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Abstract

With a focus on linear models with smooth functional covariates, we
propose a penalization framework (SACR) based on the nonzero cen-
tered ridge, where the center of the penalty is optimally reweighted in
a supervised way, starting from the ordinary ridge solution as the ini-
tial centerfunction. In particular, we introduce a convex formulation that
jointly estimates the model’s coefficients and the weight function, with a
roughness penalty on the centerfunction and constraints on the weights
in order to recover a possibly smooth and/or sparse solution. This al-
lows for a non-iterative and continuous variable selection mechanism, as
the weight function can either inflate or deflate the initial center, in or-
der to target the penalty towards a suitable center, with the objective
to reduce the unwanted shrinkage on the nonzero coefficients, instead of
uniformly shrinking the whole coefficient function. As empirical evidence
of the interpretability and predictive power of our method, we provide a
simulation study and two real world spectroscopy applications with both
classification and regression.

1 Introduction

Smooth and highly collinear data generally arises in applications where high
frequency acquisition devices are employed, like chemometrics, spectroscopy
and electrical engineering. A natural way of modeling these data-generating
processes is by means of functional data analysis (FDA) (Ramsay and Silverman,
2005; Ferraty and Vieu, 2006), where each covariate can be seen as a smooth
function x ∈ L2(I) that has been evaluated at sequential timesteps, often with
missing values and different spacing between the observations. Without loss of
generality, we will focus on scalar-valued functions defined on I = [0, 1], but
this approach can be extended to deal with vector valued functions defined
on multidimensional domains. The two main aspects to be considered are the
estimation of the underlying functional covariates from the raw data, and the
estimation of the predictive model itself. Let D = {(xi, yi)}Ni=1 be the training
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set with random i.i.d. functions xi ∈ L2(I) and responses yi ∈ R, we focus on
the scalar on function linear model:

yi = β0 +

∫
I

xi(t)β(t)dt+ εi

where β0 ∈ R is the intercept, β is the coefficient function and εi ∼ N (0, σ2) are
random i.i.d. errors. In fact, the penalties that we analyze can also be employed
in a generalized linear model (GLM) framework, and we will study classification
problems with functional logistic regression as well. Regarding the first aspect,
consider the functional covariate x as a finite expansion x(t) =

∑J
j=1 ξjψj(t)

with suitable basis functions ψj and coefficients ξj , a common approach is to
recover each functional sample xi individually, by means of interpolating or
smoothing splines, depending on the amount of noise. If the raw data contains
a large number of missing observations, this approach fails as some of the func-
tional covariates may have been observed on just a few points over the domain.
This issue can be solved by leveraging the information from the whole dataset,
estimating the basis and the coefficients of the expansion by means of functional
principal components (fPCA) with local smoothing (Yao et al., 2005) or mixed
effects (Brumback and Rice, 1998; James et al., 2000). Once the input functions
have been recovered, depending on the approach that has been implemented, it
is possible to either work directly with the coefficients of the expansion, or to
evaluate the estimated functions on the same dense equispaced p-dimensional
grid. Without loss of generality, in this work we opt for the grid approach and
we recover the functions individually, but the methods that we propose are not
directly tied to this choice, as long as the discretized functional samples have the
same dimensionality. Regarding the aspect of estimating the predictive model,
the coefficient function β is also expressed as a basis expansion, with some
form of regularization as an identifiability constraint, given that the theoretical
functional linear model is ill-posed. A parsimonious approach is to restrict the
number of basis functions, by either fixing a known suitable basis like a Fourier
basis, or by considering only the first K eigenfunctions of the covariance oper-
ator obtained from fPCA (Cai and Hall, 2006), which for any given K explains
most of the variation of the input functions in the L2 sense. On the opposite
side of the spectrum, another approach is instead to employ a rich enough basis
while at the same time including some form of penalization, typically an L2

penalty on β or its derivatives in order to impose smoothness (Cardot et al.,
2003, 2007; Crambes et al., 2009; Yuan and Cai, 2010), but L1-based penal-
ties have also been used (Matsui and Konishi, 2011). Note that the restricted
basis and the penalization approaches are not mutually exclusive, and hybrid
techniques have been proposed as well (Marx and Eilers, 1999; James et al.,
2009; Lee and Park, 2012). In our setting we choose to adopt the penalization
approach, by using the following simple grid basis with p dense and equispaced
knots placed on the p evaluations corresponding to the evaluation grid of the
estimated input functions:
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β(t) =

p∑
j=1

βjbj(t) bj(t) =

{
1 if j−1

p < t ≤ j
p

0 otherwise

which is a common solution that enables us to use any multivariate method for
the numerical estimation, allowing for a proper comparison between different
approaches, as the initial FDA preprocessing is shared between all the tested
methods. The main objective of this work is to propose an adaptive penalization
approach that is able to fit smooth and sparse coefficient functions (James,
2011), ideally being able to recover the regions of the domain in which the
covariates have no effect on the response, while at the same time allowing for a
smooth behaviour if needed. Given the abundance of p >> N applications with
different requirements, it is no surprise that the literature on variable selection
in linear models has experienced a significant growth in both the statistical
and machine learning communities. What appears to be the most successful
framework is based on the well known penalized least squares formulation (in
the multivariate notation), and in particular the bridge estimator (Frank and
Friedman, 1993):

min
β∈Rp

N∑
i=1

(
yi − x>i β

)2
+ λ

p∑
j=1

|βj |γ

where γ > 0, and λ > 0 that controls the strength of the penalization (we omit
the intercept). It is known that for γ < 1 this yields a non-convex optimization
problem, where in particular for γ → 0 the bridge reduces to best subset selec-
tion (Fu and Knight, 2000). Besides the computational issues, subset selection
methods are also known to be unstable (Breiman, 1996), and for this reason
we will focus only on penalty-based approaches, although we are aware of the
different stepwise algorithms. Moreover, given that the penalties are not scale-
invariant, we will assume that the input data has been standardized. When
γ ≥ 1 the problem is instead convex but we pay the price of unwanted shrinkage
of the coefficients, which introduces bias. For γ = 1 in particular we obtain the
lasso (Tibshirani, 1996), which is a convex relaxation of best subset selection,
while γ = 2 corresponds to ridge regression (Hoerl and Kennard, 1970). Regard-
ing our specific setting, which deals with high dimensional and highly collinear
data, it is not clear which approach to adopt, as the lasso may exclude important
variables from the model and produce nonsmooth coefficient functions, the ridge
may yield both nonsparse and nonsmooth ones, while the usual FDA roughness
penalty may be too smooth and fail to recover any sharp change in the support
of the coefficient function β. A possible solution is to impose hybrid penalties,
like in the case of the elastic net (Zou and Hastie, 2005) or the smooth lasso
(Hebiri and van de Geer, 2011). Our proposed approach is instead exclusively
based on the nonzero centered L2 penalty (Swindel, 1976; Price et al., 2015; van
Wieringen, 2019; Bilgrau et al., 2020), and it is also inspired by the adaptive
ridge estimator and other reweighted bias reduction techniques, as we will dis-
cuss in Section 2. Section 3 describes our method in detail, the applications are
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shown in Section 4, with concluding remarks in Section 5.

2 Related Work

As previously introduced, a significant issue that follows from the convex for-
mulations of the bridge estimator (γ ≥ 1) is that in order to perform variable
selection, we inevitably end up with unwanted shrinkage of the ”true” coeffi-
cients. This is even worse for γ > 1, where the amount of shrinkage increases
with the magnitude of the coefficient being estimated (Fu and Knight, 2000).
Moreover, it is known that except when the OLS coefficients are exactly zero,
the ridge is not able to yield sparse solutions, although the coefficients can get
arbitrarly small for larger values of λ. It follows that when estimating a sparse
model with ridge regression, there could be the need to employ some form of
manual thresholding, setting to zero the smaller coefficients while at the same
time accepting the overshrinkage of the larger ones, with a tradeoff between λ
and the threshold. In practice, lasso is usually the preferred choice when spar-
sity is sought after, as it is able to set coefficients to exactly zero by acting as a
soft thresholding operator. However, an issue with the lasso is the fact that the
optimal λ with respect to prediction gives inconsistent results from the point
of view of variable selection (Meinshausen and Bühlmann, 2006), and for func-
tional data in particular, the irrepresentable condition (Zhao and Yu, 2006) is
likely to be violated, given that the curves often have high autocorrelation and
the response may depend only on a subset of the domain. The main motivation
behind our work is the idea of reducing bias by coefficient-wise adaptive tuning
of the penalization. While the ordinary ridge regression corresponds to a sphere
centered at the origin, which shrinks all the coefficients uniformly towards zero,
Hoerl and Kennard (1970) already introduced a generalized form of ridge re-
gression, which allowed to shrink each coefficient individually, resulting in an
ellipsoid. In the usual penalized least squares formulation, the generalized ridge
can be expressed as:

min
β∈Rp

N∑
i=1

(
yi − x>i β

)2
+

p∑
j=1

λjβ
2
j

where the parameters λj > 0 control the amount of shrinkage on the correspond-
ing coefficients βj . This type of penalty is also known as the adaptive ridge es-
timator, and regardless of the loss function, it has been shown to be equivalent
to the lasso, in the sense that they recover the same solution (Grandvalet, 1998)
(Grandvalet and Canu, 1999). In principle one would like to optimize with re-
spect to both β ∈ Rp and λ ∈ Rp, but globally the problem is nonconvex, and
the adaptive ridge estimator uses an EM approach that is guaranteed to con-
verge to a local optimum. Instead of alternating optimization, other methods
are based on iterative refinements of an initial solution β̃ ∈ Rp, and we will
refer to such methods as two-stage or multi-stage approaches. One of the first
is the non-negative garrote (NNG) (Breiman, 1995), which is closely related to
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the EM adaptive ridge and has the following formulation:

min
c∈Rp

N∑
i=1

yi − p∑
j=1

cjxij β̃j

2

+ λ

p∑
j=1

cj

s.t. cj ≥ 0

where λ > 0 and the fitted coefficients are recovered as β̂j = ĉj β̃j . The original

NNG was initialized with the OLS solution β̃ = βols, but other works exper-
imented with other initial estimators like the ridge, the lasso, and the elastic
net for high dimensional scenarios (Yuan and Lin, 2007). On a side note, the
NNG was also the inspiration for the original lasso paper (Hastie et al., 2015).
A generalization of the NNG (without the sign constraint) is the adaptive lasso
(Zou, 2006), which assumes a known weight vector w ∈ Rp and solves:

min
β∈Rp

N∑
i=1

(
yi − x>i β

)2
+ λ

p∑
j=1

wj |βj |

with wj = 1/|βolsj |γ , γ > 0 and λ > 0 selected by cross-validation. This is

also a two-stage approach and the final coefficients β̂j can be computed by
setting x̃ij = xij/wj , solving a lasso problem with x̃i as input data, and finally

recovering the coefficients as β̂j = β̃j/wj , with β̃ the solution of the previous
lasso problem. As for the NNG, the initial estimator is not restricted to the OLS
and the ridge is suggested in case of collinearity. Another reweighted estimator
is the broken adaptive ridge (BAR) (Dai et al., 2018), which is a multi-stage

approach that starts from a ridge penalized solution β̂0 and at each iteration
refines the previous one β̂k = g(β̂k−1), with β̂∗ = limk→∞ β̂k and

g(β̃) = arg min
β∈Rp

N∑
i=1

(
yi − x>i β

)2
+ λ

p∑
j=1

β2
j /β̃

2
j

The subsequent iterations share the same λ, which is fixed starting from k = 1
and not tuned individually at each step. Instead, the initial solution β̂0 is not
necessarily obtained with the same λ and could be further tuned, although em-
pirically the BAR estimator was found to be insensitive to the initial value.
All the methods that we have discussed share the common idea of using multi-
plicative weights in order to reduce bias, but in fact this is not the only viable
approach. Nonconcave penalties like the SCAD (Fan and Li, 2001) and the
MCP (Zhao et al., 2010) are both based on quadratic splines with singularities
at the origin, giving rise to nonconvex optimization problems that depend on
different parameters and are often regarded as unstable, although more refined
optimization algorithms have been proposed (Zou and Li, 2008) (Breheny and
Huang, 2011). Our approach is instead based on a convex formulation, but it is
worth considering both the (elastic) SCAD and MCP for comparison purposes.
Finally, yet another option to reduce bias is the one adopted by the relaxed
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lasso (Meinshausen, 2007), which separates the variable selection aspect from
the coefficient estimation one by first fitting a standard lasso model, followed by
a second lasso but only including the covariates that correspond to the nonzero
coefficients, with a relaxation parameter φ ∈ (0, 1] in order to reduce unwanted
shrinkage. Both problems share the same fixed λ and therefore this can be
done pathwise, unlinke from the adaptive lasso where the initial estimator has
already been optimized with respect to λ, and then λ is tuned again for the
reweighted problem. In particular, let β̂λ be the lasso solution for a fixed λ and
let Aλ = {1 ≤ j ≤ p | β̂λj 6= 0}, the relaxed lasso solution β̂λ,φ is obtained by
solving:

min
β∈Rp

N∑
i=1

(
yi − x>i {β1Aλ}

)2
+ φλ

p∑
j=1

|βj |

{β1Aλ}j =

{
βj if j ∈ Aλ
0 otherwise

Our approach in a way is built on a similar relaxation scheme, but instead of
performing variable selection and parameter estimation sequentially, we do it
jointly and without directly removing any covariate from the initial model, by
employing an adaptive weight function that acts on the center of the penalty.
Like the ordinary ridge, our penalty is spherical, but is based on the nonzero
centered ridge (Swindel, 1976):

min
β∈Rp

N∑
i=1

(
yi − x>i β

)2
+ λ

p∑
j=1

(βj − cj)2

where the center of the sphere c ∈ Rp is provided by the user and λ > 0
is selected by cross-validation. For λ and c fixed, let X ∈ RN×p be the design
matrix and Y ∈ RN the response vector, the solution can be computed in closed
form as:

β̂λ,c = (X>X + λI)−1(X>Y + λc)

Moreover, the expected value of this estimator is:

EY |X [β̂λ,c] = (X>X + λI)−1(X>Xβ + λc)

and therefore it is unbiased for c = β, meaning that the true value of the
parameter is used as the center of the penalty. Clearly there would not be the
need to fit any model if β was already known, but this suggests that the bias will
be low if the fixed c is a good approximation of the true regression coefficient,
and we propose to find c by adaptively reweighting the ridge solution.
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3 Smoothly Adaptively Centered Ridge

We already discussed some of the similarities between our approach and other
known methods, with specific attention to the generalized/adaptive ridge and
the nonzero centered ridge. The main downside of the adaptive ridge is that
optimizing with respect to the shrinkage parameters yields a nonconvex problem,
while for the nonzero centered ridge we need to specify the center of the penalty.
Our focus is on the smooth p >> N setting and in particular we will refer to the
FDA terminology. We propose a convex formulation that allows for adaptive
tuning of the type of shrinkage that is imposed on each region of the domain of
the coefficient function β. Instead of employing a variable shrinkage parameter
function like in the adaptive ridge, we uniformly shrink β as in the ordinary
ridge, while at the same time jointly optimizing the center of the penalty. Let
β̃λ be the solution of the ordinary ridge for a fixed λ, we introduce a smooth
weight function w : I → R+ that acts on β̃λ and fit our estimator by solving
the following convex problem with linear constraints:

min
β0,β,w

N∑
i=1

[
yi − β0 −

∫
I

xi(t)β(t)dt

]2
+ λφ

∫
I

[
β(t)− w(t)β̃λ(t)

]2
dt

+ λ(1− φ)

∫
I

[
D2w(t)β̃λ(t)

]2
dt

(1)

s.t.

{∫
I
w(t)dt = |I|

w(t) ≥ 0

where β0 ∈ R is the intercept, λ > 0 and φ ∈ (0, 1] that controls the balance
between the two penalty terms. Both λ and φ are selected by cross-validation
and the λ used in Problem 1 is the same as the one used for computing β̃λ. The
first term of the penalty is a nonzero centered ridge that shrinks β uniformly
towards wβ̃λ, while the second term is a roughness penalty on the center of the
previous one. The weight function w can be seen as an adaptive density which
either contracts or dilates the initial center β̃λ, allowing the nonzero centered
penalty to selectively shrink β towards zero in the regions of the domain that
are not correlated with the response, while reducing the unwanted shrinkage in
the informative regions. This sparsity inducing behaviour is motivated by the
constraints imposed on w, which necessarily lead to a tradeoff between inflating
and deflating β̃λ, as proven in Proposition 3.1.

Proposition 3.1. Let I ⊂ R be a closed interval and let w : I → R+ be a smooth
function such that

∫
I
w(t)dt = |I|. Consider the closed subintervals Ii ⊂ I such

that µ(Ii) 6= 0 and Ii ∩ Ij = ∅ for i 6= j. Partition I in disjoint intervals I<, I>
and I= such that I = I> ∪ I< ∪ I= where:
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I> =
⋃
i

Ii : w(t) > 1 ∀t ∈ Ii

I< =
⋃
i

Ii : w(t) < 1 ∀t ∈ Ii

I= =
⋃
i

Ii : w(t) = 1 ∀t ∈ Ii

then |I>| 6= 0 ⇐⇒ |I<| 6= 0.

Proof. From the first mean value theorem for integrals follows that:∫
I>

w(t)dt = w(c>)|I>|, c> ∈ Io>, w(c>) > 1∫
I<

w(t)dt = w(c<)|I<|, c< ∈ Io<, w(c<) < 1∫
I=

w(t)dt = w(c=)|I=|, c= ∈ Io=, w(c=) = 1

therefore, from I = I> ∪ I< ∪ I= results that:∫
I

w(t)dt =

∫
I>

w(t)dt+

∫
I<

w(t)dt+

∫
I=

w(t)dt

|I| = w(c>)|I>| + w(c<)|I<|+ |I=|
|I| = w(c>)|I>| + w(c<)|I<|+ |I| − |I>| − |I<|

0 = |I>|[w(c>)− 1] + |I<|[w(c<)− 1]

by construction we know that [w(c>)−1] > 1 and [w(c<)−1] < 1, proving that
I> and I< are either both null sets or both non-null sets.

It follows that when the true β is provided as β̃λ, there is no need to ei-
ther inflate or deflate the center of the penalty, and therefore the optimal w
is 1 almost everywhere, leading to an unbiased estimator as it is equal to the
nonzero centered ridge with c = wβ̃λ = β. In practice there is no guarantee
that solving Problem 1 with the optimal center will lead to uniform unitary
weights, as w is penalized and jointly estimated with β from the data. From
the geometrical perspective, the weight function acts as an anisotropic scaling
on β̃λ, which has the effect of adaptively moving the center of the penalty. This
has the advantage of nonuniform shrinkage between the coefficients, as in the
adaptive ridge with its ellipsoidal penalty, while at the same time keeping the
tractable convex formulation of the spherical penalty, since λ is a scalar that is
selected by cross-validation. Therefore, the adaptive shrinkage of the coefficient
function is the result of an adaptive target, and not of an adaptive shrinkage
intensity. Our approach can be described as a continuous way of doing variable
selection, which is executed jointly with the estimation of the regression coeffi-
cients. As the weight function is not included in the model and is never used for
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prediction, we are not adding further parameters to the model itself, although
we are doubling the parameters to be estimated. Regarding the two terms of
the penalty, it is worth noting that since the roughness penalty is imposed on
the center of the first term, the coefficient function is only indirectly penalized
with respect to its roughness, by being pushed towards an adaptively scaled
center. Imposing the roughness penalty on the center itself, instead of on the
weight function only, ensures the option of retrieving a smooth centerfunction,
with φ controlling the amount of smoothness, and not just a smooth scaling of
β̃λ. The choice of the ridge solution as the initial center is quite natural, as
it is stable and almost always not exactly zero. This latter property of the L2

penalty is often regarded as a problem or at least an incovenience, but in our
case is instead welcomed, as the weight function is multiplicative and would not
be able to inflate an initial zero coefficient. It follows that using a sparse coef-
ficient function as the initial center equals to excluding multiple variables from
the model, which is not a problem if the initial zero coefficients should indeed
be zero, but is also not necessary to produce sparse or at least interpretable so-
lutions, as the variable shrinkage induced by the weight function should already
push to zero the coefficients of the unwanted variables. In practice, higher values
of λ will correspond to higher shrinkage of the coefficient function towards the
centerfunction, where the selected λ depends on how suitable the centerfunction
is. Therefore, for a sparse and adequate centerfunction, the selected λ will be
high and the fitted coefficient function can get arbitrarly close to zero where
needed, without the tradeoff of the ordinary ridge, where we pay the price of
unwanted shrinkage on the nonzero coefficients.

Until now we only considered the context of regression, but in fact our ap-
proach can be generalized to the GLM framework as follows:

min
β0,β,w

J(β0, β, x, y) + Penλφ(β,w)

s.t.

{∫
I
w(t)dt = |I|

w(t) ≥ 0

where J can be any convex loss function, as in the case of functional logistic
regression, and it is independent from the weight function.

With respect to the numerical optimization, as the proposed formulation
is quadratic with linear equality and inequality constraints, we opted for inte-
rior point methods, which are a class of optimization algorithms that are often
regarded as state of the art for these types of problems (Gondzio, 2012). In
particular, we employ the solver IPOPT (Wächter and Biegler, 2006) which
is based on a primal-dual interior point algorithm with filter line search. The
worst-case number of iterations is O(

√
n) with n the number of variables, al-

though interior point methods usually converge in a few steps. At each iteration
the dominating cost is O(n3) for applying Newton’s method in order to solve
a system of equations, and therefore the overall worst-case computational cost
is O(n3.5). In our specific scenario we have n = 2p, as our formulation doubles
the amount of parameters to be estimated.

9



4 Applications

In this section we provide some empirical results of the performance of our
method (SACR) in the contex of FDA with p >> N . In particular, we show a
simulation study and two real world applications, one for classification and one
for regression. We compare SACR with multiple penalized methods that are
known for inducing sparsity and/or smoothness, like the lasso, adaptive lasso,
relaxed lasso, NNG, ridge, BAR, elastic net, elastic SCAD, elastic MCP and the
roughness penalty. The base implementations for the lasso, ridge and elastic net
are the ones from scikit-learn (Pedregosa et al., 2011), while for the adaptive
lasso, relaxed lasso, NNG and BAR we implemented our own wrappers based on
those. The elastic SCAD and elastic MCP are available in the CRAN package
ncvreg (Breheny, 2020), while we also use our own python implementation of
the roughness penalized functional linear model. We interface with the solver
IPOPT by modeling the optimization problems with Pyomo (Hart et al., 2017).

4.1 Simulation Study

This is a simulated regression problem where the true coefficient function β is
sparse and smooth, in order to show how the adaptive centering is able to jointly
shrink towards a mixed target. In particular, we simulate the input curves with
the same B-spline model but with two different configurations of dependency
between the coefficients, resulting in two separate simulations. The shared base
model is a cubic B-spline with inner knots equispaced between [−0.5, 1.5], while
the spline coefficients are sampled from a multivariate normal for each of the
N = 50 observations, with either a diagonal covariance matrix and 35 inner
knots as an edge case, or high positive correlation and 50 inner knots in order
to simulate a standard FDA setting. The N input functions xi are then eval-
uated on the same equispaced grid of length p = 150 over I = [0, 1], and the
responses are computed as yi =

∫
I
xi(t)β(t)dt + εi with εi ∼ N (0, 1). Figure 1

shows the input curves for both simulations and the true coefficient function,
while Figures 2 and 4 show the fitted coefficient functions for all methods tested.
Regarding the strictly L2-based methods, the ridge, the roughness penalty and
the SACR provide similar solutions, with varying degrees of smoothness as ex-
pected. The SACR in fact reminds of a warped version of the ridge, with a much
smooother behaviour in the highly collinear simulation, which is very close to
the solution of the roughness penalized model. In Figures 3 and 5 we show
the comparison between the initial center, the true coefficient function and the
fitted SACR function, together with the corresponding fitted weight function.
In particular, while our method is not able to recover exactly zero values of
the coefficient function (given the L2 norm), the overall sparsity pattern is ar-
guably recognizable and is confirmed by the shape of the weight function, which
is above one where the initial solution should be inflated, while tapering to-
wards zero in the regions that should be sparse. Note that the fact of having a
zero weight does not guarantee an exactly zero coefficient function β, since the
weight acts on the center of the penalty and not on the coefficients themselves,
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with analogous considerations for very high values of the weight, as shown in
the simulation with independent coefficients. The BAR estimator seems to have
problems of instability, which could be a numerical issue of our implementation
given its asymptotic definition, although the method is competitive in both the
subsequent real world case studies. Regarding the pure sparsity inducing penal-
ties like the lasso, the relaxed lasso, the adaptive lasso, and the NNG, there is
no clear distinction between the two simulations, and in both cases the methods
recover coefficient functions with the typical spikes on some of the variables,
failing to recover the exact sparsity pattern and therefore excluding from the
model many of the significant predictors. On the other hand, the thresholding
effect of the L1 penalty allows to set to zero the coefficients of the unwanted
variables. Finally, the hybrid penalties show a clearly different behaviour in the
two simulations, where all three methods visibly leverage the ridge part of the
penalty in the highly collinear simulation, including in the model all the correct
predictors and many unwanted ones, while in the independent simulation only
the elastic net leverages the ridge part, and instead both the elastic SCAD and
elastic MCP recover very sparse solutions. We report the regression results in
Table 1, obtained by 5-fold cross-validation with 3-fold cross-validation for grid-
search hyperparameter selection. It is worth noting that in the simulation with
independent coefficients, the adaptive lasso, the elastic SCAD and elastic MCP
have lower mean-square error than the SACR, despite the fact that they leave
out of the model many of the relevant predictors.
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Table 1: Regression results for both simulations: mean-square error

independent dependent

lasso 1.807± 1.03 2.011± 1.2
adaptive lasso 1.479± .067 2.078± 1.4
relaxed lasso 1.807± 1.03 1.982± 1.2
NNG 1.571± 1.01 2.171± 1.3
BAR 5.669± 2.60 2.538± 1.1
elastic net 1.708± .548 1.949± 1.2
elastic SCAD 1.263± .347 2.414± 1.2
elastic MCP 1.291± .407 2.407± 1.1
ridge 2.408± .458 1.948± 1.2
roughness 1.540± .391 1.894± 1.3
SACR 1.521± .308 1.795± 1.1

4.2 IDRC 2018

For regression we present a spectroscopy application that was originally pro-
posed for the on-site competition of the 2018 International Diffuse Reflectance
Conference. The data is already smooth and is available at https://www.cnir
s.org/content.aspx?page id=22&club id=409746&module id=276203, with
N = 150 and p = 635. The response variable has values over the whole dataset
of 27.7 ± 1 (µ±σ), with no information about the nature of the data. Figure 6
shows the input curves with the corresponding (rescaled) coefficient function for
each of the methods that we tested, where the dashed line indicates the zero of
the coefficient function. The results are reported in Table 2 and are obtained by
three random repetitions of 5-fold cross-validation, with 3-fold cross-validation
for grid search hyperparameter selection. In this application, the SACR and the
ridge both achieve comparable mean-square error (mse) scores, but with a clear
difference in the fitted coefficient functions. In fact, while the ridge recovers a
noisy solution, the SACR is able to recover a sparse coefficient function which
is easier to interpret. Overall, most methods tend to include the same variables
in the model, with the lasso variants and the elastic net that show a noisy be-
haviour similar to the ridge, which may be given by the high collinearity. The
roughness penalty instead recovers a smooth but oscillating coefficient function,
despite achieving a similar score to the BAR estimator, which is sparse and
slightly noisy. Finally, the NNG, the elastic SCAD and elastic MCP all recover
very sparse solutions as expected.
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IDRC 2018: comparison of the fitted coefficient functions β̂ scaled with respect

to the spectra, the black dashed line represents the zero level for β̂
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Table 2: IDRC 2018: regression results, mean-square error

lasso .1029± .019
adaptive lasso .0926± .018
relaxed lasso .0951± .017
NNG .0750± .015
BAR .0717± .015
elastic net .1048± .019
elastic SCAD .1559± .061
elastic MCP .1415± .072
ridge .0695± .013
roughness .0711± .016
SACR .0691± .014

4.3 Wine

This spectroscopy application is a binary classification problem in which we want
to discriminate between two different wine types. The data is available at http:
//www.timeseriesclassification.com/description.php?Dataset=Wine

and is already smoothed with N = 111 and p = 234, although there is no ad-
ditional information about the acquisition process. The results are reported in
Table 3 and are obtained by three random repetitions of 5-fold cross-validation,
with additional 3-fold cross-validation for grid search hyperparameter selection.
While there is no clear visual distinction between the spectra of the two classes,
this problem is not exceptionally hard and it is well suited for a linear model.
In particular, the roughness penalty has the second lowest accuracy, suggesting
that a very smooth coefficient function is not appropriate. In fact, the SACR
provides the highest accuracy without leveraging the smoothing term of the
penalty, as the resulting coefficient function is sparse and with multiple spikes,
similar to what is usually obtained with L1-based methods, as shown in Fig-
ure 7. Given the relatively high sample size, the lasso is also able to include
many variables in the model, with the adaptive lasso and the relaxed lasso that
gradually produce sparser solutions. It is interesting to note that the elastic
net instead yields a coefficient function that is almost identical to the one ob-
tained with the ridge, while the elastic SCAD and elastic MCP do not seem to
leverage the ridge part of the penalty. Despite that, both approaches include
different variables in the model and their resulting accuracy is lower than the
other sparse methods, which may be related to the known difficulties of opti-
mizing nonconcave penalties. The NNG has the second highest accuracy and
the fitted coefficient function is in fact very similar to the one resulting from
the SACR, further suggesting that a sparse solution is indeed adequate for this
application, which is also confirmed by the BAR estimator, that for the most
part recovers the same variables.
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Wine: comparison of the fitted coefficient functions β̂ scaled with respect to

the spectra, the black dashed line represents the zero level for β̂
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Table 3: Wine: classification results, accuracy (%)

lasso 94.64± 5.9
adaptive lasso 96.77± 4.6
relaxed lasso 95.88± 5.0
NNG 97.95± 3.1
BAR 96.82± 3.3
elastic net 94.34± 5.9
elastic SCAD 93.35± 3.4
elastic MCP 89.49± 6.7
ridge 95.25± 5.5
roughness 90.28± 8.4
SACR 99.44± 1.1

5 Conclusions

In the context of high dimensional linear models, the ordinary ridge penalty
is widely known to shrink the coefficients uniformly towards zero, resulting in
stable solutions at the price of intruducing some bias. In order to reduce un-
wanted shrinkage on a subset of the coefficients, generalized and adaptive ridge
estimators introduce coefficient-wise penalty parameters that allow for a non-
uniform regularization effect, with the downside that tuning such parameters
is a nonconvex problem. The nonzero centered ridge instead allows for a con-
vex formulation that uniformly shrinks the coefficients towards a specific target,
which in turn has to be specified by the user. In this work we have provided
a convex formulation that leverages the nonzero centered ridge and allows for
variable shrinkage of the coefficient function along its domain, mitigating the
downside of uniform shrinkage towards zero, without the need to specify a center
for the penalty, as it is learned from the data in a supervised way. In particular,
we introduced a constrained weight function that is jointly estimated while fit-
ting the model and acts as a scaling transformation on the initial centerfunction,
which is the ordinary ridge solution. We referred to our method as smoothly
adaptively centered ridge (SACR), since the centerfunction is adaptively scaled
with respect to the loss and is further penalized for its roughness, as it is com-
mon in the functional data setting. Regarding the computational aspect, our
approach doubles the number of variables to be estimated but not the ones in-
troduced in the model, and for the numerical optimization we resorted to known
primal-dual interior point methods with line search. Finally, we provided some
empirical evidence with a simulation study, and two real world spectroscopy
applications for both classification and regression.
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