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A GRADIENT FLOW APPROACH FOR COMBINED
LAYOUT-CONTROL DESIGN OF WAVE ENERGY PARKS

MARCO GAMBARINI∗, GABRIELE CIARAMELLA∗, AND EDIE MIGLIO∗

Abstract. Wave energy converters (WECs) represent an innovative technology for power gen-
eration from renewable sources (marine energy). Although there has been a great deal of research
into such devices in recent decades, the power output of a single device has remained low. Therefore,
installation in parks is required for economic reasons. The optimal design problem for parks of WECs
is challenging since it requires the simultaneous optimization of positions and control parameters.
While the literature on this problem usually considers metaheuristic algorithms, we present a novel
numerical framework based on a gradient-flow formulation. This framework is capable of solving
the optimal design problem for WEC parks. In particular, we use a low-order adaptive Runge-
Kutta scheme to integrate the gradient-flow equation and introduce an inexact solution procedure.
Here, the tolerances of the linear solver used for projection on the constraint nullspace and of the
time-advancing scheme are automatically adapted to avoid over-solving so that the method requires
minimal tuning. We then provide the specific details of its application to the considered WEC prob-
lem: the goal is to maximize the average power produced by a park, subject to hydrodynamic and
dynamic governing equations and to the constraints of available sea area, minimum distance between
devices, and limited oscillation amplitude around the undisturbed free surface elevation. A suitable
choice of the discrete models allows us to compute analytically the Jacobian of the state problem’s
residual. Numerical tests with realistic parameters show that the proposed algorithm is efficient, and
results of physical interest are obtained.
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1. Introduction. This work introduces a novel numerical framework for the
solution of optimal design problems for parks of wave energy converters (WEC). The
problem is formulated as

min
w

f(w) s.t. e(w) :=

[
eγ(w)
eζ(w)

]
= 0, h(w) :=

 hsl(w)
had(w)
hmd(w)

 ≤ 0.(1.1)

Here, the cost function is f(w) := −P (w), with P (w) the total power absorbed
by the park. Vector w contains the decision variables, corresponding to devices’
positions and control parameters, and the state variables, given by hydrodynamic co-
efficients γ̂ and oscillation amplitudes ζ̂. Vector e(w) defines the equality constraints,
corresponding to the state problem: in particular, eγ(w) is the residual of the hydro-
dynamic equation and eζ(w) is the residual of the dynamic equation. Furthermore,
h(w) is the vector of inequality constraints: the slamming constraint function hsl(w),
requiring the devices to remain immersed as they oscillate; the admissible domain con-
straint function had(w), describing the sea area available for the park; and finally, the
constraint of minimum distance between each pair of devices, expressed by function
hmd(w).

The WEC optimal design problem (1.1) is currently relevant for applications,
because wave energy is being included in renewable energy strategies [13], and for it
to be cost-effective, devices need to be installed in parks [23]. The preliminary design
of a WEC park requires specifying the positions of the devices and the control strategy
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to be applied, in such a way that optimization criteria are satisfied. The final aim
should be to minimize some suitable measure of the cost of energy; however, because
of the difficulty of estimating costs for such an emerging technology [24], the average
power output is often considered as the objective function instead [39], and this is
the choice made in this work. Many approaches have been considered for modeling
and optimizing WEC parks [21, 44]. The most common hydrodynamic model is
based on linear potential flow theory, while optimization is typically tackled through
metaheuristic algorithms. Although array layout and control strategy are usually
optimized separately, it has been recognized that their simultaneous optimization can
lead to significantly better results in terms of power [20]. This approach is referred
to as control co-design [34, 30].

The present work introduces an adaptive gradient-flow algorithm and applies it
to the simultaneous optimization of layout and control for WEC parks, with the
average power as the objective function. To the best of our knowledge, the gradient-
flow approach has not been considered for wave energy applications before, and more
generally gradient-based approaches are rare in the literature on control co-design for
WEC arrays.

Our optimization algorithm is based on the gradient-flow framework originally in-
troduced in [38], which allows a rather natural treatment of very general constraints,
provided that their Jacobian is available. The resulting system of ordinary differential
equations (ODE) is solved through an adaptive Runge-Kutta (RK) method [25]. To
avoid over-solving while still achieving convergence within a specified threshold, an
approach akin to inexact optimization algorithms [6, 7, 43] is adopted: the tolerances
of RK stepsize adaptivity and of the conjugate gradient (CG) solver used to compute
the right hand side of the ODE are dynamically determined. For our application,
we consider arrays of cylindrical heaving point absorber devices with reactive control
[28], i.e., the control parameters are the equivalent damping and stiffness coefficients
of the electric generator, usually referred to as power take-off system (PTO). Hydro-
dynamics is modeled using linear potential flow theory [31], and irregular waves force
the system. The wave spectrum is approximated by a superposition of a finite number
of monochromatic waves. We consider the frequency domain fluid-structure interac-
tion model presented in [45, 9, 10], based on interaction theory [26]. The velocity
potential is written as a sum of cylindrical harmonics with unknown coefficients. The
latter, together with the devices’ oscillation amplitudes, are computed by solving a
linear system. The system matrix can be explicitly differentiated with respect to the
coordinates of the devices and to the control parameters. This possibility has been
leveraged in previous works [17, 18] to perform optimization in regular waves through
an adjoint approach.

The paper is structured as follows. Section 2 is dedicated to the optimization
algorithm, written for a very general class of problems. In section 3, we specialize
the framework to our problem of interest, describing in detail the terms appearing
in (1.1) and detailing the computation of derivatives. In section 4, several numerical
experiments are presented in order to show the effectiveness of the proposed method.
Finally, the limitations and some possible extensions of the present work are discussed
in section 5.

2. Optimization algorithm. In this section, we describe the optimization al-
gorithm used. First, in subsection 2.1 we review the gradient-flow approach. Then,
in subsection 2.2 we describe the scalings used to improve the conditioning of the
problem. In subsection 2.3, we finally discuss the time stepping method used and



GRADIENT FLOW OPTIMIZATION OF WAVE ENERGY PARKS 3

introduce an inexact solution strategy.

2.1. Gradient flow. The gradient-flow method is a continuous version of gradi-
ent descent, where the optimal solution is sought by solving a system of ODEs whose
forcing term depends on the gradient vector. An advantage of gradient-flow-like algo-
rithms over others, such as penalty methods, is that they generate trajectories that
can move along an equality constraint, instead of oscillating around it [16]. For a uni-
form treatment of the constraints, a quadratic slack variable method [4, Sec. 3.3.2]
is used to recast inequality constraints as equality constraints. To do that, vector w
is augmented with slack variables s, and inequality constraints are replaced by the
equality constraint

gI(w) := h(w) + s⊙ s = 0,

where ⊙ denotes the element-wise product. Then, a single constraint vector g is
introduced, g(w) = [e(w), gI(w)], and problem (1.1) is restated as

(2.1) min
w

f(w) s.t. g(w) = 0.

For problem (2.1), we consider the constrained formulation introduced in [38]:

(2.2)
dw

dt
= − (Dwg(w))+g(w)︸ ︷︷ ︸

Ψg(w)

−
[
I − (Dwg(w))+Dwg(w)

]
∇f(w)︸ ︷︷ ︸

Ψf (w)

=: Ψ(w).

Dwg(w) is the differential of the constraint vector,

(Dwg(w))+ = (Dwg(w))′[Dwg(w)(Dwg(w))′]−1

its pseudoinverse operator, and (Dwg(w))′ the adjoint operator of Dwg(w). The first
contribution to Ψ(w), Ψg(w), is orthogonal to the tangent space to the local level
set of g(w), and it is sometimes referred to as range space step [15], or feasibility step
[22]; the second, Ψf (w), belongs to the tangent space and is sometimes called null
space step, or optimality step. We can rewrite Ψ(w) as

Ψ(w) = −(Dwg(w))′[Dwg(w)(Dwg(w))′]−1(g(w)−Dwg(w)∇f(w))−∇f(w).

Thus, the term Ψ(w) can be computed by either solving the linear system

(2.3) Dwg(w)(Dwg(w))′Λ = g(w)−Dwg(w)∇f(w)

and then substituting Λ in Ψ(w) = −(Dwg(w))′Λ−∇f(w), or by solving the saddle
point problem [

I (Dwg(w))′

Dwg(w) 0

] [
Ψ(w)
Λ

]
=

[
−∇f(w)
−g(w)

]
.

In the first case, the system matrix is symmetric positive definite, while in the second
case, it is symmetric indefinite. In the following, we will consider the first approach,
which allows the use of the conjugate gradient method.

For the purpose of checking convergence, we observe that Ψ(w) = 0 if and only if
there exists a vector Λ such that (Dwg(w))′Λ+∇f(w) = 0, which is the statement
of the first order optimality condition for problem (3.18) [32, Chap. 12]. Therefore,
∥Ψ(w)∥2 is taken as a convergence indicator.
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2.2. Scaling and preconditioning. In our problem, as in most problems of
practical interest, the vector w contains quantities of different scales and units. For
numerical purposes, they are divided by reference values to obtain a better scaling of
the problem, that is, to prevent a spurious domination of a set of variables over another
[32, Sec. 2.2]. We define nondimensional variables w, g(w) and f(w), positive and
diagonal scaling matrices Sw and Sg, and a scaling factor f0 as

(2.4) w = Sww, g(w) = Sgg(w), f(w) = f0f(w).

Since the variable t in (2.2) has no physical meaning, we consider it nondimensional.
From the chain rule, we obtain

∇f(w) =
∂f

∂w
= f0S

−1
w

∂f

∂w
= f0S

−1
w ∇ f(w)(2.5)

Dwg(w) = SgDwg(w)S−1
w .(2.6)

The right-hand side of the ODE is then written as

Ψ(w) = −(Dwg(w))′[Dwg(w)(Dwg(w))′]−1(g(w)−Dwg(w)∇ f(w))−∇ f(w).

Using (2.4), (2.5), and (2.6), we get

Ψ(w) =− Sw(Dwg(w))′[Dwg(w)S2
w(Dwg(w))′]−1[g(w)− f−1

0 Dwg(w)S2
w∇f(w)]

− f−1
0 Sw∇f(w),

which shows that the time evolution w(t) is affected Sw, but not by Sg. Thus, Sg can
then be chosen to improve the condition number of the linear system (2.3) through
row equilibration. Indeed, the involved linear operator is

Σ = Dwg(w)(Dwg(w))′ = S−1
g [Dwg(w)S2

w(Dwg(w))′]S−1
g .

Hence, Sg can be interpreted as a symmetric diagonal preconditioner for Σ. We
choose to perform row equilibration by normalizing the rows of the representative
matrix Jg of Dwg with respect to the 2-norm. If the rows of Jg formed an orthogonal
set, then our choice would yield Σ = I. In general, it is only guaranteed that the
diagonal terms of JgJ

T
g will be all ones. It can be proved [40, Thm. 4.1] that the

spectral condition number obtained from row equilibration κre
2 and the minimum one

obtainable with a symmetric diagonal preconditioner κmin
2 satisfy κre

2 ≤ nκmin
2 , where

n is the dimension of all involved matrices. While this result indicates that there may
be room for improvement, since the condition number may increase proportionally to
n, we have observed that the proposed preconditioner yields reasonable performance
in terms of number of iterations and computational time for our purpose.

2.3. Adaptive time stepping. We now deal with the time-discretization of
(2.2). Since this is a system of ODEs, but it also originates from an optimization
problem, a suitable combination of numerical approaches from the two fields can be
adopted for an efficient and accurate solution. On the one hand, there is the possi-
bility of using numerical methods for the discretization of ODEs, possibly adapted
to the optimization nature of the original problem. Such a choice was made in [42],
where a fourth-order Runge-Kutta scheme with an ad-hoc stepsize choice based on
constraint violation was employed. On the other hand, one could rely on constrained
optimization concepts, such as merit functions and filters [32, sect. 15.4]. This choice
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was made in [15], where a merit function was used. Our approach is similar to the
former: we start from an adaptive Runge-Kutta method, and introduce criteria for
the dynamic update of solver tolerances. In all cases, to avoid the need of subiterating
(and the possible need of computing higher order derivatives, if a Newton algorithm
is used for subiterations), explicit algorithms are preferable.

When standard methods for ODEs are chosen, a compromise needs to be sought
between number of required function evaluations, accuracy and stability. To limit the
discussion, we consider single step, multistage methods. The number of stages can
be increased with the aim of either improving the accuracy or enlarging the stability
region and thus allowing larger steps. Adaptive time stepping can be performed by
combining two methods of different orders [25, sect. II.4]. Starting from iterate wj ,
the solution at the next step is computed using the low-order method, obtainingwj+1,
and the high-order method, obtaining ŵj+1. Then, the normalized error between the
two is computed as [25, eq. 4.11]

(2.7) ϵ =

√√√√ 1

Nw

Nw∑
ℓ=1

(
wj+1

ℓ − ŵj+1
ℓ

ςℓ

)2

,

where ςℓ = τabsRK +max(|wj
ℓ , w

j+1
ℓ |)τ relRK , τabsRK being the absolute tolerance and τ relRK the

relative tolerance. The estimated time step is then updated as

∆tj+1
est = (1/ϵ)1/r∆tj ,

where r is the order of the local truncation error of the low-order method (2 for Euler’s
method). In practice, the variation of the time step between successive iterates is
limited by defining safety factors; this leads to the actual updated time step ∆tj+1.
The cheapest adaptive method built in such a way in terms of stages is the combination
of the 1-stage, first-order explicit Euler method and the 2-stage, second-order Heun
method. If the solution is updated using the Euler method, a single evaluation of
Ψ(w) is required at each time step, since the second stage is recycled as the first
stage of the next step. The result is Algorithm 2.1.

Algorithm 2.1 First order Euler-Heun method

1: Set w0, ∆t0, τΨ, tmax

2: Set t = 0, j = 0
3: k2 = Ψ(w0)
4: while ∥Ψ(wj)∥2 > τΨ and t < tmax do
5: k1 = k2
6: k2 = Ψ(wj + k1∆tj)
7: wj+1 = wj + k1∆tj

8: ŵj+1 = wj + 1
2 (k1 + k2)∆tj

9: Compute the relative error between the two updates using (2.7)
10: Compute the updated time step ∆tj+1

11: if ϵ ≤ 1 then
12: Stepsize accepted: t← t+∆tj

13: j ← j + 1
14: end if
15: end while
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In the following, we present criteria to select the tolerance of the Runge-Kutta
method τRK and the absolute tolerance on the residual of the CG solver τCG auto-
matically and adaptively to achieve convergence within a specified tolerance on the
final value of ∥Ψ(w)∥2, τΨ. The first criterion is based on stability, while the second
is based on accuracy.

The condition ∆t < 2 was indicated in [15] as a stability requirement, with the
following explanation. Consider the expansion

g(wj+1) = g(wj +∆tΨ(wj)) = g(wj) + ∆tJg(w
j)Ψ(uj) +R2,

where R2 is the remainder of the series, ∥R2∥ = O(∆t2). From JgΨ = −g, which is
a consequence of (2.2), and the triangle inequality, we obtain

∥g(wj+1)∥ ≤ |1−∆t|∥g(wj)∥+ ∥R2∥,

and the condition stems from requiring |1−∆t| < 1, which corresponds to a reduction
of the constraint vector norm. However, if system (2.3) is solved with finite accuracy,
then the maximum time step satisfying the stability requirement is reduced, as seen
in the following. Let us call Λ̃ the numerical solution of (2.3) obtained by using an

iterative method, and let Ψ̃(wj) be the resulting approximation of Ψ(wj). Then,

(2.8) g(wj +∆tΨ̃(wj)) = g(wj) + ∆tJg(w
j)Ψ̃(wj) +R2.

From (2.3), and defining eΛ = Λ̃−Λ, we have

(2.9) Ψ̃(wj) = −∇f(wj) + JT
g (wj)(Λ+ eΛ) = Ψ(wj) + JT

g (wj)eΛ.

Now, substituting (2.9) into (2.8) and using again JgΨ = −g, we get

g(wj +∆tΨ̃(wj)) = (1−∆t)g(wj) + ∆tJg(w
j)JT

g (wj)eΛ +R2.

The last expression can be rewritten in terms of the residual of system (2.3) by
recalling that, given any system Ax = b, the relationship between the error e and the
residual r is Ae = r. In our case, we have Jg(w

j)JT
g (wj)eΛ = r, which leads to

g(wj +∆tΨ̃(wj)) = (1−∆t)g(wj) + ∆tr +R2.

If ∆t < 2, using the triangle inequality we obtain

∥g(wj +∆tΨ̃(wj))∥ ≤ (1−∆t)∥g(wj)∥+∆t∥r∥+ ∥R2∥.

Rearranging yields the more readily interpretable inequality

(2.10) ∥g(wj)∥ − ∥g(wj +∆tΨ̃(wj))∥ ≥ ∆t
(
∥g(wj)∥ − ∥r∥

)
− ∥R2∥.

As long as ∥r∥ < ∥g(wj)∥, the first-order term dominates on the second-order term
and a reduction of the norm of g is guaranteed for a sufficiently small time step.
However, if ∥r∥ approaches or exceeds ∥g(wj)∥, the first order term becomes negligible
and eventually negative, and a nonincreasing value of the constraint norm may not
be guaranteed for any value of ∆t. We thus need to set ∥r∥ < τCG ≪ ∥g(wj)∥.

Let us now focus on accuracy and assume that the exact gradient-flow trajectory
w(t) converges to a constrained optimum, i.e. for any value of tolerance τ > 0 there
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exists T > 0 such that ∥Ψ(w(t))∥ < τ, ∀t > T. We study the effect of the limited
accuracy of the ODE and linear system solvers on the possibility of converging to
within the prescribed tolerance. We denote as ŵ the numerical solution of ODE
(2.2). At a certain step ŵ along the numerically integrated trajectory, the numerical
approximation of the flow map can be split into the following contributions:

Ψ̃(ŵ) = Ψ(w) + (Ψ(ŵ)−Ψ(w))︸ ︷︷ ︸
ODE solver error

+
(
Ψ̃(ŵ)−Ψ(ŵ)

)
︸ ︷︷ ︸
linear solver error

.

The triangle inequality leads to

∥Ψ̃(ŵ)∥ ≤ ∥Ψ(w)∥+ ∥Ψ(ŵ)−Ψ(w)∥+ ∥Ψ̃(ŵ)−Ψ(ŵ)∥.

In order to reach and observe convergence up to a tolerance, the two error terms need
to be controlled. One may for instance aim to ensure that they are at least an order
of magnitude smaller than ∥Ψ(w)∥. For the ODE solver error, we assume Lipschitz
continuity of Ψ and write

∥Ψ(ŵ)−Ψ(w)∥ ≤ L∥ŵ −w∥.

For the linear solver error, we have

∥Ψ̃(ŵ)−Ψ(ŵ)∥ ≤ ∥J+
g (ŵ)∥∥r∥.

The problem is now to find order of magnitude estimates of L and ∥J+
g (ŵ)∥ that are

cheaply computable. We adopt the following:

L ∼ ∥Ψ(wj)−Ψ(wj−1)∥
∥wj −wj−1∥ , ∥J+

g (ŵ)∥ ∼ ∥JT
g (ŵ)Λ∥

∥g(ŵ)− Jg(ŵ)∇f(ŵ)∥ .

All the vectors involved are intermediate quantities needed for the solution of the
problem; the only additional work required to build the estimates is the computation
of the norms. The tolerance of the CG solver can then be set as

τ jCG = kτ min

(∥Ψ(wj−1)∥∥g(wj−1)− Jg(w
j−1)∇f(wj−1)∥

∥JT
g (wj−1)Λ∥ , ∥g(wj)∥

)
,

where the stability condition implied by (2.10) is taken into account. The tolerance
of the ODE solver can be set as

τ jRK = min

(
τ j−1
RK , kτ

∥Ψ(wj)∥∥wj −wj−1∥
∥Ψ(wj)−Ψ(wj−1)∥

)
,

where, for consistency, the error estimate used for stepsize selection needs to be com-
puted in the euclidean norm, that is, (2.7) is replaced with

ϵ = ∥wj+1 − ŵj+1∥/τ jRK .

Moreover, the previous tolerance τ j−1
RK is used as an upper bound for τ jRK in order

to avoid large oscillations of the stepsize and frequent stepsize rejections, which may
reduce the efficiency of the method. One may set kτ = 0.1. As an additional measure
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to prevent over-solving, the time step is halved if conjugate gradient does not converge
to the required tolerance within a prescribed maximum number of iterations.

In the following, the presented algorithm is applied to the problem of optimizing
positions and control parameters for wave energy converter parks.

3. Modeling of the WEC optimal design problem. In this section, we de-
scribe in detail the terms of (1.1). Cost function and decision variables are defined
in subsection 3.1. The fluid-structure interaction model, whose residual defines the
equality constraint, is presented in subsection 3.2. The treatment of the inequality
constraints, namely the slamming, available domain, and minimum distance con-
straints, is described in subsection 3.3. In subsection 3.4, we report the computation
of the required differentials.

3.1. Cost function and decision variables. We aim to maximize the time-
averaged power of an array of Nb WEC devices. The decision variables to be deter-
mined through optimization are the projections on the horizontal plane of the devices’
centers, collected in vector X = [x1, . . . ,xNb

] ∈ R2Nb , and the coefficients of the PTO
mechanisms: dampings c = [c1, . . . , cNb

] and stiffnesses κ = [κ1, . . . , κNb
]. For conve-

nience, we define the vector of decision variables u = [X, c,κ]. We instead consider
fixed the number of devices Nb and their geometries, assumed to be all identical and
defined by radius R and draft d. We also fix the sea state, defined by significant wave
height Hs, energy period Te and wave direction β, together with the sea depth D,
assumed uniform. The power is written as

P = lim
T→∞

1

T

Nb∑
ℓ=1

∫ T

0

cℓζ̇
2
ℓ (t) dt,

ζℓ(t) being the elevation of the barycenter of the ℓ-th device with respect to its hy-
drostatic equilibrium position.

Since the fluid-structure interaction problem is based on a linear model, detailed
in subsection 3.2, it can be formulated in the frequency domain. Thus, ζℓ(t) can be
written as a linear combination of a set of harmonics. In principle, an infinite number
of frequency components should be taken into account; for numerical computations,
we instead consider a finite number Nf :

(3.1) ζℓ(t) =

Nf∑
q=1

ℜ
[
ζ̂ℓq exp[−i(ωqt+ φq)]

]
.

Here, ζ̂ℓq ∈ C is the q-th frequency component of the oscillation amplitude of the ℓ-th
device. The Nf angular frequencies are determined through a suitable discretization
of the energy spectral density of the wave climate, to be described in the next section.
In (3.1), φq is the phase of the q-th wave component, which does not influence the
average power, and will not be considered in the following.

Thanks to the orthogonality of harmonics, the average power can be approximated
as a sum of Nf contributions.

(3.2) P ≈ 1

2

Nb∑
ℓ=1

cℓ

Nf∑
q=1

(
ωq|ζ̂ℓq|

)2
.

3.2. State problem: dynamic and hydrodynamic equations. The state
problem is a linearized fluid-structure interaction problem. Thanks to linearity, it
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can be solved in the frequency domain, with each frequency component evolving
independently from all others. First, the determination of the frequency components
to be used is discussed, based on a given sea state; then, the problem to be solved for
each component is introduced.

Sea states are typically described through frequency-directional spectrum func-
tions. For simplicity, we consider unidirectional waves, and thus only concern ourselves
with the frequency dependence. The frequency distribution of the energy density per
unit area of sea surface E due to wave motion is described by the energy spectrum
function S(ω) [14]: E = ρg

∫∞
0

S(ω)dω, where ρ is the water density and g is the
gravity field. Analytical forms of S(ω), parameterized in significant wave height Hs

and energy period Te, are available in the literature. In this work, we consider the
Pierson-Moskowitz spectrum [14]. The aim of the discretization is to approximate the
free-surface elevation field η(x, y, t) as a sum of regular waves of heights Hq and an-
gular frequencies ωq, q = 1, . . . , Nf , corresponding to wavenumbers kq. In particular,
the undisturbed free surface elevation at the center of the ℓ-th device is
(3.3)

ηℓ(t) =

Nf∑
q=1

ℜ [η̂ℓq exp(−iωqt+ φq)] , with η̂ℓq = i
Hq

2
exp[ikq(xℓ cosβ + yℓ sinβ)].

The energy density of the q-th harmonic wave component is Eq = ρgH2
q /8. A review

of the possible strategies for discretizing wave spectra as superpositions of harmonics
is reported in [8]. In this work, we proceed as follows. A bounded interval of fre-
quency (ωL, ωR), chosen neglecting a given fraction of the total energy, is split into
subintervals of equal width. For each subinterval Iq, a wave component is defined,
with angular frequency corresponding to the center of the subinterval and height Hq

such that Eq = ρg
∫
Iq
S(ω)dω.

For the fluid-structure interaction problem, we use linear potential flow theory
[31]. Each device behaves as a harmonic oscillator forced by wave loads: this is
described in the frequency domain by

(3.4)
(
−ω2

qm− iωqcℓ + κh + κℓ

)
ζ̂ℓq = F̂ℓq.

Here, m and κh are mass and hydrostatic stiffness, respectively, and they are the same
for all devices. F̂ℓq is the q-th frequency component of the vertical hydrodynamic force

on device ℓ, computed from the corresponding velocity potential ϕ̂q as

(3.5) F̂ℓq = iωρ

∫
Γbℓ

ϕ̂qdΓ,

where Γbℓ is the bottom surface of device ℓ. In turn, the potential ϕ̂q satisfies

(3.6)



∆ϕ̂q = 0 in Ω

∂ϕ̂q

∂n
= 0 on Γb

∂ϕ̂q

∂z
− ω2

g
ϕ̂q = 0 on Γs

∂ϕ̂

∂n
= −∂ϕ̂0

q

∂n
− iωq ζ̂ℓqnz on Γd,ℓ, ℓ = 1, . . . , Nb,
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where Ω is a domain bounded by the sea bottom Γb, the undisturbed free surface Γs,
the devices’ surfaces Γd,ℓ, and horizontally unbounded. ϕ̂0

q is the potential of an undis-
turbed ambient wave field corresponding to the q-th component of the discretization
of the sea state.

In the rest of this section, we present a numerical model, derived in [9] and valid
for cylindrical objects, for the solution of (3.6). Cylindrical symmetry is leveraged to
write the potential as a truncated series of cylindrical harmonics in the local coordinate
system of each device. The q-th frequency component of the potential scattered by the
ℓ-th body is written as a linear combination of suitable basis functions, with unknown
coefficients γ̂ℓ. The number of coefficients depends on parameters Nn and Nm, which
are the numbers of considered progressive and evanescent wave modes, respectively.
We have γ̂ℓ ∈ C(2Nn+1)(Nm+1) [10]. These coefficients, together with the devices’
oscillation amplitudes, are the unknowns of the problem, which can be written as the
system

(3.7)

[
Mγγ,q(u) Mγζ,q(u)
Mζγ,q(u) Mζζ,q(u)

] [
γ̂q

ζ̂q

]
=

[
hγ,q(u)
hζ,q(u)

]
.

The residuals of all such systems, for q = 1, . . . , Nf , form the equality constraint
vector of our optimization problem:

(3.8) eq(u, γ̂q, ζ̂q) =

[
eγ,q
eζ,q

]
=

[
Mγγ,q(u)γ̂q +Mγζ,q(u)ζ̂q − hγ,q(u)

Mζγ,q(u)γ̂q +Mζζ,q(u)ζ̂q − hζ,q(u)

]
.

In the following, we will provide the expressions of the system’s blocks. We consider
a single frequency and drop subscript q for ease of notation.

The first block row of system (3.7) corresponds to the hydrodynamic equations,
which are derived from the conditions of impermeability on the surface of each body.
Their expressions are

(3.9)

Nb∑
m=1
m ̸=ℓ

BℓT
T
mℓ︸ ︷︷ ︸

Mγγ,ℓm

γ̂m − γ̂ℓ +

Nb∑
m=1
m ̸=ℓ

BℓT
T
mℓRm︸ ︷︷ ︸

Mγζ,ℓm

ζ̂m = −H

2
Bℓaℓ︸ ︷︷ ︸

hγ,ℓ

, ℓ = 1, . . . , Nb,

where vector Rm and matrix Bℓ depend on the device’s geometry but not on its
position, while matrix Tmℓ depends on the positions of bodies m and ℓ. It is the
coordinate transformation matrix. H is the height of the considered incident wave
component, and aℓ is a vector of ambient wave coefficients. The left-hand side of
(3.9) describes hydrodynamic interactions between bodies, while the right-hand side
describes the external forcing due to ambient waves.

The vertical motion of each cylinder is determined by the wave force acting on
its bottom surface, given by (3.5). In the region below the ℓ-th body, the potential is
written as a linear combination of basis functions Ψ̃D

ℓ as follows:

ϕ̂ℓ(x
C
ℓ ) =

g

ω

{[
aT
ℓ +

Nb∑
m=1
m ̸=ℓ

(γ̂m + ζ̂mRm)TTmℓ

]
B̃T

ℓ Ψ̃
D
ℓ (xC

ℓ )

+ ζ̂ℓ

(
R̃p

ℓ (x
C
ℓ ) + R̃T

ℓ Ψ̃
D
ℓ (xC

ℓ )
)}

,

(3.10)

where xC
ℓ is the set of local cylindrical coordinates. Here, matrix B̃ℓ and scalar

function R̃p
ℓ encode hydrodynamic properties of a single device, depending on its
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geometry, but not on its position. Substitution of (3.10) into the expression of F̂ℓq

(3.5) results in the following form of the dynamic equation (3.4):

(3.11)

Nb∑
m=1
m ̸=ℓ

[
1

Wℓ
(Ỹ D

ℓ )T B̃ℓT
T
mℓ︸ ︷︷ ︸

Mζγ,ℓm

γ̂m +
1

Wℓ
RT

mTmℓB̃
T
ℓ Ỹ

D
ℓ︸ ︷︷ ︸

Mζζ,ℓm

ζ̂m

]
+ ζ̂ℓ = −

H

2Wℓ
aT
ℓ B̃

T
ℓ Ỹ

D
ℓ︸ ︷︷ ︸

hζ,ℓ

,

ℓ = 1, . . . , Nb, giving the second block row of (3.7). Here, Wℓ is the mechanical
impedance

(3.12) Wℓ = Ỹ R
ℓ − i(ω2mℓ + iωcℓ − κh,ℓ − κℓ)/(ρg),

Ỹ D
ℓ is the vector of integrals of functions Ψ̃D

ℓ , and Ỹ R
ℓ is a radiation quantity con-

taining the integral of function R̃p
ℓ .

For our purposes, the most important features of this formulation are the follow-
ing. Firstly, the residual of the state problem can be differentiated analytically with
respect to the decision variables, as detailed in subsection 3.4. In particular, the de-
pendence on the devices’ coordinates is only contained in coordinate transformation
matrices Tmℓ and ambient wave vectors aℓ, the dependence on stiffness and damp-
ing is only contained in the mechanical impedances Wℓ, and both have differentiable
analytic expressions. Secondly, all other quantities are independent of the decision
variables and can be precomputed, so that, as vector u is updated at each optimiza-
tion iteration, the residual of the state problem and its differential can be computed
efficiently. This is in contrast with other popular modelling approaches such as the
boundary element method, in which grids and interaction matrices would need to be
completely reassembled as the devices’ positions change.

3.3. Inequality constraints. In this section, we first detail the slamming, avail-
able domain and minimal distance inequality constraints, and then convert them into
equality constraints through a slack variable formulation, as explained for a generic
optimization problem in subsection 2.1.

3.3.1. Slamming constraint. The model presented in the previous section is
linear; hence, it poses no limits on the magnitude of the oscillation amplitudes of
devices. To ensure that the latter remain physically meaningful, in the sense that the
devices do not leave the water, the slamming constraint can be enforced [2]. In the time
domain, one could impose the constraint as ζℓ(t)− ηℓ(t) < d ∀t, ℓ = 1, . . . , Nb. Since
we are working in the frequency domain, the root mean square value of ζℓ(t) − ηℓ(t)
can instead be limited:

(3.13) hsl,ℓ =

Nf∑
q=1

|ζ̂ℓq − η̂ℓq|2 − 2α2d2 ≤ 0, ℓ = 1, . . . , Nb,

where η̂ℓq is the complex amplitude of the q-th wave component evaluated at the
center of the ℓ-th device. This formulation does not guarantee that the limit is never
exceeded, but it rather has a statistical meaning; in particular, α is the parameter
controlling the admissible exceedance probability [19].

3.3.2. Layout constraints. In this section, the treatment of the constraints on
the devices’ layout is described: they are the available domain constraint and the
minimum distance constraint.
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We assume the available sea area to be a simply connected set Ωad, which we do
not require to be convex. On the one hand, this allows to consider a larger class of
domains of practical interest; on the other hand, it makes the numerical treatment
more delicate.1 To impose the domain constraint as an equality, we would need a
function with value zero inside Ωad and positive outside. However, such a function
would also have zero gradient inside Ωad, thus making the constraint Jacobian matrix
singular and requiring the adoption of a different framework. We instead opt for
defining the constraint as an inequality, and requiring the corresponding function h
to be negative inside Ωad. This is achieved by solving two Poisson problems (see
Figure 3.1): one on the admissible domain,

(3.14) −∆h = σint in Ωad, h = 0 on Γad,

and one on an exterior domain Ωext,

(3.15) −∆h = σout in Ωext, h = 0 on Γad,
∂h

∂n
= νN on Γext.

ΩadΩext

Γad

Γext

Fig. 3.1: Poisson equation domain.

We set σint = −1, σout = 1 and νN = 0. We now remark on some desirable
properties of the solutions. The maximum principle for both the classical and the
weak form of the problems guarantees that h can have no global maxima in the
interior of Ωad and no global minima in the interior of Ωext [5]. Moreover, for classical
solutions it is possible to prove, using a modification of the mean value property [36],
that no local maxima can exist in Ωad (resp. minima in Ωext). It is also possible to
prove, both for the classical and weak formulation, that ∇h can be zero on at most
a set of zero measure. To compute h, the problem needs to be discretized. If the
finite element method is used, with P1 elements on a Delaunay triangulation, then
the numerical solution satisfies local and global discrete maximum properties [3].

The gradient of h needs to be computed to build the differential of constraint
functions. If P1 elements are used, then the exact gradient is discontinuous, potentially
making the gradient-flow ODE system stiff. To avoid this possible issue, we can
compute a more regular approximation Gh of ∇h through projection, i.e. by solving
the following problem:

(Gh, v) + η(∇Gh,∇v) = (∇h, v) ∀v ∈ H1(Ω), Ω = Ωad ∪ Ωext.

1For example, a convex polygonal set can be described as a system of linear inequalities; this is
instead not possible for a concave polygon.
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The constraint of admissible domain is then imposed as

had,ℓ = h(xℓ) ̸= 0, ℓ = 1, . . . , Nb.

The constraint of minimum distance between devices is written as

(3.16) hmd,ℓm = d2min − ∥xℓ − xm∥2 ≤ 0, ℓ,m = 1, . . . , Nb, l ̸= m.

It can be verified that it corresponds to a non-convex admissible set [18].

3.3.3. Slack variable formulation. In order to write the final form of our op-
timal design problem, we first collect all inequality constraints into a single vector h =
[hsl,had,hmd] and define a corresponding vector of slack variables s = [ssl, sad, smd].
The constraints of slamming, admissible domain and minimum distance are then
rewritten as

gI(u, γ̂, ζ̂, s) := h(u, γ̂, ζ̂) + s⊙ s = 0.

By defining a single constraint vector

(3.17) g(u, γ̂, ζ̂, s) = [e1(u, γ̂, ζ̂), . . . , eNq
(u, γ̂, ζ̂), gI(u, γ̂, ζ̂, s)],

our optimization problem can be restated as an equality-constrained minimization of
the opposite of the power (3.2):

(3.18) min
u

f(u, γ̂, ζ̂) = −1

2

Nb∑
ℓ=1

cℓ

Nf∑
q=1

(
ωq|ζ̂ℓq|

)2
s.t. g(u, γ̂, ζ̂, s) = 0.

For convenience, we finally define w = [u, γ̂, ζ̂, s] ∈ CNw , so that the generic formu-
lation (2.1) is recovered.

3.4. Algebraic setting and differentials. In this section, we derive the gra-
dient of the cost function and the differential of the constraint vector for our spe-
cific application. We call Dwf(v) the Fréchet differential of f at w with increment
v = [vu,vγ ,vζ ,vs]. A description based on the differential operator, instead of a
matrix representation, is convenient for computational purposes. Indeed, assembling
the matrices of the state problem (see (3.9), (3.11)) would require a large number of
inefficient matrix-matrix multiplications, and moreover matrices Bℓ, Tmℓ are sparse,
while their product is dense. In our implementation we instead only perform matrix-
vector multiplications, by carefully choosing the order of operations: so, the matrices
of the state problem are actually treated as abstract linear operators.

The cost function (3.2) depends explicitly only on the damping coefficients c and

on the oscillation amplitudes ζ̂. We have

∂f

∂cℓ
= −1

2

Nf∑
q=1

(
ωq|ζ̂ℓq|

)2
, Dζf(vζ) = −

Nb∑
ℓ1

cℓ

Nf∑
q=1

ω2
qℜ
[
v∗ζℓq ζ̂ℓq

]
,

where ∗ denotes the complex conjugate. The computed differential is R-linear, but
not C-linear (in the nomenclature of [27, sect. III.2]), because of the presence of the
real part operator. A suitable setting for our problem is thus the space of complex
vectors over the field of real scalars (CNw ,R), with inner product (u,v) = ℜ[uHv],
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where H denotes the hermitian (transpose conjugate), and the gradient with respect
to oscillation amplitudes is the corresponding Riesz representative of the differential:

∂f

∂ζ̂ℓq
= −ω2

qcℓζ̂ℓq.

The differential of the constraint vector g is split as

Dwg = [Dwe1, . . . , DweNq , Dwhsl, Dwhad, Dwhmd].

Let us start from the residual of the state problem (3.8), focusing on a single frequency
and thus disregarding subscript q:

Dwe(v) =

[
Mγγ(u)vγ +Mγζ(u)vζ +Dueγ(vu)
Mζγ(u)vγ +Mζζ(u)vζ +Dueζ(vu)

]
.

As already mentioned, the blocks of system (3.7) depend on the decision variables
through coordinate transformation matrices, ambient wave vectors and mechanical
impedance: in particular, from the ℓ-th block-row of (3.9) we obtain

Dueγ,ℓ(vu) =

Nb∑
m=1
m ̸=ℓ

Bℓ (DuTmℓ(vu))
T
(γ̂m +Rmζ̂m) +

H

2
Bℓ

(
∂aℓ

∂xℓ
vxℓ

+
∂aℓ

∂yℓ
vyℓ

)
,

and from the ℓ-th row of (3.11)

Dueζ,ℓ(vu) =

Nb∑
m=1
m ̸=ℓ

1

Wℓ

[
(Ỹ D

ℓ )T B̃ℓ (DuTmℓ(vu))
T
γ̂m +RT

mDuTmℓ(vu)B̃
T
ℓ Ỹ

D
ℓ ζ̂m

]

+
H

2Wℓ

(
∂aT

ℓ

∂xℓ
vxℓ

+
∂aT

ℓ

∂yℓ
vyℓ

)
B̃T

ℓ Ỹ
D
ℓ −

1

Wℓ
(eζ,ℓ − ζ̂ℓ)DuWℓ(vu).

The differential of the basis transformation matrix reads

DuTmℓ(vu) =
∂Tmℓ

∂xℓ
vxℓ

+
∂Tmℓ

∂yℓ
vyℓ

+
∂Tmℓ

∂xm
vxm

+
∂Tmℓ

∂ym
vym

,

while the differential of the mechanical impedance (3.12) is

DuWℓ(vu) =
ω

ρg
vcℓ +

i

ρg
vκℓ

.

We now report the computation of the required derivatives [17]. The expression of
basis transformation matrices is [10]

(3.19) (Tij)
nl
mm =


Jl(kr)
Hn(kr)

Hn−l(kLij)e
iαij(n−l), m = 0,

Il(kmr)
Kn(kmr)Kn−l(kmLij)e

iαij(n−l)(−1)l, m ≥ 1,

where Lij = ∥xj − xi∥, αij is the angle formed by vector xj − xi and the x axis, n,
l are indices of the progressive modes, all sharing the same wavenumber k, and m is
the index of the evanescent mode of wavenumber km. Jn is a Bessel function of the
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first kind, In is a modified Bessel function of the first kind, Hn is a Hankel function
of the first kind and Kn is a modified Bessel function of the second kind, subscripts
indicating the order. Differentiating (3.19) and using the expression for the derivative
of Hn [1]:

dHn(x)

dx
=

Hn−1(x)−Hn+1(x)

2
,

the same holding for Kn, yields

(
∂Tij

∂xℓ

)nl

mm

=



Jl(kr)

Hn(kr)

[
k
∂Lij

∂xℓ

Hn−l−1(kLij)−Hn−l+1(kLij)

2

+i
∂αij

∂xℓ
(n− l)Hn−l(kLij)

]
eiαij(n−l),

m = 0,

Il(kmr)

Kn(kmr)

[
km

∂Lij

∂xℓ

Kn−l−1(kLij)−Kn−l+1(kLij)

2

+i
αij

∂xℓ
Kn−l(kmLij)

]
eiαij(n−l)(−1)l,

m ≥ 1.

For the derivatives of Lij and αij , we start from Lij cosαij = xj − xi, Lij sinαij =
yj − yi. Differentiation with respect to xi yields the system

[
cosαij −Lij sinαij

sinαij Lij cosαij

]
∂Lij

∂xi

∂αij

∂xi

 =

[
−1
0

]
,

whose matrix has determinant Lij and thus is always invertible for distinct points.
Analogous systems hold for the other coordinates involved. The expressions of the
ambient wave coefficients are [10]

(aℓ)
n
m =

{
Jn(kr)e

in(π/2−β)Θℓ m = 0,

0, m ≥ 0,
Θℓ = eik(xℓ cos β+yℓ sin β),

and their derivatives are

∂aℓ

∂xℓ
= ik cosβaℓ,

∂aℓ

∂yℓ
= ik sinβaℓ.

The slamming constraint vector hsl depends on the oscillation amplitudes ζ̂ explicitly,
and on the devices’ positions through the phase of incident waves. Its derivatives with
respect to positions can be directly evaluated (see (3.3)):

∂hsl,ℓ

∂xℓ
= −2

Nf∑
q=1

ℜ
[
(ζ̂qℓ − η̂qℓ)

∗ ∂η̂qℓ
∂xℓ

]
,

∂η̂qℓ
∂xℓ

=
∂

∂xℓ

[
i
Hq

2
exp[ik(xℓ cosβ + yℓ sinβ)]

]
= ik cosβη̂qℓ.

We observe that

ℜ
[
η̂∗qℓ

∂η̂qℓ
∂xℓ

]
=

1

2

∂

∂xℓ
|η̂qℓ|2 = 0,
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since coordinate xℓ has an effect on the phase of η̂qℓ, but not on its magnitude. Hence,

∂η̂qℓ
∂xℓ

= −2 cosβ
Nf∑
q=1

kqℜ
(
iζ̂∗qℓη̂qℓ

)
= 2 cosβ

Nf∑
q=1

kqℜ
(
iζ̂qℓη̂

∗
qℓ

)
.

An analogous result holds for yℓ, with sinβ in place of cosβ. Differentiation with
respect to oscillation amplitudes yields

Dζhsl,ℓ(vζ) =

Nf∑
q=1

2ℜ
[
v∗ζqℓ

(
ζ̂qℓ − η̂qℓ

)]
.

The full differential of the ℓ-th component of the slamming constraint reads

Dwhsl,ℓ(v) =
∂hsl,ℓ

∂xℓ
vxℓ

+
∂hsl,ℓ

∂yℓ
vyℓ

+

Nf∑
q=1

2ℜ
[
v∗ζqℓ

(
ζ̂qℓ − η̂qℓ

)]
+ 2ssl,ℓvssl,ℓ .

The computation of the gradient of the admissible domain constraint has been dis-
cussed in subsection 3.3.2, and the corresponding differential is

Dwhad,ℓ(v) = Gh(xℓ) · vxℓ
+ 2sad,ℓvsad,ℓ

.

The derivatives of the minimum distance constraint function (3.16) with respect to
the coordinates can be readily computed, yielding the differential

Dwhmd,ℓm(v) = −2(xℓ − xm) · (vxℓ
− vxm

) + 2smd,ℓmvsmd,ℓm
.

The computation of the adjoint of the differential, (Dwg)
′, appearing in (2.2), can be

done directly using the definition of adjoint operator: (p, Dwg(v)) = (v, (Dwg)
′(p)).

We define p = [pe,psl,pad,pmd], and hence the computation amounts to writing
ℜ[pHDwg(v)], taking the hermitian inside the real part operator and collecting terms.
As for Dwg, we split the computation of the adjoint operator into block-rows, corre-
sponding to the decision, state and slack variables.

(Dwg)
′
xℓ
(p) =

Nf∑
q=1

ℜ
{[ Nb∑

m=1
m̸=ℓ

(
γ̂H
m + ζ̂∗mRH

m

) ∂T ∗
mℓ

∂xℓ
BH

ℓ +
H

2

∂aH
ℓ

∂xℓ
BH

ℓ

]
peγ,ℓ

+

[ Nb∑
m=1
m̸=ℓ

(
γ̂H
ℓ + ζ̂∗ℓR

H
ℓ

) ∂T ∗
ℓm

∂xℓ
BH

m

]
peγ,m

+
1

Wℓ

[ Nb∑
m=1
m ̸=ℓ

γ̂H
m

∂T ∗
mℓ

∂xℓ
B̃H

ℓ (Ỹ D
ℓ )∗

+

Nb∑
m=1
m ̸=ℓ

ζ̂∗m(Y D
ℓ )HB̃∗

ℓ

∂TH
mℓ

∂xℓ
R∗

m

]
peζ,ℓ +

H

2Wℓ
(Ỹ D

ℓ )HB̃∗
ℓ

∂a∗
ℓ

∂xℓ
peζ,ℓ

+
1

Wm

[ Nb∑
m=1
m̸=ℓ

γ̂H
ℓ

∂T ∗
ℓm

∂xℓ
B̃H

m(Ỹ D
m )∗ +

Nb∑
m=1
m̸=ℓ

ζ̂∗ℓ (Y
D
m )HB̃∗

m

∂TH
ℓm

∂xℓ
R∗

ℓ

]
peζ,m

}
q

+
∂hsl,ℓ

∂xℓ
psl,ℓ +Gh(xℓ) · x̂pad,ℓ − 2

Nb∑
m=1
m ̸=ℓ

(xℓ − xm)pmd,ℓm,
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where x̂ denotes the unit vector in the x direction, and where all the quantities
inside curly brackets are related to the q-th frequency component, as indicated by the
subscript at the end. The same relation holds for (Dug)

′
yℓ
, replacing x with y. The

component related to damping is

(Dwg)
′
cℓ
(p) =

Nf∑
q=1

ℜ
[
− 1

Wℓ
(eζ,ℓ − ζ̂ℓ)

∗ ∂W
∗
ℓ

∂cℓ
peζ,ℓ

]
q

,

and the one related to stiffness is analogous, with κℓ in place of cℓ. The rows corre-
sponding to state variables γ̂, ζ̂ are

(Dwg)
′
γ(p) =

Nf∑
q=1

[
MH

γγpeγ +MH
ζγpeζ

]
q

(Dwg)
′
ζ(p) =

Nf∑
q=1

[
MH

γζpeγ +MH
ζζpeζ

]
q
+ 2

Nb∑
ℓ=1

Nf∑
q=1

(ζ̂qℓ − η̂qℓ)psl,ℓ,

and finally the ones corresponding to slack variables are

(Dwg)
′
ssl

= 2ssl ⊙ psl, (Dwg)
′
sad

= 2sad ⊙ pad, (Dwg)
′
smd

= 2smd ⊙ pmd.

Some remarks are in order regarding the scaling described in subsection 2.2. Rows
of Jg corresponding to inequality constraints are normalized with their 2-norm, while
block-rows corresponding to the state problem are left unchanged for two reasons.
The first is that the state problem is already fairly well conditioned [10, Sec. 4.3];
the second is that, as mentioned in subsection 3.4, the blocks of the state system are
implemented as linear operators instead of matrices for computational efficiency, so
that the rows of their representatives should be recovered by computing their action
on all vectors of the canonical basis, an expensive step.

4. Numerical experiments. In this section, we present numerical experiments
based on two admissible domains, represented in Figure 4.1. The first is a simple
square, while the second is a square with a triangular cut. The latter represents an
available sea area in which a floating wind turbine platform, whose typical shape is a
triangle (we mention as an example the Windfloat project [35]), needs to be installed,
thus reducing the space available for the wave energy park. The resulting domain is
not convex.

5
0

50 50

1
0

3
0

1
0

30

Fig. 4.1: Available sea area for the square (left) and cut square (right) test cases; all
lengths in meters.
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fend ∥g∥end ∥Ψ∥end ncalls tot Tcalls (s)

run1 −1.388 1.851× 10−6 0.0010 406 11 251
run2 −1.388 1.685× 10−6 0.0010 269 7673
run3 −1.388 2.611× 10−6 0.0010 252 7273
run4 −1.388 1.640× 10−6 0.0010 242 6162

Table 4.1: Results for the square admissible domain

fend ∥g∥end ∥Ψ∥end ncalls tot Tcalls (s)

run1 −1.396 2.716× 10−6 0.0010 968 25 155
run2 −1.395 4.034× 10−6 0.0010 673 18 307
run3 −1.395 0.001 0.0038 1112 31 499
run4 −1.395 4.499× 10−5 0.0010 763 15 020

Table 4.2: Results for the cut square test case

To compare different possible strategies for the numerical solution of the opti-
mization problem, four simulations were performed for each domain geometry, using
the following settings:

S1: Explicit Euler, ∆t = 1, τCG = 10−6;
S2: Explicit Euler, ∆t = 1.5, τCG = 10−6;
S3: RK12, adaptive ∆t: τ relRK = 10−3, τabsRK = 10−6, τCG = 10−6;
S4: RK12, adaptive tolerances for RK and CG.

In all computations we consider devices of radius R = 2 m and draft d = 0.5 m, and
a sea depth D = 30 m. The sea state is represented by a Pierson-Moskowitz wave
spectrum [14] with Te = 8 s, Hs = 2.12 m and waves directed along the positive x
coordinate (β = 0). The spectrum is discretized with 30 harmonics. For the solution
of the state problem, Nn = 4, Nm = 25 are chosen. The stopping tolerance is set to
τΨ = 10−3.

Numerical simulations have been performed on a laptop with a 4-core, 8-thread
Intel Core i5-10210U CPU and 8 GB of RAM. The presented test cases require
about 2 GB of RAM for execution. The code has been implemented in Python
and has been made available for reproducibility of the results at https://github.com/
marcogambarini/floatcyl.

The results of the test cases are reported in Table 4.1 and Table 4.2: we show
the final values of cost, fend, constraint vector norm, ∥g∥end, and stopping indicator,
∥Ψ∥end. Values of ∥Ψ∥end in red signify that the stopping criterion has not been met
within the maximal fictitious time interval. We further report the total number of calls
to the function computing Ψ and the total time required by such calls. For both cases,
using the explicit Euler method (S1 and S2) leads to convergence. The Runge-Kutta
method with adaptive tolerance (S4) also reaches convergence, requiring a significantly
smaller computational time. The Runge-Kutta method without adaptive tolerances
(S3), instead, is only able to fulfill the stopping criterion in the square case. Regarding
the cost function, we observe that the result reached for the cut square geometry is
more favorable than the one on the square. This may appear counterintuitive; for
this reason, a test using the result on the cut square geometry as initial guess for
an optimization on the whole square was performed. The resulting optimal solution

https://github.com/marcogambarini/floatcyl
https://github.com/marcogambarini/floatcyl
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Fig. 4.2: Cut square geometry, history of adaptive time step and stopping indicator,
settings S3 (left) and S4 (right)
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Fig. 4.3: Cut square geometry, history of walltime per call and CG iterations, settings
S3 (left) and S4 (right)

has a negligible difference in terms of cost from the initial guess, suggesting that the
solution obtained in the cut square case is also close to a local minimum over the
entire square.

We now focus on the Runge-Kutta method applied to the cut square test case.
Figure 4.2 shows the evolution of adaptive time step and stopping indicator. For
both settings S3 and S4, the selected time step oscillates around 2 for most of the
time, with more pronounced reductions for S4 in the first half of the simulation. The
value of ∥Ψ∥ is not monotonically decreasing, nor is it expected to be. However, the
adaptive tolerance criteria adopted in S4 enable converging to the prescribed stopping
tolerance, while in the case of S3 the stopping indicator, after an oscillatory phase,
decreases very slowly and seems to stagnate. We further show, in Figure 4.3, that
using the adaptive tolerance strategy (settings S4) significantly reduces the number
of iterations of the conjugate gradient method compared to using fixed tolerances
(settings S3). The time required for computing Ψ at each time step is also reduced,
as expected.

The results of optimization in terms of positions are reported in Figure 4.4, while
results for controls are shown in Figure 4.5 for the square case, and in Figure 4.6 for
the cut square test case. The results show that the treatment of the domain constraint
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Fig. 4.4: Initial layout guess (left), final layout for the cut square geometry (center),
and for the square geometry (right), with settings S4
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Fig. 4.5: Square geometry, settings S4, optimal damping (left) and stiffness (right)

is effective even when the initial guess is not feasible. Moreover, upwave devices are
assigned greater values of both stiffness and damping than downwave devices. A
physical interpretation of this fact is that upwave devices should be tuned to higher
frequencies than downwave devices. The same qualitative result was obtained in [19].

From the point of view of robustness with respect to changes in the constraint
parameters, we show in Figure 4.7 the results obtained by varying the minimum
distance between devices, dmin. The initial layouts are compliant with the constraint,
so that they are all different. Correspondingly, different results in terms of layout
and controls are obtained; however, as the figure shows, the variation in optimal
power is very small. In terms of computational cost, the number of calls to the
computation of Ψ increases as the constraint is tightened, and the computational
time grows approximately proportionally, but the proposed method is still able to
reach convergence up to the required tolerance.

5. Conclusions. In this work, a gradient-flow framework with a suitable time-
stepping scheme and automatic tolerance adaptation for the solution of optimization
problems with rather general constraints has been presented. Such a framework has
then been applied to the problem of preliminary optimal design of a wave energy park.

From the point of view of numerical algorithms, the presented framework could be
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Fig. 4.6: Cut square geometry, settings S4, optimal damping (left) and stiffness (right)
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Fig. 4.7: Square geometry, 10 devices, variable value of dmin

used as the local optimization step in a hybrid local-global method (see e.g. [41, 33, 11]
and the application to wave energy [30]). Moreover, we have considered the simplest
adaptive Runge-Kutta scheme. Other promising choices are multistep methods, of
which Nesterov’s optimization algorithm can be considered a particular case [37], and
Runge-Kutta-Chebyshev methods [12], which introduce additional stages to improve
stability and thus allow the use of very large time steps.

Concerning the application, the main limitation of this work is the restriction to
cylindrical devices, which allows the analytic computation of derivatives. The pre-
sented framework is based on interaction theory and may be extended to more general
shapes through the strategy introduced in [29]. More advanced control strategies could
additionally be taken into account.
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