
MOX-Report No. 69/2020

FunCC: a new bi-clustering algorithm for functional
data with misalignment

Galvani, M.; Torti, A.; Menafoglio, A.; Vantini S.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it

FunCC: a new bi-clustering algorithm for
functional data with misalignment

Marta Galvani1,∗ Agostino Torti2,3,∗

Alessandra Menafoglio2 Simone Vantini2

1 Department of Mathematics, University of Pavia, Pavia, Italy
2MOX - Department of Mathematics, Politecnico di Milano

3Center for Analysis Decisions and Society, Human Technopole,
Milano

Abstract

The problem of bi-clustering functional data, which has recently
been addressed in literature, is considered. A definition of ideal func-
tional bi-cluster is given and a novel bi-clustering method, called Func-
tional Cheng and Church (FunCC), is developed. The introduced al-
gorithm searches for non-overlapping and non-exhaustive bi-clusters
in a set of functions which are naturally ordered in matrix structure
through a non-parametric deterministic iterative procedure.
Moreover, the possible misalignment of the data, which is a common
problem when dealing with functions, is taken into account. Hence,
the FunCC algorithm is extended obtaining a model able to jointly
bi-cluster and align curves.
Different simulation studies are performed to show the potential of the
introduced method and to compare it with state-of-the-art methods.
The model is also applied on a real case study allowing to discover the
spatio-temporal patterns of a bike-sharing system infrastructure.

Keywords: Bi-clustering, Clustering, Functional Data, Curve alignment

∗ Both authors contributed equally to this work

1

1 Introduction
Many systems are able to collect information with high frequency, obtaining
data streams collected in an almost continuous fashion. For this reason, in
the last decades, lot of efforts have been put into the development of new
statistical methods able to deal with this new type of data. In particular,
functional data analysis (FDA) is the branch of statistics that deals with
random variables taking values into an infinite dimensional functional space,
see (1) and (2) for more details.
In this paper we consider the problem of bi-clustering functional data. While
clustering methods are able to detect groups observing the similarity between
rows or columns (usually observations and features) of a data matrix, a large
number of algorithms have been proposed for multivariate data with the aim
of performing simultaneous clustering on both dimensions of the data matrix,
see (3) for a complete review. This is of particular interest when the data are
intrinsically ordered in a matrix structure and the aim is to simultaneously
group the rows and the columns of the data matrix. Bi-clustering methods
allow to discover subgroubs of observations behaving in a similar way on a
subset of features or vice-versa a subgroups of features behaving in a similar
way only on a subset of observations, without constraining the rows (or the
columns) of a data matrix to belong to only one group over all the features
(or the observations) as in the classical clustering methods.
In this paper we consider the problem in which each cell of the data matrix is
a function and we would like to perform a bi-clustering of these functions to
obtain similarity subgroups of rows and columns. To this purpose classical
multivariate bi-clustering methods should be extended to deal with func-
tional data. Many different methods have been proposed in the literature for
clustering functional data, considering dataset where each observation is a
function, see (4) for a complete survey on these models. In the bi-clustering
framework, (5) and (6) both proposed a procedure which generalizes the clas-
sical latent block model ((7)) for multivariate data to the functional setting.
These procedures are model-based and assume the existence of a latent-block
structure in the data-matrix. (5) and (6) assume respectively that the coeffi-
cients of the first functional PCA and the basis expansion coefficients of the
functions in each block can be adequately described by an m-dimensional
Gaussian distribution. These two models are therefore semi-parametric in
nature and define as output an exhaustive bi-clustering of the data matrix.
In addition, (5) considers only the coefficients of the first functional PCA to

2

represent each curve, therefore loosing information, while (6) allows only for
basis expansions as a smoothing procedure, while many other methods can
be taken into account considering the different nature of the data at hand.
The aim of this work is to present a new flexible algorithm for the bi-clustering
of functional data called Functional Cheng and Church (FunCC) algorithm,
extending the well known Cheng and Church algorithm, proposed by (8) for
the bi-clustering of multivariate data. This novel method is completely non-
parametric, thus no assumptions are made on the distribution generating
the data. In addition, it gives free choice on the smoothing procedure to be
applied on the data at hand. The output of the model is a non-exhaustive
bi-clustering of the data matrix, thus, more realistically, assuming the exis-
tence of curves possibly not belonging to any bi-cluster.
When dealing with functional data, another problem that has to be taken
into account is the possible misalignment of the data (see for example (9)
and (10)) which acts as a confounding factor when trying to analyse the
data. The problem of curve registration has been considered in literature by
different authors. (11) considers self-modelling non-linear regression models
to align curves, while (12) develops non-linear mixed effects models. Other
works (see (13), (14) and (15)) proceed defining an appropriate similarity
index among functions and try to find the best alignment optimizing this
similarity measure. Following this latter approach, in the FunCC algorithm
we also consider the introduction of warping functions for the curves align-
ment with the aim of maximizing a goodness measure of the found bi-clusters.
Allowing for curves registration, indeed, we are able to bi-cluster functions
with a similar behaviour despite of a misalignment of the data.
To show the benefits of the developed methodology, the FunCC algorithm is
also applied on a real dataset, the bike sharing system (BSS) of Lyon. The
aim is to provide useful information for the correct management of the ser-
vice by discovering subgroups of stations and days with common operating
patterns and highlighting potential issues of the BSS.
The paper is structured as follow: in Section 2 a novel definition of func-
tional bi-cluster is given coupled with a measure of bi-cluster goodness of
fit. The extension of the Cheng and Church algorithm for functional data is
proposed in Section 3. In Section 4 the more general case which allows for
the functions registration step is presented. Different simulation studies are
performed in Section 5 to underline the potential of the introduced algorithm
and to compare it with state-of-the-art methods. In Section 6 the algorithm
is applied on the BSS of Lyon. Conclusion are presented in Section 7. In

3

appendix A the original Cheng and Church procedure is reported.

2 Functional Bi-clustering
Given a dataset of real numbers arranged in a matrix A composed by n rows
and m columns, the aim of a bi-clustering technique is to find a submatrix
B(I, J) ∈ A, corresponding to a subset of rows I and a subset of columns
J , with a high similarity score (notice that the rows and the columns in the
submatrix are not necessarily adjacent).
In the functional framework, suppose to have a sample of n ·m continuous
functions fij(t) with t ∈ T arranged in a matrix A composed by n rows
and m columns, i.e. each element of the matrix A is a function fij(t) with
i ∈

{
1, ..., n

}
and j ∈

{
1, ...,m

}
. Let B(I, J) be a sub-matrix of A with set

of rows I ⊆
{

1, ..., n
}
and set of columns J ⊆

{
1, ...,m

}
containing only the

elements fij(t) s.t i ∈ I and j ∈ J .
Thus we can give the definition of a functional bi-cluster as:

Definition 2.1 An ideal bi-cluster is a sub-matrix B(I, J), s.t each element
fij(t) with i ∈ I and j ∈ J can be expressed as:

fij(t) = µIJ(t) + αIJ
i (t) + βIJ

j (t) ∀i ∈ I , ∀j ∈ J and t ∈ T

with µIJ(t), αIJ
i (t) and βIJ

j (t) defined for the bi-cluster B(I, J) as:

• µIJ(t) = 1
|I||J |

∑|I|
i=1

∑|J |
j=1 fij(t)

• αIJ
i (t) = 1

|J |
∑|J |

j=1 fij(t)− µ(t)

• βIJ
j (t) = 1

|I|
∑|I|

i=1 fij(t)− µ(t)

Notice that, αIJ
i (t) and βIJ

j (t) represent the rows/columns components, i.e.
the functional residues of respectively rows and columns with respect to the
average function µIJ(t) of the bi-cluster. Notice that both αIJ

i (t), βIJ
j (t) and

µIJ(t) are specific for each bi-cluster B(I, J), hence different bi-clusters could
have different row and column components. For simplicity of notation in the
next sections we drop the apexes I and J from µIJ(t), αIJ

i (t) and βIJ(t).
Starting from Definition 2.1 it is possible to obtain different kind of bi-clusters
associated to different application contexts by setting differently the param-
eters. Setting, for instance, αi = βj = 0 then the ideal bi-cluster is composed

4

by a group of functions all equal to the average function µ(t) in the bi-cluster.
Considering non-null components αi(t) and βj(t), other ideal bi-clusters can
be obtained, discovering groups of functions that exhibit coherent variations
on the rows or on the columns of the data matrix. Setting αi = 0 and taking
only βj(t) into consideration, each bi-cluster is expressed by µ(t) + βj(t). If
forcing the column components to be equal to a constant value along the
domain, i.e. βj(t) = cj with cj ∈ R, then each element is represented by the
average behaviour of the bi-cluster plus a constant function representing its
column specific deviation. If instead βj(t) is not constrained as constant the
bi-cluster is a sub-matrix where each column has a similar average behaviour
except that for an additive functional components, giving more degrees of
freedom to the model. Similar considerations can be done for αi(t). Indeed,
considering only αi(t) and avoiding the usage of βj(t), each bi-cluster is ex-
pressed by µ(t) + αi(t) meaning that each element is equal to the average
behaviour of the bi-cluster plus a function representing its row specific de-
viation. When considering all the elements introduced in the Definition 2.1
the found bi-clusters are based on equation fij(t) = µ(t) + αi(t) + βj(t), giv-
ing the model different degrees of freedom, hence making more difficult the
interpretation of the results.
Consistently with the Cheng and Church approach, we want to find bi-
clusters B(I, J) which minimize a specific objective function, hence defin-
ing a specific H-score which measures the deviation of the selected rows
and columns from an ideal bi-cluster. The introduced H-score evaluates the
mean squared residual obtained when representing each function with the
estimated template µ(t)+αi(t)+βj(t) of the bi-cluster to which the function
is assigned to. We then define a new H-score for functional data as:

Definition 2.2 Let B(I, J) be a bi-cluster and fij(t) each function belonging
to it. The H-score of the functional bi-cluster B(I, J) is defined as:

H(I, J) =
1

|I||J |

|I|∑
i=1

|J |∑
j=1

∥∥fij − f̄ij∥∥2L2

with
f̄ij(t) = µ(t) + αi(t) + βj(t) (1)

being the template function of the bi-cluster.

The defined H-score is an index of the functions similarity in each bi-cluster.
The introduced H-score is based on the L2 distance between the observed

5

functional data in the bi-cluster and its template, however, the definition
can be readily generalized introducing other metrics among curves to any
other functional Hilbert space.
It has to be noticed that every data matrix contains submatrices with the
perfect score H(I, J) = 0 which corresponds to the degenerative bi-cluster
B(I, J) having |I| = 1 and/or |J | = 1, following the Definition 2.1 of an ideal
bi-cluster. Using other definitions of ideal bi-clusters, by setting differently
the parameters αi(t) and βj(t), other limiting cases can be obtained. Indeed,
when setting αi = βj = 0 the degenerative bi-clusters withH(I, J) = 0 are all
the submatrices of dimension one. If instead we consider the row components
αi(t) and we set βj = 0 the degenerative bi-clusters are all the submatrices
with |I| ≥ 1 and |J | = 1, as opposite considering βj(t) and setting αi = 0
the degenerative bi-clusters are all the submatrices with |I| = 1 and |J | ≥ 1.
As these bi-clusters are limiting cases in which the H-score is zero by def-
inition, in the algorithm introduced in the next section we impose some
constrains on the bi-clusters dimensions according to the chosen parameters
setting. Specifically, if αi = βj = 0 each bi-cluster B(I, J) should have
|I| > 1 and |J | > 1, if we consider the column component βj(t) and αi = 0
then B(I, J) should have |I| > 1 and |J | ≥ 1, if we consider the row compo-
nent αi(t) and βj = 0 then B(I, J) should have |I| ≥ 1 and |J | > 1.

3 Functional Cheng and Church algorithm
As proven in (8), the problem of finding a bi-cluster is NP-hard, therefore
a greedy procedure is employed to find an approximate solution. Hence, to
find the set of bi-clusters a deterministic and greedy algorithm is defined
as in Algorithm 1, following the main structure of the Cheng and Church
procedure (see the A for original Cheng and Church algorithm details).
The algorithm starts considering the whole dataset and proceeds iteratively
removing and adding elements to find the biggest bi-cluster with an H-score
lower then a given threshold δ. The Multiple Node Deletion phase allows for
a faster but rougher procedure trying to remove at the same time groups of
rows or columns with scores bigger than the H-score scaled by a parameter
θ ≥ 1. The lower is θ the faster is the algorithm and more rows or columns
are removed at the same time. After this phase, a Single Node Deletion phase
is performed until the H-score is lower than a threshold δ; at each iteration

6

the row or column with the biggest score is removed and the H-score of the
new obtained matrix is updated. In the functional case the rows/columns
scores are estimated extending the rows/columns scores introduced by (8).
Specifically, we evaluate respectively the row and the column scores of a
submatrix B(I, J) as:

diJ =
1

|J |

|J |∑
j=1

∥∥fij − f̄ij∥∥2L2
∀i ∈ I

djI =
1

|I|

|I|∑
i=1

∥∥fij − f̄ij∥∥2L2
∀j ∈ J

with f̄ij(t) as defined in (1). At the end of this phase the algorithm tries
to add removed rows or columns in order to make the bi-cluster as big as
possible without increasing the H-score. The Multiple and Single Node Dele-
tion steps follow the same procedure as in the original Cheng and Church
algorithm (See A for more details). In the original Node Addition Steps by
Cheng and Church also inverted rows are considered (see A), this because
the algorithm was developed for gene expression data and an anti-correlated
or inverted row may indeed represent a negatively regulated genes that is of
interest when finding a bi-cluster. In our case, we do not consider the in-
verted rows as they are not of interest when defining a bi-cluster in a general
framework.
After finding a new bi-cluster, in the original Cheng and Church algorithm,
before searching for a new one, a masking procedure is performed on the
assigned elements substituting them with numbers from a random distribu-
tion (see A). This procedure reduces the probability of those elements to be
assigned to another bi-clusters in the following iterations, but it does not en-
sure that, at the end of the algorithm, each element belongs to at most one
bi-cluster. For this reason, in our algorithm, we decide to avoid this masking
procedure. Therefore, as replacement, after a new bi-cluster is found, our
algorithm proceeds by looking for new bi-clusters avoiding to consider the
already assigned elements. An example of the used procedure is illustrated
in Figure 1. In details, after finding a new bi-cluster, the algorithm looks for
all the biggest submatrices contained in a binary matrix A′ where each ele-
ment a′ij = 1 if the function fij(t) has not been assigned yet to any bi-cluster
and 0 otherwise. To do that, we employ the Bimax Bi-clustering, based on

7

the framework by (16), which searches for the biggest submatrices of ones
in a logical matrix. So, at each time a new bi-cluster is found, the set of
biggest submatrices on which a new bi-cluster can be found is updated and
the algorithm proceeds looking for a new bi-cluster in the biggest of these
submatrices. The procedure stops when the number of iterations exceeds a
fixed maxIter value or when no more bi-clusters are found in no one of the
submatrices of not assigned elements. Note that, in Figure 1, bi-clusters are
represented as blocks of adjacent rows and columns just for ease of expla-
nation. Indeed, the algorithm looks for bi-clusters that can reconstruct a
sub-matrix by means of a permutations of rows and columns.

Figure 1: Illustration of the iterative procedure of the Functional Cheng and
Church algorithm.

8

Algorithm 1: Functional Cheng and Church algorithm

Input: (n,m) matrix A whose elements are functions fij(t)
δ ≥0 the maximum acceptable H-score
θ ≥1 a parameter for Multiple Node Deletion
maxIter the maximum number of allowed iterations

Result: A set B of Bi-clusters B(I, J) with H-score< δ

Set:

• B = {} set of bi-clusters found

• (I iter, J iter) = {(i, j) : i ∈ 1...n, j ∈ 1...m} set of not assigned elements

• M = {A} set of biggest submatrices and M=A

while iter < maxIter and M <> {} do
On M do:

1. Multiple Node Deletion: remove a group of rows/columns with
score greater than θ ·H-score.

2. Single Node Deletion: remove the rows/columns that reduce
H-score the most while H-score> δ.

3. Node Addition: add rows/columns that do not increase the H-score.

if A new bi-cluster B(I, J) is found then

• B = B ∪B(I, J)

• (I iter+1, J iter+1) = (I iter, J iter)/(I, J)

• update M applying Bmax algorithm on A′ with A′(I iter+1, J iter+1) = 1
and 0 elsewhere and select M ∈M the biggest submatrix

else
select the following biggest M ∈M

end
end

9

Parameters Selection

As in the classical Cheng and Church algorithm, there are two important
parameters, δ and θ, that need to be set before the algorithm running. The
parameter δ influences the number of the obtained bi-clusters and generally
a small value of δ is better because it defines the quality of the bi-clusters.
However, a too low value would imply a really large number of bi-clusters
or even the impossibility to find a bi-cluster with score smaller than δ. By
contrast, a too high value of δ would imply a unique big bi-cluster that corre-
sponds to the whole data matrix. Hence, a balance value should be found for
this parameter before running the algorithm. To tune this δ parameter, we
perform a sensitivity analysis on the number of obtained bi-clusters and the
number of not assigned observations, observing how these two values change
when varying the parameter δ. Then, following the same approach used for
many other clustering techniques as the classical k-means, we choose the
value of δ where an evident change of slope (i.e. an elbow) in the observed
values is present.
The second important parameter that has to be set is θ, which is used in the
multiple node deletion phase of the algorithm and directly influences the al-
gorithm speed. A too high value of θ would make impossible to pass through
the multiple node deletion step forcing the algorithm to apply the slower
single node deletion step, while with a too low value of the parameter a high
number of rows and columns would be removed, thus following a too raw
procedure. Therefore θ is selected as big as possible, while still maintaining
low the computational time. To tune this parameter we make a sensitivity
analysis on the computational time requested to run the algorithm, taking δ
as fixed. Notice that, following (8), θ is taken greater or equal than unity to
guarantee the decreasing of the H-score along iterations.
An example of this parameters selection procedure is explained in Section 6.

4 Functional bi-clustering with alignment
As pointed out in Section 1, a problem often encountered in functional data
analysis is the misalignment of the curves (or registration problem). Indeed,
the misalignment may act as a confounding factor when analysing the data.
In the case of bi-clustering, allowing for curves registration, we are grouping
functions with a similar behaviour with respect to the bi-cluster template de-

10

spite of a misalignment along the domain. To this purpose, we have to handle
with the problem of aligning each function to its template when defining a
bi-cluster.
In a general framework, given a set of functions F, aligning a function f to
another function g (that in our case is the template function) means finding
a warping function w(t) : R→ R of the abscissa parameter t such that f ◦w
and g are less dissimilar than f and g themselves, according to a defined
dissimilarity score ε(., .) : F × F → R. More precisely, given a dissimilar-
ity measure ε between curves and a class W of warping functions such that
f ◦ w ∈ F,∀f ∈ F and ∀w ∈ W, to align f and g one needs to find the w∗
which minimizes ε(f ◦ w,g). The couple (ε,W) should satisfy some minimal
requirements ((14),(17)):

1. The dissimilarity index ε has a lower bound in 0 and respects the clas-
sical properties of distance measures, i.e. it is reflexive, symmetric,
transitive;

2. The class of warping functions W is a convex vector space and has a
group structure with respect to function composition ◦;

3. The couple (ε,W) is consistent in the sense that given two functions, f
and g, we have that ∀w ∈W:

ε(f ◦ w,g ◦ w) = ε(f ,g).

From 2 and 3 we obtain that for all w1 and w2 ∈W:

ε(f ◦ w,g ◦ w) = ε(f ◦ w ◦ w−1,g) = ε(f ,g ◦ w ◦ w−1).

Property 3 highlights the importance of a careful and consistent choice of
the couple (ε,W), as these requirements concern ε and W) jointly (e.g. (18)
used the nonparametric form of the Fisher-Rao metric for this purpose).
In our case, the considered dissimilarity index is the squared L2 distance
between two functions, evaluated in the H-score as defined in Definition 2.2.
Therefore we consider the class of warping functions W as:

W = {w : w(t) = t+ q with q ∈ R},

i.e. the group of shift transformations, which were shown to fulfill properties
1-3 in (14).
Thus we can give the definition of functional bi-cluster with alignment as:

11

Definition 4.1 An ideal bi-cluster is a sub-matrix B(I, J), s.t each element
fij(t) with i ∈ I and j ∈ J can be expressed as:

(fij ◦ wIJ
ij)(t) = µIJ(t) + αIJ

i (t) + βIJ
j (t)

with µIJ(t), αIJ
i (t) and βIJ

j (t) defined for the bi-cluster B(I, J) as:

• µIJ(t) = 1
|I||J |

∑|I|
i=1

∑|J |
j=1(fij ◦ wIJ

ij)(t)

• αIJ
i (t) = 1

|J |
∑|J |

j=1(fij ◦ wIJ
ij)(t)− µ(t)

• βIJ
j (t) = 1

|I|
∑|I|

i=1(fij ◦ wIJ
ij)(t)− µ(t)

and wIJ
ij (t) being a warping function in W the class of shift transformations.

For simplicity of notation in the remaining part of the paper we drop I and
J as apexes in µIJ(t), αIJ

i (t), βIJ(t) and IJ
ij (t).

The introduced warping function allows for an additional degree of freedom
in the definition of an ideal bi-cluster, by defining a shift on the domain
specific for each function. Setting differently the parameters αi(t) and βj(t)
and considering or not the warping function wij(t), many different types of
ideal bi-cluster can be obtained. As already underlined in Section 2, how
to set the parameters is application specific and depends on the problem at
hand.
The new H-score for a functional bi-cluster B(I, J) with alignment is hence
defined as:

Definition 4.2 Let B(I, J) be a bi-cluster and fij(t) each function belonging
to it. The H-score of the functional bi-cluster B(I, J) is defined as:

HIJ = min{wij ,i∈I,j∈J}⊂W
1

|I||J |

n∑
i=1

m∑
j=1

∥∥fij ◦ wij − f̄ij
∥∥2
L2

where
f̄ij(t) = µ(t) + αi(t) + βj(t) (2)

with µ(t), αi(t) and βj(t) as defined in Defintion 4.1 and wij(t) being a
warping function in W the class of shift transformations.

12

An alignment procedure is also introduced when evaluating the row and the
column scores of a submatrix B(I, J) as:

diJ = min{wij ,i∈I,j∈J}⊂W
1

|J |

|J |∑
j=1

∥∥fij ◦ wij − f̄ij
∥∥2
L2
∀i ∈ I

dIj = min{wij ,i∈I,j∈J}⊂W
1

|I|

|I|∑
i=1

∥∥fij ◦ wij − f̄ij
∥∥2
L2
∀j ∈ J

where f̄ij(t) as in (2) and wij(t) being a warping function in W the class of
shift transformations.
In this case, the algorithm follows the same procedure as in Algorithm 1
except for, before evaluating the H-score of a bi-cluster B(I, J) and the rows
and columns scores, an alignment step is introduced. In details, in order to
find the warping functions wij(t), specific for each function fij(t) ∈ B(I, J),
a two steps iterative procedure is implemented as follow:

• Alignment of the functions: each function fij(t) inside the sub-matrix
B(I, J) is aligned to the template function f̄ij(t) determining a warping
function

w∗ij = argminwij∈W
∥∥fij ◦ wij − f̄ij

∥∥2
L2

(3)

with W being the class of shift transformations;

• Identification of the new template: the new template function f̄ij(t) of
the sub-matrix B(I, J) is estimated using the aligned functions (fij ◦
w∗ij)(t) as in (2).

These two steps are iterated until convergence, e.g. no more improvement in
minimizing the distance between aligned functions in the bi-cluster and the
template function are achieved. The aligned functions and the new template
are then used to estimate the H-score, as in Definition 4.2, and the rows and
columns scores. The iterative alignment procedure is shown in Algorithm 2.
The alignment procedure is introduced in Algorithm 1 in the Multiple and
Single node deletion step and in the Node Addition, i.e. each time the H-
score or the rows and column scores of a bi-cluster B(I, J) are evaluated.

13

Algorithm 2: Alignment procedure

Input: A sub-matrix B(I, J) where each element is a function fij
Result: Warping functions w∗ij(t) ∈W for each function fij(t) with

i ∈ I and j ∈ J
while No more improvements in minimizing the distance between
aligned functions and the template function are achieved do

1. Alignment of the functions:
for each function fij(t) in the sub-matrix B(I, J) the warping
function w∗ij(t), which minimizes the distance of the function fij(t) to
the template function f̄ij, is determined;

2. Identification of the new template:
evaluate the new template function f̄ij(t) of the sub-matrix B(I, J)
using the aligned functions (fij ◦ w∗ij)(t).

end

5 Simulation study
In this section we illustrate the potential of the FunCC algorithm, described
in the previous sections, through different simulation studies. In details,
in case A, we simulate a non-exhaustive bi-cluster structure showing the
potential of the algorithm in determining only the true bi-clusters and leaving
all the other elements as not assigned. In case B, we show the importance
of considering the rows (and/or the columns) components. In case C, we
show the performance of our algorithm in the case of misaligned functions.
The FunCC algorithm is then compared with the state-of-the-art methods
for functional bi-clustering in case D.

5.1 Case A: non-exhaustive bi-cluster

We simulate a data matrix A of dimensions 30 x 7 with two bi-clusters.
Each bi-cluster is defined considering different prototype curves: g1(t) =
[t4− t3− 19t2− 11t+ 81]/10, g2(t) = [−(t4− t3− 19t2− 11t)− 100]/10 with

14

t ∈ [0, 5]. The data matrix is generated as follows:

gij(t) =

{
g1(t) + εij(t) ∀ (i, j) ∈ [1 : 15, 1 : 4]

g2(t) + εij(t) ∀ (i, j) ∈ [17 : 30, 5 : 7]

where the errors εij(t) are from a Gaussian process with zero mean and
E(εij(t)εij(s)) = e−(|t−s|). All other elements in A are i.i.d. noisy data such
that gij(t) = 5εij(t). The simulated curves are displayed in Figure 2.

Figure 2: Simulated curves (Case A)

The FunCC algorithm, with parameters δ = 2, θ = 1, αi = 0 i = 1, ..., n
and βj = 0 j = 1, ...,m, can easily reconstruct the bi-clustering structure: it
finds two bi-clusters, which come from templates g1(t) and g2(t) respectively,
leaving all the other elements as not included in any bi-cluster. Results
are shown in Figure 3, where bi-cluster 0 represents the artificial bi-cluster
containing the not assigned elements.

15

Figure 3: Obtained results applying FunCC algorithm to the simulated data
(Case A): resulting matrix (left) and assigned functions to each bi-cluster
(right). The not assigned elements are artificially assigned to bi-cluster 0.

5.2 Case B: the rows components

We simulate a data matrix A of dimensions 30 x 7 with three bi-clusters.
Each bi-cluster is defined considering as prototype curves: g1(t) = t4 − 9t2,
g2(t) = −(t4 − 9t2) + 5 and g3(t) = 0 with t ∈ [−3.5, 3.5].
We define each entry gij(t) of the data matrix A as the introduced prototype
curves with an additional small error εij(t). Random row components are
also added as αi(t) = ci ∼ U [0, 1] i = 1, ..., n, t ∈ [0, 5].
Specifically the data matrix is generated as follows:

gij(t) =

g1(t) + αi(t) + εij(t) ∀ (i, j) ∈ [1 : 14, 1 : 5]

g2(t) + αi(t) + εij(t) ∀ (i, j) ∈ [15 : 30, 1 : 5]

g3(t) + αi(t) + εij(t) ∀ (i, j) ∈ [1 : 30, 6 : 7]

where the errors εij(t) are from a Gaussian process with zero mean and
E(εij(t)εij(s)) = e−(|t−s|). The simulated curves are displayed in Figure 4.

16

Figure 4: Simulated curves with row components (Case B)

The FunCC algorithm, with parameters δ = 10, θ = 1, αi(t) = c ∈ R i =
1, ..., n, t ∈ [0, 5] (i.e. constrained as constant) and βj = 0 j = 1, ...,m, t ∈
[0, 5], finds three bi-clusters whose results are reported in Figure 5.

Figure 5: Obtained results applying FunCC algorithm to the simulated data
(Case B): resulting matrix (left), assigned functions to each bi-cluster (right)

It is immediate to observe that the algorithm is able to perfectly recon-
struct the generated data structure assigning each element to the correspond-
ing bi-cluster. If not considering any row components when searching for the
bi-clusters, the algorithm is not able to detect the three bi-clusters and iden-
tifies an higher number of bi-clusters just taking into account the average

17

functional behaviour in each bi-cluster. If instead αi(t) is not constrained
to be a constant component, then bi-cluster 1 and bi-cluster 2 are joined
together, since each element can be described by the average function plus a
column specific functional component.

5.3 Case C: the shift alignment

Consider the prototype curve c(t) = 2sin(2t) with t ∈ [0, 2π]. We simulate
a data matrix A of dimensions 15 x 20 whose entries are functions coming
from the introduced prototype curve with a random translation along the
domain from a uniform distribution between 0 and 2π, plus an additional
small error. Specifically,

gij(t) = 2sin(2t+ u) + εij(t) u ∼ U [0, 2π] i = 1, ..., n j = 1, ...,m,

where the errors εij(t) are Gaussian process with zero mean and E(εij(t)εij(s)) =
0.1e−(|t−s|). The 300 simulated curves are displayed in Figure 6.

Figure 6: Simulated curves with shift alignment (Case C)

The FunCC algorithm, with parameters δ = 0.1, θ = 1, αi(t) = 0 i =
1, ..., n, t ∈ [0, 2π], βj(t) = 0 j = 1, ...,m, t ∈ [0, 2π], finds a unique bi-cluster
that covers the entire data matrix whose results are reported in Figure 7.

18

Figure 7: Obtained results applying FunCC algorithm to the simulated data
(Case C): aligned functions in the bi-cluster (left) and warping functions for
each function (right).

The alignment step is performed allowing for a maximum shift of 30% of
the domain. If not considering the alignment phase the algorithm does not
find a single bi-cluster, i.e. it does not recognize that all the functions come
from the same distribution and try to group them in different bi-clusters.

5.4 Case D: Comparison with state-of-the-art method

This last numerical study aims to compare the FunCC algorithm with ther
state-of-the-art method in the functional bi-clustering literature, namely with
the FunLBM algorithm by (6). The two methods, even if they have the same
purpose of finding common groups of rows and columns, have many differ-
ences by construction. First of all, the FunCC method, as natural extension
of the Cheng and Church model ((8)), looks for non exhaustive bi-clusters,
while the FunLBM, as natural extension of the Latent Block Model (LBM,
(7)), looks for exhaustive bi-clusters able to reconstruct a checkboard struc-
ture by means of a permutation of rows and columns. Regarding the model
themselves, the FunCC algorithm is deterministic and non-parametric while
the FunLBM algorithm is semi-parametric since it assumes a Gaussian mix-
ture distribution on the basis coefficients of the functional data. In this
regard, being non-parametric, the FunCC procedure is expected to perform
better than the FunLBM procedure in the cases in which the bi-clusters are
not gaussian. Moreover, while the FunLBM algorithm works on the basis
expansion of the functional data performing a basis decomposition inside the
algorithm, the FunCC algorithm allows for different smoothing choices since

19

it does not rely on any specific smoothing procedure because it works on the
functions themselves rather than on the coefficients of a basis expansion. Fur-
thermore we have to underline that the FunLBM model does not deal with
row or column components, neither with curves registration problems that
may be crucial when identifying bi-clusters. Thus, to directly compare the
two models, we simulate a data matrix with a checkboard structure, without
assuming any row or column components in the data, neither introducing a
misalignment. This is a case that can be properly managed also by the LBM
(6).
The simulated data matrix A has dimension 30 x 7 with nine bi-clusters,
whose means are defined by nine different functions f1(t), ..., f9(t) with t ∈
[0, 1], as shown in Figure 8.

Figure 8: The simulated data matrix structure (left) and the nine functional
means used in the simulations (right).

All curves are sampled as follows:

gijk(t) = N(fk(t), 0.12) i = 1, ..., 30 j = 1, ..., 7 t ∈ [0, 1]

In Figure 9 obtained results for both FunLBM and FunCC algorithm are
reported.

20

Figure 9: Obtained results applying both FunLBM and FunCC algorithm to
the simulated data (Case D). Resulting biclusters (left) and assigned func-
tions to each bi-cluster (right)

In details, FunLBM algorithm is run with parameters L = 3, K = 3
(representing respectively the number of rows and columns clusters) and
Fourier basis expansion with 18 basis; FunCC algorithm is run with param-
eters δ = 0.6, θ = 1, αi(t) = 0, i = 1, ..., 30 t ∈ [0, 1], βj(t) = 0, j =
1, ..., 7 t ∈ [0, 1]. The same smoothing technique as in the FunLBM proce-
dure is applied. It is possible to observe that both methods are able to detect
the different subgroups of the simulated data matrix.

6 Case Study
The new algorithm presented in Section 2 has been applied on a real case
study to underline its potential on a real dataset. We focus on the Bike Shar-
ing System (BSS) of Lyon, called Vélo’v, with the aim of providing useful
information for the correct management of the service by highlighting spe-
cific spatio-temporal patterns in the bike stations usage profiles.
The analysed dataset contains the loading profiles of the 345 bike stations in
Lyon over one week in March 2014 and it is available at https://developer.
jcdecaux.com/ trough an api key. This dataset has been first used in (19)
that aimed at identifying common operating patterns and highlight potential
issues of the BSS. In this work the authors treated the data as functional, due
to their continuous dependence on time, and performed a cluster analysis on
the leading profiles of each station looking at them as a single curve along the

21

https://developer.jcdecaux.com/
https://developer.jcdecaux.com/
https://developer.jcdecaux.com/

entire week. By doing so, they discovered stations with a common behaviour
during the whole week, but at the expense of the differences between days.
It may indeed happen that some stations have a similar behaviour during
some specific days but a different one in other days, as usually a different be-
haviour is observed among working days and during Saturday or Sunday. To
underline these patterns, a bi-clustering approach is necessary, since it allows
to look at the same time at two dimensions, i.e. the stations and the days,
identifying subgroups of stations with the same behaviour in a subgroup of
days. Following this idea, in our analysis we define a function for each station
and for each day, arranging the functional data in a matrix whose rows are
stations and columns are days. We define a bike station loading profile dur-
ing an entire day as a continuous functional datum representing the number
of available bikes divided by the total number of bike docks at each times-
tamp. In details, a kernel density estimation smoothing procedure is applied
on the functions, with a tricube kernel function, a bandwidth equal to 0.5
and a numerical estimation grid of 240 points (see (20) for more details on
smoothing procedures). The final data matrix is composed by 2415 curves
fij(t), i.e. 345 stations (i.e. rows) per 7 days (i.e. columns), and the resulting
functions are shown in Figure 10.

Figure 10: Left: a sample of 300 curves randomly extracted from the func-
tional data matrix. Right: the position of the 345 bike stations in Lyon.

The FunCC algorithm, presented is Section 2, is then applied on this
dataset with the aim of finding sub-groups of bike stations and days with

22

a similar behaviour. To this purpose, no alignment is considered and both
αi(t) and βj(t) are set equal to zero for all i and j. In this way, each bi-
cluster is represented only by its average behaviour and the ideal bi-cluster
is characterised by a group of functions all equal to each other. A sensitivity
analysis is performed to set the two hyper-parameters δ and θ, as explained
is Section 2. First, a sensitivity analysis is performed to choose the threshold
parameter δ maintaining θ fixed at high value as to not perform the multiple
node deletion. In Figures 11 the different number of obtained bi-clusters and
the number of observations not assigned to any bi-cluster obtained varying
the parameter are reported.

Figure 11: The different number of obtained bi-clusters (left) and the number
of observations not assigned to any bi-cluster (right) varying the parameter
δ.

Looking at the trend of the number of not assigned elements we notice
that for a δ bigger than 0.015 the curve seems not to decrease (an elbow
is evident). In addition, observing the number of obtained bi-clusters, we
notice that with δ around 0.03 the descent is gentle and after this value the
trend does not change essentially. A δ equal to 0.03 is chosen as threshold
for the H value of each bi-cluster. After setting parameter δ, the computa-
tional requested time to run the algorithm is evaluated when varying θ in
the interval [1, 3] (Figure 12).

23

Figure 12: Computational requested time (in minutes) to run the algorithm
varying θ.

It can be noticed that, with values bigger than 1.8, the computation time
converges. Recall that, when choosing θ, the aim is to maintain low the com-
putational time while being precise in finding a bi-cluster, i.e. removing only
one row/column at time. For this reason we decide to proceed with θ = 1.25
setting a computation time as short as possible, while maximizing θ to be
more precise when removing elements from bi-clusters.
Results obtained with δ = 0.03 and θ = 1.25 are shown in Figure 13 and
Figure 14.

24

Figure 13: Functions belonging to each bi-cluster with template functions in
black

25

Figure 14: Data matrix showing the membership of each element to the
respective bi-cluster.

A total of 121 bi-clusters is found, while observations not assigned to any
bi-clusters are artificially assigned to bi-cluster 0, which is coloured in grey.
Among the found bi-clusters, 54 have both the number of covered rows and
columns bigger than one, while respectively one and 66 are composed by a
singular row or a singular column, thus representing the specific behaviour
of a specific bike stations along different days and the specific behaviour of
a group of bike stations along one day.
For each found bi-cluster all the functions contained in that bi-cluster are
shown together with their bi-cluster template, i.e. their average function.
Figure 14 shows the membership to a bi-cluster of each element of the func-
tional data matrix. Note that the found bi-clusters have been ordered from
the biggest one to the smallest one, considering the number of included ele-
ments. Figure 15 shows the coverage of each bi-cluster in terms of percentage
of contained elements.
The first bi-cluster is the bi-cluster 0, i.e. the artificial bi-cluster containing
the not assigned elements. We can notice that the obtained results are able
to explain the 99% of the data, while the 0.4% of the functions are not as-
signed to any bi-cluster. With the first ten bi-clusters we are able to explain
more than the 50% of the data, while with the first 30 we are over the 70%
of coverage.
Evaluating the percentage of working and weekend days for each bi-cluster,

26

Figure 15: Coverage of each bi-cluster in terms of percentage of contained
elements.

we notice that some bi-clusters cover specific patterns of the working days
(e.g. bi-clusters 2 and 4) or of the weekends (e.g. bi-clusters 6 and 7), while
other bi-clusters consider stations that have the same pattern during both
working days and Saturday or Sunday (e.g. bi-cluster 1 and 3).
Observing the found bi-clusters and their associated functions of loading pro-
files, it is possible to identify different activity areas in the city according to
the day of the week. In particular, among the 121 found bi-clusters, different
main groups can be identified: the constant profiles, the residential profiles,
the working profiles and the weekend profiles.
Bi-clusters showing a constant profile of usage during the whole day can un-
derlay a no usage or a continuous replacement of bikes. Among these, some
bi-clusters represent the almost-always-full stations (e.g. bi-clusters 3 and
17) and others the almost-always-empty stations (e.g. bi-clusters 1 and 9).
These bi-clusters are important as they include stations in which it is not
possible to drop-off or pick-up a bike respectively, thus implying users dis-
satisfaction.
Bi-clusters underlying working profiles (e.g. bi-clusters 4 and 12) coupled
with bi-clusters representing residential profiles (e.g. bi-clusters 2 and 19)
are mainly centered during working days. These two different groups show an
opposite behaviour, while the first one contains stations which respectively

27

fill up in the morning and empty out in the evening, the stations in the
second one empty out in the morning and fill up in the evening. Therefore,
these two groups reveal a clear commuting behaviour of the bike sharing users
which move during working days in the morning and evening rush hours. As
explanatory example of this behaviour we can observe bi-clusters 2 and 4
(see Figure 16 to observe all the functions belonging to the bi-clusters with
the bi-cluster template (in black), the corresponding days and bike stations
location).

Figure 16: Functions belonging to the bi-clusters with the bi-cluster template
in black (top), the corresponding days (center) and bike stations location
(bottom) respectively of bi-cluster 2 (left) and 4 (right).

In details, bi-cluster 2 is composed by 42 stations and five days (from
Monday to Friday). Loading profiles belonging to it represent full stations
before 8a.m. and after 8p.m. and empty stations during the rest of the day.
Observing the map, it is possible to notice that these stations are mostly

28

located in residential areas in the East of the city. Bi-cluster 4 (Figure
16(right)) is composed by 28 stations on five working days from Monday
to Friday. This bi-cluster is characterized by stations which are full between
8a.m.-8p.m. and empty in the rest of the day, showing an opposite behaviour
with respect to bi-cluster 2. Observing the map, it is possible to observe that
these stations are mainly located in parts of the city with many companies
where people are probably used to commute during the day, thus explaining
this peculiar loading profile.
Another small group of bi-clusters contains bi-clusters almost covering week-
end days, thus showing what we can call a weekend profile.

Figure 17: Functions belonging to the bi-clusters with the bi-cluster template
in black (top), the corresponding days (center) and bike stations location
(bottom) respectively of bi-cluster 6 (left) and 7 (right).

Focusing for example on bi-cluster 6, Figure 17(left), we can notice that
this bi-cluster covers the loading profiles of 35 stations which are mainly a

29

subgroup of stations belonging to bi-cluster 2, i.e. residential stations, but
during Saturday and Sunday. These stations are full until 8a.m., then they
slowly empty out, even if not completely, until 4p.m. and finally they again
refill. Bi-cluster 7 shows instead an opposite behaviour, Figure 17(right),
covering 20 bike stations which slowly fill up during evening midnight and
then slowly empty out during the night on Saturday and Sunday. We can
explain this particular behaviour observing from the map that these stations
are mainly located in the city center, very closed to River Sāone banks, where
there are many shops and bars, therefore they are probably used by people
going out clubbing and then coming back home late at night.

7 Conclusion
In this paper a new bi-clustering technique for functional data is presented to
group simultaneously rows and columns of a data matrix whose elements are
functions on a continuous domain. The presented algorithm is non paramet-
ric and very flexible, allowing to discover different bi-clustering depending on
the problem at hand. In details a bi-cluster can be defined as group of func-
tions with similar average behaviour considering or not the rows/columns
components. The aim is to have a method which can be applied to real
functional dataset, in which not all the elements belong to a bi-cluster and
where data are not necessarily Gaussian, thus modelling assumptions on the
data are hardly verified. Moreover, since another common problem in real
functional datasets is the misalignment of the data, in the FunCC algorithm
an alignment procedure is also implemented. Therefore, compared to other
methods presented in the literature, the FunCC algorithm presents some
advantages being totally non parametric, non exhaustive (thus not forcing
all elements in the data matrix to be in one bi-cluster) and allowing for a
registration step. Empirical simulations are performed, clearly showing the
potential of the FunCC method.
The algorithm is also applied on real dataset, the bike sharing system of Lyon,
with the aim of providing useful information for the correct management of
the service. Through our functional bi-clustering technique we discover sub-
groups of stations and days with similar behaviour. Clear patterns of usage
are revealed, allowing to segment the bike stations into different usage pro-
files (for example the residential and industrial profiles) according to the days
of the week, identifying when the bike demand is higher. Moreover, groups

30

of stations always full or always empty are highlighted, revealing some criti-
calities in the service.
The algorithm proposed in this work is implemented in the R package FunCC,
available at https://cran.r-project.org/web/packages/FunCC/index.html.

References
[1] J. O. Ramsay, Functional data analysis, Encyclopedia of Statistical Sci-

ences 4.

[2] F. Ferraty, P. Vieu, Nonparametric functional data analysis: theory and
practice, Springer Science & Business Media, 2006.

[3] B. Pontes, R. Giráldez, J. S. Aguilar-Ruiz, Biclustering on expression
data: A review, Journal of biomedical informatics 57 (2015) 163–180.

[4] J. Jacques, C. Preda, Functional data clustering: a survey, Advances in
Data Analysis and Classification 8 (3) (2014) 231–255.

[5] Y. B. Slimen, S. Allio, J. Jacques, Model-based co-clustering for func-
tional data, Neurocomputing 291 (2018) 97–108.

[6] C. Bouveyron, L. Bozzi, J. Jacques, F.-X. Jollois, The functional la-
tent block model for the co-clustering of electricity consumption curves,
Journal of the Royal Statistical Society: Series C (Applied Statistics)
67 (4) (2018) 897–915.

[7] G. Govaert, M. Nadif, Co-clustering: models, algorithms and applica-
tions, John Wiley & Sons, 2013.

[8] Y. Cheng, G. M. Church, Biclustering of expression data., in: Ismb,
Vol. 8, 2000, pp. 93–103.

[9] J. O. Ramsay, X. Li, Curve registration, Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 60 (2) (1998) 351–363.

[10] G. M. James, et al., Curve alignment by moments, The Annals of Ap-
plied Statistics 1 (2) (2007) 480–501.

31

https://cran.r-project.org/web/packages/FunCC/index.html

[11] N. Altman, J. Villarreal, Self-modelling regression for longitudinal data
with time-invariant covariates, Canadian Journal of Statistics 32 (3)
(2004) 251–268.

[12] M. J. Lindstrom, D. M. Bates, Nonlinear mixed effects models for re-
peated measures data, Biometrics (1990) 673–687.

[13] D. Kaziska, A. Srivastava, Gait-based human recognition by classifica-
tion of cyclostationary processes on nonlinear shape manifolds, Journal
of the American Statistical Association 102 (480) (2007) 1114–1124.

[14] L. M. Sangalli, P. Secchi, S. Vantini, A. Veneziani, A case study in
exploratory functional data analysis: geometrical features of the internal
carotid artery, Journal of the American Statistical Association 104 (485)
(2009) 37–48.

[15] V. Vitelli, L. M. Sangalli, P. Secchi, S. Vantini, Functional clustering
and alignment methods with applications, Communications in Applied
and Industrial Mathematics 1 (1) (2010) 205–224.

[16] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Gruis-
sem, L. Hennig, L. Thiele, E. Zitzler, A systematic comparison and eval-
uation of biclustering methods for gene expression data, Bioinformatics
22 (9) (2006) 1122–1129.

[17] S. Vantini, On the definition of phase and amplitude variability in func-
tional data analysis, Test 21 (4) (2012) 676–696.

[18] A. Srivastava, W. Wu, S. Kurtek, E. Klassen, J. S. Marron, Reg-
istration of functional data using fisher-rao metric, arXiv preprint
arXiv:1103.3817.

[19] C. Bouveyron, E. Côme, J. Jacques, et al., The discriminative functional
mixture model for a comparative analysis of bike sharing systems, The
Annals of Applied Statistics 9 (4) (2015) 1726–1760.

[20] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learn-
ing, Springer Series in Statistics, Springer New York Inc., New York, NY,
USA, 2001.

32

A Appendix section
Referring to the Cheng and Church model ((8)), given a data matrix A
composed by n rows and m columns, a bi-cluster B(I, J) is a set of rows
I and a set of columns J such that each element aij in the bi-cluster can
be expressed as: aij = µ + αi + βj with i ∈ I and j ∈ J , where µ is the
average value in the bi-cluster and αi and βj are respectively the residue
value between row and column average value and the bi-cluster total average
value aIJ . In details:

• µ = 1
|I||J |

∑
i∈I,j∈J aij

• αi = 1
|J |
∑

j∈J aij − aIJ

• βj = 1
|I|
∑

i∈I aij − aIJ

The mean squared residue score of a bi-cluster B(I, J) is expressed as:

H(I, J) =
1

|I||J |
∑

i∈I,j∈J

(aij − āij)2

where āij = µ+αi+βj. To find a set of bi-clusters in the data, a deterministic
and greedy approach is employed returning as output bi-clusters having the
maximal dimension in terms of number of rows and columns according to the
minimization of a mean squared residue score H. Specifically, a sub-matrix
B(I, J) is a bi-cluster if its H-score is smaller than a given threshold δ taken
as input parameter by the algorithm. The aim of the algorithm is to find a
maximal submatrix with a low H score. The Cheng and Church algorithm
can be considered as a three steps procedure as expressed in Algorithm 3.
Initially a nodes deletion step is performed removing rows and columns of
the data matrix to minimize the mean squared residue H. Then the result of
the deletion is modified by adding nodes which do not impact on the score,
obtaining as output the maximal bicluster below the chosen threshold δ is
identified. Details of Multiple and Single Node Deletion and Nodes Addition
procedures are reported in Algorithm 4, 5 and 6. In details for the Multi-
ple Node Deletion step, Algorithm 4, a new parameter θ is considered and
the rows and columns with scores beyond a value identified by the threshold

33

θ ·H(I, J) are removed. This procedure is very fast but may return too much
shrunk matrices. The Single Node Deletion step, in Algorithm 5, is instead a
lower procedure deleting one node at the time. While H(I, J) is bigger than
the threshold δ and other rows and columns can be removed, the algorithm
proceeds evaluating the rows and columns scores and removing the row or
the column with the higher score, i.e. the one which largely contribute to
the score H.
After the deletion phase, the resulting bi-cluster may not be maximal; hence
an addition step is performed, trying to add all the rows and the columns
that do not increase the score H. In this step the procedure tries to add
also the anti-correlated or inverted rows. This step was introduced because
the original Cheng and Church algorithm was developed for gene expression
data. An anti-correlated or inverted row in a gene expression data may in-
deed represent a negatively regulated genes that is of interest when finding
a bi-cluster.
Finally the algorithm is iterated without considering the results already
found; to do so a masking procedure is performed. This masking proce-
dure consists in replacing all the elements in the matrix already assigned to
one bi-cluster with random values. This makes quite unlikely that already
assigned elements would be reassigned to other bi-clusters, but it does not
ensure it.

34

Algorithm 3: Cheng and Church algorithm

Input: (n,m) matrix A whose elements are numbers aij
δ ≥0 the maximum acceptable mean residue score
θ ≥1 a parameter for multiple node deletion

Result: A set B of Bi-clusters B(I, J) with mean residue score
lower than δ

Set:

• B = {} set of bi-clusters found

• (I, J) = {(i, j) : i ∈ 1...n, j ∈ 1...m} set of not assigned elements

while A new bi-cluster B(I, J) is found do
On A do:

1. apply Algorithm 4 to perform Multiple Node Deletion.

2. apply Algorithm 5 to perform Single Node Deletion.

3. apply Algorithm 6 to perform Node Addition.

if A new bi-cluster B(I, J) is found then

• B = B ∪B(I, J)

• mask the assigned data

end
end

35

Algorithm 4: Multiple Node Deletion

Input: (n,m) matrix A whose elements are numbers aij
δ ≥0 the maximum acceptable mean residue score
θ ≥1 a parameter for multiple node deletion

Result: A submatrix A(I, J) of A with a score no larger than δ

Set:

• A(I, J)=A

• (I, J) = {(i, j) : i ∈ 1...n, j ∈ 1...m} set elements in A(I, J)

• evaluate H(I, J)

while H(I, J) > δ do

On A(I, J) do:

1. Evaluate H(I, J)

2. Remove the rows i ∈ I with 1
|J |
∑

j∈J(aij − āij)2 > θH(I, J)

3. Evaluate H(I, J)

4. Remove the columns j ∈ J with 1
|I|
∑

i∈I(aij − āij)2 > θH(I, J)

if No deletion is performed then
STOP

end
end

36

Algorithm 5: Single Node Deletion

Input: (n,m) matrix A whose elements are numbers aij
δ ≥0 the maximum acceptable mean residue score

Result: A submatrix A(I, J) of A with a score no larger than δ

Set:

• A(I, J)=A

• (I, J) = {(i, j) : i ∈ 1...n, j ∈ 1...m} set elements in A(I, J)

• evaluate H(I, J)

while H(I, J) > δ do

On A(I, J) do:

1. Find the row i ∈ I with the largest diJ = 1
|J |
∑

j∈J(aij − āij)2

2. Find the column j ∈ J with the largest dIj = 1
|I|
∑

i∈I(aij − āij)2

if diJ > dIj then
delete row i

else
delete column j

end
end

37

Algorithm 6: Node Addition

Input: (n,m) matrix A whose elements are numbers aij
I and J representing the submatrix A(I, J)

Result: I ′ and J ′ such that I ′ ⊂ I and J ′ ⊂ J with the property
that H(I ′, J ′) ≤ H(I, J)

Set:

• evaluate H(I, J)

while A row or a column is added do

On A(I, J) do:

1. Add the columns j /∈ J with 1
|I|
∑

i∈I(aij − āij)2 ≤ H(I, J)

2. evaluate H(I, J)

3. Add the rows i /∈ I with 1
|J |
∑

j∈J(aij − āij)2 ≤ H(I, J)

4. For each row i /∈ I add its inverse if∑
j∈J(−aij − (aIJ − αi + βj))

2 ≤ H(I, J)

end

38

MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

67/2020 Caramenti, L.; Menafoglio, A.; Sgobba, S.; Lanzano, G.
Multi-Source Geographically Weighted Regression for Regionalized
Ground-Motion Models

68/2020 Galvani, M.; Torti, A.; Menafoglio, A.; Vantini S.
FunCC: a new bi-clustering algorithm for functional data with misalignment

66/2020 Didkovsky, O.; Ivanov, V.; Papini, M.; Longoni, L.; Menafoglio, A.
A comparison between machine learning and functional geostatistics
approaches for data-driven analyses of solid transport in a pre-Alpine stream

65/2020 Di Gregorio, S.; Vergara, C.; Montino Pelagi, G.; Baggiano, A.; Zunino, P.; Guglielmo, M.; Fusini, L.; Muscogiuri, G.; Quarteroni, A.; Pontone, G.
Prediction of myocardial blow flow under stress conditions by means of a
computational model

64/2020 Fiz, F.; Viganò, L.; Gennaro, N.; Costa, G.; La Bella, L.; Boichuk A.; Cavinato, L.; Sollini, M.; Politi, L. S.; Chiti, A.; Torzilli, G.
Radiomics of Liver Metastases: A Systematic Review

63/2020 Tuveri, M.; Milani, E.; Marchegiani, G.; Landoni, L.; Torresani, E.; Capelli, P.; Sperandio, N.; D’Onofrio, M.; Salvia, R.; Vergara, C.; Bassi, C.
HEMODYNAMICS AND REMODELING OF THE PORTAL CONFLUENCE
IN PATIENTS WITH CANCER OF THE PANCREATIC HEAD: A PILOT
STUDY

62/2020 Massi, M. C.; Ieva, F.
Representation Learning Methods for EEG Cross-Subject Channel Selection
and Trial Classification

61/2020 Pozzi, S.; Redaelli, A.; Vergara, C.; Votta, E.; Zunino, P.
Mathematical and numerical modeling of atherosclerotic plaque progression
based on fluid-structure interaction

60/2020 Lupo Pasini, M; Perotto, S.
Hierarchical model reduction driven by a Proper Orthogonal Decomposition
for parametrized advection-diffusion-reaction problems

59/2020 Massi, M.C.; Franco, N.R; Ieva, F.; Manzoni, A.; Paganoni, A.M.; Zunino, P.
High-Order Interaction Learning via Targeted Pattern Search

	Introduction
	Functional Bi-clustering
	Functional Cheng and Church algorithm
	Functional bi-clustering with alignment
	Simulation study
	Case A: non-exhaustive bi-cluster
	Case B: the rows components
	Case C: the shift alignment
	Case D: Comparison with state-of-the-art method

	Case Study
	Conclusion
	Appendix section

