the effective concentration ce turns out to be the solution to a 1D problem which
is solved along the x-direction (see equation (37)), being associated with the macro-scale
only.

Now, by replacing expansion (16) into the differential equation in (15), we have

∂tc0 + ε∂tc1 = εD∂xxc0 + ε−1D∂yyc0 +D∂yyc1+

+ εD∂yyc2 − u∂x (c0 + εc1)− σ(c0 + εc1) + f +O(ε2),
(18)

while the boundary conditions become

D
(
∂yc0 + ε∂yc1 + ε2∂yc2

)
= O(ε3) on Γw,

c0 = cB on Γi,

D∂xc0 = 0 on Γo,

(19)

with c0 = 0 at the initial time. In particular, as shown below, the boundary data on Γi and
Γo are not instrumental to the homogenisation process, so that the expansion (16) is only
partially involved in (19)2,3.

The homogenisation process works as follows. We collect the terms in (18)-(19) ac-
cording to the successive powers of ε (notice that we pair the terms of order i on Ω with the
ones of order i + 1 on the boundary to comply with the same order of magnitude). Thus,
we obtain a differential problem for each order i of ε, whose solution is denoted by ci+1.
We proceed order by order, by focusing on low orders in this section:

• order −1 (ε−1 in Ω; ε0 on ∂Ω):

D∂yyc0 = 0 in Ω,

D∂yc0 = 0 on Γw.
(20)

Equation (20) identifies the solution c0 up to a constant, and it confirms that c0 does
not depend on y, namely

c0 (x, y, t) = c0 (x, t) . (21)

• order 0 (ε0 in Ω; ε1 on ∂Ω):

∂tc0 −D∂yyc1 + u∂xc0 + σc0 = f in Ω,

D∂yc1 = 0 on Γw.
(22)

Integrating the differential equation divided by L with respect to y on the interval
[−L

2 ,
L
2 ], and using the boundary condition, we obtain the so-called leading order

equation
∂tc0 + u∂xc0 + σc0 = f in (0, L)× (0, T ] , (23)

9



being σ and f constant, and where the average velocity u along the transverse sec-
tion is defined according to (17) (notice that u is a constant, the physical velocity
field being independent of x and t). We remark that, due to (21), equation (23) de-
pends only on the macro-scale independent space variable x, and characterizes the
leading behaviour of the concentration. As expected, the flow is driven exclusively
by the advection, while the effect of the diffusion appears at higher orders, due to the
assumption Dε = O(ε).
To obtain an expression for c1, we subtract equations (22) and (23), thus recovering
the boundary value problem

−D∂yyc1 + (u− u) ∂xc0 = −D∂yyc1 + u′∂xc0 = 0 in Ω,

D∂yc1 = 0 on Γw,
(24)

whose solution is still defined up to a constant. We take the average along the y-
direction while imposing the boundary data on Γw such that

0 = u′∂xc0. (25)

Then, we subtract (24) and (25) and we get

−D∂yyc1 +
(
u′ − u′

)
∂xc0 = 0 in Ω. (26)

Integrating once with respect to y, we have

D∂yc1 =
(
Φ(y)− u′y

)
∂xc0 + α, (27)

with Φ(y) the primitive of u′ with respect to y, and α = α(x, t) an integration
constant. Now, exploiting the boundary condition in (24), the constant α has to
satisfy the relations

α = −
(
Φ

(
−L
2

)
+ u′

L

2

)
∂xc0, (28a)

α = −
(
Φ

(
L

2

)
− u′

L

2

)
∂xc0. (28b)

Notice that the two relations do coincide, being u′ = L−1
[
Φ(L2 )− Φ(−L

2 )
]
. In

particular, plugging (28a) into (27), we obtain

D∂yc1 =

[
Φ(y)− Φ

(
−L
2

)
−

(
L

2
+ y

)
u′
]
∂xc0 (29)

that, after integrating again along y, becomes

c1 (x, y, t) =
1

D

[∫
Φ(y) dy − Φ

(
−L
2

)
y −

(
L

2
y +

y2

2

)
u′
]
∂xc0 + b1, (30)
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with b1 = b1(x, t) an integration constant.

Thus, in the first contribution on the right-hand side, the dependence of c1 on x and
y can be separated into the derivative, ∂xc0 (x, t), with respect to the macro-scale,
which depends on x only, and a term, that we denote by χ̃1(y), depending on the fast
variable y and on the velocity profile, so that (30) becomes

c1(x, y, t) = χ̃1(y)∂xc0(x, t) + b1(x, t). (31)

Some hints about the computation of the integration constant b1 will be provided in
the next section when dealing with higher-order expansions.

• order 1 (ε in Ω; ε2 on ∂Ω):

∂tc1 −D (∂xxc0 + ∂yyc2) + u∂xc1 + σc1 = 0 in Ω,

D∂yc2 = 0 on Γw.
(32)

Integrating the differential equation in (32) with respect to y on the interval [−L
2 ,

L
2 ],

and using the boundary condition, we have

∂t

∫ L
2

−L
2

c1(x, y, t) dy − LD∂xxc0(x, t)

+

∫ L
2

−L
2

(
u∂xc1(x, y, t) + σc1(x, y, t)

)
dy = 0,

(33)

which can be rewritten in the form

∂tc1 −D∂xxc0 + u∂xc1 + σc1 = − 1

L

∫ L
2

−L
2

u′(y)∂xc1(x, y, t) dy, (34)

where we have applied the generic average-fluctuation splitting, f(x, y) = f(x) +
f ′(y), to function u, with f = f(x) the y-average according to (17) and f ′ = f ′(y)
the fluctuation contribution associated with the y-direction (notice that function u
depends on y only, so that u is constant while u′ = u′(y)).

The asymptotic expansions derived above are instrumental to formulate a transport
equation for the effective concentration ce = c0 + εc1. To this end, we sum the leading
order equation (23) with equation (34) multiplied by ε, to obtain

∂t (c0 + εc1)− εD∂xxc0 + u∂x (c0 + εc1) + σ(c0 + εc1) = f − ε

L

∫ L
2

−L
2

u′∂xc1 dy. (35)

Then, after exploiting relation (31), the average-fluctuation splitting for u′ in the integral
on the right-hand side, and the fact that u is constant, we can rewrite equation (35) as

∂tce = ∂x

[
− uce + εD

(
1 +

uχ̃1 − uχ̃1

D

)
∂xce

]
− σce + f, (36)
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the terms of order strictly greater than one being neglected. Thus, we are led to solve the
1D advection-diffusion-reaction problem associated with the macro-scale

∂tce = ∂x
[
− uce +Deff ∂xce

]
− σce + f in (0, L)× (0, T ] ,

ce = cB on {x = 0} × (0, T ] ,

Deff∂xce = 0 on {x = L} × (0, T ] ,

ce = 0 in (0, L)× {t = 0},

(37)

where the so-called Taylor dispersion coefficient,Deff := εD
[
1+(uχ̃1−uχ̃1)D

−1
]
≥ εD,

collects the model contribution along the transverse direction.
Equation (37) represents the outcome of the homogenisation process. The effective

concentration can be adopted as a 1D surrogate to the concentration c in (15). However,
ce is expected to offer a poorer approximation when compared with the HiMod solution in
(13), since the HiMod approximation preserves the dependence on the transverse direction
whereas ce definitely loses this information through the average (17).
For this reason, to settle the HiPhomε method, we will refer to an asymptotic expansion
such as the one in (31) rather than to the actual solution of the homogenisation process.
Indeed, c1 depends on both x and y according to the separation of variable paradigm driving
the HiMod expansion (13), in contrast to the effective concentration which is a function of
the x variable only.

3 High-order asymptotic expansions for axial flows

In this section we extend the two-scale expansion in the previous section to an arbitrary
order. To this aim, we follow what done in [4] where such an extension is limited to the
context of purely diffusive problems. Also in the high-order case, the goal we pursue
is to derive a separable structure for the solution to problem (15), with the aim of being
compliant with a HiMod discretization.

Starting from the results in Section 2.2, it follows that the first two terms of the expan-
sion in eq. (16) can be expressed as

c0(x, y, t) = χ∗
0(y)c0(x, t) = c0(x, t),

c1(x, y, t) = χ∗
1(y)∂xc0(x, t),

(38)

with χ∗
0 = χ∗

0(y) constant and here set, for simplicity, to 1 and

χ∗
1(y) =

1

D

[ ∫
Φ(y) dy − Φ

(
− L

2

)
y −

(L
2
y +

y2

2

)
u′ + β1

]
,

having assumed b1(x, t) = β1(x, t)∂xc0(x, t) in (30). To guarantee the uniqueness, it is
necessary to add an extra condition on χ∗

1. For simplicity, we impose

χ∗
1(0) = F (0) with F (y) :=

1

D

∫ [∫
u′(y) dy

]
dy (39)
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so that we have β1 = 0, being Φ(y) =
∫
u′(y) dy. Of course, other conditions (e.g., a

null average hypothesis or the assignment of a value at a specific point of the domain)
are allowed since not affecting the final result. In particular, moving from (20) and (24),
functions χ∗

0 and χ∗
1 are the solutions to problems

D∂yyχ
∗
0(y) = 0 in

(
−L
2
,
L

2

)
, with D∂yχ

∗
0

(
±L
2

)
= 0,

D∂yyχ
∗
1(y) = u′(y) in

(
−L
2
,
L

2

)
, with D∂yχ

∗
1

(
±L
2

)
= 0,

(40)

where χ∗
0 has been chosen equal to 1 among all the possible constant solutions, while χ∗

1

additionally satisfies condition (39).
The current goal is to derive an explicit expression for c2(x, y, t) analogous to the ones

in (38) for c0 and c1, starting from the differential problem in eq. (32). To this aim, we
adopt the following procedure:

1. We employ the definitions in eq. (38) for the previous orders, c0 and c1, in problem
eq. (32), so that we have

χ∗
1∂xtc0 −D (∂xxc0 + ∂yyc2) + uχ∗

1∂xxc0 + σχ∗
1∂xc0 = 0 in Ω,

D∂yc2 = 0 on Γw.
(41)

2. We exploit the leading order equation eq. (23) to replace the time derivative of c0 in
(41), to obtain

D∂yyc2 = χ∗
1∂x(f − u∂xc0 − σc0)−D∂xxc0 + uχ∗

1∂xxc0 + σχ∗
1∂xc0, (42)

namely,
D∂yyc2 =

(
u′χ∗

1 −D
)
∂xxc0, (43)

being ∂xf = 0 since f is assumed constant in (3), and after applying the average-
fluctuation splitting to u.

3. We subtract from eq. (43) the associated average along the y-direction while impos-
ing the boundary data on Γw, to get

D∂yyc2 =
(
u′χ∗

1 − u′χ∗
1

)
∂xxc0 =

(
u′χ∗

1

)′
∂xxc0, (44)

the average-fluctuation splitting being now applied to u′χ∗
1.

4. By mimicking the computations leading to (30), we can express c2 as

c2(x, y, t) = χ∗
2(y)∂xxc0(x, t), (45)

with χ∗
2 solution, up to a constant b2 = b2(x, t), to problem

D∂yyχ
∗
2 =

(
u′χ∗

1

)′ in
(
− L

2
,
L

2

)
, with D∂yχ∗

2

(
± L

2

)
= 0, (46)
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where constant b2 is fixed by the imposition of an extra condition analogous to the
one assigned to χ∗

1 in (39), after assuming b2(x, t) = β2(x, t)∂xxc0(x, t) (see Propo-
sition 3.1).

As a consequence, the asymptotic expansion eq. (16) truncated at the second order can
be reformulated as

c(x, y, t; ε) =
2∑

j=0

εjcj(x, y, t) +O(ε3)

= χ∗
0(y) c0(x, t) + ε χ∗

1(y) ∂xc0(x, t) + ε2 χ∗
2(y) ∂xxc0(x, t) +O(ε3)

=
2∑

j=0

εj χ∗
j (y) ∂xjc0(x, t) +O(ε3),

(47)
where ∂xj denotes the derivative of order j with respect to the independent variable x, with
∂x0 the identity operator. This means that the concentration c does coincide with a linear
combination of terms depending on (x, t) with coefficients depending on the y variable and
on the homogenisation parameter ε.
Relation (47) can be generalized to a higher order, as stated in the result below:

Proposition 3.1. For any ε, the solution c = c(x, y, t; ε) to the homogenised problem
eq. (15) does coincide with the asymptotic expansion

c(x, y, t; ε) :=

+∞∑
i=0

εici(x, y, t), (48)

with c0 the solution to the leading order equation (23) and with

ci(x, y, t) := χ∗
i (y) ∂xic0(x, t) i > 0, (49)

where function χ∗
i coincides, up to a constant, with the solution to the boundary value

problem

D∂yyχ
∗
i =

(
u′χ∗

i−1 −Dχ∗
i−2

)′ in
(
−L
2
,
L

2

)
, with D∂yχ

∗
i

(
±L
2

)
= 0 (50)

being χ∗
−2 = χ∗

−1 = 0, χ∗
0 = 1. In particular, to guarantee the uniqueness of the solution

to problem (50), we pick χ∗
i such that

χ∗
i (0) = Fi(0), (51)

with

Fi(y) :=
1

D

∫ [∫
ϕi(y) dy

]
dy (52)

and ϕi(y) = u′(y)χ∗
i−1(y)−Dχ∗

i−2(y).
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Proof. We proceed by induction. Statements eq. (49)-(51) are true for i = 0 (actually, in
Section 2.2 and in (45)-(46), we have explicitly derived these relations also for i = 1 and
i = 2, respectively where condition (51) is used to get rid of the definition up to a constant
for χ∗

1 and χ∗
2).

Now, we assume that relations eq. (49)-(51) are true for a generic index i and we prove
they still hold for the next index, i+ 1.
As a first goal, we derive the differential problem satisfied by ci+1, by generalizing com-
putations done to derive the separated representation (31) for c1. In (18), we collect terms
associated with εi in Ω and with εi+1 on ∂Ω, so that we have

∂tci = D∂xxci−1 +D∂yyci+1 − u∂xci − σci in Ω, (53)

completed by the boundary conditionD∂yci+1 = 0 on Γw. Now, we rewrite terms depend-
ing on both ci−1 and ci by exploiting (49) and by resorting to the leading order equation
(23) in order to get rid of the time derivative on the left-hand side. This yields

∂tci = −χ∗
iu∂xi+1c0 − χ∗

iσ∂xic0,

D∂xxci−1 = Dχ∗
i−1∂xi+1c0,

u∂xci = uχ∗
i ∂xi+1c0,

σci = σχ∗
i ∂xic0.

(54)

By replacing (54) in (53), we obtain

D∂yyci+1 =
(
u′χ∗

i −Dχ∗
i−1

)
∂xi+1c0. (55)

Consistently with the computations leading to eq. (44), we take the average of problem
(55) along the y-direction, while imposing the boundary data for ci+1 on Γw, which yields

0 =
(
u′χ∗

i −Dχ∗
i−1

)
∂xi+1c0. (56)

Then, we subtract eq. (55) and eq. (56) and we apply the average-fluctuation splitting to
u′χ∗

i −Dχ∗
i−1. This leads to the differential problem

D∂yyci+1 =
(
u′χ∗

i −Dχ∗
i−1

)′
∂xi+1c0. (57)

Now, on the right-hand side, we adopt the notation ϕi+1 =
(
u′χ∗

i −Dχ∗
i−1

)
, thus obtain-

ing
D∂yyci+1 = (ϕi+1 − ϕi+1)∂xi+1c0. (58)

After a first integration with respect to y, we have

D∂yci+1 = (Φi+1 − ϕi+1y)∂xi+1c0 + αi+1(x, t), (59)

with Φi+1 = Φi+1(y) =
∫
ϕi+1(y) dy the primitive of ϕi+1 with respect to y, and αi+1 =

αi+1(x, t) the integration constant. To compute αi+1, we exploit the boundary conditions
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satisfied by χ∗
j , for 1 ≤ j ≤ i, at y = ±L

2 (i.e., D∂yχ∗
j (±L

2 ) = 0), and by ci+1 on Γw (i.e.,
D∂yci+1 = 0 on Γw). It turns out that

αi+1(x, t) = −
(
Φi+1

(
±L
2

)
−
(
±L
2

)
ϕi+1

)
∂xi+1c0. (60)

The two expressions for αi+1 do coincide, thanks to the definition of ϕi+1 =
[
ϕi+1(

L
2 ) −

ϕi+1(−L
2 )
]
L−1. Thus, by substituting eq. (60) for the choice y = −L

2 into eq. (59), it
follows

D∂yci+1 =

[
Φi+1(y)− Φi+1

(
−L
2

)
−
(
L

2
+ y

)
ϕi+1

]
∂xi+1c0. (61)

Now, by integrating again with respect to y, we obtain

ci+1 =
1

D

[ ∫
Φi+1(y) dy − Φi+1

(
− L

2

)
y −

(L
2
y +

y2

2

)
ϕi+1

]
∂xi+1c0 + bi+1, (62)

with bi+1 = bi+1(x, t) an integration constant. In particular, we assume that bi+1 takes the
form bi+1(x, t) = βi+1(x, t)∂xi+1c0(x, t), so that (62) can be rewritten according to (49),
being

ci+1(x, y, t) = χ∗
i+1(y) ∂xi+1c0(x, t) (63)

with

χ∗
i+1 =

1

D

[∫
Φi+1(y) dy − Φi+1

(
−L
2

)
y −

(
L

2
y +

y2

2

)
ϕi+1 + βi+1

]
. (64)

To get rid of constant βi+1, we impose the extra condition

χ∗
i+1(0) = Fi+1(0), (65)

with Fi+1 defined according to (52), which leads to pick βi+1 = 0. By replacing the sep-
arated representation (63) for ci+1 into the differential problem (57) and into the boundary
condition D∂yci+1 on Γw, it turns out that function χ∗

i+1 solves the problem

D∂yyχ
∗
i+1 =

(
u′χ∗

i −Dχ∗
i−1

)′ with D∂yχ∗
i+1

(
± L

2

)
= 0, (66)

jointly with condition (65), namely χ∗
i+1 satisfies (50)-(51). This concludes the proof. □

Corollary 3.1 (separable representation in an axial flow regime). For any ε, the solution
c = c(x, y, t; ε) to the homogenised problem eq. (15) can be represented in a separated
way as

c(x, y, t; ε) =

+∞∑
i=0

χ∗
i (y)c

∗
i (x, t; ε), (67)

with
c∗i (x, t; ε) = εi∂xic0(x, t). (68)
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In particular, we can consider the truncated of order k of the asymptotic expansion in (67),
given by

Ck(x, y, t; ε) =
k∑

i=0

χ∗
i (y)c

∗
i (x, t; ε) +O

(
εk+1

)
. (69)

Proof. The asymptotic expansion (67)-(68) follows simply by exploiting the explicit defi-
nition (49) of coefficients ci in (48). □

4 The HiPhomεεε method

In the two previous sections, we have shown that both a HiMod discretisation and a high-
order asymptotic expansion lead to a representation for the solution to problem (3) charac-
terized by a separation of variables, which distinguishes between an axial and a transverse
contribution. This is evident by comparing equation (13) with the expansion in (69).
The main feature which discriminates the two modelling approaches consists in the se-
lection of the functions associated with the transverse dynamics. A HiMod discretisation
selects a-priori a set of modal basis functions (e.g., sinusoidal functions, Legendre poly-
nomials or, more in general, the solutions to the auxiliary Sturm-Liouville problem (10))
to model the transverse behaviour. On the contrary, a high-order asymptotic expansion
explicitly derives the set of functions {χ∗

j}, to approximate the lateral fluctuations with
respect to the longitudinal dynamics.

Starting from these considerations, we propose a new model reduction procedure that
we name HiPhomε (aka, HIgh order Projection-based HOMogenisation), which combines
HiMod reduction with a high-order asymptotic expansion. In more detail, we adopt func-
tions χ∗

i defined in Proposition 3.1 as modal basis functions to perform a HiMod discreti-
sation. The rationale behind this is to involve in the HiMod approximation a modal basis of
functions which are strictly related to the problem at hand. Indeed, by construction, func-
tions χ∗

i depend on the transverse distribution of the flow field as well as on the diffusion
coefficient.
To replace modes φk in (13) with the new basis of functions, we have to ensure that func-
tions χ∗

i are orthonormal with respect to the L2(γ̂)-scalar product. To this aim, we resort to
the Gram-Schmidt algorithm. For consistency with the reference domain Ω̂ employed in a
HiMod reduction, we map the vertical dimension [−L/2, L/2] of the homogenised domain
Ω into the HiMod reference fibre γ̂ = [0, 1] via the map Θ : [−L/2, L/2] → [0, 1] such
that Θ(y) = ẑ = L−1 (y + L/2), with ẑ and y the independent variable associated with
the transverse direction in Ω̂ and Ω, respectively. Thus, the new basis of modal functions
orthonormal on γ̂ turns out to be defined by

χ0(y(ẑ)) := 1, χi(y(ẑ)) :=
1

ai

χ∗
i (y(ẑ))−

i−1∑
j=0

pi,jχj(y(ẑ))

 , (70)
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with y(ẑ) = Lẑ − L/2,

pi,j :=

∫
γ̂
χ∗
i (y(ẑ))χj(y(ẑ)) dẑ, ai :=

∥∥∥χ∗
i (y(ẑ))−

i−1∑
j=0

pi,jχj(y(ẑ))
∥∥∥
L2(γ̂)

. (71)

Accordingly, we can introduce the HiPhomε reduced space

Vm,ε =

{
vm,ε(x, z) =

m−1∑
k=0

ṽk,ε(x)χk (y(ψx(z))) : ṽk,ε ∈ V1D, x ∈ Ω1D
ε , z ∈ γx

}
, (72)

so that the HiMod expansion in (13) is replaced by the HiPhomε approximation

cm,ε(t)(x, z) =
m−1∑
k=0

c̃k,ε(t)(x)χk (y(ψx(z))) =
m−1∑
k=0

Nh∑
s=1

c̃ks,ε(t)θs(x)χk (y(ψx(z))) .

(73)
At each time tn of the temporal discretisation, coefficients {c̃ks,ε(tn)} represent the ac-
tual unknowns of the HiPhomε discretisation. According to an offline paradigm, modal
functions χk can be precomputed once and for all, since independent of time. Then, the
associated HiPhomε stiffness matrix is assembled so that, at each tn, the reduced system
of order mNh defined in Section 2.1 is solved to provide coefficients c̃ks,ε(tn).

Remark 4.1. A cross-comparison between (73) and (69) hints an explicit relation between
coefficients c̃k,ε and c∗i . However, HiPhomε just computes functions χk to yield the modal
basis for the HiMod approximation, thus skipping the explicit computation of c0 and of the
associated derivatives.

Remark 4.2. In practice, to build the HiPhomε basis of functions {χi}, we compute func-
tions χ∗

i directly by exploiting formula (64), instead of solving the differential problem
(50)-(51), and then we proceed by applying the Gram-Schmidt orthonormalisation in (70).

Because of the problem-driven derivation, we do expect that the modal basis, {χk},
supporting a HiPhomε approximation turns out to be more informative when compared
with a completely general set {φk} of functions. The HiMod setting which is closest to
a HiPhomε discretisation is the educated basis approach in (10). In the next section, we
will compare the performance of these two methods in order to identify which is the best
choice.

5 Numerical assessment

In this section, we apply the HiPhomε model reduction to two benchmark case studies,
characterized by a different velocity profile, by considering both steady and unsteady con-
figurations. In particular, we will investigate the reliability of the HiPhomε reduction, both
from a qualitative and a quantitative viewpoint.
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5.1 The Poiseuille flow

The first configuration deals with the Poiseuille flow, namely a standard parabolic profile
that models a steady, axisymmetric, laminar flow induced by a (constant) pressure gradient
along the axial direction of an ideally infinite pipe.
In practice, we solve problem (3) in a finite computational domain Ωε = (0, 2)×(−ε/2, ε/2)
for ε = 0.2, with Γi

ε = {x = 0} × (−ε/2, ε/2), Γo
ε = {x = 2} × (−ε/2, ε/2), and

Γw
ε = [0, 2]×{ε/2, ε/2}, and we assume to be in the presence of a stationary regime (i.e.,
c = c(x, z)). We set the velocity field as

u = [u(z), 0]T =

[
2v̄

(
1−

(z
ε

)2)
, 0

]T
, (74)

with v̄ = 10; σ = 1; f = 0; cB = 1. Moreover, we set D = 1 consistently with
the assumption D = O(1) in Section 2.2, the diffusion coefficient being thus equal to
Dε = εD = 0.2.

Figure 1: Poiseuille flow test case: HiPhomε modal basis functions χi, for i = 1, . . . , 4
(left); comparison among HiPhomε and HiMod modal basis functions (right).

In the left panel of Figure 1, we show the four HiPhomε basis functions χi, for i =
1, . . . , 4. We observe that HiPhomε employs symmetric functions only, due to the symme-
try of the velocity profile with respect to the x-axis.
In the right panel of the same figure, we compare the HiPhomε modes χ1 and χ2 with the
HiMod educated modal basis functions φi, for i = 1, 2, 4, which are derived by setting
LS = D∂yy in (10). It is evident the considerable similarity between χ1 and φ2 as well
as the good matching between χ2 and φ4. The HiMod modal basis includes also non-
symmetric functions (see, e.g., mode φ1 in the figure), which turn out to be redundant.
This justifies the discrepancy in the numbering of the matching HiPhomε and HiMod basis
functions. The expectation is that HiMod involves a higher number of modal functions with
respect to the HiPhomε approach in order to guarantee a certain accuracy to the reduced
solution (compare Figures 4 and 5).

For comparison purposes, we adopt as reference solution the (full) approximation to
problem (3) yielded by a linear finite element scheme associated with an unstructured uni-
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Figure 2: Poiseuille flow test case: contour plot of the reference solution (top left) and of
the HiPhomε approximation for m = 1 (top-right), and m = 2, 3 (bottom, left and right).

Figure 3: Poiseuille flow test case: contour plot of the HiMod approximation for m = 1, 2
(top, left and right), and m = 3, 4 (bottom, left and right).

form tessellation of Ωε consisting of 338202 triangles (see the top-left panel in Figure 2). It
is evident that the concentration field deforms according to the imposed parabolic velocity
profile.

For the HiPhomε and HiMod reduction procedures we approximate the main dynam-
ics by employing linear finite elements based on a uniform partition of the supporting fibre
Ω1D
ε , with h = 0.0125, while resorting to an increasing number of modes to describe the

transverse dynamics. Figures 2 and 3 show the HiPhomε and the HiMod approximation,
respectively, for different choices of the modal index m. From a qualitative viewpoint, the
solutions yielded by the two reduction procedures are very similar, for a fixed number of
modes. Figures 4 and 5 offer a more quantitative comparison between the HiPhomε and
the HiMod approximations, by showing the spatial distribution of the absolute error be-
tween the reference finite element approximation and the HiPhomε and HiMod solution,
respectively. Notably, for HiMod we report results obtained with odd values of m to con-
sider solutions embedding an increasing number of symmetric modes. The HiPhomε error
is mainly localized close to the inlet and the outlet boundaries of the domain (see Figure
4). As expected, the discrepancy between the full and the reduced solution decreases when
increasing the modal index. For instance, when m = 2 some visible difference in the
HiPhomε solution curvature as compared to the reference solution (compare the top-left
and the bottom-left panels in Figure 2). This is reflected by values of the local error of the
order of 10−3 close to inlet and outlet boundaries (see Figure 4 top right). When increasing
the number of modes, the error progressively reduces to the order 10−5 in the majority of
the spatial domain (see Figure 4 bottom right).
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Figure 5 shows that the HiMod reduction requires additional modal functions with respect
to the HiPhomε approach to reach a certain accuracy. Notably, employing 7 educated
modal functions yield a modelling error which on average is O(10−4). Moreover, the er-
ror associated with the HiMod reduction is essentially independent of x. In contrast, the
HiPhomε approximation displays an uneven distribution of errors along the x-axis with
maximum values localized close to the inlet and outlet boundaries.

Figure 4: Poiseuille flow test case: spatial distribution of the absolute modelling error
associated with the HiPhomε approximation for m = 1, 2 (top, left and right) and m = 3,
4 (bottom, left and right).

Figure 5: Poiseuille flow test case: spatial distribution of the absolute modelling error
associated with the HiMod approximation for m = 1, 3 (top, left and right) and m = 5, 7
(bottom, left and right).

5.1.1 Convergence analysis

In this section, we numerically investigate the convergence of the error associated with the
HiPhomε approximation, a theoretical analysis being beyond the goal of the paper. To this
aim, we evaluate the modelling error, ∥c − cm,ε∥L2(Ωε), with respect to the L2(Ωε)-norm
as well as the Quantity of Interest (QoI) ∥c∥L2(Ωε), by defining the error J(c, cm,ε) :=
|∥c∥L2(Ωε) − ∥cm,ε∥L2(Ωε)|. The selected QoI is directly related to the scalar dissipation
rate, which measures the solute mixing within the domain [8].

Figure 6, left shows the L2(Ωε)-norm of the modelling error associated both with the
HiPhomε and the HiMod discretisation as a function of the number of modes and for two
different choices of the step size used to discretise the supporting fibre Ω1D

ε . As expected
the accuracy of both the reduced solutions decreases with h and increases with m, as de-
tected by the error trends. When increasing the number of modes m the error values are
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Figure 6: Poiseuille flow test case: L2(Ωε)-norm of the modelling error associated with
the HiPhomε and the HiMod approximations as a function of m for different choices of
h (left) and as a function of h for different choices of m (right). The dot lines provide a
reference trend for the convergence rate.

independent of the grid size h for small m, but tend to display an h-dependent asymptotic
error value attained for large number of modes (large m). This indicates a stagnation of the
approximation error taking place when the longitudinal approximation error is dominant
over the modal one. When considering the same value of h, the asymptotic error value
is the same for both approaches. However, HiPhomε converges faster to the asymptotic
value, as the method exhibits a faster convergence as compared to HiMod. Finally, the
step-wise pattern trend characterising the HiMod error highlights the redundancy of the
non-symmetric HiMod basis functions, i.e. error drops are associated only with odd values
of m, these latter corresponding to the occurrence of symmetric basis functions (see Fig-
ure 1).
The right panel in Figure 6 displays the L2(Ωε)-norm of the HiPhomε and of the HiMod er-
ror as a function of the discretisation size h, when considering a different number of modal
functions. This time we observe a stagnation of the error value for small h, where the error
is dominated by inaccuracies in capturing the transverse behaviour. The HiPhomε allows
attaining smaller errors than HiMod when h → 0 with smaller values of m, thus displays
an optimal performance. For sufficiently large values of h, the order of convergence turns
out to be quadratic.

The left panel of Figure 7 shows the trend of J , i.e. the error associated with the QoI,
as a function of m and for two choices of h. The error quickly decreases when increasing
m and reducing h, before stagnating towards a constant value. This confirms the reliabil-
ity of the HiPhomε approach also in reproducing physically meaningful quantities for the
application at hand. For comparison purposes, we also show the trend of the L2(Ωε)-norm
of the HiPhomε error, for the same choices of m and h. The rate of convergence charac-
terising the two different error norms is very similar (about O(m−5)). In particular, the
HiPhomε approximation turns out to be particularly effective in surrogating the QoI (with
a gain of about one order of accuracy with respect to the evaluation of the L2(Ωε)-norm of
the modelling error).
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Figure 7: Poiseuille flow test case: error associated with the HiPhomε approximation with
respect to the L2(Ωε)-norm and the QoI as a function of m and for different choices of
h (left) and as a function of h for different choices of m (right). The dot lines provide a
reference trend for the convergence rate.

The right panel in Figure 7 shows the reduction of the HiPhomε error evaluated as a func-
tion of h and for m = 4 and m = 5. The choices for m are associated with a stagnation
trend in the left panel, for h = 0.05 and h = 0.025. The plot on the right highlights that an
improvement in terms of accuracy can be achieved by further reducing h, although such a
gain remains limited. Finally, the rate of convergence is quadratic for both the considered
error norms.

5.2 A boundary layer flow

We now test the HiPhomεmethod by modelling an ADR problem in a stationary configura-
tion characterized by a log-law velocity profile. This advective field is usually employed to
approximate the vertical profile of a stream-wise velocity in an open channel flow [32, 33].
Thus, we select the non-symmetric velocity profile

u = [u(z), 0]T =

[
1

k
ln(z + ε+ d) + C, 0

]T
, (75)

with k = 0.41 the Von Kármán constant, ε = 0.2, d = 0.001 and C = − log(d)/k
(see Figure 8). Problem (3) is approximated in the domain Ωε = (0, 2) × (−ε, ε), by
setting σ = 1, f = 0, cB = 1, and D = 1 so that Dε = 0.2. Finally, the boundary
portions coincide with Γi

ε = {x = 0} × (−ε/2, ε/2), Γo
ε = {x = 2} × (−ε/2, ε/2), and

Γw
ε = [0, 2]× {ε/2, ε/2}.

Figure 9, left gathers the HiPhomε basis functions χi, with i = 1 . . . , 4, which properly
take into account the non-symmetric shape of the velocity distribution. In the panel on
the right, we compare functions χ1, χ2 and χ3, with the corresponding HiMod educated
modes, φ1, φ2 and φ3, obtained by setting Ls = D∂yy in (10). The mismatch between
functions χi and φi becomes more evident for increasing values of i. In particular, for
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Figure 8: The boundary layer flow test case: log-law velocity profile.

Figure 9: The boundary layer flow test case: HiPhomε modal basis functions χi, for i =
1, . . . , 4 (left); comparison among the first 3 HiPhomε and HiMod modes (right).

this case study, both the HiPhomε and the HiMod modes are non-symmetric functions,
consistently with the flow features.

To evaluate the reliability of the HiPhomε discretisation, we take as reference solution
the (full) approximation to problem (3) based on linear finite elements, associated with an
unstructured mesh of Ωε constituted by 906640 triangles (see Figure 10, top-left). The
HiPhomε model reduction is carried out by discretising the leading dynamics with linear
finite elements based on a uniform partition of the supporting fibre with step size h =
0.0125, and by gradually increasing the cardinality of the HiPhomεmodal basis. Figure 10,
top-right and bottom shows the HiPhomε discretisation for m = 1, 2 and 3. It turns out
that 3 HiPhomε modes suffice to have a qualitatively reliable reduced solution.

Figure 11 displays the HiMod approximation yielded by preserving the same discreti-
sation as for the HiPhomε reduction along Ω1D

ε , while using the educated modal functions
in Figure 9, right to model the transverse dynamics. The correct trend of functions φi con-
siderably promotes the reliability of the HiMod approximation, 4 modes guaranteeing an
accurate reduced solution, at least from a qualitative viewpoint.
To make the comparison between HiPhomε and HiMod more quantitative, we provide in
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Figure 10: The boundary layer flow test case: contour plot of the reference solution (top
left) and of the HiPhomε approximation for m = 1 (top-right), and m = 2, 3 (bottom, left
and right).

Figure 11: The boundary layer flow test case: contour plot of the HiMod approximation
for m = 1, 2 (top, left and right), and m = 3, 4 (bottom, left and right).

Figures 12 and 13 the spatial distribution of the absolute modelling error characterising
the two reduction procedures. HiMod and HiPhomε yield errors of similar magnitude and
distribution for m = 1, 2, whereas, for m = 3, 4, the spreading of the error across the
whole domain exhibit a very different pattern for the two approaches, with a more regular
distribution for the HiMod discretisation.

Figure 12: The boundary layer flow test case: spatial distribution of the absolute modelling
error associated with the HiPhomε approximation for m = 1, 2 (top, left and right) and
m = 3, 4 (bottom, left and right).

5.2.1 Convergence analysis

We replicate the analysis carried out in Section 5.1.1, with the goal of verifying whether
a more challenging configuration compromises the decay of the error characterising the
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Figure 13: The boundary layer flow test case: spatial distribution of the absolute modelling
error associated with the HiMod approximation for m = 1, 2 (top, left and right) and
m = 3, 4 (bottom, left and right).

Figure 14: The boundary layer flow test case: L2(Ωε)-norm of the modelling error asso-
ciated with the HiPhomε and the HiMod approximations as a function of m for different
choices of h (left) and as a function of h for different choices of m (right). The dot lines
provide a reference trend for the convergence rate.

HiPhomε approach.
In Figure 14 we provide the converge history for the L2(Ωε)-norm of the HiPhomε

and of the HiMod modelling errors as a function of the modal index (left), for the choices
h = 0.05 and h = 0.025 of the discretisation step along the supporting fibre, and as a
function of h (right), for two different choices of m.

For the two selected spatial discretisation steps, HiPhomε exhibits a higher rate of
model convergence with respect to the HiMod reduction (O(m−4) versus O(m−3)). As
discussed in section 5.1.1. this result implies that the HiPhomε modelling error stagnates
earlier for lower values of m if compared to the HiMod reduction. In particular, the maxi-
mum accuracy guaranteed by the two reduction procedures is about the same for h = 0.05.
Vice versa, the HiPhomε approach outperforms the HiMod reduction for h = 0.025, with
an accuracy equal to 10−5 when using m = 6 modes to be compared with an error equal
to 9 · 10−4 when employing 11 educated modal basis functions. In addition, a cross-
comparison with the plot in Figure 6, left highlights a deterioration of the HiPhome con-
vergence rate, together with a monotonic decay of the HiMod error, all the educated modes
being now instrumental to the modelling of the transverse dynamics.
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As far as the finite element convergence is concerned, we still detect a superior per-
formance of HiPhomε when compared with HiMod, with a more striking mismatch with
respect to the Poiseuille configuration (see the right panel in Figure 6). For instance, about
one order of accuracy is gained by the HiPhomε reduction for m = 5 with respect to Hi-
Mod. Finally, the quadratic rate of convergence is preserved (O(h2)), in accordance with
the standard finite element theory.

Figure 15: The boundary layer flow test case: error associated with the HiPhomε approx-
imation with respect to the L2(Ωε)-norm and the QoI as a function of m and for different
choices of h (left) and as a function of h for different choices of m (right). The dot lines
provide a reference trend for the convergence rate.

Finally, in Figure 15 we investigate the capability of the HiPhomε reduced solution
in reproducing the QoI ∥c∥L2(Ωε), as done for the Poiseuille test case. Analogously to
Figure 7, we compare the convergence history for the error J with the trend of the L2(Ωε)-
norm of the HiPhomε modelling error, as a function of the modal index for two different
choices of h (panel on the left), and as a function of h for two diverse values of the modal
index (panel on the right).
Both the panels confirm that the HiPhomε model reduction is very sound in reproducing
the QoI, provided that at least 3 HiPhomε modes are used to approximate the transverse
dynamics, the discrepancy with respect to the L2(Ωε)-norm of the modelling error being
preserved, in line with results obtained with Poiseuille flow. The rates of convergence are
the same as in Figure 7.

5.2.2 The unsteady setting

As the last check, we address a time-dependent variant of the boundary layer flow config-
uration. To this aim, we select the interval (0, 0.4) as the time window of interest, and we
use the explicit Euler scheme to discretise the time dependence of c in (3), with a time step
∆t equal to 0.005. Concerning the other problem data, we preserve the same values as for
the steady case, except for the reaction coefficient that we set to zero.

The HiPhomε model reduction is performed by resorting to the first four HiPhomε
modes, while exploiting the same discretisation along Ω1D

ε as for the steady setting. Re-
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Figure 16: The unsteady boundary layer flow test case: contour plot of the HiPhomε ap-
proximation at the time instants t = 0.01, 0.05, 0.1, 0.15, 0.2, 0.3 (top-bottom, left-right).

Figure 17: The unsteady boundary layer flow test case: spatial distribution of the absolute
modelling error associated with the HiPhomε approximation at the time instants t = 0.01,
0.05, 0.1, 0.15, 0.2, 0.3 (top-bottom, left-right).

lying on expansion (73), we observe that the HiPhomε basis functions do not depend on
time. Moreover, from Proposition 3.1, it follows that the reactive term is not involved in
the differential problem (50)-(51) defining function χ∗

i (namely, functions χi). Thus, the
HiPhomε modes for the unsteady setting exactly coincide with the ones characterising the
steady simulation (i.e., with functions in Figure 9, left).

Figure 16 shows the contour plot of the HiPhomε approximation at 6 successive times.
The solute concentration develops until it reaches the steady state around t = 0.3. The
accuracy of the HiPhomε discretisation is evaluated by taking as reference solution the
linear finite element approximation of c in (3), associated with a uniform tessellation of
Ωε consisting of 906640 triangles, while preserving the time discretisation adopted for the
reduced model. As it is highlighted by Figure 17, the spatial distribution of the absolute
modelling error follows the propagation of the solute, by reaching a uniform distribution,
characterized by an order of magnitude equal to 10−4, when the steady regime is achieved
(bottom-right panel).

For comparison purposes, we approximate problem (3) also through the HiMod reduc-
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Figure 18: The unsteady boundary layer flow test case: spatial distribution of the absolute
modelling error associated with the HiMod approximation at the time instants t = 0.01,
0.05, 0.1, 0.15, 0.2, 0.3 (top-bottom, left-right).

tion, by adopting the same spatial discretisation along Ω1D
ε as well as the same time dis-

cretisation as for the HiPhomε approach, while modelling the transverse dynamics with the
first 4 educated modal basis functions derived by setting Ls = D∂yy in (10). From a qual-
itative viewpoint, the HiPhomε and the HiMod solutions are practically indistinguishable.
To provide a more quantitative cross-comparison between the two reduced solutions, we
analyze the spatial of the absolute HiMod modelling error in Figure 18. The corresponding
panels in Figures 17 and 18 show that the HiMod reduction guarantees a lower accuracy
with respect to the HiPhomε approach, in particular at intermediate times, i.e. at time levels
t ∈ [0.1, 0.2] (see Figures 17 - 18 middle row of plots and bottom left). The performance
of the HiPhomε reduction is confirmed by Figure 19 that displays the time evolution of
the L2(Ωε)-norm of the modelling error associated with both the HiPhomε and the HiMod
discretisations, with three different choices of the modal index m. Independently of the
selected reduction process, the modelling error diminishes when approaching the end of
the time window, with an evident improvement of the HiPhomε over the HiMod approxi-
mation in the pre-asymptotic dynamics. Finally, we remark that the discrepancy between
the HiPhomε and the HiMod procedures reduces when we increase the number of modal
functions employed in the modelling of the solute transverse dynamics.

6 Conclusions

In this work, we have extended the two-scale expansion for an advection-diffusion-reaction
problem in long rectangular domains, to arbitrary orders and interpreted it in the spirit
of a Hierarchical Model (HiMod) reduction, by exploiting the separable structure of the
asymptotic solution. This lead us to define a new approach, that we named HiPhomε
(HIgh-order Projection-based HOMogEnisation), which, indeed, combines HiMod with
the asymptotic expansion underpinning formal homogenisation theory.

We have verified the potential of this idea as a versatile, efficient model order reduction
method, with problem-specific basis functions that adapt to the underlying partial differ-
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Figure 19: The unsteady boundary layer flow test case: time evolution of the L2(Ωε)-norm
of the modelling error associated with the HiPhomε (solid lines) and the HiMod (dashed
lines) approximations, for different choices of m.

ential equation. The numerical results for the transport in a rectilinear domain are very
encouraging, capturing with high accuracy the evolution of the concentration profile in
the whole domain, including the regions near the boundaries where standard two-scale
homogenisation fails. This approach can therefore be considered both as an enriched
one-dimensional numerical method, as well as an extended projection-based high-order
homogenisation. In fact, by solving a system of coupled one-dimensional problems, it be-
comes possible to approximate the pre-asymptotic dynamic behaviour of the system and
thus increase the accuracy of standard homogenised solutions. In particular, the desired
accuracy can be achieved by properly balancing the discretisation along the mainstream
and the number of modes.

Future works include a more extensive theoretical analysis of the approximation prop-
erties of the corrector functions and the resulting separable expansions as well as the exten-
sion of HiPhomε towards three-dimensional curvilinear domains, more complex boundary
conditions and flow profiles that require non-standard two-scale asymptotics, as in [20].
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