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Abstract

Electrical resistivity tomography is a suitable technique for non-invasive monitoring of
municipal solid waste landfills, but accurate sensitivity analysis is necessary to evaluate the
effectiveness and reliability of geoelectrical investigations and to properly design data acquisi-
tion. Commonly, a thin high-resistivity membrane in placed underneath the waste to prevent
leachate leakage. In the construction of a numerical framework for sensitivity computation,
taking into account the actual dimensions of the electrodes and, in particular, of the mem-
brane, can lead to extremely high computational costs. In this work, we present a novel
approach for numerically computing sensitivity effectively by adopting a mixed-dimensional
framework, where the membrane is approximated as a 2D object and the electrodes as 1D
objects. The code is first validated against analytical expressions for simple 4-electrode ar-
rays and a homogeneous medium. It is then tested in simplified landfill models, where a 2D
box-shaped liner separates the landfill body from the surrounding media, and 48 electrodes
are used. The results show that electrodes arranged linearly along both sides of the perime-
ter edges of the box-shaped liner are promising for detecting liner damage, with sensitivity
increasing by 2-3 orders of magnitude, even for damage as small as one-sixth of the electrode
spacing in diameter. Good results are also obtained when simulating an electrical connection
between the landfill and the surrounding media that is not due to liner damage. The next
steps involve evaluating the minimum number of configurations needed to achieve suitable
sensitivity with a manageable field effort and validating the modeling results with downscaled
laboratory tests.

1 Introduction

Nowadays, the creation of new municipal solid waste landfills (MSWLFs) is discouraged in favour
of a circular economy, with minimum and maximum rates for recycling and landfilling, respec-
tively, set by regulatory agencies, especially in developed countries ([Com15]). As a consequence,
landfilling of municipal solid waste is declining, also thanks to the advancements made in re-
cycling, composting, incineration and energy recovery technologies ([NB21]). Nevertheless, it is
estimated that there are hundreds of thousands of active and closed landfills in the European
Union ([ea13, WR15]), as well as in the USA and Canada ([Gir14, Pet16]).

In recent MSWLFs, besides facilities to collect leachate and gas produced by waste degradation,
one or more high-density polyethylene (HDPE) liners are placed underneath the waste body to
prevent leachate leakage in the subsurface and potential groundwater contamination ([NB21]).
Monitoring the conditions of the liners and of the materials beneath the waste is crucial in landfill
management to avoid serious environmental concerns.
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DC geoelectrical surveys are well suited to investigate the electrical resistivity of the media
and can be effective in MSWLF monitoring as plastic liner is highly resistive and leachate in
very conductive because of high salt content. Both Electrical Resistivity Tomography (ERT)
and Induced Polarization (IP) have been employed for non-invasive assessment and monitoring of
landfills in field ([DRL10, DPC+13, TVFT14, DC17]), laboratory and numerical studies ([Fra97,
BD03, LRQ+19, AHZA20, PFZ+23]).

ERT investigations are typically conducted using multi-electrode resistivity meters capable of
automatically performing measurements with several quadrupoles. Each quadrupole consists of
four electrodes: two are used to inject electrical current into the subsurface, while the other two
measure the voltage difference. Besides the signal-to-noise ratio, the geometry of the quadrupole
controls the investigation depth and spatial resolution ([Lok22]) and can be modified to tailor the
sensitivity of geoelectrical measurements to specific subsurface features or target depths. Inte-
grating data from multiple quadrupoles helps to improve the accuracy of the resulting resistivity
images and thus offers enhanced imaging capabilities of subsurface structures.

However, considering the large size of the landfills and the fact that the electrodes are generally
placed around or above the waste body, the depth of investigation and the spatial resolution of the
geoelectrical technique can be very limited where they are most needed, namely below the waste
mass. It is well known that the sensitivity of the resistivity investigation rapidly decays away from
the deployed electrodes ([Lok22]).

In this work, we consider the sensitivity of ERT within the framework of a 3D mixed-dimensional
numerical model developed for MSWLF monitoring to reduce computational costs and address the
ill-posedness of the geoelectrical inverse problem ([FPF+23]). The paper is organized as follows:
In Section 2, we review the mixed-dimensional mathematical model, where the electrodes and the
HDPE liner are modeled as 1D and 2D elements, respectively. In Section 3, we first introduce
the classical equations of geoelectrical sensitivity and then extend them to the newly developed
mixed-dimensional framework. Section 4 describes some practical implementation aspects of the
code used for computing sensitivity. Section 5 presents numerical experiments, where sensitivity is
first computed for validation purposes and then in the presence of simplified landfill models. The
results of the numerical experiments are discussed in Section 6. Finally, conclusions are drawn in
Section 7.

The ultimate goal of our work is to provide a tool for computing DC sensitivity and evaluating
the effectiveness of geoelectrical investigations of MSWLFs. We aim to contribute to the ad-
vancement of non-destructive techniques for assessing the condition of HDPE liners and potential
contaminant plumes at MSWLF sites, with implications for enhanced environmental protection
and sustainable waste management practices.

2 The mathematical model

We adopt the mixed-dimensional model proposed by [FPF+23]. In this section, for completeness,
we recall the main points and the equations that are useful for the derivation of the sensitivity
presented in Section 3.

We indicate the domain, where the geoelectrical equations will be applied, as Υ ⊂ R3, with
boundary ∂Υ and outward unit normal n∂ . We consider the following main variables: J : Υ → R3,
the current density in [Am−2], and φ : Υ → R, the electric potential in [V]. We indicate with
x = (x0, x1, x2) a generic point.

The constitutive relation between the current density J and the electric potential φ is given
by Ohm’s law as follows

ρJ +∇φ = 0. (1)

where ρ is the electrical resistivity in [Ωm]. Gauss’ law, or charge conservation equation for J ,
can be expressed as

∇ · J = q, (2)
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with q : Υ → R being the source of volumetric charge density in [Am−3].
In the considered examples, Υ is the domain defined as Υ = R × R × T, where T is the

hypograph of a smooth function x2 = t(x0, x1) representing the elevation associated to a digital
terrain model, so T = hyp(t). For a flat terrain we have x2 = x2, with x2 ∈ R, and thus we get
T = (−∞, x2) and so Υ = R×R× (−∞, x2). However, this might be unpractical since unbounded
domains are complicated to be considered in numerical simulations. We know that if q has limited
support, then it can be shown that

lim
∥x∥→∞

φ(x) = 0 (3)

and, with a reasonable approximation, we restrict Υ to be a bounded domain and impose that at
its lateral and bottom boundaries the electric potential is null. On the top boundary, we have air
that, for our purposes, does not interact with Υ and we can assume J · n∂ = 0 on the top. We
decompose ∂Υ into two non-overlapping parts ∂tΥ and ∂oΥ, representing the top boundary (i.e.,
the digital terrain model) and the lateral and bottom boundaries, respectively.

By combining (1) and (2) the direct current problem can be written as: find (J , φ) in Υ such
that

ρJ +∇φ = 0

∇ · J = q
in Υ

φ = 0 on ∂oΥ

J · n∂ = 0 on ∂tΥ
(4)

The previous problem can be written in its primal formulation, setting σ = ρ−1 the electric
conductivity in [Sm−1] and, by substituting Ohm’s law into we obtain the conservation equation,
we get

∇ · (−σ∇φ) = q in Υ
φ = 0 on ∂oΥ

− σ∇φ · n∂ = 0 on ∂tΥ

It is possible to compute the solution φ at a point y, by using the σ-weighted Green’s function
gy, in [Ω], related to the point y. The Green function solves the following problem and is such
that

∇ · (−σ∇gy) = δy ⇒ φ(y) =

∫
Υ

qgy (5)

where δy is a point delta centered in y measured in [m−3]. The green function is a fundamental
tool in solving problems related to potential theory and electrostatics. It represents the potential
due to a unit point charge located at the point y ∈ Υ and, if Υ is unbounded, is such that

lim
∥x∥→∞

gy(x) = 0.

For a homogeneous three-dimensional half space, electrodes at the surface and unitary injected
current, the analytical expression for gy is well known

gy(x) =
ρ

2π∥x− y∥
,

On the contrary, except a few cases ([WT90]), the Green function has to be approximated when
the half space is not homogeneous.

In MSWLFs geoelectrical investigations, the electrodes used to inject current and measure
potential difference can generally be approximated as cylinders whose radius is much smaller than
their height. Moreover, the low-permeability HDPE liner (hereafter referred to as λ) used to
seal the waste body has a thickness (ϵ) of a few millimeters and covers an area of thousands
of square meters. Accordingly, it is numerically impractical to represent these objects with a
3D computational grid, so we follow the strategy proposed by [FPF+23] and approximate them
as lower-dimensional objects: the electrodes are represented as one-dimensional and the liner as
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a two-dimensional object. The grid now does not resolve the radius of the electrodes nor the
thickness of the liner and can be coarsened for computational efficiency.

This approach, however, requires to consider dedicated mathematical models. More in detail,
for a single electrode γ, the equations to compute Jγ and φγ , now expressed in [A] and [V], are
summarized as: find (jγ ,Jγ , φγ) in γ such that

ργJγ + πr2∇φγ = 0

∇ · Jγ − jγ = 0
in γ

Jγ · n∂ = 0 on ∂oγ

Jγ · n∂ = πr2J on ∂tγ

ργjγ + φγ − φ = 0 on γ

(6)

where jγ in [Am−1] is the current density exchanged between the electrode and the surrounding
domain Υ and ργ in [Ωm] is the resistivity of the electrode. The top boundary of the electrode ∂tγ
is in contact with the top boundary of the domain ∂tΥ, while ∂oγ is the portion of the electrode
boundary immersed into Υ.

Having assumed the 1D representation of a cylindrical electrode γ, in (6) it can be seen that
Ohm’s low in (1) is now averaged over each cross-section of radius r.

The source term q introduced in (4) is now given by q = −jγδγ , where δγ in [m−2] is a linear
delta function distributed along γ. This couples problems (4) and (6), being jγ the coupling
variable. Moreover, the boundary condition in (6) on ∂oγ is the tip-condition (no-current flow) at
the point immersed in Υ, while on ∂tγ we impose the injected current J , measured in [Am−2].

Also for the liner λ, represented as a two-dimensional object, we need a dedicated model to
compute Jλ in [Am−1] and φλ in [V]. Thus, we consider the following problem summarized as:
find (jλ,Jλ, φλ) in λ such that

ρλJλ + ϵ∇φλ = 0

∇ · Jλ − jλ = 0
in λ

Jλ · n∂ = 0 on ∂λ

ϵρλjλ + φλ − φ = 0 on λ
(7)

where jλ in [Am−2] and ρλ in [Ωm] are the current density exchanged between the liner and its
surrounding and the resistivity of the membrane, respectively.

In (7), it has been assumed that the liner has thickness much smaller than its other dimensions,
and so the equations had been integrated along every cross section of thickness ϵ. It is also assumed
that the boundary of the liner ∂λ does not exchange any current density with the surrounding.

3 Sensitivity

In geoelectrical sounding, the sensitivity is just a measure of how much the electric potential (i.e.,
the observed data) changes in response to a change in resistivity (i.e., the model parameters) within
the considered domain. In other words, the sensitivity is fully described by the Jacobian matrix
containing the first derivatives of the potential with respect to the model resistivities. Here, the
sensitivity analysis is performed through the use of Green’s functions, as mentioned in [MO90] and
[PV91]. In the next two subsections, we first recall the computation of sensitivity in a standard
equi-dimensional model and then we apply the same approach to our mixed-dimensional model.

3.1 Equi-dimensional sensitivity

Let us consider (4) with q = Iδx, which represents an electrode γ placed at position x and with
I the current exchanged. Accordingly, in (6) we have I = jγ .

Following the discussion in [MO90], we assume that Υ can be divided into N non-overlapping
subdomains ωi, that are the cells of the model and will form the computational grid. We can
express the resistivity, and similarly the electric conductivity, and its derivative as

ρ(x) =

N∑
k=1

ρkχk(x) and ∂ρi
ρ(x) = χi(x)
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where ∂ρi
⋆ = ∂⋆

∂ρi
for brevity and χi is the dimensionless indication function of the i-th subdomain

defined as

χi(x) =

{
1 if x ∈ ωi

0 otherwise

Since both variables depend on the resistivity of the system J = J(ρ) and φ = φ(ρ), we define
the sensitivity associated to the resistivity in the subdomain ωi as

Ji = ∂ρi
J and φi = ∂ρi

φ (8)

with dimension [ASm−3] and [V Sm−1]=[Am−1], respectively. We now differentiate the first
equation of (4) to get the following expression

∂ρi(ρJ +∇φ) = χiJ + ρJi +∇(∂ρiφ) = χiJ + ρJi +∇φi = 0

while the second equation of (4) becomes

∂ρi
∇ · J = ∂ρi

(Iδx) ⇒ ∇ · Ji = 0

Thus the system for computing the sensitivity of the current density and the electric potential is
given by: find (Ji, φi) such that {

ρJi +∇φi = −χiJ

∇ · Ji = 0
in Υ (9)

The above equations correspond to the equation (70a) in [MO90] and can also be written in the
primal formulation (by substituting the first equation into the second)

∇ · (−σ∇φi) = ∇ · (χiσJ)

We suppose that a second electrode is used to measure the electric potential at point y, thus we
need to compute the sensitivity not in all the domain but only in correspondence to that electrode.
We get that, by considering (5) now applied to φi, the expression is

φi(y) =

∫
Υ

∇ · (χiσJ)g
y = −

∫
Υ

χiσJ · ∇gy = σ2
i

∫
ωi

∇φ · ∇gy = Iσ2
i

∫
ωi

∇gx · ∇gy (10)

which is an easy way to compute the sensitivity of the i-th subdomain, measured at the observation
point located in y, since J is set in (6) and the previous expression depends only on the computation
of the Green functions associated with the two electrodes. In other terms, (10) is the relation to
compute the sensitivity of a pole-pole configuration ([PV91, LB95]).

Now, let us consider the case of a quadrupole, where two electrodes are used to circulate
the current density, while the other two measure the difference in electric potential. One of the
current electrodes is used to inject current density at point x0, while the other one extract the
same amount at point x1, clearly being x0 ̸= x1. The computation of the electric potential
requires to set q = I(δx0 − δx1) in (4). The computation of the sensitivity is now associated with
the difference of φ at the two measuring electrodes at position y0 and y1, with y0 ̸= y1. We have

φi(y0)− φi(y1) = −
∫
Υ

χiσJ · ∇gy0 +

∫
Υ

χiσJ · ∇gy1 = σ2
i

∫
ωi

∇φ · ∇gy0 − σ2
i

∫
ωi

∇φ · ∇gy1

since φ is computed with two delta functions, we can use again the σ-weighted Green functions
to express it as φ = I(gx0 − gx1) and thus the sensitivity can be computed as linear combinations
of pole-pole sensitivity functions (10) as

φi(y0)− φi(y1) = + Iσ2
i

∫
ωi

∇gx0 · ∇gy0 − Iσ2
i

∫
ωi

∇gx1 · ∇gy0

− Iσ2
i

∫
ωi

∇gx0 · ∇gy1 + Iσ2
i

∫
ωi

∇gx1 · ∇gy1 .

(11)
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In the case of multiple electrode configurations, a simple way to obtain the (approximate) global
sensitivity is to sum the absolute values of the sensitivities associated with each configuration
([Lok22]).

3.2 Mixed-dimensional sensitivity

Due to presence of the liner, we need to consider the computation of the sensitivity in the mixed-
dimensional framework. As done in the previous section, in (4) we set q = Iδx and consider also
(7) to describe the liner. In addition to the sensitivity associated to the variables in the 3D domain
Υ expressed in (8), we need to consider also the followings associated to the liner

jλ,i = ∂ρijλ and Jλ,i = ∂ρiJλ and φλ,i = ∂ρiφλ

where the the variation of ρi is associated to the subdomain ωi, which can be part of Υ or λ. The
sensitivities have dimensions [A Sm−3], [A Sm−2] and [V Sm−1]=[Am−1], respectively. Given the
partitioning of λ, the resistivity can be written in the following way

ρλ(x) =

Nλ∑
k=1

ρλ,kχλ,k(x)

with Nλ is the number of subdomains that compose the liner and χλ,k is the indication function of
the k-th subdomain ωλ,k. Let us first suppose that the variation of the resistivity ρi is associated
with a subdomain ωi that belongs to Υ. We have{

ρJi +∇φi = −χiJ

∇ · Ji = 0
in Υ

{
ρλJλ,i + ϵ∇φλ,i = 0

∇ · Jλ,i − jλ,i = 0
in λ (12)

while for the interface condition we get

∂ρi
(ϵρλjλ + φλ − φ) = ϵρλ∂ρi

jλ + ∂ρi
φλ − ∂ρi

φ = ϵρλjλ,i + φλ,i − φi = 0

The above set of equations can also be written in primal form as
∇ · (−σ∇φi) = ∇ · (χiσJ) in Υ

∇ · (−ϵσλ∇φλ,i)− jλ,i = 0 in λ

ϵρλjλ,i + φλ,i − φi = 0 on λ

Let us now extend the concept of the Green function to a mixed-dimensional framework. We call
the compound (gy, gyλ , w

y
λ), in [Ω], [Ω], and [m−2] respectively, the mixed-dimensional σ-weighted

Green function related to a point y, where a measuring electrode has been placed. The above
compound is the solution of the following problem

∇ · (−σ∇gy) = δy in Υ

∇ · (−ϵσλ∇gyλ)− wy
λ = 0 in λ

ϵρλw
y
λ + gyλ − gy = 0 on λ

(13)

The representation theorem [Sal16] can be extended to the mixed-dimensional case and gives us
the possibility to evaluate the sensitivity of the electric potential. If qλ and ϖλ are the source
terms associated to the equation in λ and at the interface between λ and its surrounding, we have

φi(y) =

∫
Υ

qgy +

∫
λ

qλg
y
λ −

∫
λ

ϖλw
y
λ =

∫
Υ

∇ · (χiσJ)g
y = σ2

i

∫
ωi

∇φ · ∇gy

and since φ can be expressed in term of Igx, we obtain the following expression for the sensitivity

φi(y) = Iσ2
i

∫
ωi

∇gx · ∇gy. (14)

6



Let us assume now that the variation of the resistivity is associated to a sub-domain of the
liner, named ωλ,i ⊂ λ, then the equations for the sensitivity are now given by{

ρJi +∇φi = 0

∇ · Ji = 0
in Υ

{
ρλJλ,i + ϵ∇φλ,i = −χλ,iJλ

∇ · Jλ,i − jλ,i = 0
in λ (15)

while for the interface condition we get

∂ρi
(ϵρλjλ + φλ − φ) = ϵχλ,ijλ + ϵρλ∂ρi

jλ + ∂ρi
φλ − ∂ρi

φ = ϵχλ,ijλ + ϵρλjλ,i + φλ,i − φi = 0

The above set of equations can also be written in primal form, in terms only of (φi, φλ,i, jλ,i), as
∇ · (−σ∇φi) = 0 in Υ

∇ · (−ϵσλ∇φλ,i)− jλ,i = ∇ · (χλ,iσλJλ) in λ

ϵρλjλ,i + φλ,i − φi = −ϵχλ,ijλ on λ

and thus the sensitivity can be computed now with the following expression

φi(y) =

∫
Υ

qgy +

∫
λ

qλg
y
λ −

∫
λ

ϖλw
y
λ =

∫
λ

∇ · (χλ,iσλJλ)g
y
λ +

∫
λ

ϵχλ,ijλw
y
λ

= −
∫
λ

χλ,iσλJλ · ∇gyλ + ϵ

∫
ωλ,i

jλw
y
λ = ϵσ2

λ,i

∫
ωλ,i

∇φλ · ∇gyλ + ϵ

∫
ωλ,i

jλw
y
λ

Finally, since φλ and jλ can be expressed in term of the Green function at x, we get

φi(y) = Iϵσ2
λ,i

∫
ωλ,i

∇gxλ · ∇gyλ + Iϵ

∫
ωλ,i

wx
λw

y
λ (16)

When a quadrupole is considered, the previous expressions can be extended in a similar manner
to (11).

4 Numerical model

In this section we discuss how to numerically approximate the computation of the sensitivity
described previously. In particular, in Subsection 4.1 we discuss the numerical scheme adopted
and the strategy to couple the grid across the different dimensions. Subsection 4.2 is devoted to
implementation aspects in order to speed up the computation of the sensitivity.

4.1 Discretization

We base our discretization choices on [PFA+23, FPF+23] and here we recall the main aspects.
For a more detailed and complete discussion refer to the aforementioned works.

For the approximation of the domain Υ, the liner λ and the electrodes γ, we consider the
computational grids made of simplices build with Gmsh [GR09]. For the numerical approximation
of the problem, for each dimension, we utilize the multi-point flux approximation (MPFA) scheme
[Aav07, Aav02], which is a finite volume scheme where the degrees of freedoms are one for each cell
of the grid. MPFA solves the problem in primal form, is convergent and guarantees local conser-
vation of the current density for each grid cell, as discussed in the aforementioned works, which is
an important property for our application, in particular in the computation of the sensitivity. To
compute the local gradient of the solution, we first calculate the normal component of the current
density at each face and then interpolate over the lowest-order Raviart-Thomas space [RT77].

A key aspect in the discretization is associated with the coupling between the dimensions,
in particular we consider a conforming mortar-based strategy for the coupling between the liner
and the surrounding material. This means that we consider additional grids at each side of the
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liner, conforming to the liner grid, where the interface variables (jλ or wλ) are defined. Their
degrees of freedom is one per cell and represent the interface variable. The three-dimensional grid
is conforming with the liner grid, see an example reported in Figure 1.

To achieve coupling between the electrodes and the domain Υ, we embed the computational
grids of the electrodes into the grid cells of the domain. This is an effective strategy to reduce
the number of three-dimensional cells needed for the coupling but requires a dedicated approach
for the discretization of the interface law. As done before, we consider a mortar-based scheme
where a single grid is constructed conforming with the electrode grid but embedded in the three-
dimensional grid. Also in this case, we define the interface variables (jγ) on the mortar grid, with
one degree of freedom per cell.

By employing the discretization schemes, we construct a linear system with a saddle-point
structure. With an abuse of notation, we indicate the discrete unknowns with the same symbols
of their continuous counterparts. The problem now reads: find (φ,φλ, φγ , jλ, jγ) solution of the
following linear system 

A −B⊤
λ −B⊤

γ

Aλ −C⊤
λ

Aγ −C⊤
γ

Bλ Cλ Mλ

Bγ Cγ Mγ



φ
φλ

φγ

jλ
jγ

 =


0
0
jbc
0
0

 (17)

where the A-matrices represent the stiffness matrices associated to each dimension, theM -matrices
are mass matrices for the mortar variables, the B-matrices are the coupling between the mortars
and the three-dimensional variables, and the C-matrices are the coupling between the mortars
and the lower-dimensional variables. Finally, at the right-hand side, jbc represents the current
density injected by the current electrodes, approximation of the boundary condition in (6). The
computation of the σ-weighted Green functions in (13) requires the solution of a linear system
where the matrix is the same as in (17) and the right-hand side term is associated to a specific
potential electrode.

4.2 Implementation aspects

The computation of the sensitivity, either for single or multiple electrodes and both for the equi-
dimensional and the mixed-dimensional cases (see (10), (11), (14) and (16)), requires the evaluation
of the Green’s functions associated to the considered electrodes. Moreover, it is worth pointing
out that the classical direct current problem (4) and the sensitivity analysis (9) have very similar
equations and can be both expressed in terms of the Green’s functions.

By exploiting this similarity, in our code we compute the Green’s functions for all the deployed
electrodes and then we simply linearly combine them to compute the voltage difference as well
as the sensitivity for each considered electrode configuration. As mentioned above, for several
configurations, the global sensitivity is obtained by summing the absolute values of the sensitivity
for each configuration.

Another way to speed up the code is to observe that the Green’s functions all solve the same
problem, similar to the one in (17), but with different source term positions. This means that,
thanks to the chosen numerical scheme, we can assemble the discretization matrix only once and
select a matrix as the right-hand side, where each column represents a unit source term associated
with an electrode. By considering standard software packages, e.g. SuperLU [Li05], we can speed
up the solution of linear problem.

Finally, at a practical level, imposing the condition (3) may not be feasible. Therefore, we
limit the computational domain and instead impose a homogeneous boundary condition on φ to
approximate the real condition (3). This approximation becomes more accurate as the computa-
tional domain increases, but at the cost of greater computational effort. Since the accuracy of the
electric potential is less critical far from the electrodes and liner, we coarsen the grid to achieve a
more manageable computational cost.
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Figure 1: Examples of computational grids for the mixed dimensional model: 3D tetrahedral
elements in grey, 2D triangular elements of the liner in red and 1D electrodes in yellow. a) 48
electrodes around the box-shaped liner; b) 24 electrodes outside the liner and 24 electrodes inside,
a hole in the bottom surface of the liner with its vertical walls not in contact with the top boundary
of the domain. The liner has dimensions 1[m]× 1[m]× 0.1[m].
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5 Sensitivity synthetic tests

The mathematical approach regarding the direct current problem described in the previous sections
has been validated and tested by [FPF+23]. The validation process involved comparing the solver
against established analytical solutions ([WT90]; [AO89]), other software ([RGW17]), as well as
laboratory experiments ([FPF+23]; [PFA+23]). Testing, even in very simple setups, confirmed
the ability of geoelectrical surveys to detect damaged liners, paving the way for more complex
investigations in real-world applications.

Following a similar approach, here we first validate our 3D code for geoelectrical sensitivity
analysis by considering a few common quadrupoles. Next, we conduct numerical tests in down-
scaled and simplified scenarios that are representative of geoelectrical investigations of landfills.
Downscaling the domain does not impact computational costs because the grid cells and electrode
spacing are proportionally reduced; this step is primarily intended for future comparison with
laboratory tests. The domain size is carefully chosen to be large enough to avoid any boundary
effects in all simulations. Accordingly, the depth is set to two times the spacing between the two
furthest electrodes.

In all tests, the domain is discretized with an unstructured grid with the software Gmsh [GR09]
and the modelled sensitivity values are normalized by the volume of each cell. The injected current
is 1[A].

5.1 4-electrode arrays

We consider the Wenner-alpha and dipole-dipole (n = 1) arrays because they are the most com-
monly used quadrupoles due to their versatility and effectiveness. Additionally, and most inter-
estingly, the Wenner array has a strong ability to detect horizontal structures, as its sensitivity
exhibits a marked gradient with depth. In contrast, the dipole-dipole array is most sensitive to
changes in resistivity along the horizontal direction.

For both arrays, electrodes are placed on the surface of a 3D homogeneous half-space with
dimensions of 6[m] × 4[m] × 2[m]. Assuming the origin of the reference system is at the lower
bottom corner of the domain, the coordinates of the furthest electrodes are (2, 2, 2) [m] and (4,
2, 2) [m], respectively, with an inter-electrode distance of 0.66[m]. Electrode configurations are
C1-P1-P2-C2 and C2-C1-P1-P2 for Wenner-alpha and dipole-dipole arrays, respectively, being C1
and P1 positive current and potential electrodes. To obtain accurate results without excessively
increasing computational costs, we set the characteristic length of the tetrahedral mesh elements
to 0.05[m] near the electrodes and 0.5[m] at the boundaries of the domain. For validation purposes,
we consider the analytical expression of the pole-pole sensitivity (10) described in [LB95].

Figure 2 shows the sensitivity values on vertical slices extracted along the tested arrays from
the 3D domain. Figures 2a-c are obtained using the analytical expression evaluated on a structured
grid with 0.05[m] spatial sampling, while Figures 2b-d show the modeled results. It is worth noting
that the structured grids contain about 340000 elements, compared to only 9500 elements in the
unstructured grids.
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Figure 2: Vertical slices of sensitivity values for Wenner-alpha a)-b) and dipole-dipole c)-d) arrays
and a homogeneous half-space. a)-c) show plots of the analytical expression (10), while b)-d) show
the modelled results. Both arrays have total length of 2[m].

5.2 48-electrode arrays and a simplified landfill

For our downscaled tests, we set a 3D domain with dimensions 10[m] × 10[m] × 3[m], with a
1[m] × 1[m] × 0.1[m] box-shaped liner placed at the top center (i.e., the vertical walls of the box
are in contact with the top surface of the domain; see Figure 1a). Obviously, the liner is modelled
as a 2D object by our mixed-dimensional code. The resistivity values inside and outside the liner
(i.e., the landfill) are set to 20[Ωm] and 100[Ωm], respectively [BDOH00]. The resistivity of the
liner is set to 1015[Ωm] in agreement with the electrical properties of HDPE. The characteristic
length of the computational grid is set to 0.02[m] near the electrodes, to 0.05[m] for the liner and
to 2[m] at the boundaries of the domain (Figure 1). We assume to use 48 channels, as this is
standard for most multi-electrode resistivity meters on the market, deployed at the surface. In
general, electrodes placed near the perimeter edges of the liner are preferable to those positioned
across the landfill body, as the latter, because of landfill elevation, are farther from the bottom of
the landfill, resulting in reduced penetration and lower resolution at depth.

Three different settings are defined: case 1) 48 electrodes deployed along the outer perimeter of
the liner with a spacing of 0.08[m] (Figure 1a); case 2) 24 electrodes with 0.16[m] spacing along the
outer perimeter of the liner and 24 electrodes with 0.12[m] spacing along the inner perimeter of the
liner (Figure 1b); case 3) 24 electrodes with 0.16[m] spacing along the outer perimeter of the liner
and 24 electrodes along a grid inside the liner (0.2[m] spacing along x and 0.14[m] spacing along
y). All cases involve about 15000 cells and more than 635000 configurations for the evaluation
of the sensitivitiy, considering all possible electrode combinations and permutations (excluding
reciprocal configurations) with geometric factors smaller than 104[m], including pole-dipole and
pole-pole arrays. For all the settings, we also considered a test with a 0.1[m] diameter hole in the
bottom surface of the liner (Figure 1b).

Figures 3 and 4 show some images of the sensitivity computed for cases 1) and 3).
In addition, cases 2) and 3) are tested with the box-shaped liner shifted downward by 0.05[m],

so its vertical walls are not in contact with the top boundary of the 3D domain (Figure 1b). This
setup simulates the condition of an electrical connection between the landfill and the surrounding
media that is not due to damages to the liner. The electrical connection could be caused by
movements of the liner due to the weight of the waste, or by materials that can accidentally cover
the perimeter edges of the liner.
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Figure 3: Images of computed sensitivity for case 1) with a 0.1[m] diameter hole in the bottom
surface of the liner. From top-left, clockwise: top view, zoomed top view, volume below the box-
shaped liner with 3 depth slices, vertical cut. See text for details.

Figure 4: Zoomed top view of the computed sensitivity for case 3) with a hole in the middle of
the liner.
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6 Discussion

As far as validation is concerned, Figures 5 and 6 report the results obtained for the Wenner-
alpha and dipole-dipole arrays, respectively. More in detail, the sensitivity values computed
with our code are evaluated along horizontal lines at 0.15[m], 0.2[m] and 0.3[m] depth below
the arrays and analytical values are computed at the same positions with (10), as mentioned in
the previous paragraph. The irregular stairstep plots are due to the different sizes of the mesh
elements intercepted by the horizontal lines (see Figures 2b-d).

We can observe a very good match between simulated and analytical values, with percent root-
mean-square error (RMSE) around 8 % and 4 % at 0.15[m] depth for Wenner-alpha and dipole-
dipole arrays, respectively. As expected, peaks are recorded near the electrodes at shallow depths.
By considering even shallower depths, the amplitude of the peaks increases, and the mismatch
between modeled and analytical values tends to grow due to the difficulty of the numerical code
in handling the singularity of the solution at a reasonable computational cost. On the contrary,
percent RMSE is below 1 % at a depth of 0.3[m]. At this depth (approximately half the electrode
spacing), a significant decrease in sensitivity is observed across the entire domain, consistent with
the median depth of investigation ([L.S77]), which is about 15% of the total length for both arrays
([Lok22]). The plots also indicate a higher vertical sensitivity gradient for the Wenner-alpha array,
related to its high vertical resolution. In contrast, the pronounced lateral sensitivity gradients of
the dipole-dipole array confirm its good horizontal resolution.

Figure 5: Sensitivity values along horizontal lines at different depths for the Wenner-alpha array.
Vertical dashed lines indicate the positions of the electrodes (from right: C1-P1-P2-C2). a) Ana-
lytical values; b) modelled values.
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Figure 6: Sensitivity values along horizontal lines at different depths for the dipole-dipole array
(n = 1). Vertical dashed lines indicate the positions of the electrodes (from right: C2-C1-P1-P2).
a) Analytical values; b) modelled values.

Regarding the results obtained from the simplified landfill setups, we first note that the out-
comes of case 3) do not differ significantly from those of case 2); therefore, they will not be
discussed further. Second, we note that computing the global sensitivity as the sum of the abso-
lute values of the sensitivities associated with each configuration is a simple but rough method, as
it does not account for the fact that information from two measurements of the same region might
not be independent. A more mathematically rigorous (and computationally intensive) approach
would involve, for instance, considering the model resolution matrix, which relates the estimated
resistivity values to the actual values in the geoelectrical inverse problem ([DLB05]).

As expected, the images show that sensitivity is highest near the electrodes and is very low
inside the box-shaped liner when no electrodes are present due to the high resistivity of HDPE
(Figures 3 and 4). To evaluate the sensitivity values in the most relevant area, we extracted
three 1[m] × 1[m] horizontal slices at depths of 0.15[m], 0.6[m] and 1.2[m] below the liner for all
setups. These slices correspond to the area immediately below the liner and to depths roughly
equal to half and one distance between the furthest electrodes. Figure 7 presents the slices along
with a table that lists, for each slice, the range of volume-normalized sensitivity values and the
area-weighted average sensitivity. In the case of 48 electrodes placed outside the liner (case 1)),
the results do not significantly change if the liner is damaged, as the current is forced to flow
between the electrodes without passing through the high-resistivity, box-shaped structure. On the
contrary, for the case with 24 electrodes inside and 24 electrodes outside (case 2)), higher values
are recorded at all depths when there is a hole, especially immediately below the liner, where the
average and maximum sensitivity values increase of 2 and 4 orders of magnitude, respectively. It
is interesting to note that, if there is no hole, sensitivity values of the shallowest slice are better
in case 1). This is reasonably due to the higher number of electrodes outside the box-shaped liner
that forces current flow in that region.
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Figure 7: Sensitivity slices at 0.15[m], 0.6[m] and 1.2[m] depth for different setups. a) 48 electrodes
outside the box-shaped liner (case 1)); b) same as a) but with a hole in the liner; c) 24 electrodes
outside the box-shaped liner and 24 electrodes inside (case 2)); d) same as c) but with a 0.1[m]
diameter hole in the bottom surface of the liner.

Similar considerations can be made by examining the trend of sensitivity values along a vertical
line at the center of the domain (Figure 8). The line goes from the top to the bottom of the domain
and passes through the hole when the hole is present. When there is no hole, sensitivity values
are close to zero inside the box-shaped liner only for case 1) (Figure 8a), while are similar for
all tested cases below the liner. Conversely, the tested cases show significant differences when
the hole is present. In case 1), sensitivity values increase just inside the liner, whereas in case
2), there is a marked increase in sensitivity across and immediately below the liner (Figure 8b).
This trend is also observed when considering the setting with the liner shifted down by 0.05[m]
(Figure 8c). From these results, the arrangement of electrodes as in case 2) may be promising for
detecting possible liner damage, even if there is an electrical connection between the landfill and
the surrounding media due to improper membrane deployment.

Additional tests performed with smaller holes, with diameters down to 0.02 m, do not provide
any new insights. Any hole in the liner can cause a significant increase in sensitivity values
compared to the case without a hole, particularly near the liner. This occurs because significant
current densities are concentrated in the area of the hole, as shown by [FPF+23], and sensitivity
increases near any current source (see, for example, Figure 2).
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Figure 8: Sensitivity values along a vertical line at the center of the domain. a) 48 electrodes
outside the box-shaped liner (case 1)); b) 24 electrodes outside the box-shaped liner and 24
electrodes inside (case 2)); c) same as b) but with liner shifted down by 0.05[m]. Vertical dashed
line indicates the depth of the bottom surface of the liner.

7 Conclusions

We have presented and validated a new mixed-dimensional code to accurately compute sensitivity
of direct current investigations of MSWLFs, where a highly resistive membrane is typically placed
underneath the waste mass to avoid subsurface contamination concerns. The mixed-dimensional
framework is useful to tackle the computational costs and ill-posedness of the geoelectrical inverse
problem by modelling the electrodes and, most importantly, the resistive liner, as 1D and 2D
elements, respectively. Besides some technical implementation aspects described before, the code
uses Green’s functions to speed up computation of both voltage difference and the sensitivity for
each considered electrode configuration.

According to preliminary modeling of downscaled and simplified landfill settings, acquisitions
with all electrodes placed outside the perimeter edges of the box-shaped liner may not be able
to detect a hole in the most challenging location, i.e., at the center of the liner’s bottom surface.
Conversely, acquisitions with the same number of electrodes deployed along the perimeter of the
liner, but placed both inside and outside the landfill, may detect potential damage to the liner as
sensitivity increases near the damaged area. No significant improvement has been observed when
the electrodes inside the landfill are arranged in a grid pattern. Therefore, electrodes arranged
linearly on both sides of the liner should be preferred because their deployment is logistically
easier, particularly in the presence of steep and uneven landfill topography. In addition, electrodes
running across the landfill topography may be too far from the underlying liner, leading to issues
with resolution and penetration depth. Furthermore, the topography may affect the final results
if not properly accounted for. Electrodes arranged linearly along both sides of the perimeter
edges of the liner can also be used to check the electrical insulation of the landfill relative to the
surrounding media by measuring the electrical resistance between adjacent electrode pairs.
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Our simulations show that the results do not differ significantly for holes with diameters ranging
from approximately one electrode spacing down to one-sixth of the electrode spacing. Even with
relatively small damage, the sensitivity increases by 2-3 orders of magnitude, which is promising
for landfill monitoring purposes.

The above considerations still apply when the liner is not in contact with the top of the domain.
This setting is common in the field and can simulate electrical connections between the landfill
and the surrounding media due to downshifts of the liner or conductive materials covering its
perimeter edges.

Although the preliminary results obtained here are promising for the geoelectrical monitoring
of landfills, it is important to note that we have considered an extremely high number of electrode
configurations for the calculation of sensitivity. Moving forward, an appropriate number of mea-
surements will need to be evaluated to ensure sensitivity levels that meet the survey objectives
with a reasonable field effort. Our code to compute the sensitivity can be obviously used to select
the best configuration and to design electrical acquisitions with the aim of both achieving the
appropriate investigation depth (e.g., where the liner is located) and spatial resolution.

Downscaled laboratory tests will be necessary to validate the modeling results and determine
whether the computed sensitivity values are sufficiently high to detect liner damage.

To improve sensitivity at depth, at the expense of higher costs and more complex data pro-
cessing, cross-borehole ERT imaging can also be considered.

Finally, although we have noted that sensitivity affects the resolution and penetration depth
of geoelectrical surveys and depends on factors such as physical approximations in the forward
model, survey geometry, and resistivity distribution, real scenarios also require consideration of
measurement errors, data signal-to-noise ratio, as well as parameterization and regularization used
in the inversion ([BK05]).
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