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Abstract

We present a novel Deep Learning-based algorithm to accelerate – through the
use of Artificial Neural Networks (ANNs) – the convergence of Algebraic Multi-
grid (AMG) methods for the iterative solution of the linear systems of equations
stemming from Finite Element discretizations of Partial Differential Equations.
We show that ANNs can be be successfully used to predict the strong connection
parameter that enters in the construction of the sequence of increasingly smaller
matrix problems standing at the basis of the AMG algorithm, so as to maximize
the corresponding convergence factor of the AMG scheme. To demonstrate the
practical capabilities of the proposed algorithm, which we call AMG-ANN, we
consider the iterative solution via the AMG method of the algebraic system of
equations stemming from Finite Element discretizations of a two-dimensional
elliptic equation with a highly heterogeneous diffusion coefficient. We train
(off-line) our ANN with a rich data-set and present an in-depth analysis of the
effects of tuning the strong threshold parameter on the convergence factor of
the resulting AMG iterative scheme.

1 Introduction

In the last thirty years, there has been an increasing demand for computation-
ally efficient methods to solve sparse linear system of equations stemming from
numerical discretization of Partial Differential Equations (PDEs). For real-life
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problems, the typical size of the resulting algebraic systems makes direct or
classical one-level methods impractical and hierarchical iterative solvers have
been intensively developed and studied. This paper focuses on the Algebraic
Multigrid (AMG) method ([47]) for the iterative solution of the symmetric and
positive definite systems of equations stemming from Finite Element (FE) ap-
proximation ([23, 33, 34]) of elliptic partial differential equations. One of the
main feature of AMG is that it is a purely matrix-based approach, thus it
does not make use of any geometric information and the hierarchy of operators
is constructed directly from the system matrix, provided that the underlying
matrix has certain properties, see e.g., [7, 38, 42, 47]. AMG methods can be
advantageous whenever geometric multigrid is not a viable option, e.g., when-
ever the sequence of coarser meshes at the basis of geometric multigrid is not
available. AMG and AMG-like approaches have been developed to solve a vari-
ety of problems in the context of PDE-based simulations; here we mention, for
example, the AMG method based on element interpolation (AMGe) for solving
the discrete equations that arise in Ritz-type finite element methods, [9, 20],
Maxwell’s equations [26], linear elasticity [4], Navier-Stokes’s equations [46] and
multi-phase porous media [11]. In [5], AMG methods for large-scale supercom-
puting architectures are presented. In the paper [47] by Xu and Zikatanov, AMG
methods are presented and analyzed in an unified framework and an abstract
theory for the construction of optimal coarse space as well as quasi-optimal
spaces is derived. The abstract framework of [47] covers most of the existing
AMG methods, such as classical and energy-minimization AMG, unsmoothed
and smoothed aggregation AMG, and spectral AMGe [13]. AMG methods for
non-standard FE approximations have been also developed, for example in the
context of Discontinous Galerkin methods [2, 6, 40].

The AMG method relies on a set of parameters that defines how to alge-
braically carry out the coarsening phase. Often their tuning is based on expe-
rience and it could be rather inefficient in certain situations. In this paper, we
propose using Machine and Deep Learning algorithms to make the choice of the
AMG parameters fully automatic so as improve the efficiency of the method.
The approach that we propose is based on the use of Artificial Neural Networks
(ANNs). Artificial Neural Networks are Machine and Deep Learning models
that are nowadays widely used in several problems in image recognition, speech
recognition, and natural language processing [16]. The introduction of convolu-
tional neural networks (CNNs) [29] changed modern object recognition process
[17, 28, 39]. Today, the most advanced ANNs in image recognition are variations
of CNNs: ResNet [18] and SENet [22].

Nowadays, Machine and Deep Learning models are increasingly being used in
Scientific Computing [32], especially for the numerical approximation of ODEs
and PDEs [31]. For example, Physics Informed Neural Networks (PINNs) have
been introduced to approximate the solution of PDEs as a meshless method [35,
36] and ANNs are employed for model order reduction of parameter-dependent
PDEs [15, 21, 37]. ANNs can also be employed to enhance the performances of
algorithms and solvers used in “classical” numerical methods for the approxi-
mation of PDEs, i.e. as accelerators for Scientific Computing. In this context,
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we mention for example: the enhancement of numerical stabilization methods
for the FE approximation of advection-dominated differential problems, e.g. in
[25, 44]; the use of ANN to optimally select artificial viscosity for Discontinous
Galerkin methods in [12]; exploiting CNN for grid refinement in Discontinous
Galerkin and Virtual Element methods in [1]; the hybrid ML-FETI-DP algo-
rithm combining the advantages of adaptive coarse spaces in domain decompo-
sition methods and certain supervised machine learning techniques that have
been proposed in [19].

In this work, we make use of ANNs to improve the tuning of the strong
threshold parameter that enters in the definition of AMG so as to improve
its performance. In order to test the proposed approach, we consider a two-
dimensional elliptic equation with a highly heterogeneous diffusion coefficient
discretized by the FE method. In order to use the sparsity pattern of the
underlying matrix as input of the neural network, we introduce a pooling op-
erator. We show how an ANN-enhanced approach can effectively improve the
AMG performance. The performance of the AMG method is measured in two
ways: using the approximate convergence factor and using the elapsed time. We
show that these two measures are strictly correlated, this entails that we have a
unique way of measuring the performance. We demonstrate that, in some test
cases, the value of the strong threshold parameter commonly used in literature
can be improved so as to gain efficiency with respect to both measures. In par-
ticular, we test different models to tune the hyper-parameters of the model and
we report the predictions of the models with the lowest loss.

The paper is structured as follows. In Section 2 we recall the basic elements
of the AMG methods. In Section 3 we introduce the model problem and its
FE discretization. In Section 4 we give a brief overview on ANNs. The results
of the numerical experiments are showcased in Section 5, which is divided into
two main parts. In the first one, we report a wide set of numerical experiments
aimed at testing the performance when we tune the strong threshold parameter.
In the second part, we design the architecture of a net, we introduce the pooling
operator and test the model. Finally, in Section 6 we draw some conclusions.

2 Algebraic Multigrid Methods

In this section, we introduce the main ingredients of AMG methods; we refer the
reader to [47] for a comprehensive description. We consider the linear system
of equations:

Ahuh = fh (1)

where, for n ∈ N, Ah ∈ Rn×n is symmetric positive definite, and uh, fh ∈ Rn.
Let Nh = {1, ..., n} be the set with the indexes of all the variables. The set
Nh is split into two disjoint subsets Ch and Fh such that Nh = Ch ∪ Fh and
Ch ∩ Fh = ∅.

Let IhH : RnH → Rn be the interpolation operator that maps coarse level
vectors into fine level vectors, and let IHh : Rn → RnH be the restriction operator
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that maps fine level vectors into coarse level vectors. It is assumed that IhH can
be written as:

(IhHeH)i =

{
(eH)i if i ∈ Ch,∑

k∈Pi
whij(eH)j if i ∈ Fh, (2)

where eH ∈ RnH is a generic vector, Pi ⊂ Ch, for all i ∈ Fh is called a set of
interpolatory variables for i and whij is a set of weights. Moreover, since Ah is
symmetric it is also assumed that:

IhH = (IHh )>. (3)

Then, the coarse-level AMG matrix is defined as AH = IHh AhIhH ∈ RnH×nH .
One of the key ingredients of the AMG method consists in the implementa-

tion of the interpolation operator IhH previously described. The classical coars-
ening algorithm, which calls building IhH , prescribes to maintain at the coarse
level all the strong connections that are defined through a parameter θ, called
the strong threshold parameter. Its rigorous definition is given in the following
([8]).

Definition 2.1 Given a threshold 0 < θ ≤ 1, the variable i strongly depends on
the variable j if

−(Ah)ij ≥ θ max
k 6=i

(−(Ah)ik) .

As a matter of fact, performing the Ch/Fh splitting and implementing the
operators IHh and IhH requires choosing such strong threshold parameter θ. The
performances of the AMG method will depend on this choice, which is empiri-
cally made a priori.

The last ingredient needed to define the AMG methods is a smoothing op-
erator. In general one iteration of the smoothing can be written as:

u
(k+1)
h = Shu

(k)
h + (Ih − Sh)A−1

h fh = Shu
(k)
h + gh, k ≥ 0, (4)

where Sh ∈ Rn×n denotes the smoothing operator and Ih is the identity operator.
In the following, the notation:

u
(l)
h = smoothl(Ah,u

(0)
h , fh),

means that u
(l)
h is the result of l steps of (4), starting from an an initial vector

u
(0)
h .

We report in Algorithm 1 one iteration of the two-level algorithm, where
ν1 and ν2 are the smoothing steps that we apply before and after the error
correction, respectively. The complete two-level AMG algorithm is outlined in
Algorithm 2. As usual, in Algorithm 2, tol is a user-defined tolerance that is
employed for a stopping criterion. Analogously, Nmax is the maximum number
of iterations allowed. We notice that the AMG algorithm involves selecting the
parameter θ a priori.
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Algorithm 1: One Iteration of the two-level AMG method

u
(k+1)
h = two level iteration(u

(k)
h ,Ah, fh, ν1, ν2, I

H
h , I

h
H)

1 u
(∗)
h ← smoothν1(Ah,u

(k)
h , fh);

2 rh ← fh −Ahu
(∗)
h ;

3 rH ← IHh rh;
4 eH ← solve(AH , rH);

5 u
(∗)
h ← u

(∗)
h + IhHeH ;

6 u
(k+1)
h ← smoothν2(Ah,u

(∗)
h , fh)

Algorithm 2: Two-Level AMG algorithm

u
(k+1)
h = AMG(u

(0)
h ,Ah, fh, θ,ν1, ν2, Nmax, tol)

1 perform the Ch/Fh-splitting using θ;

2 build the operators IHh , IhH using θ ;

3 while k < Nmax and
∥∥∥Ahu

(k)
h − fh

∥∥∥ / ‖fh‖ < tol do

4 u
(k+1)
h ← two level iteration(u

(k)
h ,Ah, fh, ν1, ν2, I

H
h , I

h
H)

5 end

As a matter of fact, the two-level AMG Algorithm 2 can be immediately
extended to many levels by simply calling recursively Algorithm 2 until a suffi-
ciently coarse level is reached (where finally a direct linear solver is used). For
the sake of the analysis carried out in the present paper, we will focus on the
two-level method.

3 Model Problem

Throughout this work, we use standard notation for Sobolev spaces [30]. Let Ω
be an open, bounded domain in R2 and let ∂Ω = ΓD ∪ ΓN , with Γ̊D ∩ Γ̊N = ∅
and ΓD 6= ∅. Then, the model problem reads:

−div(µ(x, y)∇u) = f in Ω,

u = gD on ΓD,

µ(x, y)∇u · n̂ = gN on ΓN ,

(5)

where n̂ is the outward directed unit normal vector, f ∈ L2(Ω) is a given
forcing term, and gD ∈ H1/2(ΓD), gN ∈ H−1/2(ΓN ) are the given Dirichlet and
Neumann boundary data, respectively. The function µ ∈ L∞(Ω) is a positive
diffusion coefficient. In this work it will be a piece-wise non-negative constant
function.

To handle non homogeneous Dirichlet boundary condition we define, as
usual, ũ by the means of the lifting ũ = u − g̃, where g̃ is an extension of
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gD in H1(Ω). The weak formulation of problem (5) reads:

find ũ ∈ H1
ΓD

(Ω) : (ũ, v) = F (v) ∀v ∈ H1
ΓD

(Ω), (6)

where H1
ΓD

(Ω) := {v ∈ H1(Ω) : v|ΓD
= 0} and

a(ũ, v) :=

∫
Ω

µ(x, y)∇ũ · ∇v dΩ,

F (v) :=

∫
Ω

fv dΩ +

∫
ΓN

hv dγ −
∫

Ω

µ(x, y)∇g̃ · ∇v dΩ.

(7)

The well-poseness of problem (6) is guaranteed by the Lax-Milgram’s theo-
rem [10].

Now we pass to the FE formulation. We consider a quasi uniform mesh
Th of Ω. We denote with the parameter h > 0 the mesh size of Th given by
h = maxT∈Th hT , where hT is the diameter of the element T ∈ Th. Then,
the usual finite dimensional piecewise polynomial subspace of order r ≥ 1 are
defined as:

Xr
h = {vh ∈ C0(Ω) : vh|T ∈ Pr ∀ T ∈ Th}, r = 1, 2, . . . .

In our case, we use:

Vh = {vh ∈ X1
h : vh = 0 on ΓD}.

The finite dimensional formulation of (6) reads:

find ũh ∈ Vh s.t.: a(ũh, vh) = F (vh) ∀vh ∈ Vh. (8)

By setting n = dim(Vh), we denote with {φ1, ..., φn} the FE basis for Vh. Then,
from Eq. (8), we obtain the linear system of equations Ahuh = f , where:

a(φj , φi) = (Ah)ij , F (φi) = (f)i, (uh)i = ũi. (9)

4 Artificial Neural Networks

An artificial neural network, ANN, is a regression (or classification) model which
is simply a function F : RN → RM

F (x;γ) = y, (10)

where x is the input, y is the predicted value of the regression and γ is the vector
containing all the parameters of the model. The function F is the composition
of K functions F (k) called layers, the number of layers K is called depth of the
model. In the case of feed-forward neural network the layer is defined as{

a(k) = W(k)x(k−1) + b(k)

x(k) = H (k)(a(k))
for k = 1, ...,K

x = x(0), y = x(K), N0 = N, NK = M,

(11)
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where W(k) ∈ RNk×Nk−1 (weights) and b(k) ∈ RNk (biases) are the parameters
γ, and H (k)(·) is a scalar non-linear almost everywhere differentiable function
that is applied component-wise to a(k) and called activation function. The Rec-
tified Linear Unit ReLU(x) = max{0, x} is our choice of activation function
H (k)(·) since, in recent years, it has became very popular due to the fact that
it greatly improves the convergence of the stochastic gradient descent algorithm
compared to the sigmoid/tanh functions [28]. Moreover, it features lighter com-
putations with a random initialization network as only about half of hidden units
have a non-zero output and faster evaluation with respect to the sigmoid/tanh
functions.

Next, We define the loss function L. We assume that a dataset composed
by P couples (x(i),y(i)) is available; these are realizations of random variables
X , Y . Once defined the ANN architecture, its training boils down to minimize
the average training error, namely

J(γ) =
1

P

P∑
i=1

L(F (x(i);γ),y(i)). (12)

A typical choice of the loss function L that we also use in this paper is the mean
square error (MSE).

For determining the parameters γ, we use the Adaptive Moment Estimation
(Adam) method [27]. It is a variant of the stochastic gradient descent method
that combines the Root Mean Squared propagation (RMSProp) algorithm [45]
and momentum method [43] few other significant modifications, namely the
momentum is recorded in the history of the gradient and there is a correction
term of the bias for the estimation of the first and second order moments of the
gradient.

Finally, to prevent overfitting and minimize the generalization error we em-
ploy four regularization techniques: early stopping (we stop the training at the
point of smallest error with respect to the validation dataset), random param-
eter initialization, dropout [41, 17] and batch normalization [24].

As we want to use the matrix of the linear system Ah as input of the network
we employ convolutional neural networks (CNN). Their characteristic is that the
layer takes the form of a cross-convolution between the input and a matrix K ∈
RD×D, called kernel. Three other hyper-parameters control how the convolution
is performed: number of filters, stride and zero-padding size. Moreover, in
the last stage of the layer a pooling function is applied. The pooling function
is a form of down-sampling that replaces the output of the net at a certain
location with a summary statistic of the nearby outputs. The aim of the pooling
operation is to control the number of parameters and limit the overfitting. We
refer the reader to [16] for more details.

5 ANN-enhanced AMG Method

This section is composed of two main parts. In the first one, we assess the
relationship between the performance of the AMG methods and the strong
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Algorithm 3: ANN-enchanced AMG

u
(k+1)
h = ANN AMG(u

(0)
h ,Ah, h, fh, ν1, ν2, Nmax, tol, γ

1 V, C ← pooling(Ah, m) (Algorithm 4);
2 v̄←∑

i,j(V)ij ;

3 σ ←
√

1
m2

∑
i,j [(V)ij − v̄]2 ;

4 (V̂)ij ← (V)ij−v̄
σ ;

5 θ∗ ← argminθ p
(
F (V̂,− log2(h), θ;γ)

)
;

6 u
(k+1)
h ← AMG(u

(0)
h ,Ah, fh, θ

∗, ν1, ν2, Nmax, tol) (Algorithm 2)

threshold parameter θ. In the second part, we design and use ANNs to predict
the value of the strong threshold parameter θ∗ that maximizes the performances
of the AMG method.

We show in Algorithm 3 how we intend to use the prediction of the optimal
strong threshold parameter θ∗ realized by ANN within the AMG solver, which
we call ANN-enhanced AMG algorithm. In particular, our approach determines
θ∗ to be used in the AMG algorithm starting from the matrix Ah and the mesh size
h. This leverages on a map from a manipulation of Ah (V̂), h and θ to a suitable
performance index p of the AMG solver. Specifically, this map is realized by an
ANN F (x;γ) such that its inputs are x = (V̂,− log2(h), θ), while the output
y (the predicted value of the regression) coincides with a suitable performance
index, say y = p(Ah, h, θ), of the linear solver with AMG preconditioner. The
steps in the ANN-enhanced AMG Algorithm 3 are the following:

• (1–4) as the matrix Ah can not be directly used as input of an ANN
F , suitable pooling and normalization steps are performed to assemble
V̂ from Ah (V̂ =normalize(pooling(Ah)), where pooling is defined in
(Algorithm 4) and normalize is defined at the end of Section 5.5.2);

• (5) the ANN F built for the model problem is used to determine θ∗ in
order to minimize to the performance index p of the AMG;

• (6) the AMG Algorithm 2 is used with θ∗.

5.1 Numerical assessment of the strong threshold param-
eter θ

For our model problem (5) we select the diffusion coefficient µ to be a piece-wise
non-negative constant function. We assume that µ features different patterns,
where the domain Ω splits in strides or a checkerboard; see Figure 1. The value
of µ(x, y) depends on which “tile” to which it belongs, namely

µ(x, y) =

{
1 if (x, y) ∈ Ωgray,

10ε if (x, y) ∈ Ωwhite,
(13)
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(a) (b) (c) (d)

Figure 1: Four possible patterns of the diffusion coefficient µ of problem (5): it
is defined such that µ = 1 on the white tiles Ωwhite and µ = 10ε on the gray
ones Ωgray.

where ε is a parameter and Ωgray and Ωwhite are shown in Figure 1. The exper-
iments were carried out so that the exact solution u of problem (5) is u(x, y) =
cos(πx) cos(πy) for patterns (a) and (b), while u(x, y) = cos(2πx) cos(2πy) for
patterns (c) and (d); Dirichlet boundary conditions are set on the whole bound-
ary ∂Ω. Moreover, we employ regular cartesian meshes, so that the discontinuity
of µ is aligned with the mesh elements.

The implementation of the AMG method on which we rely on is the Boomer-
AMG of the library HYPRE [14]. In particular, we use the AMG method as a
preconditioner to accelerate the conjugate gradient (CG) iterative method [3].

To measure the performance of AMG we employ two performances indexes
p: the elapsed CPU time and the approximate convergence factor ρ, defined as
follows. Let ρ(k) be defined as

ρ(k) =

(∥∥r(k)
∥∥∥∥r(0)
∥∥
) 1

k

, (14)

where r(k) is the residual at the k-th iteration and ‖ ·‖ is the standard euclidean
norm. Then, we define ρ as

ρ = ρ(Nit),

where Nit is the number of iterations reached to reduce the (relative) residual
below the given tolerance of the linear solver (here it is equal to Nit = mink{k ∈
N such that

∥∥r(k)
∥∥ < 10−8}).

5.2 Relation between θ and ρ

We investigate the relation between the strong threshold parameter θ and the
corresponding approximated convergence factor ρ for a fixed test case (model
problem), i.e. fixing the pattern of the diffusion coefficient µ, the coefficient ε
and the size of the mesh h. Towards this goal, we have computed the value of
ρ and the corresponding iteration counts as a function of the variables ε of the
diffusion coefficient (Eq. (13)) and the mesh size h. The value of θ is kept fixed
for each test.
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By comparing one test with the others, we can determine if the different
value of the strong threshold parameter θ has affected the convergence factor
ρ of the linear solver. Six equally-spaced values of θ in [0.12, 0.72] have been
specifically chosen. We report the three most significant ones in Tables 1 and 2.
The values of ε go from 0.0 (yielding the standard Laplacian problem with
uniform diffusion), to 9.5, which produces a quite large discontinuity in the
diffusion coefficient µ. The results reported in Table 1 have been obtained with
a diffusion coefficient that has a “strides” pattern (Figure 1(c)), while Table 2
displays analogous results on the checkerboard pattern (Figure 1(d)).

From the results of Tables 1 and 2, it is clear that, if the choice of strong
threshold θ is appropriate, there is almost always uniform convergence, inde-
pendently from the mesh size h. This confirms that the AMG method works as
intended also with a diffusion coefficient µ that presents large discontinuities,
provided that θ is appropriately chosen.

The results reported in Tables 1 and 2 also show that for large values of
the strong threshold parameter (θ = 0.72), the approximate convergence factor
ρ becomes larger, i.e. the method converges slower. We notice that this goes
together with a larger number of iterations needed by the preconditioned CG
to reduce the residual below the fixed tolerance. A possible explanation is the
following: consider that a larger θ means that more connections are kept at
the coarse level, that is there are more Ch-variables and thus AH is larger.
Moreover, recall that we set the AMG method to work on only two levels, and
BoomerAMG does not solve the coarse system with a direct method, but instead
uses an iterative method. Therefore it could be that the matrix AH is associated
with a grid still too fine to efficiently damp the low frequency modes, hence the
convergence is slower.

For the test cases that present less pronounced discontinuities, the value
of θ = 0.24 (which is almost the standard literature value) provides uniform
convergence. On the other hand, we notice that in the strongly heterogeneous
cases (i.e. when ε is large) deviating from the literature value of θ can result in
a significant improvement is the approximate convergence factor.

5.3 Relation between θ and computational costs

In order to analyze more accurately the performance gain that can be obtained
varying the strong threshold paramete θ, we computed the elapsed CPU time
needed by the AMG preconditioned CG solver. Even with its limitations, this
is still the quantity that in practice we want to minimize. Indeed, the aim of
these test is to make sure that there could be some improvements in changing θ.

We report in Figures 2 and 3 the mean and standard deviation of the elapsed
CPU time as a function of θ and for different values of ε (to determine µ).
The results in Figures 2 and 3 have been obtained with the diffusion patterns
reported in Figures 1(c) and (d), respectively. We point out that, as a single
measurement is not reliable (especially when the elapsed time is small), each
point displayed in Figures 2 and 3 is the mean of several evaluation of the
solver time. In particular each simulation has been repeated 200, 100, 50, 20,
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ε\h 1.25e-01 6.25e-02 3.12e-02 1.56e-02 7.81e-03 3.91e-03 1.95e-03 9.77e-04

0.0 0.094(9) 0.071(8) 0.060(8) 0.054(8) 0.061(9) 0.063(9) 0.064(9) 0.066(10)
0.4 0.091(9) 0.069(8) 0.059(8) 0.057(8) 0.061(9) 0.062(9) 0.063(9) 0.066(10)
0.8 0.087(9) 0.066(8) 0.059(8) 0.058(8) 0.059(9) 0.060(9) 0.061(9) 0.068(10)
1.2 0.085(9) 0.066(8) 0.060(8) 0.059(8) 0.061(9) 0.060(9) 0.061(9) 0.069(10)
1.6 0.085(9) 0.065(8) 0.061(8) 0.067(9) 0.062(9) 0.061(9) 0.062(9) 0.070(10)
2.0 0.084(9) 0.065(8) 0.062(8) 0.068(9) 0.062(9) 0.061(9) 0.062(9) 0.070(10)
2.4 0.084(9) 0.065(8) 0.062(8) 0.068(9) 0.062(9) 0.062(9) 0.062(9) 0.070(10)
2.8 0.084(9) 0.065(8) 0.062(8) 0.069(9) 0.062(9) 0.062(9) 0.063(9) 0.070(10)
3.5 0.084(9) 0.065(8) 0.062(8) 0.069(9) 0.062(9) 0.062(9) 0.063(9) 0.070(10)
5.0 0.084(9) 0.065(8) 0.062(8) 0.069(9) 0.062(9) 0.062(9) 0.063(9) 0.070(10)
7.0 0.084(9) 0.065(8) 0.062(8) 0.069(9) 0.062(9) 0.062(9) 0.063(9) 0.070(10)
9.5 0.084(9) 0.065(8) 0.062(8) 0.069(9) 0.062(9) 0.062(9) 0.063(9) 0.070(10)

θ = 0.24

ε\h 1.25e-01 6.25e-02 3.12e-02 1.56e-02 7.81e-03 3.91e-03 1.95e-03 9.77e-04

0.0 0.094(9) 0.071(8) 0.060(8) 0.054(8) 0.061(9) 0.063(9) 0.064(9) 0.066(10)
0.4 0.091(9) 0.068(8) 0.057(8) 0.057(8) 0.059(9) 0.060(9) 0.061(9) 0.066(10)
0.8 0.087(9) 0.066(8) 0.059(8) 0.058(8) 0.059(9) 0.060(9) 0.061(9) 0.068(10)
1.2 0.077(8) 0.068(8) 0.059(8) 0.073(9) 0.063(9) 0.072(10) 0.089(11) 0.091(11)
1.6 0.076(8) 0.068(8) 0.059(8) 0.075(9) 0.063(9) 0.068(9) 0.083(11) 0.092(11)
2.0 0.076(8) 0.068(8) 0.059(8) 0.075(9) 0.063(9) 0.067(9) 0.085(10) 0.087(11)
2.4 0.075(8) 0.068(8) 0.059(8) 0.076(9) 0.063(9) 0.067(9) 0.084(10) 0.086(11)
2.8 0.075(8) 0.068(8) 0.059(8) 0.076(9) 0.063(9) 0.067(9) 0.084(10) 0.085(11)
3.5 0.075(8) 0.069(8) 0.059(8) 0.076(9) 0.062(9) 0.067(9) 0.083(10) 0.079(10)
5.0 0.075(8) 0.069(8) 0.059(8) 0.076(9) 0.062(9) 0.067(9) 0.083(10) 0.079(10)
7.0 0.075(8) 0.069(8) 0.059(8) 0.076(9) 0.062(9) 0.067(9) 0.083(10) 0.079(10)
9.5 0.075(8) 0.069(8) 0.059(8) 0.076(9) 0.062(9) 0.067(9) 0.083(10) 0.079(10)

θ = 0.48

ε\h 1.25e-01 6.25e-02 3.12e-02 1.56e-02 7.81e-03 3.91e-03 1.95e-03 9.77e-04

0.0 0.094(9) 0.071(8) 0.060(8) 0.054(8) 0.061(9) 0.063(9) 0.064(9) 0.066(10)
0.4 0.054(7) 0.155(12) 0.112(10) 0.165(13) 0.150(13) 0.196(15) 0.189(15) 0.192(16)
0.8 0.047(7) 0.151(12) 0.107(10) 0.157(13) 0.153(13) 0.197(15) 0.172(14) 0.181(15)
1.2 0.052(7) 0.090(9) 0.108(10) 0.123(11) 0.136(12) 0.143(13) 0.169(14) 0.195(16)
1.6 0.054(7) 0.081(9) 0.110(10) 0.136(12) 0.132(12) 0.142(13) 0.160(14) 0.186(15)
2.0 0.054(7) 0.080(9) 0.109(10) 0.126(11) 0.133(12) 0.158(13) 0.168(14) 0.218(17)
2.4 0.054(7) 0.079(9) 0.110(10) 0.128(12) 0.137(12) 0.160(14) 0.170(14) 0.223(17)
2.8 0.054(7) 0.079(9) 0.111(10) 0.135(12) 0.139(12) 0.166(14) 0.171(14) 0.230(18)
3.5 0.054(7) 0.079(9) 0.112(10) 0.140(12) 0.143(12) 0.172(14) 0.171(14) 0.233(18)
5.0 0.054(7) 0.079(9) 0.112(10) 0.142(12) 0.144(12) 0.174(14) 0.172(14) 0.197(16)
7.0 0.054(7) 0.079(9) 0.112(10) 0.142(12) 0.144(12) 0.175(14) 0.172(14) 0.197(16)
9.5 0.054(7) 0.079(9) 0.112(10) 0.142(12) 0.144(12) 0.175(14) 0.172(14) 0.197(16)

θ = 0.72

Table 1: Computed values of the approximate convergence factor ρ = ρ(k) (be-
tween brackets the AMG preconditioned CG iteration counts) w.r.t. parameters
ε on rows and mesh size h on columns. In each table the the pattern of diffusion
coefficient µ and the strong threshold θ (shown on the left) is fixed. The back-
ground color depends on ρ with colormap . It is
scaled to range between minimum and maximum value (among all the tables)
of ρ. Strides pattern for µ as in Figure 1(c).
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ε\h 1.25e-01 6.25e-02 3.12e-02 1.56e-02 7.81e-03 3.91e-03 1.95e-03 9.77e-04

0.0 0.094(9) 0.071(8) 0.060(8) 0.054(8) 0.061(9) 0.063(9) 0.064(9) 0.066(10)
0.4 0.088(9) 0.070(8) 0.064(8) 0.067(9) 0.065(9) 0.064(9) 0.074(10) 0.075(10)
0.8 0.097(9) 0.103(10) 0.088(9) 0.101(10) 0.113(11) 0.125(12) 0.127(12) 0.134(13)
1.2 0.142(11) 0.160(12) 0.169(13) 0.171(13) 0.182(14) 0.194(15) 0.193(15) 0.205(16)
1.6 0.166(12) 0.196(13) 0.220(15) 0.228(16) 0.240(17) 0.255(18) 0.268(19) 0.277(20)
2.0 0.176(12) 0.221(14) 0.247(16) 0.261(17) 0.288(19) 0.302(20) 0.326(22) 0.344(24)
2.4 0.180(12) 0.234(15) 0.254(16) 0.289(19) 0.307(20) 0.326(22) 0.343(24) 0.362(25)
2.8 0.182(12) 0.236(15) 0.273(17) 0.294(19) 0.312(20) 0.333(22) 0.350(24) 0.375(26)
3.5 0.196(13) 0.237(15) 0.275(17) 0.297(19) 0.317(21) 0.333(23) 0.355(24) 0.386(27)
5.0 0.196(13) 0.238(15) 0.275(17) 0.298(19) 0.318(21) 0.333(23) 0.356(24) 0.388(27)
7.0 0.196(13) 0.238(15) 0.275(17) 0.298(19) 0.318(21) 0.333(23) 0.356(24) 0.388(27)
9.5 0.196(13) 0.238(15) 0.275(17) 0.298(19) 0.318(21) 0.333(23) 0.356(24) 0.388(27)

θ = 0.24

ε\h 1.25e-01 6.25e-02 3.12e-02 1.56e-02 7.81e-03 3.91e-03 1.95e-03 9.77e-04

0.0 0.094(9) 0.071(8) 0.060(8) 0.054(8) 0.061(9) 0.063(9) 0.064(9) 0.066(10)
0.4 0.088(9) 0.077(9) 0.064(8) 0.066(9) 0.065(9) 0.063(9) 0.063(9) 0.071(10)
0.8 0.097(9) 0.103(10) 0.088(9) 0.101(10) 0.113(11) 0.125(12) 0.127(12) 0.134(13)
1.2 0.113(10) 0.161(12) 0.107(10) 0.117(11) 0.137(12) 0.158(13) 0.184(15) 0.180(15)
1.6 0.129(10) 0.192(13) 0.118(11) 0.132(12) 0.140(12) 0.166(14) 0.191(15) 0.205(16)
2.0 0.147(11) 0.210(14) 0.124(11) 0.126(12) 0.152(13) 0.169(14) 0.194(15) 0.225(18)
2.4 0.150(11) 0.216(14) 0.127(11) 0.141(12) 0.155(13) 0.170(14) 0.184(15) 0.252(19)
2.8 0.152(11) 0.218(14) 0.125(11) 0.140(12) 0.144(12) 0.171(14) 0.196(16) 0.252(19)
3.5 0.153(11) 0.220(14) 0.126(11) 0.138(12) 0.152(13) 0.196(15) 0.203(16) 0.219(17)
5.0 0.153(11) 0.220(14) 0.126(11) 0.138(12) 0.153(13) 0.196(15) 0.211(16) 0.225(17)
7.0 0.153(11) 0.220(14) 0.126(11) 0.138(12) 0.153(13) 0.196(15) 0.211(16) 0.225(17)
9.5 0.153(11) 0.220(14) 0.126(11) 0.138(12) 0.153(13) 0.196(15) 0.211(16) 0.225(17)

θ = 0.48

ε\h 1.25e-01 6.25e-02 3.12e-02 1.56e-02 7.81e-03 3.91e-03 1.95e-03 9.77e-04

0.0 0.094(9) 0.071(8) 0.060(8) 0.054(8) 0.061(9) 0.063(9) 0.064(9) 0.066(10)
0.4 0.039(7) 0.141(11) 0.143(12) 0.172(13) 0.183(14) 0.195(15) 0.208(16) 0.215(17)
0.8 0.045(7) 0.119(10) 0.131(11) 0.173(13) 0.190(14) 0.213(16) 0.212(16) 0.240(18)
1.2 0.052(7) 0.115(10) 0.175(13) 0.159(13) 0.202(15) 0.240(17) 0.243(18) 0.266(20)
1.6 0.057(8) 0.108(10) 0.152(12) 0.171(13) 0.212(15) 0.244(17) 0.270(19) 0.274(20)
2.0 0.052(7) 0.115(10) 0.158(12) 0.169(13) 0.206(15) 0.222(16) 0.264(19) 0.266(19)
2.4 0.052(7) 0.115(10) 0.147(12) 0.153(12) 0.186(14) 0.221(16) 0.244(18) 0.273(20)
2.8 0.052(7) 0.116(10) 0.147(12) 0.162(13) 0.187(14) 0.224(16) 0.242(18) 0.264(19)
3.5 0.053(7) 0.117(10) 0.141(12) 0.162(13) 0.188(14) 0.235(17) 0.236(17) 0.260(19)
5.0 0.053(7) 0.117(10) 0.141(12) 0.162(13) 0.189(14) 0.244(17) 0.236(17) 0.259(19)
7.0 0.053(7) 0.120(10) 0.141(12) 0.162(13) 0.189(14) 0.245(17) 0.236(17) 0.259(19)
9.5 0.053(7) 0.120(10) 0.141(12) 0.162(13) 0.189(14) 0.245(17) 0.236(17) 0.259(19)

θ = 0.72

Table 2: Computed values of the approximate convergence factor ρ = ρ(k) (be-
tween brackets the AMG preconditioned CG iteration counts) w.r.t. parameters
ε on rows and mesh size h on columns. In each table the the pattern of diffusion
coefficient µ and the strong threshold θ (shown on the left) is fixed. The back-
ground color depends on ρ with colormap . It is
scaled to range between minimum and maximum value (among all the tables)
of ρ. Checkerboard pattern for µ as in Figure 1(d).
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Figure 2: Mean and standard deviation of the elapsed CPU time to solve the
linear system of equations (in seconds) based on employing the AMG precon-
ditioned CG. In each plot we have fixed a different mesh size h. Each line
represents a different parameter ε of the diffusion coefficient µ. The pattern of
µ is reported in Figure 1(c).
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Figure 3: Mean and standard deviation of the elapsed CPU time to solve the
linear system of equations (in seconds) based on employing the AMG precon-
ditioned CG. In each plot we have fixed a different mesh size h. Each line
represents a different parameter ε of the diffusion coefficient µ. The pattern of
µ is reported in Figure 1(d).
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10, 7, 5, and 4 times for each mesh refinement from the coarsest to the finest,
respectively. The standard deviation has also been plotted.

The results shown in Figure 2 seem to indicate that choosing θ differently
from the standard value suggested in literature (θ = 0.24) does not result in any
significant improvement. On the other hand, the plots of the four finest mesh
refinements of Figure 3 reveal that a significant boost in the performance could
be obtained. An optimal choice of the strong threshold could bring a speed up
of up to 33% in terms of computational time.

We also observe that for small values of the strong threshold parameter
(θ ≤ 0.3) there is an interval where the CPU time is almost constant: this
appears to be true for all the test cases addressed in Figures 2 and 3. Since a
smaller strong threshold parameter means that more connections are discarded
in the coarsening phase, one would expect that as θ gets smaller, then the
approximate convergence factor ρ may deteriorate, which in turn would lead
to larger CPU times. A possible motivation of this behaviour is to consider
that among the settings of BoomerAMG there is parameter that prevents the
coarsening from being too small (in the present test its value has been set as
default, i.e. equal to 1). Thus, the coarse system associated to AH is still
effectively damping the smooth components.

In conclusions, we have shown that, in some scenarios, there could be a
significant performance improvement if we use optimized values of the strong
threshold θ parameter. In the next section, we proceed to employ an ANN to
make an a priori estimate of those values. The dataset that we built contains
numerical simulations made with every combination of parameters among 8
mesh sizes h, 25 values of θ, 12 values of ε and 4 patterns of µ (Figure 1) for a
total of 9600 samples.

5.4 Predicting the optimal strong threshold parameter θ
by means of ANNs

Our goal is to design a model, namely an ANN, that enables predictions of the
optimal strong threshold θ for a given model problem. We remark that, in the
framework discussed in Section 3, fixing a test case (model problem) is equivalent
to fixing the matrix Ah defined in Eq. (9). We define the optimal value of strong
threshold parameter θ∗ for a certain test case (problem) as the minimizers of a
scalar performance index p(Ah, h, θ). Two possible choices for such performance
index, which we previously discussed, are the approximate convergence factor
ρ = ρ(Ah, h, θ), which measures how rapidly the linear solver converges, and
the elapsed CPU time t = t(Ah, h, θ).

Then, we build our model (the ANN) to predict the performance index p of
the AMG in a fixed test case and with a fixed strong threshold parameter θ,
namely it is the ANN F such that

F (x;γ) = F (V̂,− log2(h), θ;γ) = y = p(Ah, h, θ) (15)

where x is a set of variables that identifies the matrix Ah (or better saying
V̂ that will be obtained from Ah), h, and θ, while γ are the parameters that
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Figure 4: Scatter plot of the average elapsed CPU time (t) to solve the linear
system and approximate convergence factor ρ, for different mesh sizes h. Data
are normalized (in both components) with respect to the corresponding data in
the same test case.

define the ANN. There are two reasons to adopt this approach: first, it is pos-
sible to quantify the improvement on the performance that we expect; second,
each numerical simulation can be added to the dataset making this process less
computationally expensive and more flexible.

If otherwise not stated, we will use a 60%-20%-20% split of the dataset into
training-validation-test.

5.4.1 Choice of the performance index p

In order to determine the most suited measure to be employed as the perfor-
mance index p for the AMG solver, we analyze the relationship between the
elapsed CPU time t and the approximate convergence factor ρ. In Figure 4,
we show a scattered plot of the elapsed CPU time (t) as a function of ρ, for
different values of the mesh size h. We notice that the results are normalized
with respect to the data that belong to the same test case. It is possible to
highlight a linear relationship between t and ρ. This is also confirmed by the
results shown in Table 3, where we report the least square analysis of the results
of Figure 4.

We highlight that these results support the hypothesis of a relationship be-
tween ρ and t. We can explain the poor correlation for coarse mesh sizes h as
due to the higher relative uncertainty of the measure. Indeed, as h gets smaller
the coefficient of determination R2 improves. Thus, we use as unique target of
the ANN ρ. This choice is also motivated by the fact that ρ is not machine nor
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h 1.25e-1 6.25e-2 3.12e-2 1.56e-2
Data points 1200 1200 1200 1200
R2 0.155 0.564 0.762 0.912
Adj. R2 0.155 0.564 0.762 0.912
F-statistic 220.5 1550 3836 1.24e+04
AIC −2.15e+4 −1.79e+4 −1.53e+4 −1.30e+4
ρ coef. 3.49e-4 3.05e-3 1.25e-2 4.99e-2
ρ SE 2.35e-5 7.76e-5 2.02e-4 4.48e-4
ρ t-value 14.848 39.369 61.937 111.299
ρ p-value < 0.001 < 0.001 < 0.001 < 0.001

h 7.81e-3 3.91e-3 1.95e-3 9.77e-4
Data points 1200 1200 1200 1200
R2 0.985 0.992 0.991 0.993
Adj. R2 0.985 0.992 0.991 0.993
F-statistic 7.88e+04 1.58e+05 1.34e+05 1.68e+05
AIC −1.09e+4 −7864 −4048 −800.1
ρ coef. 0.263 1.245 5.259 20.95
ρ SE 9.35e-4 3.13e-3 1.42e-2 5.11e-2
ρ t-value 280.677 397.857 366.596 409.565
ρ p-value < 0.001 < 0.001 < 0.001 < 0.001

Table 3: Least squares (LS) analysis between the elapsed CPU time t and
the approximate converge factor ρ, as a function of the mesh size h. Each
row from the top represents: the number of data points employed in the LS
(data points); the square of the coefficient of determination (R2); its adjusted
version (Adj. R2); the F-statistic of the regression (F-statistic); the Akaike’s
information criterion (AIC); the estimated coefficient of the predictor variable
(ρ coef.); its standard error (ρ SE); its t-value (ρ t-values); and its p-value ρ
(p-value).

implementation dependent, thus leading to reproducible result.

5.5 ANN-based prediction of the optimal strong threshold
parameter θ

In this section, we discuss how to predict the optimal strong threshold parameter
θ to be used in the ANN-enhanced AMG Algorithm 3 without using any prior
assumption on the diffusion coefficient µ. In other words, we do not rely on the
fact that µ shows a finite number of patterns.

The variables that we use as inputs x of the ANN F are θ, − log2(h) and a
set of variables V̂ that is extracted from the matrix Ah of the linear system (9)
by means of the pooling Algorithm 4 and a normalization algorithm (extraction
step). This extraction process should be computationally cheap, indeed this
approach is worthwhile only until the process of predicting the optimal value of
θ has a negligible computational cost with respect to the elapsed CPU time to
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Algorithm 4: Pooling algorithm
(V,C) = pooling(Ah,m)

1 access Ah in COO form and extract its size: val, row, col, n ← Ah;
2 initialize V to an m×m dense matrix with all zero entries;
3 initialize C to an m×m dense matrix with all zero entries;
4 q ← n/m;
5 p ← n mod m;
6 t ← (q + 1)p;
7 for k = 0 to val.size()− 1 do
8 i ← row[ k ] < t ? row[ k ]/(q + 1) : (row[ k ] − t)/q + p;
9 j ← col[ k ] < t ? col[ k ]/(q + 1) : (col[ k ] − t)/q + p;

10 Vij ← Vij + val[ k ];
11 Cij ← Cij + 1;

12 end
13 return V,C;

solve the linear system.
We recall at this stage that the optimal parameter θ∗ to be used in the linear

solver with AMG preconditioner (step 6 of Algorithm 3) is such that

θ∗ = argmin θ∈(0,1] p
(
F (V̂,− log2(h), θ;γ)

)
.

Specifically, as we consider the performance index p to be the unique scalar
output y of the ANN F , we can simply write:

θ∗ = argmin θ∈(0,1] F (V̂,− log2(h), θ;γ).

5.5.1 Pooling (step 1 of Algorithm 3)

We introduce what we call the view of the matrix, which is the result of the
application on the pooling operator to be used in the ANNs in place of the
matrix Ah. We compute an average to combine entries in the same bucket.
Moreover, by accessing to a sparse matrix at a low level, we can realized the
pooling at a small computational cost. For the sake of simplicity, Algorithm 4
assumes that the matrix Ah is stored in coordinate list (COO). Notice that
this algorithm has complexity O(nnz), where nnz is the number of non-zero
elements in the matrix Ah. We have also measured the elapsed CPU time by
Algorithm 4 in each simulation that we have performed: these measurements
empirically show that it runs in a negligible CPU time with respect to the time
needed to solve the linear system. We also notice that Algorithm 4 could easily
be extended to work in parallel.

We observe that the pooling algorithm calls for setting a priori the size m
of the matrix V ∈ Rm×m.
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Figure 5: Architecture of the ANN y = F (x;γ), where x =(
V̂(Ah),− log2(h), θ

)
and y = p(Ah, h, θ). The ANN is comprised by a CNN

such that yCNN = FCNN (V̂;γCNN ) and a dense FFN y = p(Ah, h, θ) =
FFFN (yCNN ,− log2(h), θ;γFNN ).

5.5.2 Normalization (steps 2-4 of Algorithm 3)

We observe that the view defined in the previous section cannot be used as input
of an ANN yet. In particular, it features very large values that might impact the
stability of the gradient algorithm, namely could lead to the exploding gradient
problem.

For this reason, we apply a normalization to the input, namely we propose
two alternatives: the standard one

(V̂)ij =
(V)ij − v̄

σ
, v̄ =

∑
i,j

(V)ij , σ =

√
1

m2

∑
i,j

[(V)ij − v̄]2, (16)

and the following scaled version:

(V̂)ij =
(V)ij

maxi,j |(V)ij |
. (17)

The argument behind the scaling is that we would like to preserve the sparsity
pattern of the matrix. These normalization should be applied also to the mean
view, that is the matrix result of the element-wise division of V and C

(V̄)ij =
(V)ij
(C)ij

. (18)

Namely, we define four versions of the function V̂ = normalize(V,C); it the
composition of two maps: first we apply either Eq. (18) or IV (V,C) = V, then
we use either Eq. (16) or Eq. (17)

At this stage, we have obtained a matrix V̂ ∈ Rm×m, with m chosen a priori.
We will discuss our choice in the next section.
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Normalization Mode
Sum
Standard

Sum
Scaled

Mean
Standard

Mean
Scaled

Dropout 0.50
loss 1.01e-4 1.56e-4 3.43e-4 1.20e-4

MAE 5.84e-3 7.88e-3 1.16e-2 6.40e-3

Dropout 0.25
loss 9.45e-5 1.36e-4 1.01e-4 9.97e-5

MAE 5.47e-3 6.92e-3 5.85e-3 5.79e-3

Dropout 0.00
loss 4.26e-4 1.02e-4 1.43e-4 1.08e-4

MAE 1.18e-2 5.98e-3 6.48e-3 5.54e-3

Table 4: Computed loss (MSE) and mean absolute error (MAE) for a model
trained with different normalized input and different dropout rates.

5.5.3 ANN architecture (building the ANN of step 5 in Algorithm 3)

We now build the ANN F (x;γ), whose input is x =
(

V̂,− log2(h), θ
)

, while the

output is the performance index y = p(Ah, h, θ), which we select as the approx-
imated convergence factor y = p = ρ(Ah, h, θ). We recall that, following the
former pooling and normalization steps, we have V̂ =normalize(pooling(Ah)),
, where pooling is defined in (Algorithm 4) and normalize is defined at the
end of Section 5.5.2.

In particular, we use a model (ANN) that is the composition of two networks
as depicted in Figure 5. Since the matrix view V̂ is a structured input, we first
employ a CNN such that

yCNN = FCNN (V̂;γCNN ),

depending on the parameters γCNN . Then, the output of the first CNN alto-
gether with the remaining inputs − log2(h) and θ of x, constitute the inputs
of a second network, which we select as a dense Feed Forward Network (FFN).
This dense FFN is such that

y = p(Ah, h, θ) = FFFN (yCNN ,− log2(h), θ;γFNN )

and depends on the parameters γCNN .
The size m of the view, i.e. size of the matrix V̂, is fixed in this paper as

m = 50. Our choice is motivated by interpreting V̂ as a color image in input to
the first CNN network; experience indicates that this kind of CNN network is
able to excellently process color images of similar size.

Before tuning the architecture of the ANN, we compare the normalization
strategies of steps 2-4 in Algorithm 3 to check which is the most effective for
the ANN training. For this test, we employ a fairly simple model that is com-
posed by 2 convolutional layers with 32 units per layer, 2 × 2 max-pooling, a
dropout layer and 128 outputs for the CNN. The dense part is instead build
as the composition of 3 layers with 64 hidden units. As shown in Table 4, the
Sum Standard and Mean Scaled version consistently outperform the other two

20



W1 D1 P1 W2 D2 P2 O W3 D3 loss MAE
32 2 0.25 - - - 128 64 2 7.36e-5 4.33e-3
32 2 0.25 32 2 0.5 128 64 2 9.28e-5 5.40e-3
32 2 0.0 - - - 128 64 3 7.85e-5 4.96e-3
32 2 0.25 - - - 128 64 3 7.72e-5 4.94e-3
32 2 0.5 - - - 128 64 3 7.86e-5 5.16e-3
32 2 0.25 - - - 256 64 3 8.19e-5 5.13e-3
32 2 0.25 64 2 0.5 128 64 4 1.88e-4 9.68e-3

Table 5: Computer loss (MSE) and mean absolute error (MAE) for different
ANNs architectures. The batch size is 32, normalization is the standard one
(see (16)), training lasts 500 epochs and the optimizer is the Adam algorithm.

normalization methods. We choose using (16) from here on as it is the one that
reaches the minimum loss (with dropout rate equal to 0.25).

Further results on the architecture are presented in Table 5. In particular,
we consider architectures with two convolutional layers each composed by a
convolution with zero-padding, 3×3 kernel and ReLU activation and Di−1 other
convolutions with 3 × 3 kernel and ReLU activation (without padding). The
last elements of the convolutional layers are a 2 × 2 max-pooling and Dropout
with rate Pi, each layer has Wi hidden units (for i = 1, 2). The output of the
convolutional part has O hidden units; the dense part is composed by D3 dense
layers with W3 hidden units.

We have chosen the architecture of the first model displayed in Table 5, with
training lasting up to 1000 epochs and early stopping we have obtained a loss
of 6.36 · 10−5. This means that the input we are using is effectively carrying
the information needed to predict the approximate convergence factor since in
the previous section we obtained a similar loss. Since the a priori choice of
the strong threshold parameter θ is based on the map p = F (x;γ), we need
to verify that this prediction is accurate. For this reason, we plot in Figures 6
and 7 all the predictions. We can appreciate how the model is able to accurately
capture the behaviour of the approximate convergence factor ρ.

5.5.4 Prediction capabilities

In order to further test the robustness of the model to unseen data (i.e. test
cases that are not in the training set), we test the prediction capabilities of the
ANN on a new dataset. We call the latter dataset, “dataset 2”, while the one
employed so far is called “dataset 1”. In particular, we solve the same model
problem (5) but with a different diffusion coefficient, defined as

µ(x, y) =

{
10ε2 if (x, y) ∈ Ωgray,

10ε1 if (x, y) ∈ Ωwhite,
(19)

where ε1 and ε2 are parameters to be chosen and Ωgray,Ωwhite is a partition of
Ω as shown in Figure 1.
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Figure 6: Predictions (line) of the computed approximate convergence factor
(dots) for different values of ε. Each plot groups simulations with a different
mesh size h. The pattern of µ is reported in Figure 1(c).
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Figure 7: Predictions (line) of the computed approximate convergence factor
(dots) for different values of ε. Each plot groups simulations with a different
mesh size h. The pattern of µ is reported in Figure 1(d).
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Figure 8: Predictions on dataset 2 made by the model designed in Section 5.5.3
and trained with dataset 1. Each plot has data coming from a fixed combination
of ε1 and ε2. Namely, ε1 is constant for subplots on the same row and ε2 is
constant for subplots on the same column of the plot grid. On the x-axis there
is the true value of ρ, on the y-axis the predicted value.

In Figure 8, we show the performances of the model that we designed in the
previous sections, trained with only with dataset 1. In particular, we choose
randomly three values for ε1 and three values for ε2. We can see how the
predictions maintain accuracy in some scenarios, but fail in other ones.

We proceed to show how the model behaves when the training is instead done
with training samples from both datasets. Dataset 2 contains 5184 entries, we
define the test set to be the union of the 20% of dataset 2 and the 50% of the
dataset 1. In this way, the union of the training and validation set contains
4800 datapoints from the dataset 1 and 4147 from dataset 2. The ratio between
the number of entries of the validation set and the training set is defined to
be 1 : 3. We call this combination dataset 3. The aim is to have a balanced
training dataset in which each definition of µ is equally represented.

If not otherwise stated, we stop the training at 200 epochs. As shown in
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W1 D1 P1 O W3 D3 loss MAE
32 2 0.05 128 64 3 1.75e-4 8.60e-3
32 2 0.00 128 64 4 1.63e-4 8.03e-3
32 2 0.25 128 64 3 1.58e-4 8.14e-3
32 2 0.25 128 64 4 1.35e-4 7.34e-3
32 2 0.50 128 64 3 1.55e-4 7.98e-3

Table 6: Computed loss (MSE) and mean absolute error (MAE) on the test
“dataset 3” for different ANNs architectures with one convolutional layer. No-
tice how the different dropout rates affect the training.

W1 D1 P1 W2 D2 P2 O W3 D3 loss MAE
16 2 0.25 12 2 0.25 128 64 4 1.72e-4 8.34e-3
16 2 0.25 12 2 0.50 256 256 3 1.56e-4 8.10e-3
16 2 0.25 16 2 0.25 128 64 4 1.68e-4 8.28e-3
16 2 0.25 32 2 0.50 128 64 4 1.61e-4 8.23e-3
32 2 0.25 16 2 0.25 128 64 3 1.55e-4 8.05e-3
32 2 0.25 16 2 0.25 128 64 4 1.55e-4 7.85e-3
32 2 0.25 32 2 0.50 128 64 4 1.75e-4 8.64e-3

Table 7: Computed loss (MSE) and mean absolute error (MAE) on the test
“dataset 3” for different ANNs architectures with two layers.

W1 D1 P1 O W3 D3 loss MAE
32 2 0.25 128 64 3 1.71e-5 8.19e-3
32 2 0.25 128 64 4 1.35e-5 7.34e-3
32 2 0.25 128 64 5 1.48e-5 7.88e-3
32 2 0.25 128 128 3 1.51e-5 7.60e-3
32 2 0.25 128 128 4 1.43e-5 7.62e-3
32 2 0.25 256 64 5 1.50e-5 7.86e-3
32 2 0.25 256 256 3 1.52e-5 7.80e-3
32 2 0.25 512 128 3 1.60e-5 8.01e-3
32 3 0.25 128 64 4 1.51e-5 7.64e-3
32 3 0.25 128 128 3 1.48e-5 7.79e-3
32 3 0.25 128 128 4 1.34e-5 7.18e-3
32 3 0.25 256 256 3 1.56e-5 8.10e-3

Table 8: Computed loss (MSE) and mean absolute error (MAE) on the test
“dataset 3” for different ANNs architectures with one convolutional layer. In
this casem we change only the hyperparameters of the dense layers.
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W1 D1 P1 O W3 D3 loss MAE
16 4 0.25 128 128 4 1.32e-4 7.29e-3
16 4 0.50 128 128 4 1.56e-4 7.98e-3
16 5 0.25 128 128 4 1.54e-4 7.77e-3
16 3 0.50 128 128 4 1.51e-4 7.86e-3
24 2 0.25 128 128 4 1.53e-4 7.71e-3
24 2 0.50 128 128 4 1.52e-4 7.76e-3
24 3 0.25 128 128 4 1.40e-4 7.34e-3
24 4 0.50 128 128 4 1.60e-4 7.98e-3
32 3 0.25 128 128 4 1.34e-5 7.18e-3
32 3 0.50 128 128 4 1.47e-5 7.75e-3
40 2 0.25 128 128 4 1.27e-4 7.30e-3
40 3 0.25 128 128 4 1.32e-4 7.18e-3

Table 9: Computed loss (MSE) and mean absolute error (MAE) on the test
“dataset 3” for different ANNs architectures with one convolutional layer. In
this table we change only the hyperparameters of the convolutional layer.

Table 6, dropout improves the training, thus it will be employed in all the
models. We have also tried employing batch normalization as a regularization
technique on some of these models and a deeper model with three convolutional
layers but it did not lead to any significant improvements. This can be explained
by the fact that batch normalization effectiveness is most evident in very deep
models; see [18].

Table 7 shows training of models with two convolutional layers. By compar-
ing it with Table 8, where the MSE and MAE are reported for different ANN
architectures with one layer, it is possible to notice that models with only one
layer achieve lower loss. From Table 8, it is also possible to appreciate that
the model that in the previous section achieved the lowest loss is not the same
in this case. In particular, a deeper model performs better. This is not sur-
prising since this means that we need a more complex model to explain the
data, and indeed we are using a more diversified dataset. In Table 9, we repeat
the same test case for different architectures of the convolutional layer. Two
applications of convolution with 40 hidden units seems to be the best choice.
The architecture that we choose for the model is the second to last of Table 9.
Employing training with batch size 32, the Adam optimizer and early stopping
(up to 1000 epochs), we obtain a loss on the test “dataset 3” of 8.83 · 10−5 and
MAE 4.84 · 10−3. On the test “dataset 1” we achieve a loss of 7.73 · 10−5 and a
MAE of 4.48 ·10−3 and on test “dataset 2” we obtained a loss of 1.39 ·10−4 and
a MAE of 6.51 · 10−3. The predictions are reported in Figure 9. It is possible
to appreciate that the model seems to be accurate.
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Figure 9: Prediction of the model trained with dataset 3 on the test dataset 2.
Each plot has data coming from a fixed combination of ε1 and ε2. Namely, ε1

is constant for subplots on the same row and ε2 is constant for subplots on the
same column of the plot grid. On the x-axis there is the true value of ρ, on the
y-axis the predicted value.

6 Conclusions

In this work, we developed an ANN-based approach to enhance the computa-
tional efficiency of the AMG methods, i.e. to accelerate their performances. In
particular, we accurately predicted the value of the strong threshold parameter
θ that maximizes the performance with respect to the matrix Ah of the linear
system to be solved. In order to be able apply the model independently of the
matrix of the linear system, we introduced a pooling operator. We measured the
efficiency of the AMG method using the approximate convergence factor and
we designed a model that predicts its value. In this way, we are able to choose
the strong threshold parameter that minimizes the predicted approximated con-
vergence factor. Moreover, we have shown that, as expected, the approximated
convergence factor of the AMG method is strictly correlated to the elapsed CPU
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time during the application of the AMG method to the linear system solution,
thus demonstrating that it provides a good measure of the performances of the
solver. This a priori, optimal selection of the strong threshold parameter allows
us to efficiently hire a value of θ that significantly decreases the elapsed CPU
time with respect to the “classical” value. This improvement can be up to 33%.

Possible further developments include: using the ANN to optimize the value
of other AMG parameters; testing different pooling strategies, for instance re-
ducing the bins via the max function; testing the impact of varying the size of the
view; testing more meaningful problems in Engineering and Applied Sciences,
in particular in three-dimensional domains.
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