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Abstract

This work proposes a novel approach to the calibration of regional-
ized regression models, with particular reference to ground-motion mod-
els (GMMs), which are key for probabilistic seismic hazard analysis and
earthquake engineering applications. A novel methodology, named multi-
source geographically-weighted regression (MS-GWR), is developed, al-
lowing one to (i) estimate regionalized regression models depending on
multiple sources of non-stationarity (such as site- and event-dependent
non-stationarities in GMMs), and (ii) make inference on the significance
and stationarity of the regression coefficients. Unlike previous approaches
to the problem, the proposed framework is fully non-parametric, the in-
ference being based on a permutation scheme. MS-GWR is here used
to calibrate a new regionalized ground-motion model for predicting peak
ground acceleration in Italy, based on a large scale database of waveforms
and metadata made available by the Italian Institute for Geophysics and
Vulcanology (INGV).

Keywords: Geographically-weighted regression; ground motion models;
peak-ground acceleration; seismic risk analysis

1 Introduction

Seismic risk analysis and earthquake engineering applications use empirical
ground motion models (GMMs) to predict the intensity level of ground shaking
caused by an earthquake event at a site. These models quantify the expected
median level of a ground motion parameter, i.e. Intensity Measure (IM), along
with the associated uncertainty, from a set of independent variables such as the
earthquake magnitude and the event-to-site distance. GMMs are traditionally
calibrated on global datasets, meaning that seismic records available in different
parts of the world – which taken individually would not suffice for a robust cal-
ibration – are used together to perform the model calibration, which typically
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consists of a regression analysis. The obtained relationships are then applied
globally, under the hypothesis that the conditional distribution of the ground
motion parameter of interest given the magnitude, distance and site conditions,
is identical at any site. This assumption however implies a high level of uncer-
tainty associated with the estimated IMs, that reflects the large region-to-region
variations observed on ground motion as a consequence of physical peculiarities
at smaller scale, such as those related to different source and attenuation prop-
erties, as well as to site amplifications. Neglecting such region-specific variations
leads not only to a larger variability but also to biased estimates of the IMs at
more local scales for individual events and stations.

The current trend in the field of engineering seismology is thus moving to-
wards region-specific GMMs. This is nowadays possible thanks to the increas-
ing availability of seismic records in the majority of the most tectonically active
countries. The resulting models provide different median predictions for dif-
ferent locations, instead of a single prediction that roughly averages all the
ground motion effects at different scales. Recent studies have indeed focused on
the development of new approaches for ground motion regionalization (Stafford
(2014), Kotha et al. (2017), Sahakian et al. (2019), Kuehn et al. (2019), Sgobba
et al. (2019), Parker et al. (2020), Kuehn and Abrahamson (2020), Kotha et al.
(2020), Menafoglio et al. (2020)). The main strategy in this field is providing
regional adjustments of the median GMM prediction, assuming that there are
repeatable source, path, and site effects, which can be estimated from residual
decomposition (where the term “residual” stands for the logarithmic deviation
of a data point from the predicted IM; Anderson and Brune (2003), Atik et al.
(2010)).

Another approach grounds on the development of GMMs having a single
functional form for all sites with coefficients that vary with the geographical
location (Landwehr et al. (2016a), Kuehn et al. (2019)). The pioneering work
of Landwehr et al. (2016a) used a fully Bayesian approach built on the tech-
nique presented by Bussas et al. (2015), to introduce a double spatial non-
stationarity of the model coefficients, which were allowed to be constant, or
dependent on site- or event-coordinates (without depending on both types of
coordinates simultaneously). The methodology – which was applied to build
a GMM in California – revealed to be promising in order to improve GMMs
accuracy and reduce the associated uncertainty, with a significant impact on
hazard and engineering-oriented applications. However, its modeling and com-
putational complexity represents a limitation for its use in the seismological
practice.

In our work, we follow the same regionalization strategy adopted by Landwehr
et al. (2016a) to introduce a spatial non-stationary GMM for Italy, but we embed
the inference on this model in a different methodological framework based on the
theory of geographically weighted regression (GWR, Brunsdon et al. (1998)).
GWR allows one to model all the regression coefficients of a linear model as
varying over space, and estimate them by localizing the model through spatial
kernels. Although a generalization of this methodology – named mixed geo-
graphically weighted regression (MGWR, Fotheringham et al. (2002)) – allows
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one to keep some coefficients constant over space, none of the available GWR
methods enables one to include multiple spatial non-stationarities within the
model, i.e., non-stationarities deriving from the presence of multiple spatial in-
dexes in the random process (hereafter called multi-source non-stationarity). In
fact, even though GWR represents the natural framework to develop spatially
variable GMMs, this methodological gap still represents an important limitation
to its use, as GMMs need to incorporate both site- and event-coordinates within
the model. As a key innovative contribution of this work, we thus further extend
the GWR methodology, leading to multi-source GWR (MS-GWR), that allows
one to jointly include (i) a set of stationary coefficients, and (ii) a double spatial
non-stationarity within the model. We here propose a computational method-
ology to estimate the model parameters, as well as to quantify the associated
uncertainty. We also develop an inferential framework for hypothesis testing on
the model coefficients, based on a permutation approach. These developments
enable us to propose a novel approach to build region-specific GMMs, which is
here used to calibrate a GMM for the peak-ground acceleration over the entire
Italian territory. This model shall be here built upon a large-scale dataset, col-
lecting the seismic measures related with 4784 events recorded in Italy along 40
years.

The remaining part of this work is organized as follows. In Section 2 we recall
the seismological background of this work, with particular reference to the state-
of-the-art GMM in Italy (ITA18, Lanzano et al. (2019)), and the GMM proposed
by Landwehr et al. (2016a); we here also describe the calibration dataset being
considered in our study. Section 3 describes the MS-GWR, and the inferential
framework we propose for hypothesis testing on the model coefficients. An
extensive simulation study assessing the performance of MS-GWR is illustrated
in Section 4. Section 5 describes the calibration of the GMM based on MS-GWR
for Italy, and its validation. Section 6 eventually concludes the work. Codes
and support material for the use of MS-GWR in ground-motion modeling are
available on GitHub at github.com/lucaramenti/ms-gwr .

2 Background and data

The proposed methodology aims to extend to a spatial non-stationary frame-
work the ITA18 model (Lanzano et al., 2019), which is the most updated version
of the reference GMM for shallow crustal earthquakes in Italy. ITA18 provides
the median value and associated uncertainty of a set of intensity measures (IMs),
modeled as log-normal random variables. It was calibrated via a maximum like-
lihood approach, based on a linear model for the logarithmic transformation of
the IMs. For ease of exposition, in this work we shall focus on a single IM, which
is the peak ground acceleration (PGA) — Figure 1, although an analogous ap-
proach can be used on the other IMs considered by Lanzano et al. (2019). PGA
is defined as the maximum absolute amplitude of an accelerogram recorded at a
site during an earthquake (Douglas, 2003). It is the most commonly used ground
motion parameter by engineers, as well as the main parameter considered by
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design codes to define seismic hazard at a site.
For the scope of the present work, it is relevant to recall the functional form

of ITA18 for the PGA. In Lanzano et al. (2019), the PGA is modeled as:

log10 PGA = a+ b1(Mw −Mh)1(Mw≤Mh) + b2(Mw −Mh)1(Mw>Mh)

+ [c1(Mw −Mref ) + c2)] log10

√
R2
JB + h2 + c3

√
R2
JB + h2

+ k
[
log10(VS30

800 )1(VS30≤1500) + log10( 1500
800 )1(VS30>1500)

]
+ f1SoF1 + f2SoF2 + ε,

(1)

where the explanatory parameters Mw, RJB , VS30 and SoF are respectively
the event moment magnitude, the Joyner-Boore distance (i.e. a metric that
defines the distance from a site to the surface projection of the fault rupture,
Joyner and Boore (1981)), the shear wave velocity in the uppermost 30 meters
(i.e. a proxy of the site response) and the style of faulting (i.e. a parameter
describing the relative movement of the two sides of the fault plane), varying
between normal, reverse and strike-slip. Mh, Mref and h are fixed parameters,
which have been estimated by a non-linear regression (Lanzano et al., 2019)
and are here assumed to be known. Symbols a, b1, b2, c1, c2, c3, f1, f2 and
k denote the regression coefficients, which are the parameters of the model
together with the variance σ2 of the error ε. Note that Lanzano et al. (2019)
further decomposed the variance of the error term ε in components due to event-
and site-effects, in a mixed-effect framework. This latter decomposition is not
considered further here, as the variability attributable to event- and site-effects
shall be here captured through the non-stationarity of the model, as in Landwehr
et al. (2016a).

We here aim to regionalize model (1), to allow for spatially varying coeffi-
cients in the GMM, similarly as done by Landwehr et al. (2016a) in the formu-
lation of a non-ergodic GMM for California. These authors proposed to model
the PGA through the following model – rewritten in log-10 units, for the ease
of comparison with model (1)

log10 PGA = β−1(ue, ve) + β0(us, vs) + β1M + β2M
2

+ [β3(ue, ve) + β4M ] ln
√
R2
JB + h2 + β5(ue, ve)RJB

+ β6(us, vs) lnVS30 + β7FR + β8FNM + ε,

(2)

where (ue, ve), (us, vs) denote the event and site coordinates respectively. Landwehr
et al. (2016a) calibrated the model for California in a Bayesian setting, by con-
sidering a Gaussian process prior over the spatially varying coefficients. In
the following, we shall consider a GWR framework instead, as this represents
a simpler but fully non-parametric alternative to the approach of Landwehr
et al. (2016a). An approach based on GWR is also extendable to the setting of
functional data analysis (FDA, Ramsay and Silverman (2005)), as we further
discuss in Section 6, which could be used to model the entire response spectrum,
as proposed by Menafoglio et al. (2020).
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Figure 1: Indication of PGA on the acceleration waveform as recorded by the
NRC station during the October 30, 2016 earthquake 06:40:18 UTC event (data
are taken from ITACA database).

For consistency reasons, the dataset being considered in this study is sub-
stantially the same as the one used for calibration of ITA18, with the only
modification consisting in the removal of some worldwide earthquakes, which
were introduced in order to better constrain the regression at higher magni-
tudes. In particular, events occurred in Turkey, Japan, New Zealand, California
(USA), Iceland, Iran and Greece are here removed as not relevant to the Italian
data, while all the Italian earthquakes are kept in the dataset, along with events
located in Slovenia, France and Croatia, which are neighboring countries. The
resulting dataset is composed by 4784 observations of 137 events from 925 sta-
tions, recorded between 1976 and 2016, with magnitudes ranging from 3.5 to 6.9.
The adopted acceleration waveforms and metadata are taken from the Engineer-
ing Strong Motion database, ESM - https://esm-db.eu/ (Luzi et al., 2020) and
the ITalian ACcelerometric Archive, ITACA - http://itaca.mi.ingv.it/ (D’Amico
et al., 2020).

Figure 2 shows the spatial distribution of the stations that recorded the
events included in the dataset; here, each event is connected, with lines of the
same colour, to all the stations which recorded it.
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Figure 2: Map of the sampled ray-paths (colored lines) from the events (circles)
to the stations (triangles).

3 Multi-source geographically weighted regres-
sion

3.1 Geographically weighted regression

Geographically weighted regression (Brunsdon et al., 1998) is a family of sta-
tistical methods aimed to estimate a regionalized linear model, characterized
by spatially varying (a.k.a. non-stationary) coefficients. In this context, the
general form of the regression model is

yi =
∑
j

βj(ui, vi)xij + εi, i = 1, ..., n, (3)

where yi is the response variable at the i-th site with coordinates (ui, vi), xij is
the j-th regressor associated with the i-th unit, {βj(ui, vi)}j are the regression
coefficients, and {εi}i are the i.i.d. random errors. Methods of GWR to estimate
model (3) usually consist of localizing the estimation procedure, by calibrating
the model in a neighborhood of the target site (u0, v0). This is typically selected
through a spatial kernel K, which is a positive non-increasing function such that
(i) K(0) = 0, and (ii) limd−>∞K(d) = 0. In practice, the spatial kernel allows
one to attribute a weight K(di0) to the available data based on their distance
di0 from the target site, thus naturally down-weighting data being distant from
the target. A widely-used example for K is the Gaussian kernel, which shall
also be employed in the following

K(d) = exp

{
− d2

2h2

}
,
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where h denotes the kernel bandwidth.
When a spatial kernel is used, GWR reduces to a weighted least square

regression, the weights being determined by the spatial kernel itself. That is,
for a target location (u0, v0), βj(u0, v0), is estimated as

β̂j(u0, v0) = (XTW0X)−1XTW0Y, i = 1, ..., n, (4)

with X the design matrix, Y the vector of observations of the response variable,
and W0 the diagonal matrix of kernel weights W0,ii = K(di0).

To allow for the introduction of spatially stationary regression coefficients in
model (3), GWR was lately extended to Mixed GWR (MGWR, Fotheringham
et al. (2002)). Here, the general form of the model is

yi =
∑
j∈C

βjxij +
∑
j∈NS

βj(ui, vi)xij + εi, i = 1, ..., n, (5)

where C denotes the set of spatially stationary terms, and NS the set of spatially
non-stationary ones. An estimate of model (5) can be effectively obtained by
using a two-steps algorithm, as advocated by Mei (2004). Here, first the constant
term is estimated via OLS on an auxiliary regression problem, and then the non-
stationary term is fitted by GWR on the residuals from the stationary term.
The algorithm is recalled in details in Appendix A. In the following Section,
this methodology is generalized to the case of multi-source non-stationarity, to
enable the estimate of a model of the kind (2).

3.2 Multi-source GWR: model and estimation algorithm

We now extend GWR to allow for the presence of two sources of spatial non-
stationarity, which are here representative of event- and site- effects in the GMM.
The general model we aim to estimate takes the form

yi =
∑
j∈C

βjCxij +
∑
j∈E

βjE (uei , vei)xij +
∑
j∈S

βjS (usi , vsi)xij + εi, i = 1, ..., n,

(6)
where (uei , vei), (usi , vsi) are the event- and site-coordinates, respectively, of the
i-th observation, C is the set of spatially stationary coefficients, E,S are the sets
of spatially non-stationary coefficients, depending on event- or site- coordinates
respectively, and εi zero-mean i.i.d. errors with variance σ2.

In order to formulate the calibration algorithm, we first introduce two auxil-

iary estimation equations. Denote by ỹi and ỹ
(s)
i the following partial residuals

ỹi = yi −
∑
j∈C

βjCxij ; ỹ
(s)
i = ỹi −

∑
j∈S

βjS (usi , vsi)xij . (7)

The auxiliary estimation equation then reads

ỹi =
∑
j∈E

βjE (uei , vei)xij +
∑
j∈S

βjS (usi , vsi)xij + εi (8)

ỹ
(s)
i =

∑
j∈E

βjE (uei , vei)xij + εi. (9)
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For ease of notation, βjE (uei , vei) and βjS (usi , vsi) will be denoted hereafter
by βjE ,i and βjS ,i respectively and, moreover, βE,i = (β1E,i, ..., βpE,i)

T , and
βS,i = (β1S,i, ..., βrS,i)

T .

Note that, one may estimate model (9) for the partial residuals ỹ
(s)
i via

GWR, as the right term in (9) only depends on a single set of coordinates
(uei , vei). This yields

β̂E,i = (XT
EWE,iXE)−1XT

EWE,iỸ
(s) = AE,iỸ

(s), i = 1, ..., n, (10)

and the following estimate of the partial residuals

ˆ̃Y (s) =

XE,1β̂E,1
...

XE,nβ̂E,n

 =

XE,1(XT
EWE,1XE)−1XT

EWE,1

...
XE,n(XT

EWE,nXE)−1XT
EWE,n

 Ỹ (s) = HE Ỹ
(s)

(11)

where Ỹ (s) = (ỹ
(s)
1 , ..., ỹ

(s)
n )T is the vector of partial residuals, XE,i stands for the

i-th row of the design matrix XE – containing the event-dependent covariates
– and WE,i is the weighting matrix associated with the i-th sample unit, and
built through the spatial kernel (see Subsection 3.1).

Plugging-in the estimated coefficients in eq. (8), leads to

Ỹ −HE Ỹ
(s) =

XS,1βS,1
...

XS,nβS,n

+ ε, (12)

with ε = (ε1, ..., εn)T . Replacing the definition of Ỹ (s) (given in eq. (7)) in (12)
and rearranging the terms yields

(I −HE)Ỹ = (I −HE)

XS,1βS,1
...

XS,nβS,n

+ ε. (13)

Note that eq. (13) can be interpreted as a regionalized model for a modified
response vector ((I − HE)Ỹ ) based on a modified regressors ((I − HE)XS,i,
i = 1, ..., n). Hence, GWR can be applied again, finding the following estimates:

β̂S,i =
[
XT
S (I −HE)TWS,i(I −HE)XS

]−1
XT
S (I −HE)TWS,i(I −HE)Ỹ

= AS,iỸ , i = 1, ..., n
(14)

from which we get XS,1β̂S,1
...

XS,nβ̂S,n

 =

XS,1AS,1
...

XS,nAS,n

 Ỹ = HS Ỹ . (15)
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Replacing all the estimated coefficients in the first auxiliary equation (8),
and recalling again the definition of the partial residuals (7), we obtain

Y −HE Ỹ
(S) −HS Ỹ = XCβC + ε (16)

and substituting eq. (9) in this expression we get

Y −HE(Ỹ −HS Ỹ )−HS Ỹ = XCβC + ε. (17)

Replacing Equation (8) in Equation (17) we find

Y −HE [Y −XCβC −HS(Y −XCβC)]−HS(Y −XCβC) = XCβC + ε (18)

which leads to

(I −HE +HEHS −HS)Y = (I −HE +HEHS −HS)XCβC + ε. (19)

Setting B = (I −HE +HEHS −HS), we can apply OLS to Equation (19),
obtaining

β̂C = (XT
CB

TBXC)−1XT
CB

TBY. (20)

It is possible to write an explicit formulation of the resulting hat matrix,
using all the previous estimates:

Ŷ = XC β̂C +

XE,1β̂E,1
...

XE,nβ̂E,n

+

XS,1β̂S,1
...

XS,nβ̂S,n


= XC β̂C +HE Ỹ

(s) +HS Ỹ

= HY

(21)

where
H = I −B +BXC(XT

CB
TBXC)−1XT

CB
TB. (22)

Summing up, all the coefficients can be estimated in cascade, through the
algorithm reported in Figure 3.

Note that the order of estimation has been selected arbitrarily. In fact,
using an analogous approach as that here discussed we may obtain six different
estimation methods (one for each possible permutation of the estimation order).
The following subsections shall assume that the estimation order is set as in Fig.
3, although they could be restated analogously with any other permuted order.
In Section 4, we shall investigated by simulation the effect of the estimation
order on the quality of the resulting estimates.

3.3 Parameter estimation accuracy and prediction uncer-
tainty

In order to quantify the error made in estimating coefficients, set

AC = (XT
CB

TBXC)−1XT
CB

TB,
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Initialization: Define HE , HS as in eq. (11) and (15), and set
B = I −HE +HEHS −HS .

Estimation steps:

- Estimate βC as β̂C = (XT
CB

TBXC)−1XT
CB

TBY ;

- Evaluate the estimated partial residuals ˆ̃Y = Y −XC β̂C ;

- Estimate βS,i as β̂S,i = AS,i
ˆ̃Y, i = 1, ..., n;

- Evaluate the estimated partial residuals ˆ̃Y (S) = ˆ̃Y −HS
ˆ̃Y = (I −HS) ˆ̃Y ;

- Estimate βE,i as β̂E,i = AE,i
ˆ̃Y (S), i = 1, ..., n.

Figure 3: Estimation algorithm of Multi-source GWR

and let ek be a column vector whose kth element is one, and the other elements
are null. Then, denoting by β̂k,i the estimate of the coefficient vector β̂C , β̂E,i,

or β̂S,i for k = 1, 2, 3 respectively, one has

β̂k,i = eTk

 β̂C
β̂E,i
β̂S,i

 = eTk

 ACY

AE,iỸ
(S)

AS,iỸ

 = eTkQiY, i = 1, ..., n (23)

where

Qi =

 AC
AE,i(I −HS)(I −XCAC)

AS,i(I −XCAC)

 , i = 1, ..., n. (24)

Denoting by β̂·,i all the regression coefficients in location i, and noting that

β̂·,i = QiY , one may compute the standard error of the estimator of the coeffi-
cients at location i as

V ar(β̂·,i) = σ2QiQ
T
i . (25)

Using the unbiased estimate of σ2 given by σ̂2 = RSS
δ1

, where δ1 = tr{(I −
H)T (I−H)} are the effective degrees of freedom of the estimator (Leung et al.,
2000), we finally get

V̂ ar(β̂·,i) =
RSS

δ1
QiQ

T
i , i = 1, ..., n. (26)

The variance (26) can also be used to provide an estimate of the prediction
uncertainty at a target site (uS0, vS0) and for a target event at (uE0, vE0), as

V̂ ar(ŷ0) = V̂ ar(xT0 β̂·,0) = S0σ̂
2, (27)

where S0 = xT0Q0Q
T
0 x0, and Q0 is defined analogously as in (24), but with the

weight matrices WS,0, WE,0 (see eq. (14), (10)) computed through spatial kernel
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centred in (uS0, vS0) and (uE0, vE0) respectively. This result is fully analogous
to the prediction uncertainty obtained for GWR by Fotheringham et al. (2002).

Notice that in seismological applications uncertainty is commonly split into
two components, namely aleatory variability and epistemic uncertainty. Aleatory
variability is intended as the natural randomness in a process, while epistemic
uncertainty is defined as the uncertainty in the model of the process, caused by
limited data and knowledge (Al Atik et al., 2010). One way to reduce aleatory
variability is to identify those components of ground motion variability that are
not completely random and to transfer them to the quantification of the epis-
temic uncertainty, for instance introducing spatially varying coefficients. For
instance, consider a simple linear model

y = β0 + β1x+ ε1 (28)

and its (single-source) non-stationary counterpart

y = β0 + β1(u, v)x+ ε2 (29)

where V ar(ε1) = σ2
1 and V ar(ε2) = σ2

2 . The aleatory variability of the mod-
els (28) and (29) is represented by σ1 and σ2 respectively, while the epistemic
uncertainty includes also the variability associated with the estimation of the
model coefficients, resp. {β0, β1}, and {β0, β1(u, v)}. Introducing spatial non-
stationarity in model (28) –yielding model (29)– may allow us to remove repeat-
able effects from σ1, leading to σ2 < σ1, but also to an increased uncertainty re-
lated to parameter estimation. The advantage of transferring repeatable effects
to epistemic uncertainty is that, unlike aleatory variability, it can be reduced
introducing new data or knowledge. In fact, aleatory variability of a stationary
linear model is constant over space and can be estimated using the variance of
the error, while epistemic uncertainty for MS-GWR varies over space and can
be partially quantified by estimating the statistical variability in the median
predictions using eq. (27). This point shall be further explored in Section 5,
and will be part of the comparative study between the proposed non-stationary
GMM and the model of Lanzano et al. (2019).

3.4 Permutational inference for MS-GWR

In order to carry out inferential tests on regression parameters without relying on
the normality assumption over residuals, we here develop a set of permutation
tests, following the Freedman and Lane permutation scheme (Freedman and
Lane, 1983). Its distinctive trait is that the permutations are carried out, under
the null hypothesis, over the model residuals. Notice that this is an approximate
test, since it is based on empirical residuals.

The general idea is that, if the null hypothesis being tested holds, the derived
datasets should be equivalent to the original one: a small reported significance
level indicates an unusual dataset under the null assumption.
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Consider the test

H0 : a given coefficient, other than the intercept, is constant

H1 : all coefficients, except for the intercept, vary over space
(30)

As test statistic consider

T =
RSSH0

−RSSH1

RSSH1

=
Y T [RH0

−RH1
]Y

Y TRH1Y
, (31)

where RHi = (I − HHi)
T (I − HHi), i = 0, 1. The statistic (31) has already

been used in GWR and MGWR literature for testing analogous assumptions on
simpler models (Mei et al. (2016), Leung et al. (2000), Mei et al. (2006)), and
compare, on a relative scale, the residuals of the models under H0 and under
H1. To perform the test, we propose a permutation procedure which consists
of the following steps

1. Find the optimal bandwidths, under H0, for the spatial kernels involved
in the computation of WE,i,WS,i – appearing in (10) and (14);

2. Calibrate the models under H0 and H1 with the bandwidths found at Step
1.; compute the statistic T and the residuals under H0, ε̂H0

= (I−HH0
)Y ;

3. Permute the residuals ε̂H0
, obtaining ε̂∗b;

4. Build Y ∗b = HH0Y + ε̂∗b;

5. Recalibrate both models under H0 and H1 using Y ∗b, always with the
same bandwidths, and compute T ∗bi ;

6. Repeat Steps 3. to 5. for B times;

7. Estimate the distribution of T ∗ from the replicates {T ∗b}b=1,...,B and com-
pare it with T , computing the p-value of the test as

p =
1

b

B∑
b=1

1(T∗b>T ),

the symbol 1 denoting the indicator function.

Finding the optimal bandwidths at Step 1. is not strictly necessary, the cru-
cial part is calibrating the model under H0 and H1 with the same bandwidths,
since this is the only way to obtain comparable values, thus a meaningful p-
value. Moreover, we remark that one needs not to recompute the hat matrices
for the recalibration at Step 5., as T ∗bi can be computed as

T ∗b =
(Y ∗b)T [RH0

−RH1
]Y ∗bi

(Y ∗b)TRH1Y
∗b . (32)

Note that considering T as test statistic yields a computational procedure which
is much more efficient than that obtained by considering any test statistic based
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on the coefficients themselves, as in the latter case the hat matrices would need
to be recomputed at any iteration.

Although formulated so far for testing on a single coefficient, the proposed
test is very general, and can be used for testing the joint stationarity of multiple
coefficients, or the single-source stationarity. This can be achieved by prop-
erly setting H0 and H1, and by consistently interpreting eq. (31). Moreover,
to evaluate whether some explanatory variables in the stationary part of the
model are significant or not, one may set a null model such that the coefficients
corresponding to these explanatory variables are all zero.

Summing up, a possible approach, inspired by the bootstrap procedure pro-
posed by Mei et al. (2016), is the following.

1. Test one at a time, exploiting also a priori knowledge if possible, the
non-stationarity of the coefficients;

2. Test simultaneously the coefficients identified as not-significant at Step 1.,
considering them as spatially stationary under H0;

3. Test singularly whether a stationary coefficient is significant or not, setting
it to zero under H0 and comparing two spatially varying models;

4. Test simultaneously the coefficients identified as not-significant at Step 3.,
considering them as null under H0.

In the following Section 4 we illustrate an extensive simulation study which
assess the performances of the proposed inferential procedure, in terms of level
and power of the tests.

4 MS-GWR: a simulation study

4.1 Assessment of the estimation procedure

In this section, we explore through simulation the performances of MS-GWR,
with particular regard to the estimation and prediction accuracy when changing
(i) the order of estimation in the algorithm of Section 3 (Figure 3) and (ii) the
bandwidth of the spatial kernels involved in the GWR estimates.

Data generation We consider the following three models

yi = β0C + β1CxC,i + β1E,ixE,i + β1S,ixS,i + εi, i = 1, ..., n (33)

yi = β0E,i + β1CxC,i + β1E,ixE,i + β1S,ixS,i + εi, i = 1, ..., n (34)

yi = β0S,i + β1CxC,i + β1E,ixE,i + β1S,ixS,i + εi, i = 1, ..., n (35)

where xCi , xEi and xSi are the constant, event-dependent and site-dependent
covariates, respectively, which are drawn from N (3, 25), N (−4, 25) and N (4, 25)
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Figure 4: MS-GWR, True spatially varying coefficients

respectively, independently for any location i. The stationary coefficients are
set to

βC = (β0C , β1C)T = (8, 4)T ,

whereas the coefficient surfaces, shown in Figure 4, are formulated in the fol-
lowing way:

β0E(ue, ve) = − 1
100 (ue + 2)2 + 1

100 (ve + 2)2(ue − 1) + 3

β1E(ue, ve) = 1
20 (ue + 1)2 + 1

20v
2
e + 1

10 (ue − 2) + 1.5

β0S(us, vs) = 1
100 (us − 2)3 + 1

100v
3
s − 1

100 (us − 1)3 + 3.5

β1S(us, vs) = − 1
100 (us + 0.5)3 − 1

100 (vs − 0.5)3 + 7
1000 (vs − 2.5)3 + 3.5

(36)
Data are generated in a four-dimensional coordinate space, each observation

being associated with a coordinate vector (ue, ve, us, vs) in R4. However, since
no regression coefficient depends on both site- and event-location, they are mod-
elled as polynomial surfaces, each depending on pairs of coordinates in R2. For
this reason, two spatial grids G1 and G2 are generated, both with values ranging
in [−5, 5] with step 0.5, resulting in two grids made of ng = 441 elements each.
The joint grid G = G1 × G2 in the four-dimensional space, resulting from the
combination of G1 and G2, thus contains n2g = 194481 points.

For the i-th grid point, with i = 1, ..., n2
g, the value of εi is drawn from

a normal distribution with zero mean and variance σ2 = 4, independently on
the other grid points, eventually computing the response yi by applying either
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model (33) or (34) or (35). Note that we include the intercept in one component
only, otherwise identifiability issues arise.

To perform the simulations hereafter shown, we build the training set by
randomly and uniformly sampling N = 50 locations within the grid G. The
remaining (n2g − N) observations are used as test set. The model is thus esti-
mated on the training set by following the method proposed in Section 3. The
performance of the estimation procedure is assessed based on

(i) the accuracy in the estimate of the coefficients, quantified as

ERRβ =

n2g · ‖βC − β̂C‖2 +

n2
g∑

i=1

‖βE,i − β̂E,i‖2 +

n2
g∑

i=1

‖βS,i − β̂S,i‖2
1/2

,

with βC being the vector of stationary coefficients, and βE,i, βS,i the vector
of non-stationary coefficients at location (uei, vei, usi, vsi) in G;

(ii) prediction accuracy on the test set

ERRstd =
∑
i∈test

yi − ŷi
σ̂

.

For the sake of simplicity, in the following we always consider the same
bandwidth for the kernels associated with components depending on site- and
event-locations (i.e., those leading to define WE and WS in (10) and (14) re-
spectively).

To filter out the dependence of the results on the sampled configuration
of the data, we repeat the simulation for M = 100 replicates of the random
training set –each obtained as described above– keeping fixed the value of the
parameters described before, and study the distribution of the errors ERRβ and
ERRstd across repetitions.

Dependence on the estimation order As far as notation is concerned, all
different permutations have been named after the estimation order, which has
to be read from right to left. In particular, C stands for spatially stationary, S
for site-dependent and E for event-dependent. When model (33) is considered,
we can see in Figure 5 that SEC and ESC seem to work significantly better
than all the others, especially for low and medium bandwidth values, while this
difference is not evident in case of larger bandwidths. This is related to the fact
that the wider the bandwidth, the closer we get to a global model in which the
estimation order is not relevant.

To better understand the level of accuracy attained on each coefficient of
the model, we represent in Figure 6 the decomposition of the error ERRβ in
the three terms appearing in (4.1). From Figure 6 it can be seen that the
main difference of accuracy is in the estimation of the intercept. Indeed the
error on spatially varying coefficients does not show a significant discrepancy
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Figure 5: Simulation results for MS-GWR. Total error for different bandwidths
when estimating model (33) (with stationary β0) over M = 100 replicates of
the simulations. Titles of the panels refer to the bandwidth used for the spatial
kernels –the same bandwidth being used for both event- and site-coordinates.

Figure 6: Simulation results for MS-GWR. Decomposed error for different band-
widths when estimating model (33) (with stationary β0) over M = 100 replicates
of the simulations. Titles of the panels refer to the bandwidth used for the spatial
kernels –the same bandwidth being used for both event- and site-coordinates.
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Figure 7: Simulation results for MS-GWR. Total error for different bandwidths
when estimating model (34) over M = 100 replicates of the simulations. Titles
of the panels refer to the bandwidth used for the spatial kernels –the same
bandwidth being used for both event- and site-coordinates.

when changing the estimation order, while the estimate of the intercept is much
preciser when the stationary component is estimated first.

If we consider a spatially varying intercept (models (34) and (35)), it can be
noted in Figure 7 that there is no big dissimilarity between the quality of the
estimates associated with different estimation orders; in fact, the error made in
estimating the intercept is rather big with respect to all the other components,
as shown in 8. Moreover, simulations suggest that, misspecifying the model for
the intercept – by considering it as stationary when it is not – leads anyway to
improved results in terms of quality in the estimation of remaining coefficients,
as it can be seen in Figure 9. Thus in the application of MS-GWR shown in
Section 5 we shall always consider the intercept as constant, and focus on the
permutations which estimate the stationary component first, namely ESC and
SEC.

Further analyses –which are not illustrated in details here for brevity– have
shown that changing the magnitude of regression coefficients has no relevant
impact on the relative error which is made in the coefficient estimation, while
increasing the variance of the data generally leads to worse coefficient estimates.
This is coherent with the fact that the lower the variance, the more difficult the
estimation of regression coefficient becomes.

Bandwidth selection As far as the bandwidth selection is concerned, there
is a bias-variance trade-off which is worth mentioning. Indeed, if the kernel
includes points that are too far away, the variance will be low but the bias
high, otherwise if the kernel only covers the closest points, the bias will be

17



Figure 8: Simulation results for MS-GWR. Decomposed error for different band-
widths when estimating model (34) (with stationary β0) over M = 100 replicates
of the simulations. Titles of the panels refer to the bandwidth used for the spatial
kernels –the same bandwidth being used for both event- and site-coordinates.

Figure 9: Simulation results for MS-GWR. Total error for different bandwidths
when estimating model (34) over M = 100 replicates of the simulations, mis-
specifying the model and considering it as (33). Titles of the panels refer to
the bandwidth used for the spatial kernels –the same bandwidth being used for
both event- and site-coordinates.
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Figure 10: Simulation results for MS-GWR. Standardized residuals for different
bandwidths when estimating model (33) (with stationary β0) over M = 100
replicates of the simulation. Titles of the panels refer to the bandwidth used
for the spatial kernels –the same bandwidth being used for both event- and
site-coordinates.

low but the variance high. In fact, the larger the bandwidth, the higher is the
number of data which are influential in the regression for location i, resulting in
estimates closer to the ones that would be obtained by weighting all the data in
the same way. On the other hand, if a small bandwidth is selected, only close
data are attributed a high weight, leading to estimates associated with large
standard errors, especially in the case of a small sample size. In this work, the
optimal bandwidth will be selected by cross-validation, aiming to balance this
bias-variance trade-off.

Prediction error Considering finally the prediction accuracy rather then the
coefficients estimates, simulations show that there is no significant difference
between the standardized error ERRstd when permuting the order of estimation,
regardless of the chosen bandwidth. For instance, Figure 10 show the standard
error estimated for model (33), when using different orders of estimation and
different bandwidths –similar results being obtained for models (34) and (35)
(not shown). This result suggests that the order of estimation has no relevant
impact on the quality of point estimates of the response variable, but only
on the coefficients. Thus, if we are interested in prediction only, any order of
estimation can be selected. However, if, in addition to this, one aims to give an
interpretation of the coefficients –as in our application to GMMs– the algorithms
SEC and ESC appear to be the most suitable.
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4.2 Permutational inference

We now assess the performance of the inferential procedure proposed in Section
3. To design the simulation study, we take inspiration from the simulation
setting used by Mei et al. (2016) for assessing the performances of the bootstrap
test for the constant coefficients of MGWR. We consider a spatial region made
of two identical squares, with coordinates ranging from 0 to m with step equal
to 1, where m = 15 or m = 20. The considered sample sizes are N = 256 and
N = 441, respectively. As a model, the following equation is considered, for
i = 1, ..., N ,

yi = β0C +β1(uei , vei)xi1 +β2(usi , vsi)xi2 +β3(uei , vei)xi3 +β4(usi , vsi)xi4 + εi,
(37)

where 
β1(ue, ve) = 4 sin( π10ue)

β2(us, vs) = 4
625usvs(10− us)(10− vs)

β3(ue, ve) = 1 + 4c
[
1 + e−(ue−5)

]−1
β4(us, vs) = 0.5 + 2c

[
1 + 1

125 (vs − 5)3
] (38)

with c being a constant which will be designated different values to evaluate
the power of the test. The model errors εi are independent and identically
distributed random variables with zero mean and variance σ2 = 1. Two different
models for εi will be tested, namely εi ∼ N (0, 1) and εi ∼ U(−

√
3,
√

3). The
covariates xij , i = 1, ..., N , j = 1, ..., 4, are generated as follows. Let Z1, Z2, Z3

and Z4 be independent random variables, distributed as U(0, 1); the covariates
are obtained as 

X1

X2

X3

X4

 =


1 γ 0 0
γ 1 τ 0
0 τ 1 δ
0 0 δ 1



Z1

Z2

Z3

Z4

 . (39)

Parameters γ, δ and τ in (39) assume value 0.27 or to 0.5 one at a time, in
order to introduce collinearity, with a correlation coefficient ρ equal to 0.5 or
0.8, respectively, between two covariates. The test we are going to consider is

H0 : β3(ue, ve) = β3 and β4(us, vs) = β4

H1 : all coefficients, except for the intercept, vary over space in their coordinate system.
(40)

Finally, the optimal bandwidths are selected minimizing over h the generalized
cross-validation criterion (GCV, Mei (2004)), defined as

GCV (h) =

n∑
i=1

[yi − ŷi(h)]2

[1−Hii(h)]2
(41)

where Hii(h) is the ith diagonal element of the resulting hat matrix and ŷi(h) are
the estimated values. In the following, we shall always consider the SEC order
of estimation, analogous results being obtained with ESC order (not shown).
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Error distribution

Collinearity n N (0, 1) U(−
√

3,
√

3)
Independent 256 0.052 0.048

441 0.054 0.048
ρX1X2

= 0.5 256 0.038 0.040
441 0.042 0.042

ρX1X2
= 0.8 256 0.042 0.042

441 0.046 0.044
ρX2X3 = 0.5 256 0.034 0.038

441 0.046 0.042
ρX2X3

= 0.8 256 0.040 0.042
441 0.046 0.044

ρX3X4
= 0.5 256 0.042 0.040

441 0.044 0.042
ρX3X4 = 0.8 256 0.040 0.044

441 0.042 0.046

Table 1: Rejection rates of the permutation test under the null hypothesis
(c = 0).

At first we set c = 0 and compute the rejection rate at a level α = 0.05,
running M = 500 replications, each with B = 1000 permutations. As we can see
in Table 1, the rejection rates are reasonably close to the significance level, and
the method seems to be robust to collinearity and different error distributions,
as far as detecting stationary coefficients is concerned.

Then we set c 6= 0, with values ranging in [0.1, 0.7] with step 0.1. In this
case, the alternative hypothesis is true. We run M = 500 replications, each
with B = 1000 permutations, with a significance level of α = 0.05, focusing
on independent covariates and on highly correlated covariates only. As we can
see in Figure 11, the power increases both with increasing sample size and with
increasing constant c. Considering different error distributions, no significant
difference can be observed. As far as collinearity is concerned, there seems to
be a slight loss in power, even though the capacity of non stationarity detection
is not compromised.

5 Case study

5.1 Model calibration

In this section we calibrate via MS-GWR a non-ergodic GMM to describe the
PGA, extending eq. (1) (Lanzano et al., 2019) to a spatially varying formulation
inspired by the model (2) of Landwehr et al. (2016a). However, unlike Landwehr
et al. (2016a), we here consider a stationary intercept, consistent with the results
of the simulation study presented in Section 4. The model for the PGA we aim
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Figure 11: Power functions of the permutation test, under significance level α =
0.05. The first to the fourth rows are, respectively, for (a) mutually independent
variables, (b) ρX1X2 = 0.8, (c) ρX2X3 = 0.8 and (d) ρX3X4 = 0.8. Solid line for
n = 441, dashed line for n = 256.

to estimate is

log10PGA = a+ b1(Mw −Mh)1(Mw≤Mh) + b2(Mw −Mh)1(Mw>Mh)

+ [c1(Mw −Mref ) + c2(ue, ve)] log10

√
R2
JB + h2 + c3(ue, ve)

√
R2
JB + h2

+ k(us, vs)
[
log10(VS30

800 )1(VS30≤1500) + log10( 1500
800 )1(VS30>1500)

]
+ f1SoF1 + f2SoF2 + ε.

(42)
Notice that Mh, Mref and h are fixed parameters; Mw, RJB and VS30 represent
the covariates and a, b1, b2, c1, c2, c3, f1, f2 and k the regression coefficients.

Bandwidth selection The calibration is carried out for grid with step equal
to 10 km, covering the whole Italian territory, except for Sardinia, which is
non-seismic; as a result, the considered grid is made of 2760 grid cells.

We carry out the whole calibration using SEC and then we select the best
between ESC and SEC, by comparing their generalized cross-validation criterion
values (GCV) found with the same bandwidths. More in details, we first select
the optimal bandwidths for model (42) using the SEC order, finding bwE = 25
km and bwS = 75 km, and then carry out all the following tests using the same
bandwidths. The reason for this choice is that selecting the optimal bandwidths
bwE and bwS is the computationally heaviest step in the whole calibration, which
is thus applied once, on the model we are most likely to use based on the prior
knowledge on the GMM.
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Null hypothesis p-value PGA

H0 : b1,i = b1 0.988
H0 : b2,i = b2 0.116
H0 : c1,i = c1 0.156
H0 : c2,i = c2 0.047
H0 : c3,i = c3 0.012
H0 : f1,i = f1 0.972
H0 : f2,i = f2 0.033
H0 : ki = k 0.087

Table 2: Permutation tests for sta-
tionary coefficients (1000 permuta-
tions). P-values lower than 10% are
highlighted in bold.

Null hypothesis p-value PGA

H0 : a = 0 0.000
H0 : b1 = 0 0.000
H0 : b2 = 0 0.151
H0 : c1 = 0 0.000
H0 : f1 = 0 0.031
H0 : f2 = 0 0.117

Table 3: Permutation tests for null
coefficients (1000 permutations). P-
values lower than 10% are high-
lighted in bold.

Model selection Having fixed the bandwidths, we verify whether introducing
spatial non-stationarity leads to improved results with respect to a stationary
approach. A joint test for the stationarity of the coefficients shows a strong
evidence of non-stationarity (p-value=0.000).

By analogy with Landwehr et al. (2016b) we expect that c2 and c3 –controlling
geometric divergence and anelastic attenuation, respectively– shall depend on
event-location. Moreover, we expect that k –which characterizes the soil un-
der the station– shall depend on site-coordinates. A joint test on the non-
stationarity of c2, c3 and k (H0: all the coefficients are stationary; H1: all the
coefficients except c2, c3, k are stationary) shows evidence (level 10%) of their
non-stationarity (p-value=0.078). These coefficients are hereafter considered as
non-stationary, consistent with Landwehr et al. (2016b).

For the sake of completeness, Table 2 reports the results of hypothesis testing
on the stationarity of the coefficients, when these tests are carried out one at a
time. Note that one would reject (at the same level 10%) the null hypothesis
for f2. However, a non-stationary f2 would hinder the physical interpretation
to the model; in the following, f2 is thus considered as constant.

Looking at how influential stationary covariates are, we refer to the results
reported in Table 3. Here, one can see that b2 and f2 seem not to be significant
at level 10%, consistently with the results obtained in the calibration of ITA18.
Despite their limited impact on model predictions, these covariates were kept
in ITA18, and shall be included in our model as well, to ease the comparison.
This choice is also supported by the joint test on these coefficients, according
to which they are jointly significant at level 10% (p-value=0.048).

Finally, the comparison of GCV values obtained for ESC or SEC –on the
final model, estimated using the same bandwidths– leads to the selection of SEC
over ESC (GCV=450.8 for SEC, GCV=498.6 for ESC).
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a b1 b2 c1 f1 f2

MS-GWR 3.5502 0.2354 -0.0513 0.2654 0.0510 0.0394
(0.0454) (0.0326) (0.0372) (0.0188) (0.0205) (0.0240)

ITA18 3.4210 0.1940 -0.0220 0.2871 0.0860 0.0105
(0.0459) (0.0332) (0.0411) (0.0104) (0.0359) (0.0344)

Table 4: Point estimate of the stationary coefficients; standard deviations are
reported between brackets.

5.2 Interpretations

In Table 4 the estimated stationary coefficients are reported together with their
standard deviation, and compared with the ones obtained in ITA18. No evident
discrepancy between the two models is observed in this stationary part.

Figure 12 displays the spatial representation of the non-stationary coef-
ficients, each referred to the corresponding domain of variation (i.e., event-
coordinates (ue, ve) for c2, c3 and site-coordinates (us, vs) for k). The site-
dependent estimate varies much more smoothly than the event-dependent ones.
This is likely to be due to the different density of events with respect to stations
and to the differing bandwidths that have been previously selected.

As far as c2 and c3 are concerned, one can see that they behave in a com-
plementary way, higher values of geometrical spreading being associated with
lower values of anelastic attenuation and vice versa.

Notice that, in the calibration of ITA18, c3 was set to 0 when positive, since it
would lead to an enhancement of the spectral amplitudes, which is not physically
meaningful in general. Nevertheless, in the calibration using MS-GWR, positive
values of c3 have been kept, since this phenomenon can be observed in the Po
Plain, where we may have reflection effects, for both long and short periods, due
to Moho discontinuity, which marks the transition in composition between the
Earth’s rocky outer crust and the more plastic mantle (Lanzano et al., 2016).

5.3 Residuals and uncertainty

Focusing on the residuals, they do not show relevant patterns (see Figure 13),
thus indicating that the model succeeds in capturing the effects of the input
variables.

We now compare the uncertainty of our model and associated predictions
with those of ITA18. Recall that RSS/δ1, with δ1 the effective degrees of
freedom, is an unbiased estimate of the variance of the error σ2 (see Section
3). On this basis, we obtain an estimated standard deviation of σ̂ = 0.3001
against a standard deviation for ITA18 of σ̂ITA18 = 0.3362. Introducing spatial
non-stationarity thus leads to a moderate reduction of the aleatory variability.

While the aleatory variability of the model is constant over space, epis-
temic uncertainty for MS-GWR is spatially varying. The joint effect of both
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(a) Coefficient c2(ue, ve) (ITA18:
c2 = −1.4056)

(b) Coefficient c3(ue, ve) (ITA18:
c3 = −0.0029)

(c) Coefficient k(us, vs)(ITA18:
k = −0.3946)

Figure 12: Maps of non-stationary coefficients, estimated via MS-GWR
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Figure 13: Residuals of model (42) estimated via MS-GWR

variabilities can be assessed by evaluating the statistical variability in the me-
dian predictions. To evaluate its spatial variation, we set the input variables
to Mw=5, VS30=300ms , SoF=NF and RJB=10km and predict the response for
PGA. For the sake of simplicity and following Landwehr et al. (2016b), the same
event-station coordinates are considered (i.e., (ue, ve) = (us, vs)).

Graphical inspection of Figure 14 suggests that the lowest values of pre-
dictive uncertainty are located in areas with a very high density of data, both
of stations and events. On the other hand, its highest values are observed in
areas characterized by a lack of data, e.g., in the region of the Alps, Apulia
and Sicily. These values are generally higher than the epistemic uncertainty re-
lated to ITA18, coherently with the transferral of repeatable effect from aleatory
variability to epistemic uncertainty.

5.4 Model validation

In order to validate the model, we carry out a 10-fold cross-validation, splitting
the dataset completely at random in 10 folds F1, ..., F10 and comparing the mean
squared error, defined as

MSE10−fold =
1

10

10∑
j=1

∑
i∈Fj

(yi − ŷ−j)2

Nj
, (43)

where ŷ−j is the predicted value using the model calibrated using all folds except
for Fj . Results show that MS-GWR leads to improved results (MSE10−fold =
0.09252) with respect to ITA18 (MSE10−fold = 0.11996), supporting the intro-
duction of spatially varying coefficients.

The resulting GMM is also tested to independent events (i.e., events outside
the calibration dataset). We thus consider the following events
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Figure 14: PGA, standard deviation of ŷ (in log10 units) for the input Mw=5,
VS30=300ms , SoF=NF and RJB=10km

- Muccia (MC), ID EMSC-20180410 0000011, 10.04.2018, Mw=4.6, 174 ob-
servations;

- Termoli (CB), ID EMSC-20180816 0000090, 16.08.2018, Mw=5.1, 167 ob-
servations;

- Barletta (BT), ID EMSC-20190521 0000022, 21.05.2019, Mw=4.0, 51 ob-
servations;

- Siracusa (SR), ID IT-1990-0003, 13.12.1990, Mw=5.6, 7 observations.

The adopted records for testing are taken from the Italian Accelerometric Archive
(ITACA) (Pacor et al., 2011), available at website http://itaca.mi.ingv.it. Fig-
ure 15 show the standardized residuals of the four selected seismic events. One
can note that MS-GWR leads to equivalent or better results than ITA18; in
particular, the best results are observed in areas which are densely sampled in
the calibration dataset.

6 Discussion and conclusion

In this work, we proposed a novel approach to calibrate regionalized regression
models accounting for multiple spatial non-stationarities, with a particular focus
on non-stationary ground motion models depending on site- and event-effects.
The proposed approach is of general validity, and could be potentially applied
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Figure 15: Standardized residuals of independent events: ITA18 (left light box)
vs MS-GWR (right dark box)
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in varied environmental and industrial settings, ranging from climatology to the
oil and gas industry. In the field of seismology, the approach represents an al-
ternative to the Bayesian methodology described by Landwehr et al. (2016a),
presenting the significant advantage of being simpler and fully non-parametric.
From the application viewpoint, the proposed approach allowed us to regional-
ize the state-of-the-art model for PGA in Italy (Lanzano et al., 2018), making
explicit the non-stationary relation between the response variable (PGA) and
the predictors. The extensive validation study performed in Section 5 allows
us to conclude that the proposed model exhibits (a) a good capability to cap-
ture the main physical aspects related to the source, site and path terms; (b) a
model uncertainty which is generally higher for the Italian regions where data
are sparse (Western Sicily, Southern Apulia) and lower where data are densely
sampled (Central Italy); (c) a lower aleatory variability, as a consequence of the
regionalization process through spatially varying predictions, which necessarily
reflects on a larger epistemic uncertainty; and (d) a decrease in the overall pre-
diction error (both in cross-validation and on independent events) with respect
to the state-of-the-art stationary model (ITA18, Lanzano et al. (2018)).

The results here presented thus appear very promising, and classify the
methodology as a good candidate for the regionalization of global ground mo-
tion models when enough sampling coverage is available. This opens important
perspectives for the computation of site-specific Probabilistic Seismic Hazard
Analysis (PSHA), as well as for the development of shaking scenarios in loss
prediction and emergency planning purposes.

Grounding on the theory of geographically weighted regression (GWR), the
approach here proposed is also prone to be extended to more complex settings
as functional data analysis (FDA, Ramsay and Silverman (2005)) and object
oriented data analysis (OODA, Marron and Alonso (2014)). Such extension
could potentially allow one to consider functional intensity measures, such as
the spectral acceleration SA(T ) as a function of the period of oscillation T
(of which PGA is a point evaluation at T = 0). A pioneering study in this
direction was recently proposed by Menafoglio et al. (2020), who presented a
functional simulation setting for these types of data, based on the residuals of
the GMM ITA18. The development of functional GMMs is seen by the authors
as a powerful perspective of research, which could lead to breakthrough advances
in engineering seismology, and could naturally stem from the research proposed
in this work.

A Mixed Geographically Weighted Regression

In this Appendix we show a short overview over mixed geographically weighted re-
gression (MGWR), a generalization of geographically weighted regression (GWR),
in which some coefficients are constant over space and the others present spatial
non-stationarity. In particular, we will show the estimation algorithm proposed
by Mei (2004), which is computationally less intensive than the original iterative
estimation (Fotheringham et al., 2002).
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The starting formulation of the model is

yi =
∑
j∈C

βjxij +
∑
j∈NS

βj(ui, vi)xij + εi, i = 1, ..., n. (A.1)

which can be rewritten as:

ỹi = yi −
∑
j∈C

βjxij =
∑
j∈NS

βj(ui, vi)xij + εi i = 1, ..., n. (A.2)

The general idea is now to apply at first standard GWR to eq. (A.2), in
order to estimate spatially non-stationary coefficients, and then to apply OLS
to obtain an estimate of the stationary coefficients. Applying this procedure,
the following three-step estimation algorithm is obtained:

- Estimate βC as β̂C = [XT
C (I−HNS)T (I−HNS)XC ]−1XT

C (I−HNS)T (I−
HNS)Y ;

- Evaluate the estimated partial residuals Ỹ = Y −XC β̂C ;

- Estimate βNS,i as β̂NS,i = (XT
NSWiXNS)−1XT

NSWiỸ , i = 1, ..., n

where Wi is the weighting matrix associated with the i-th sample unit and

HNS =

XNS,1(XT
NSW1XNS)−1XT

NSW1

...
XNS,n(XT

NSWnXNS)−1XT
NSWn

 . (A.3)

The explicit formulation of the resulting hat matrix finally is:

H = HNS+(I−HNS)XC

[
XT
C (I −HNS)T (I −HNS)XC

]−1
XT
C (I−HNS)T (I−HNS)

(A.4)
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