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Abstract

When evaluating quantities of interest that depend on the solutions to differential equations, we inevitably
face the trade-off between accuracy and efficiency. Especially for parametrized, time-dependent problems in
engineering computations, it is often the case that acceptable computational budgets limit the availability of
high-fidelity, accurate simulation data. Multi-fidelity surrogate modeling has emerged as an effective strategy
to overcome this difficulty. Its key idea is to leverage many low-fidelity simulation data, less accurate but
much faster to compute, to improve the approximations with limited high-fidelity data. In this work,
we introduce a novel data-driven framework of multi-fidelity surrogate modeling for parametrized, time-
dependent problems using long short-term memory (LSTM) networks, to enhance output predictions both
for unseen parameter values and forward in time simultaneously – a task known to be particularly challenging
for data-driven models. We demonstrate the wide applicability of the proposed approaches in a variety of
engineering problems with high- and low-fidelity data generated through fine versus coarse meshes, small
versus large time steps, or finite element full-order versus deep learning reduced-order models. Numerical
results show that the proposed multi-fidelity LSTM networks not only improve single-fidelity regression
significantly, but also outperform the multi-fidelity models based on feed-forward neural networks.

Keywords: machine learning, multi-fidelity regression, LSTM network, parametrized PDE, time-dependent
problem

1. Introduction

The construction of surrogate models is of paramount importance for multi-query, real-time simulations
governed by parameterized, time-dependent partial differential equations (PDEs), as the surrogate models
provide an efficient approximation of both parametric variation and time evolution in output quantities
of interest. On the other hand, we often encounter the situation where many sources of data – large in
number, easily accessible or fast to compute, but not perfectly accurate – are available. These low-fidelity
(LF) data are ideally well correlated to the high-fidelity (HF) quantities that we aim to evaluate, and thus
are expected to provide useful information in surrogate modeling. However, the LF data cannot guarantee
a satisfactory credibility, because they are often generated by less reliable computations, such as coarse
numerical discretizations, simplified physical assumptions, data fitting, and reduced-order modeling. To
overcome this technical hurdle, multi-fidelity (MF) surrogate modeling methods have been developed for an
effective data fusion from multiple sources. In particular, such methods are designed to detect trends from
the ample LF data and enhance the predictive accuracy where the HF data are scarce. By exploiting the
possibility to fast compute large amounts of LF data over the time-parameter domain of interest, the MF
methods approximate the correlation between fidelity levels and hence infer the corresponding HF output
quantities with limited HF data. A successful MF strategy should not only provide high-quality model
predictions, but also achieve an overall efficiency improvement that is guaranteed by a substantially reduced
cost of HF evaluations. As recognized, MF surrogate modeling is especially useful for real-time assessment
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and monitoring, in which the running time of multi-query simulations over time and parameters should be
much shorter than the operation time on the real-world asset to allow decision support.

Several MF strategies have been proposed to model the correlation among the data from different fidelity
levels and found many applications in various areas of scientific computing [39]. A widely used MF sur-
rogate modeling technique is co-kriging [35, 1], in which vector-valued Gaussian processes are used for the
regression with multiple data sources. Such a non-parametric Bayesian method has become a popular tool
of MF data fusion because of its good flexibility and intrinsic uncertainty quantification. However, Gaussian
process regression suffers from the curse of dimensionality and thus significantly impacts the generalization
performance of co-kriging in high-dimensional problems. As well known, artificial neural networks (NNs)
are capable of handling high-dimensionality [21, 3]. Combined with their remarkable flexibility and multi-
purpose nature, all these features made the NN-based models overwhelmingly successful in computational
science and engineering, especially in the newly emerging area of scientific machine learning [2]. For in-
stance, deep NNs are used to solve forward and inverse problems governed by PDEs [41, 25]; convolutional
NNs have promoted massive advancements in image recognition [46]; deep auto-encoders provide a success-
ful strategy for manifold learning and model reduction [7, 28, 12, 14]; and transformers [47] and recurrent
NNs, especially long short-term memory (LSTM) networks [22, 17], have shown their effectiveness in time
series analysis, e.g., for speech recognition [18, 43]. Importantly, NNs appear to be a promising candiate for
MF surrogate modeling, because their strong expressive power for nonlinearity should be able to detect and
represent the correlation among MF data sets, even with high-dimensional inputs. In particular, [31] tested
a deep NN model with weighted linear and nonlinear components in the bi-fidelity correlation; a multi-step
NN model was proposed and incorporated into Monte Carlo sampling in [32]; deep NNs were embedded into
the kernel functions of co-kriging in [40]; Gaussian process latent variables were structured into a multi-layer
network for MF modeling in [8]; a multi-step Bayesian NN model was developed for MF, physics-informed
deep learning [30]; and LF information, such as initial guess of PDE solutions, was equipped to improve
the training of physics-informed NNs [9]. More recently, MF data fusion has been explored with transfer
learning [42], deep operator networks [23, 29], convolutional auto-encoders [38], and reinforcement learning
[26]. Several multi-layer, multi-fidelity NN models were introduced in [20], inspired by the modeling assump-
tions of co-kriging combined with the interlink between multi-layer NNs and Gaussian processes [27, 19]. In
addition, multi-fidelity NN surrogate models have been implemented in several engineering problems, such
as structural health monitoring [44, 45] and aerodynamics [49].

Considering the demonstrated power of LSTM networks in time-series analysis, it is a natural and promis-
ing choice to embed LSTM units into the MF surrogate models for time-parameter-dependent problems.
Though there have been a few LSTM-based MF techniques proposed towards specific applications, such as
autonomous driving [24] and turbulent flow simulation [16], a general MF methodology that non-intrusively
fuses a hierarchy of temporal, parametric data with LSTM networks is still lacking in the literature. To fill
this gap, three data-driven MF surrogate models are proposed in this work using LSTM networks, generically
for the approximation of both time evolution and parameter dependency in output quantities of interest.
The proposed multi-fidelity NN models are intended as an extension of those in [20] to time-dependent prob-
lems. The choice of employing non-intrusive NN models ensures a remarkable flexibility when estimating
quantities of interest for which we have no other information than the input-output data pairs. In general,
however, due to a lack of incorporated physical model information, the predictive accuracy of data-driven,
non-intrusive techniques may deteriorate dramatically outside the training data coverage. Poor generaliza-
tion may especially be expected when extrapolating over time. In spite of this, our proposed models mitigate
these challenges by combining MF strategies with LSTM networks, and present a good robustness in gen-
eralization performance. On one hand, the LSTM layers in our proposed models not only fit the data, but
also recognize the underlying pattern of temporal evolution, thus enabling an effective prediction forward in
time. On the other hand, the MF techniques leverage the dense sampling of cheap LF data to capture the
time-parameter dependency towards accurate HF estimations. In this sense, the integration of LF data can
be regards as a ‘regularization’ that incorporates additional system information to the HF approximation.

A major goal of this work is to highlight the importance of embedding LSTM networks into multi-fidelity
schemes. Thus, we compare the proposed multi-fidelity LSTM models with both the single-fidelity LSTM
networks that are trained with either LF or HF data, and the MF models based on feed-forward NNs (rather
than LSTM networks). To verify the effectiveness, applicability, and generality of the proposed models, we
exemplify them in a diverse collection of benchmark problems, exploiting LF and HF levels of different nature.
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We consider (i) a nonlinear diffusion-reaction system, namely, a parameterized one-dimensional FitzHugh-
Nagumo membrane model that describes a simplified problem of action-potential propagation in an excitable
cell; (ii) the temporal evolution of drag and lift coefficients in a fluid flow past a cylinder, governed by the
unsteady Navier-Stokes equations; and (iii) a nonlinear dynamical system of the Lotka-Volterra type that
describes the prey-predator interaction among three species. We consider output quantities with increased
difficulty to approximate their time-parameter dependency. Throughout these numerical examples, we show
that the proposed MF models are capable of predicting at unseen parameter locations and forward in time
simultaneously. We address the following two cases for temporal extrapolation: (a) the LF data cover
the whole time interval while the HF data are only available in a shorter time window, thus requiring the
inference of HF outputs from the LF data outside the HF data coverage (see Sect. 6), and (b) the LF and
HF data cover the same limited portion of the time interval, and the output predictions have to be carried
out for new parameter values AND future states, at which we have no information of any fidelity at all (see
Sect. 5). To the best of our knowledge, the proposed models are the first techniques that exploit both
the multi-fidelity NNs’ capability in parametric generalization and the LSTM networks’ power in temporal
pattern recognition, all in a general data-driven framework. Moreover, we utilize Bayesian optimization for
hyperparameter tuning [5], especially for the identification of optimal NN architectures.

This paper is structured as follows. In Sect. 2, we introduce the proposed multi-fidelity LSTM network
models and their main features. In Sect. 3, we present three numerical examples, including their governing
physical models, quantities of interest, and bi-fidelity data sources. The results of these numerical tests are
presented and discussed in Sects. 4, 5, and 6. Extension to more than two fidelity levels is discussed in Sect. 7
and, finally, conclusions are drawn in Sect. 8. We also provide a hyperparameter summary in the Appendix.

2. Multi-fidelity LSTM surrogate models

The central task of this work is the surrogate modeling of certain time-parameter-dependent quantities of
interest, i.e., the approximation of the map from the time and parameter inputs x = (t,µ) ∈ [t0, T ]×P = D
to the out quantities f . Here t0 and T are the start and end instances of the time interval of interest, P is
the parameter domain, and D denotes the full input domain. Towards this end, we present several types
of NN architectures for the construction of MF surrogate models. These models are built upon the data of
different fidelity levels:

• High-fidelity (HF) data: These data represent the best achievable accuracy and are obtained from
detailed numerical simulations, e.g., the finite element approximations with suitably refined spatio-
temporal discretizations. For parametrized, nonlinear, time-dependent differential problems, collecting
these data can be so demanding that it may clash with computational budget restrictions. In particular,
the multi-query evaluations at a large number of parameter locations may result in extremely expensive,
or even impracticable, cost.

• Low-fidelity (LF) data: These data are less accurate but more accessible, inexpensive or faster to
compute. For instance, LF data can be obtained from coarser discretizations, less strict convergence
criteria, reduced-order/surrogate models, and/or simplified modeling assumptions.

Multiple levels of fidelity can be identified by adjusting the trade-off between accuracy and computational
cost, or by considering different sources of data. In this work, we focus on bi-fidelity problems, i.e., we aim
to estimate time-parameter-dependent HF quantities of interest with very limited HF observations, while
leveraging abundant LF observations. Regarding this modeling task, it is useful to introduce the following
notation:

• The LF parameter set is given by PLF = {µ(j) : 1 ≤ j ≤ Nµ
LF}, where µ(j) ∈ Rpµ , j = 1, ..., Nµ

LF, are the
parameter instances of the LF observations, and pµ is the dimension of the parameter space.

• We consider N t
LF equally spaced instants {tn}N

t
LF

n=1 over the time interval [t0, TLF], where t0 is the initial
time and TLF is the time instant associated with the last LF measurement.

• The NN approximation of LF functions is denoted by fLF.
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• The LF training set is given by TLF = {(x(i)
LF ,y

(i)
LF ) : 1 ≤ i ≤ NLF}, where NLF = N t

LFN
µ
LF is the total

number of time-parameter combinations. Here x
(i)
LF ∈ Rpin collects each time-parameter location of the

LF data inputs, pin = pµ + 1, while y
(i)
LF ∈ Rpout consists of the corresponding LF observations of the

pout quantities of interest that we aim to estimate.

• The notation for the HF counterparts is given by replacing the subscript LF with HF.

Typically, one has Nµ
HF � Nµ

LF based on the assumption that the availability of HF data is much limited due
to their significantly higher computational cost compared to the LF data.

When dealing with sequential data, it is typically a good practice to organize the data into subsequences.
For this reason, we group training data in batch tensors of shapes nbatch×K×pin and nbatch×K×pout for input
and output data, respectively, in which nbatch is the batch size and K is the length of batch subsequences.
Thus, for each parameter instance µ, we have a time-parameter input subsequence {xn}Kn=1 = {(tn,µ)}Kn=1

and a corresponding output subsequence {yn}Kn=1 containing the quantities of interest. Among the commonly
used techniques for sequential data processing, recurrent NNs – in particular LSTM networks – represent
the state-of-the-art in a wide range of applications. In this work, we employ LSTM cells as the main block
to construct multi-fidelity NN surrogate models. We briefly present the structure and main features of an
LSTM unit in the following subsection.

2.1. LSTM unit

Commonly in all recurrent networks, there is a recurrent state in an LSTM cell (see Fig. 1), here denoted
by h. The main feature of an LSTM unit is the presence of a cell state c, which accounts for long-term
dependencies. At each time-step n, the quantities (cn,hn) are computed from the previous step (cn−1,hn−1)
together with the input values xn, namely the time instant tn and parameter values µ in our case. These
variables (xn,hn−1, cn−1) are passed to a three-fold gate mechanism with a forget gate Fn, an update gate
Un and an output gate On, to produce new values for the cell and recurrent states (cn,hn) and to compute
the output quantity ŷn. Finally, (cn,hn) are propagated forward through such a recurrent mechanism. The
gate mechanism is the core of an LSTM unit, designed to allow a refined memory management and overcome
major drawbacks of recurrent networks, such as exploding and vanishing gradients. The gates in such an
mechanism regulate the contribution of current and previous time-step information to determine how the
states c and h change over time. In particular, the cell and recurrent states are updated as follows:

cn = Fn ◦ cn−1 + Un ◦ c̃n , hn = On ◦ tanh cn , (1)

in which the operator ◦ denotes the element-wise product, and c̃n represents the new candidate cell state to
replace cn−1, computed as

c̃n = tanh (Wc[hn−1,xn] + bc). (2)

The gates Fn, Un, On are defined as

Fn = σ(Wf [hn−1,xn] + bf ) , Un = σ(Wu[hn−1,xn] + bu) , On = σ(Wo[hn−1,xn] + bo) . (3)

Here, {Wc,Wf ,Wu,Wo} and {bc,bf ,bu,bo} are the trainable parameters – weights and biases – of
the LSTM unit, and σ denotes the sigmoid activation function. Each gate takes both the concatenation of
the current input parameters xn and the previous recurrent state hn−1 as input variables, and provides an
output vector of values between 0 and 1 that represent how much information is preserved from the pre-
gate variables. The extremes 1 and 0 represent a complete preservation of information and a total discard,
respectively. We note from (1) that the current cell state cn is obtained by the sum of the previous cell state
and the new candidate, weighted respectively by the forget and update gates, through which the contribution
of past and present information is effectively managed. Once we have updated the cell state cn, the recurrent
state hn is updated accordingly. Different from the cell state c, which is an internal variable of the LSTM
recursive mechanism, the recurrent state h also serves as the output of an LSTM unit and is passed to the
next unit as input. The updated h of the output layer should represent the estimation of the quantities of
our interest ŷ. The discrepancy between the network output ŷ and the available data y is measured by a
mean squared error (MSE) loss function, and it is minimized to determine all the trainable parameters of
the network model. For further details, we refer to [36, 22, 17].

4



xt-1

ct-1,ht-1

ot-1

xt

ot

ct+1,ht+1

xt+1

ot+1

LSTM unit

σ σ tanh σ

tanh

ct-1

ht-1

xt

ht

ct

Ft It

Ot

ht

. ...

Figure 1: The visualization of an LSTM unit with its input-output setting [36, 48].

2.2. Multi-fidelity models

Now we introduce a variety of multi-fidelity NN architectures for the approximation of time-parameter-
dependent output quantities f = f(x) = f(t,µ). Targeting an effective treatment of time-dependency, the
models described below extend the strategies proposed in [20] through an incorporation of LSTM networks.
The proposed MF architectures are shown in Fig. 2 and induce three different paradigms:

1. “2-step” LSTM model. The 2-step LSTM model is composed of two distinct NNs, NNLF and NNHF,
each consisting of a sequence of LSTM layers followed by dense layers. The first network NNLF (shown
in black in Fig.2(a)) is trained on the LF data TLF to learn the LF function fLF. Once NNLF is trained,
we compute the LF outputs fLF(xHF) for each HF training input time sequence xHF through NNLF. Next,
we train the second network NNHF (shown in red in 2(a)) to approximate fHF, using [xHF, fLF(xHF)]

T as
input data and the available HF evaluations yHF as output data.

2. “3-step” LSTM model. This architecture is an upgrade of the 2-step LSTM model by considering
an extra concatenation level, generated by a third network NNLin (shown in green in Fig.2(b)). NNLin

is trained with the same input-output data as NNHF in the 2-step LSTM model. It does not use any
nonlinear activation and thus reads the outputs as linear combinations of the inputs. Therefore, NNLin

captures linear correlations between the HF and LF data sets. Then, the third and last network NNHF

exploits both the HF training set THF and the outputs of the previous NNs to approximate the HF
function fHF, i.e., NNHF is trained with inputs [xHF, fLF(xHF), fLin(xHF)]

T and output yHF.

3. “Intermediate” LSTM model. Different from the previous two models, the intermediate LSTM
model only has a single network that simultaneously performs vector-valued learning of [fHF(x), fLF(x)]T.
As shown in Fig. 2(c), a single input layer processes the time-parameter instances at both LF and
HF levels, i.e., xLF and xLF. Moreover, the corresponding outputs are placed at different locations:
while yHF is the final output layer of the network, yLF is located at an intermediate LSTM layer, for
which this model is named. To learn fLF and fHF simultaneously, the corresponding MSEs, LLF and LHF,
respectively, are weighted by a hyperparameter α ∈ [0, 1]. Hence one can perform a single optimization
minimizing the following loss function:

L = αLHF + (1− α)LLF. (4)

in which the hyperparameter α regulates the contributions from the two fidelity levels.

The mapping (t,µ) 7→ f(t,µ) from time-parameter inputs to output quantities of interest can feature
complex behaviors and thus be highly nonlinear. In this case, a large HF dataset is typically required to
ensure predictive accuracy. By incorporating LF information into HF networks, the proposed MF models
aim at simplifying the estimation of the HF input-output mapping so that it can be learnt from a small HF
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(a) 2-step LSTM network model

(b) 3-step LSTM network model

(c) Intermediate LSTM network model

Figure 2: Multi-fidelity LSTM network models.

dataset. The HF part of the network models mainly learn the correlations between the two fidelity levels,
which simplifies and accelerates the HF approximation, and prevents convergence to sub-optimal solutions.
Instead of directly computing the expensive HF evaluations at new time-parameter instances, the proposed
MF models seek to efficiently infer the HF outputs through the approximated fidelity correlations with
cheaply obtained LF information. This not only avoids the high computational cost of HF evaluations, but
also extends accurate HF predictions to the entire time-parameter domain of interest (LF data coverage),
which can be considerably larger than the HF data coverage.

For each model, the numbers of LSTM and dense layers and the number of neurons per layer can
be determined through hyperparameters optimization (HPO), which automatically identifies the optimal
network setting along with other hyperparameters, such as the learning rate, optimization algorithm and
batch size [6, 20].

We note that the intermediate LSTM model carries out simultaneous regressions on the LF and HF data,
while the 2-step and 3-step LSTM models, referred to as multi-level models, approximate the LF and HF
functions sequentially through a hierarchy of separately trained networks. This affects how the contribution
of each fidelity level is weighted by the model setting, and how much trust is put in the LF data for the
estimation of HF quantities. While the role of the LF data is adjusted explicitly by the hyperparameter α in
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the intermediate LSTM model, this is left implicit in the multi-level models and determined in the training
process.

The multi-level models fuse multiple datasets by including additional networks. However, the computa-
tional burden of training the second- and/or third-step NNs is not heavy, because the correlation between
the two fidelity levels should be uncomplicated enough to be learned with small amounts of HF data and
rather simple network architectures. The 3-step model is expected to present advantages over the 2-step
model in the case where considerable linear components exist in the correlation between HF and LF data. In
addition to the NNLF outputs, the NNLin outputs provide additional, important features for simplifying the
HF approximation by NNHF. Conversely, if the correlation between the two fidelity levels is predominantly
nonlinear, the 2-step model is sufficient.

All the presented models can be extended to more than two fidelity levels, either by increasing the
number of “steps” in the multi-level approaches or by locating all the fidelity levels except for the HF in
different hidden layers of the intermediate LSTM model. More details are provided in Sect. 7. To assess
the approximation capabilities of the proposed models, however, we limit ourselves to the bi-fidelity case
and compare the proposed models with state-of-the-art regression techniques on a diversified collection of
numerical benchmarks, which are introduced in the following section.

3. Numerical tests

In Sections 4, 5, and 6, we apply the proposed multi-fidelitly LSTM models to the following numerical
examples:

(I) In Sect. 4 we analyze the propagation of an electrical signal in excitable cells described by a one-
dimensional nonlinear PDE-ODE (coupled) system. The problem is parameterized by a coefficient
that determines the amplitude and the steepness of the action potential front. The action potential
at a given spatial location is then considered as the quantity of interest. HF data are generated from
highly accurate finite element approximations, while LF data come from a reduced-order model based
on deep learning.

(II) The estimation of drag and lift coefficients for a fluid flow around a cylindrical obstacle as functions
of the Reynolds number is considered in Sect. 5. Data are generated by numerical approximation of
the unsteady Navier-Stokes equations, and the fidelity levels are defined by the quality of spatial and
temporal discretizations.

(III) The last example, as discussed in Sect. 6, considers a Lotka-Volterra system that represents a three-
population prey-predator nonlinear interaction. The system is characterized by a parameter that
regulates the amplitude and the frequency of the oscillatory pattern for each population size. Data are
generated by numerical time integration, and the distinction between the fidelity levels is given by the
size of time steps.

To assess the effectiveness and generality of the proposed models, the numerical examples are chosen to
involve different types of governing equations and MF data generations.

In example (I), the quantity of interest – a point-wise action potential – presents a single wave front.
In this case, we carry out MF regression with respect to both the input parameter and time using the
proposed LSTM models. Their performance is compared with those of the MF approximation based only
on feed-forward NNs and the LSTM regression trained solely with single-fidelity data.

Example (II) considers the drag and lift coefficients as output quantities. In the full developed state of
the fluid flow, these quantities exhibit a periodic oscillatory pattern that varies with respect to the Reynolds
number. From the regression point of view, this task is much more challenging than capturing the single peak
of the solution in example (I). We repeat the comparison with other regression techniques and, in addition,
test the robustness of the proposed LSTM models by varying the size of HF data set. Moreover, we evaluate
the simultaneous parametric interpolation (over the parameter domain) and predictive extrapolation (beyond
the training time interval), assessing the generalization accuracy while narrowing the training time window.

Finally, in example (III), we extend the proposed methods to the evaluation of vector-valued output
quantities. We again test our models’ extrapolation performance over time, yet with a more challenging task
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than example (II), as the outputs exhibit aperiodic oscillations. To track the aperiodic pattern, we let the
LF solution evolve up to the final time of interest, while the HF data only cover a shorter time window.

Such diversity of the numerical examples aims to emphasize the wide applicability of the proposed MF
strategies guaranteed by their non-intrusive nature, i.e., the surrogate models are directly learned from
data without requiring access to the governing physical systems or numerical solvers. Instead of being
sorted by increasing complexity of the governing physical systems, the numerical examples are listed in an
order with increased difficulty of time-parameter-dependent surrogate modeling, e.g., from interpolation to
extrapolation, from periodic to aperiodic behavior capture, and from scalar-valued to vector-valued function
approximation.

For all the numerical examples, the comparison with the single-fidelity NNs trained on either LF or HF
data set aims at highlighting the benefits of the MF modeling. Moreover, we compare the proposed LSTM
architectures with the MF models solely based on feed-forward networks, such as those in [20], to stress the
critical role played by LSTM layers for enabling good generalization properties with respect to both time
and parameters. All the different network models are evaluated on a test set Ttest = {(xi,yi)}Ntest

i=1 that
covers the whole time-parameter domain of interest. The goodness of fit is measured by the following MSE:

MSEtest =
1

Ntest

Ntest∑
i=1

||yi − ŷi||22 , (5)

where {ŷi}Ntest
i=1 are the predicted output values by the network models.

4. Numerical example (I): Propagation of electrical signal

The first benchmark problem arises from computational biology and deals with the propagation of elec-
trical potential in excitable cells, described by the following FitzHugh-Nagumo membrane model [11, 33]:

µ
∂ν

∂t
− µ2 ∂

2ν

∂x2
+ Iion(ν) + ω = 0, x ∈ (0, L), t ∈ (0, T ) ,

∂ω

∂t
+ (γω − bν) = 0, x ∈ (0, L), t ∈ (0, T ) ,

∂ν

∂x
(0, t) = −i0(t),

∂ν

∂x
(L, t) = 0, t ∈ (0, T ) ,

ν(x, 0) = 0, ω(x, 0) = 0, x ∈ (0, L) .

(6)

where ν is the cardiac transmembrane electrical potential (excitation variable), ω is the recovery variable
which accounts for the refractoriness of heart cells, and t denotes a rescaled time. As given in [37], we
choose Iion(ν) = ν(ν − 0.1)(ν − 1), T = 2, L = 1, γ = 2, and b = 0.5. This problem is parametrized
by µ ∈ P = [0.005, 0.05], and its solution is characterized by the traveling wave fronts whose shapes are
determined by the parameter µ. The model can be extended to two- or three-dimensional spatial domains
to represent the propagation of electrical stimuli on thin portions of tissue, or even on realistic geometries
at the organ scale. For such a PDE-ODE coupled system – even more substantially, for two- or three-
dimensional cases – full-order solvers may be computationally demanding, as they usually involve very small
time steps to properly detect signal propagation, as well as fine spatial meshes because of the steep fronts of
the action potential. Therefore, we take advantage of MF strategies to achieve a reasonable approximation
with improved efficiency and controlled accuracy. For the case at hand, the quantity of interest is the solution
value of the electrical potential ν at x̄ = 0.5, regarded as a function of the parameter µ and time t.

4.1. Multi-fidelity setting

The HF model is obtained by a linear finite element discretization over the spatial domain Ω = (0, L)
with the first-order semi-implicit scheme for time integration, and the total number of degrees of freedom is
1024. The LF model is constructed through a deep-learning-based reduced order modeling technique, POD-
DL-ROM [14], which efficiently constructs non-intrusive reduced-order models for nonlinear parametrized
time-dependent problems starting with a prior dimensionality reduction through the proper orthogonal

8



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

0.01

0.02

0.03

0.04

µ

0.0

0.2

0.4

0.6

0.8

(a) LF solution

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

0.01

0.02

0.03

0.04

µ

0.0

0.2

0.4

0.6

0.8

(b) HF solution

Figure 3: LF and HF solutions in example (I).

decomposition. 2 degrees of freedom (latent variables) are adopted in the LF reduced-order model throughout
this example. We refer to [37] and [15, 14] for further details about the construction of the HF and the LF
models, respectively. Solutions for the quantity of interest at the two fidelity levels are shown in Fig. 3.

Training data are obtained by solving either the LF or the HF model for parameter-time locations sampled
over P × [0, T ]. We consider Nµ

HF = 4 (resp. Nµ
LF = 25) parameter values uniformly spaced over P for the

sampling of HF (resp. LF) training data. For both fidelity levels, we choose ∆t = 0.1 as time step size, such
that N t

HF = N t
LF = 20. We consider full-length time sequences by taking K = 20. In the testing stage, we

employ a test set consisting of the HF evaluations on a uniform tensor grid over P × [0, T ] with Ntest = 18
parameter locations and 20 time instants.

4.2. Results and discussions

Our goal in this subsection is to demonstrate the advantages of the proposed MF LSTM surrogates over
single-fidelity regressions. As shown in Table 1 and Fig. 4, we train eight different NN models and compare
their predictions on the test set. LF and HF feed-forward networks are the single-fidelity models with only
feed-forward dense layers, trained on TLF and THF, respectively. LF LSTM and HF LSTM are their respective
extensions incorporating LSTM layers. Intermediate, 2-step and 3-step LSTM networks are the proposed
MF models with LSTM layers, while the 3-step feed-forward network is the counterpart of the latter without
LSTM layers. The corresponding test MSE values are collected in Table 1, and the absolute discrepancy
values between the model predictions and the HF test values are illustrated in Fig. 4. This allows us to
better understand how the generalization quality varies over the parameter-time domain P × [0, T ].

We first note that, in the single-fidelity modeling with LF data TLF, i.e., the LF feed-forward and the LF
LSTM cases, prediction errors are very large. Although a quite large training set is available, predictions
are poor due to the low accuracy of the LF data, hence the possible advantage of changing architecture is
limited by the data quality. In fact, using LSTMs does not yield any remarkable improvement, and both
the LF feed-forward and the LF LSTM models show comparable predictive capability. In the single-fidelity
modeling with HF data THF, the HF LSTM model results in a clear improvement compared to the HF feed-
forward model. As seen in Fig 4(d), however, there are regions where the discrepancy between HF and
predicted solutions is large. Roughly equispaced over the parameter range, these regions correspond to the
parameter configurations for which we have no HF information. This implies that, although incorporating
LSTM layers has resulted in an improvement when approximating the time dependency, the single-fidelity
HF LSTM model has poor generalization with respect to µ due to the limited availability of training data.

On the other hand, we note that the MF LSTM models (intermediate, 2-step, and 3-step) achieve much
better accuracy and allow to successfully generalize with respect to both parameter and time. These models,
especially the 3-step LSTM (Fig. 4(h)), show uniformly low prediction errors over the time-parameter
domain. We stress that these advantages result from the coupling of MF strategies with LSTM-based
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Table 1: Mean squared errors (MSE) calculated on the test set in example (I).

Model LF feed-forward HF feed-forward LF LSTM HF LSTM

Test MSE 1.06× 10−1 2.99× 10−3 1.11× 10−1 7.87× 10−4

Model MF 3-step feed-forward MF Intermediate MF 2-step LSTM MF 3-step LSTM

Test MSE 1.08× 10−2 5.87× 10−4 3.61× 10−4 6.73× 10−5
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Figure 4: Absolute values of the errors in different NN model predictions of the electrical potential ν at x̄ = 0.5.

architectures. In fact, when replacing LSTM layers with dense ones in the best performing MF LSTM
model – the 3-step LSTM, we notice a dramatic deterioration of the predictive capability, as can be clearly
seen in both Table 1 and Fig. 4(e). In conclusion, by leveraging the high quality of limited HF data and
the intensive domain exploration of the LF data, the MF LSTM models are shown to be efficient tools for
accurately predicting time-parameter-dependent quantities of interest that exhibit complex behaviors, e.g.,
the steep fronts of action-potential in this example.

5. Numerical example (II): Fluid flow around a cylinder

We now consider the estimation of both drag and lift coefficients associated with a viscous, incompressible
fluid flow around a cylinder. The problem is described by the following unsteady Navier-Stokes equations:

ρ
∂v

∂t
− ρv · ∇v −∇ · σ(v, p) = 0 (x, t) ∈ Ω× (0, T ) ,

∇ · v = 0 (x, t) ∈ Ω× (0, T ) ,
(7)

in which v(x, t) and p(x, t) are respectively the velocity and pressure fields, ρ = 1.0 kg/m
3

is the fluid density,
σ(v, p) = −pI+ 2νε(v) is the stress tensor, ε(v) = 1

2 (∇v +∇Tv) is the strain tensor, and ν is the kinematic
viscosity. The domain, Ω = (0, 2.2)× (0, 0.41)\Br(0.2, 0.2) with r = 0.05, represents a 2D channel, while the
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omitted disc, Br, is the obstacle. Moreover, we prescribe the following boundary and initial conditions:

v = 0 (x, t) ∈ ΓD1
× (0, T ) ,

v = h (x, t) ∈ ΓD2
× (0, T ) ,

σ(v, p)n = 0 (x, t) ∈ ΓN × (0, T ) ,

v(x, 0) = 0 x ∈ Ω ,

(8)

i.e., a no-slip condition on ΓD1
, a parabolic inflow

h(x, t) =

(
4U(t)x2(0.41− x2)

0.412
, 0

)
, with U(t) =

{
0.75(1− cos (πt)), t < 1
1.5, t ≥ 1

(9)

on the inlet ΓD2 , an open boundary condition on the outlet ΓN , and a homogeneous initial condition.
Varying the parameter ν results in a changing Reynolds number. In this specific problem, the Reynolds

number can be defined as Re = LUmean/ν, in which the average free stream velocity for the parabolic inflow
is Umean = 2 · Umax/3 = 2 · 1.5/3 = 1, and L = 2r = 2 · 0.05 = 0.1 represents the characteristic length, and
thus Re = 0.1/ν. See also [14, 13] for further details on this setting.

We are interested in estimating the drag and lift coefficients, denoted by CD and CL, respectively. They
are two important dimensionless quantities defined as follows:

CD =
2|Fx|
ρU2

mean

, CL =
2|Fy|
ρU2

mean

. (10)

Here Fx and Fy denote the two components of the total force F acting on the cylinder, written as

F =

∮
∂Br

[
−pI + ν(∇v +∇Tv)

]
· n ds , (11)

in which n denotes the outer normal vector along the boundary ∂Br.
Our goal is to predict the evolution of drag and lift coefficients over time as the Reynolds number Re

changes. We consider µ = Re ∈ [70, 160], a range in which the flow is unsteady, and we confine our surrogate
modeling within the time interval t ∈ [14.5, 15.0], during which the flow becomes fully developed and presents
a periodic behavior.

5.1. Multi-fidelity setting

Both the HF and LF models are constructed through the numerical approximation of (7) using the
MATLAB library redbKIT [34], which exploits finite elements and the backward differentiation formula for
the spatial and temporal discretizations, respectively. The two fidelity levels are distinguished by the mesh
and time step sizes. In the HF model we adopt a time step ∆tHF = 0.01 and a fine computational mesh,
while we use ∆tLF = 0.02 and a coarse mesh in the LF model. The two meshes are displayed in Fig. 6.

As for the data sets, we first consider uniform grids of Nµ
LF = 19 and Nµ

HF = 10 Reynolds number values
over the parameter interval P = [70, 160]. For each parameter value, we include NT

HF = NT
LF = 26 uniform

steps over the time interval [t0, T ] = [14.5, 15.0], and compute the corresponding values of drag and lift

Figure 5: Geometry for the 2-D channel flow around a cylinder. All lengths are measured in meters.
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(a) LF coarse mesh consisting of 7789 triangular elements and 3899 nodes.

(b) HF fine mesh consisting of 16478 triangular elements and 8239 nodes.

Figure 6: Computational meshes used for the finite element discretization of the Navier-Stokes equations (7).

coefficients. In the LSTM models, we consider full-length time sequence by setting the batch subsequence
length K = 26. NNs are trained to approximate the drag and lift coefficients as functions of time t and
Reynolds number Re. Moreover, the test set comprises the HF evaluations of drag and lift coefficients for
19 Reynolds number values and 26 time instants that are uniformly spaced in P and [t0, T ], respectively.

Next, we repeat the analysis with a smaller HF training set consisting of Nµ
HF = 6 equally spaced Reynolds

number values, while keeping NT
HF = 26, to assess the robustness of the NN models. In this work, we assume

that LF data are cheap/easy to obtain in a sufficiently large amount, so that the mapping from the time-
parameter inputs to LF outputs can be approximated accurately. A general guidance for choosing the
number of LF data is to verify that the LF training and testing errors are controlled within the same order
of magnitude, i.e., a good generalization on the LF level is achieved. Hence, what primarily limits the model
performance is either the quality of LF approximation or the quantity of HF data. In this example, we
analyze the latter case while fixing the LF model, because our focus is on exploring the models’ prediction
and extrapolation capabilities when the HF data are limited. However, we refer to [20] for a detailed
discussion about the impact of varied LF model quality on the feed-forward versions of intermediate, 2-step
and 3-step architectures in a parametric differential problem solved through a reduced basis method.

The LF and HF solutions are shown in Fig. 7. We note that the drag and lift coefficients exhibit
oscillatory patterns over time, varying with respect to the Reynolds number. This may be problematic for
the feed-forward NNs that treat time as a generic input entry.

5.2. Results and discussions 1: Interpolation over the time-parameter domain

Similar to example (I), we train eight different NN models on the aforementioned data sets, and compare
the proposed MF LSTM models with both the single-fidelity regressions and the MF feed-forward networks.
In Tables 2 and 3, we collect the prediction errors on the test set from all eight NN models. Our MF LSTM
models achieve the best prediction accuracy. In particular, the 2-step and 3-step LSTM models outperform
the others, as highlighted from the errors reported in the Table. The discrepancy between the HF solutions
and network model predictions is displayed in Figs. 8 and 9, the former for the lift with Nµ

HF = 10 and the
latter for the drag with Nµ

HF = 6.
We notice that the feed-forward networks, which treat the time and parameter as equal input entries, fail

to approximate the oscillatory temporal patterns in the output quantities (see (a), (b), and (e) of Figs. 8 and
9). On the other hand, the single-fidelity LSTM regressions (subfigures (c) and (d)) manage to capture the
oscillations; however they are still unable to guarantee high-quality predictions either due to low data quality
or limited data availability. The proposed MF LSTM models (subfigures (f), (g), and (h)), especially the
2-step and 3-step LSTM, achieve good predictive accuracy all over the time-parameter domain P × [t0, T ].

12



14.5 14.6 14.7 14.8 14.9 15.0

t

80.0

100.0

120.0

140.0

160.0

Re

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a) Lift coefficient - LF solution

14.5 14.6 14.7 14.8 14.9 15.0

t

80.0

100.0

120.0

140.0

160.0

Re

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(b) Lift coefficient - HF solution

14.5 14.6 14.7 14.8 14.9 15.0

t

80.0

100.0

120.0

140.0

160.0

Re

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

(c) Drag coefficient - LF solution

14.5 14.6 14.7 14.8 14.9 15.0

t

80.0

100.0

120.0

140.0

160.0

Re

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

(d) Drag coefficient - HF solution

Figure 7: LF and HF solutions of the lift (above) and drag (below) coefficients.

Table 2: Test mean square errors (MSE) of the single-fidelity models in example (II).

Output quantity #HF data LF feed-forward HF feed-forward LF LSTM HF LSTM

Lift coefficient 6 8.64× 10−2 1.12× 10−1 2.45× 10−1 1.12× 10−1

Lift coefficient 10 ′′ 8.63× 10−2 ′′ 1.92× 10−2

Drag coefficient 6 9.45× 10−3 9.43× 10−3 8.77× 10−3 1.33× 10−2

Drag coefficient 10 ′′ 9.41× 10−3 ′′ 1.63× 10−3

Table 3: Test mean square errors (MSE) of the multi-fidelity models in example (II).

Output quantity #HF data 3-step feed-forward Intermediate 2-step LSTM 3-step LSTM

Lift coefficient 6 8.67× 10−2 2.83× 10−2 1.14 × 10−2 2.24× 10−2

Lift coefficient 10 8.63× 10−2 6.64× 10−3 1.25× 10−3 1.22 × 10−3

Drag coefficient 6 9.44× 10−3 7.59× 10−3 1.58 × 10−3 2.28× 10−3

Drag coefficient 10 9.41× 10−3 7.99× 10−3 2.91× 10−4 2.86 × 10−4

In addition, we show in Fig. 10 the predictions from the single-fidelity (LF and HF) LSTM models and
the best performing MF models, i.e., the 3-step (resp. 2-step) LSTM for the lift (resp. drag) coefficient
with Nµ

HF = 10 (resp. Nµ
HF = 6). Comparing these figures to the LF and HF solutions that generate the

data (see Fig. 7), it is reasonable that the LF LSTM reconstruction based on a large data set is in good
agreement with the LF ground truth, yet still differs significantly from the HF solution because of the coarse
spatio-temporal discretization, and that the HF LSTM reconstruction exhibits a better fit to the HF ground
truth yet is still not ideal due to the limited data coverage. By taking advantage of both the large amount
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of LF data and the limited HF measurements, the MF results, however, achieve a close-to-HF accuracy in
learning the temporal patterns with the LSTM layers.
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Figure 8: Absolute values of the errors in different NN model predictions of the lift coefficient with Nµ
HF = 10 HF training time

series.
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Figure 9: Absolute values of the errors in different NN model predictions of the drag coefficient with Nµ
HF = 6 HF training time

series.
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Figure 10: Single-fidelity (LF and HF) and the best performing MF LSTM regressions for the lift coefficient with Nµ
HF = 10

(top) and the drag coefficient with Nµ
HF = 6 (bottom).

5.3. Results and discussions 2: Prediction forward in time

So far, we have shown that the MF LSTM networks allow to accurately generalize/interpolate within
the training region P × [t0, T ]. In this subsection we investigate the generalization capability of predicting
forward in time, i.e., for the future states beyond the training range, which is known to be challenging for
data-driven models.

Starting with the same training data set as in the previous subsection, we progressively move backward
the final training time t∗, from t∗ = T to t∗ = t0, while using the same instances of the Reynolds number.
Though the training time interval is shortened, we still predict over the entire [t0, T ], which includes both
reconstruction and extrapolation in time. In Fig. 11, we report the prediction errors with respect to t∗

through different LSTM network models. Given sufficient time steps to effectively merge LF and HF data,
the MF LSTM model shows a consistent advantage over the single-fidelity models, both for the lift and drag
coefficients (see Fig. 11). For example, in the drag case (Fig. 11(b)), a smaller test error is achieved with the
2-step LSTM trained on half of the whole time interval (t∗ = 14.75) than the single-fidelity LSTM, either
HF or LF, with the full training set over time (t∗ = T = 15.0). This suggests that we can improve the
predictive accuracy by using MF LSTM with only more than half of the training data, which may enable a
significant reduction in the cost of HF data generation. Moreover, a description of uncertainty in the model
predictions can be obtained with an ensemble-based technique [10]. Here, we train the last-step (NNHF) of the
2-step LSTM model multiple times with the same data and randomly generated network initialization, and
then compute the statistical moments of the corresponding samples of predictions. This allows to construct
uncertainty bounds for MF approximation, see Fig. 11. The low predictive uncertainty further highlights
the consistent robustness of the proposed 2-step MF model as the extrapolation time window varies. In
Fig. 12 we depict the approximation of both the lift and drag coefficients by the 2-step LSTM model with
t∗ = 14.80. The solution shows a very good agreement with the HF ground truth, even over the time interval
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[t∗, T ] where we have no training data at all – neither HF nor LF.
Results have highlighted the effectiveness of the proposed MF LSTM networks in time-parameter-

dependent surrogate modeling. For output quantities that present an oscillatory behaviour, the proposed
models allow to learn the temporal pattern and predict the evolution of future states. Good generalization
has been seen not only in the parameter ranges where few HF data are available, but also at future time
instances outside the coverage of training data.
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Figure 11: Test error on the whole time interval [t0, T ] = [14.5, 15.0] versus the final training time t∗. The testing time window
[t0, T ] remains fixed, while training time length (t∗ − t0) is increased as t∗ goes from t0 to T . For each value of t∗, the second
network of 2-step model is trained 20 times with random initialization, and the corresponding model predictions are used to
compute uncertainty bounds on the test set through an ensemble-based technique. The test error mean (green) and ± one
standard deviation (shaded region) over the samples in the ensemble are shown, providing an uncertainty quantification for the
MF predictions.

(a) Lift coefficient (Nµ
HF = 10) (b) Drag coefficient (Nµ

HF = 6)

Figure 12: 2 -step LSTM model prediction for the lift (left) and drag (right) coefficients. The model is trained with data up to
t∗ = 14.80 (white dashed line) and tested over the whole time interval [14.5, 15.0].
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6. Numerical example (III): Lotka-Volterra system

In this section we consider a Lotka–Volterra system that describes a nonlinear, three-species prey-predator
interaction: 

dy1
dt (t) = y1(t)(µ− 0.1y1(t)− 0.5y2(t)− 0.5y3(t)), t ∈ (0, T ),
dy2
dt (t) = y2(t)(−µ+ 0.5y1(t)− 0.3y3(t)), t ∈ (0, T ),
dy3
dt (t) = y3(t)(−µ+ 0.2y1(t) + 0.5y2(t)), t ∈ (0, T ),

yi(0) = 0.5, ∀i = 1, 2, 3.

(12)

Here we employ the proposed MF LSTM models to approximate vector-valued output quantities y(t;µ) =
[y1(t;µ), y2(t;µ), y3(t;µ)]T ∈ R3, i.e., the number of individuals in each population/species. In this MF
regression task, we aim at estimating the system solution y up to time T = 15.0, as the parameter µ changes
in P = [1.0, 3.0]. Such a regression task is more challenging than those in the previous examples because the
vector-valued quantity of interest y exhibits aperiodic oscillations. Moreover, the parametric variation in µ
induces different aperiodic patterns in the amplitude and frequency of the oscillations. In this case, we only
let the HF data cover a limited time window until THF < T , and intend to infer the aperiodic evolution of y
from the LF data that cover the entire domain D = P × [0, T ].

6.1. Multi-fidelity setting

The training data are generated by the second-order Runge-Kutta (RK2) scheme with time steps ∆tLF =
0.25 and ∆tHF = 0.0025 for the LF and HF models, respectively. The LF data are taken at Nµ

LF = 20
uniform µ-values over P = [1.0, 3.0]. For each µ-instance, we collect the LF training data along with the
time integration with ∆tLF = 0.25 up to the final time TLF = T = 15. Similarly, the HF data are taken at
Nµ

HF = 10 uniform µ-values. Though the HF time integration is evaluated with ∆tHF = 0.0025, we only collect
the HF training data every ∆tLF = 0.25 to be consistent with the LF data, and stop the data collection at
t = THF = 10. Thus, no HF data are available in the time interval [10.0, 15.0]. For the LSTM training, we
group the data into batch subsequences of length K = 25. Fig. 13 shows the training data for µ = 1.0
and 3.0, the minimum and maximum µ-values. We note that the frequency of output oscillations increases
with µ. This implies that the LF coarse time discretization impacts the data quality more significantly for
a larger value of µ. In fact, at µ = 3.0 we spot a much larger discrepancy between the HF and LF data in
comparison to the case of µ = 1.0. We generate the test set similarly to the HF training data, but include
Ntest = 30 µ-values in P and reach the final time T = 15.
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Figure 13: HF and LF training data for two parameter instances. The parameter µ regulates both the amplitude and frequency
of the oscillations of y. As µ grows, the amplitude and frequency increase, so does the discrepancy between the two data levels.

6.2. Results and discussions

Here we compare the single-fidelity and MF LSTM models on the given data sets. For the sake of brevity,
we only present the results by the 2-step architecture among the MF LSTM networks. Table 4 collects the
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prediction MSE on the test set that covers the whole domain D, and we can clearly observe that the MF
model outperforms the single-fidelity ones. Furthermore, Fig. 14 shows the comparison between the model
predictions and the HF reference solution at a testing parameter instance µ = 2.93.

The LF LSTM model fails to guarantee a low test error due to the poor data quality stemming from
the coarse approximation. The HF LSTM model achieves a good accuracy in the range [0, THF] = [0, 10],
but cannot generalize to t > THF where no HF data are available for any µ-value. This implies that even
though HF LSTM can well interpolate over the parameter domain, it fails to extrapolate over time. This
is understandable as the limited HF information is not sufficient for capturing the aperiodic oscillations or
supporting the predictions of future states. On the other hand, our 2-step LSTM model performs well: it
manages to both interpolate for the parameter µ and predict forward in time. Here the full-domain LF data
coverage over D plays a critical role in enabling the MF time extrapolation, as the MF LSTM captures the
aperiodic oscillations by well approximating the correlation between the two fidelity levels.

Table 4: Test errors for the single- and multi-fidelity models in example (III).

Model LF LSTM HF LSTM MF 2-step LSTM

Test MSE 0.354 0.853 0.043
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(a) Single-fidelity LF LSTM
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(b) Single-fidelity HF LSTM
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(c) Multi-fidelity 2-step LSTM

Figure 14: Model predictions by the single- and multi-fidelity LSTM networks compared to the HF solution (µ = 2.93). The
black dashed line at THF = 10 indicates the maximum time instant of the HF training data, i.e., no HF information is available
over t ∈ [THF, T ] = [10, 15].

7. Extension to more fidelity levels

Although this work has been presented with bi-fidelity data, the proposed models in Sect. 2.2 can be
extended to more than two fidelity levels. Let us consider M datasets {Tm = {xm,ym}}Mm=1 given by a
hierarchy of fidelity levels, sorted by increased accuracy of the data.

One can upgrade the proposed multi-level models in the following ways:

• Series multi-level. The number of “steps” is increased by concatenating multiple NNs – one for each
fidelity level. This leads to a sequence of networks {NNm}Mm=1. The first network is fed with T1 to
learn f1, and then, sequentially, the m-th network NNm is trained to approximate fm between the
inputs [xm, fm−1(xm), . . . f1(xm)]T (all of them or a subset) and the outputs ym.

• Parallel multi-level. Each network of {NNm}M−1m=1 is trained independently on Tm to approximate fm.
The last network NNM is fed with the inputs [xM , fM−1(xM ), . . . f1(xM )]T (including all the other
networks’ outputs) and the outputs yM to learn the HF function fM .

• A combination that mixes the series and parallel settings of networks.

The series approach should be advantageous over the parallel approach in the case where data come from
sources of similar nature (e.g., refinement of numerical discretization) and each fidelity level adds further

18



information to the previous. Thus, it is meaningful to sequentially incorporate the features from previous
fidelity levels into the prediction of the current level. On the other hand, the parallel strategy is more
suitable for the case with multiple LF data sources that are not strongly correlated but individually provide
useful information for the final HF prediction, so they are all together included in the inputs of NNM . It is
worth noting that the parallel strategy is expected to present better computational flexibility, because the
first M − 1 NNs can be trained independently and/or in parallel.

The “intermediate” model can be upgraded beyond bi-fidelity by locating the multiple levels of LF
outputs in sequential hidden layers. Despite a similarity with the series multi-level extension, the upgraded
“intermediate” model is determined by a single NN training whose loss function is a convex combination
of all the losses of individual fidelity levels with coefficients {αm ∈ R+ : 1 ≤ m ≤ M,

∑M
m=1 αm = 1},

similar to (4) in Sect. 2.2. To regulate the contribution of each loss term, these coefficients can either be set
manually or determined via the hyperparameter optimization.

It is sometimes the case that we may update the data for one of the fidelity levels or insert an additional
level to an already trained MF model. The parallel multi-level approach hence only requires the network
training for the updated/added data levels and the retraining of the last network, while freezing the other
networks. With the “intermediate” setting or the series multi-level extension, however, the whole model
must be retrained.

8. Concluding remarks

In this work we present several novel methods for the estimation of time-parameter-dependent quantities
of interest using multi-fidelity techniques with LSTM neural networks. The proposed techniques are shown
to be advantageous over both the single-fidelity neural networks and the multi-fidelity ones without LSTM
units, especially when approximating time-dependency. The multi-fidelity LSTM strategy enables accurate
estimation of the target quantities’ time evolution at a reasonable computational cost, as it leverages many
low-fidelity, easily attainable data and only requires a limited number of high-fidelity, expensive data. The
non-intrusive nature of the proposed models guarantees a wide applicability, which has been exemplified by
a diverse collection of engineering applications. On the other hand, the multi-fidelity LSTM models show
excellent predictive capabilities and generalization performance both in time and over parametric variation,
which is typically deemed challenging for data-driven, non-intrusive surrogate models.

The proposed multi-fidelity LSTM models can be straightforwardly extended to more than two fidelity
levels, as well as to the involvement of multiple physical systems, for which we can collect multi-fidelity
data from several interacting systems governing the quantities of interest. Another promising, but more
challenging, future application is the full-field approximation of PDE solutions. In this regard, an viable
strategy is to consider the time-parameter-dependent coefficients of a low-dimensional reduced basis (e.g.,
through proper orthogonal decomposition on a set of HF snapshot solutions) as output quantities for the
multi-fidelity LSTM models.
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Appendix: hyperparameter summary

Features of an NN model that cannot be optimized during the training process are called hyperparameters.
They are either related to the network structure (e.g., the numbers of layers and nodes) or associated with
the training (e.g., the learning rate). The performance of an NN highly relies on the hyperparameter
choices, and thus it is important to find an optimal set of hyperparameter values. In this work, we employ
a Bayesian hyperparameter optimization technique that minimizes an objective function O in a multi-
dimensional domain Λ = Λ1 × Λ2 × · · · × ΛN of all N hyperparameters. Here Λi represents the range
of the i-th hyperparameter value. O is defined as the cross-validation error on the training set, because
generating a HF validation set would be expensive and data reuse thus becomes necessary. Specifically, we
use the Python package Hyperopt [4] (see [5, 6] for more details).

To ensure a fair comparison among different models, the same choice of domain Λ and objective func-
tion O is considered in the hyperparameter optimization for each model, unless otherwise specified. The
hyperparameters are estimated by a common Bayesian optimization method [4, 5], which balances between
the minimization of error O and the exploration of domain Λ. In the presented numerical examples, the
performance of different models is assessed with optimized hyperparameter values.

Tables A.1, A.2, A.3 and A.4 collect the optimized HPs in all the numerical examples. For notation,
we let η denote the learning rate, and let ‘depth’ and ‘width’ represent the numbers of layers and nodes,
respectively. For the multi-level models we enumerate the level steps with the variable ‘step’. Although the
intermediate model consists of a single NN, we use the variable ’step’ to denote the ‘LF’ (resp. ‘HF’) portion
of the network, i.e., the first (resp. second) part of the network dedicated to the estimation of the LF (resp.
HF) output (see Fig. 2(c) in Section 2). We recall that α is the coefficient regulating the contributions of
the two fidelity levels to the loss function in the intermediate LSTM model. Moreover, all the NNs use the
hyperbolic tangent activation function.

Table A.1: Optimized HP values in example (I) (Section 4).

Model Step
Depth × width

LSTM
Depth × width

Dense
Optimizer η Batch size α

LF feed-forward - - 4 × 61 Adam 2.54×10−2 13 -

HF feed-forward - - 3 × 52 Adam 1.98×10−2 3 -

LF LSTM - 1 × 98 0 × 0 Adam 7.14× 10−3 1 -

HF LSTM - 2 × 94 0 × 0 Adamax 2.94× 10−2 4 -

3-step feed-forward 1 - 4 × 61 Adam 2.54×10−2 13 -

2 - 3 × 41 Adamax 3.89× 10−3 67 -

3 - 1 × 32 Adam 1.78× 10−4 151 -

2-step LSTM 1 1 × 98 0× 0 Adam 7.14× 10−3 1 -

2 2 × 98 2 ×16 Adamax 1.78× 10−3 3 -

3-step LSTM 1 1 × 98 0 × 0 Adam 7.14× 10−3 1 -

2 4 × 20 0 × 0 Adam 1.80× 10−2 3 -

3 3 × 82 3 ×20 Adamax 6.98× 10−3 4 -

Intermediate LF 3 × 62 0 × 0 Adam 3.81× 10−4 27 0.51

HF 2 ×72 1 × 118 ” ” ” ”
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Table A.2: Optimized HP values for the lift coefficient in example (II) (Section 5).

Model Step
Depth × width

LSTM
Depth × width

Dense
Optimizer η Batch size α

LF feed-forward - - 2 × 20 Adamax 3.52× 10−4 177 -

HF feed-forward - - 2 × 34 Adamax 1.49× 10−4 149 -

LF LSTM - 4 × 128 1 × 46 Adam 1.96× 10−3 1 -

HF LSTM - 4 × 24 0 × 0 Adamax 5.46× 10−2 6 -

3-step feed-forward 1 - 2 × 20 Adamax 3.52× 10−4 177 -

2 - 4 × 62 Adamax 5.52× 10−4 266 -

3 - 1 × 44 Adam 8.73× 10−3 128 -

2-step LSTM 1 4 × 128 1 × 46 Adam 1.96× 10−3 1 -

2 3 × 64 2 × 26 Adam 2.66× 10−3 5 -

3-step LSTM 1 4 × 128 1 × 46 Adam 1.96× 10−3 1 -

2 3 × 18 0 × 0 Adamax 1.17× 10−2 6 -

3 4 × 24 0 × 0 Adamax 6.20× 10−4 8 -

Intermediate LF 1 × 106 0 × 0 Adam 2.65× 10−2 16 0.64

HF 3 ×20 0 × 0 ” ” ” ”

Table A.3: Optimized HP values for the drag coefficient in example (II) (Section 5).

Model Step
Depth × width

LSTM
Depth × width

Dense
Optimizer η Batch size α

LF feed-forward - - 4 × 52 Adam 8.91× 10−2 162 -

HF feed-forward - - 1 × 38 Adam 1.71× 10−4 74 -

LF LSTM - 3 × 36 1 × 112 Adam 1.25× 10−3 1 -

HF LSTM - 3 × 36 0 × 0 Adamax 2.60× 10−2 6 -

3-step feed-forward 1 - 4 × 52 Adam 8.91× 10−2 162 -

2 - 2 × 22 Adamax 5.74× 10−2 158 -

3 - 1 × 39 Adamax 3.32× 10−3 107 -

2-step LSTM 1 3 × 36 1 × 112 Adam 1.25× 10−3 1 -

2 3 × 78 1 × 50 Adam 2.87× 10−3 10 -

3-step LSTM 1 3 × 36 1 × 112 Adam 1.25× 10−3 1 -

2 3 × 34 0 × 0 Adam 2.06× 10−3 10 -

3 1 × 24 0 × 0 Adamax 5.05× 10−2 8 -

Intermediate LF 2 × 46 0 × 0 Adam 2.87× 10−2 11 0.1

HF 3 × 110 2 × 22 ” ” ” ”

Table A.4: HP values in example (III) (Section 6). The same structure is used in all the networks, showing that the MF
approach is robustly advantageous over the single-fidelity ones, regardless of the hyperparameter tuning.

Model Step Depth × width LSTM Depth × width Dense Optimizer η Batch size

LF LSTM - 3 × 64 1 × 32 Adamax 1.00× 10−3 50

HF LSTM - 3 × 64 1 × 32 Adamax 1.00× 10−3 50

2-step LSTM 1 3 × 64 1 × 32 Adamax 1.00× 10−3 50

2 3 × 64 1 × 32 Adamax 5.00× 10−3 100
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multi-fidelity modeling. arXiv:1903.07320, 2019.

[9] N. Demo, M. Strazzullo, and G. Rozza. An extended physics informed neural network for preliminary
analysis of parametric optimal control problems. arXiv:2110.13530, 2021.

[10] T. G. Dietterich. Ensemble methods in machine learning. In International workshop on multiple classifier
systems, pages 1–15. Springer, 2000.

[11] R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical
Journal, 1(6):445–466, 1961.

[12] S. Fresca, L. Dede, and A. Manzoni. A comprehensive deep learning-based approach to reduced order
modeling of nonlinear time-dependent parametrized pdes. Journal of Scientific Computing, 87(2):1–36,
2021.

[13] S. Fresca and A. Manzoni. Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models. Fluids, 6(7), 2021.

[14] S. Fresca and A. Manzoni. POD-DL-ROM: enhancing deep learning-based reduced order models for
nonlinear parametrized pdes by proper orthogonal decomposition. Computer Methods in Applied Me-
chanics and Engineering, 388:114181, 2022.
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