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Abstract

We address the problem of providing data-driven models for sediment transport in a pre-Alpine
stream in Italy. We base our study on a large set of measurements collected from real pebbles,
traced along the stream through Radio Frequency IDentificator (RFID) tags after precipitation
events. We propose and evaluate two classes of data-driven models – based on machine learning
and functional geostatistics approaches respectively – to predict the probability of movement of
single pebbles within the stream. The first class is built upon gradient boosting decision trees, and
allows one to estimate the probability of movement of a pebble, based on the pebbles’ geometrical
features, river flow rate, locations, and subdomain types. The second class is built upon functional
kriging, a recent geostatistical technique which allows one to predict a functional profile –i.e.,
the movement probability of a pebble, as a function of the pebbles geometrical features or of the
stream’s flow rate– at unsampled locations in the study area. Although grounded on different
perspectives, both these models aim to account for two main sources of uncertainty, namely (i) the
complexity of river’s morphological structure, and (ii) the highly-nonlinear dependence between
probability of movement, pebble’s size and shape, and the stream’s flow rate. We extensively
compare the performances of the two methods in terms of classification accuracy, and show that,
although these techniques are grounded on different perspectives, an overall consistency appears
between the methods suggesting that both approaches may provide valuable modeling frameworks
for the problem at hand. We finally discuss on the use of the developed models in a bottom-up
strategy, which starts with the prediction/classification of a single pebble and then integrates the
results into a forecast of the grain-size distribution of mobilized sediments.
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1 Introduction
Bedload transport has been recognized as a phenomenon that has a significant role in a range of ap-
plications with non-negligible environmental and societal impacts, including agriculture (Haddadchi
et al. 2014), reservoir siltation (de Miranda and Mauad (2015), Longoni et al. (2016b)), urban plan-
ning (Dotterweich 2008), riverine species’ habitat (Wharton et al. 2017), river-structure interactions
(Pizarro et al. 2020), and flood risk management (Radice et al. (2016), Mazzorana et al. (2013)).
Bedload transport studies have demonstrated that the dynamics of the process are largely dependent
on the hydraulic parameters of the stream (e.g. Hassan and Bradley (2017), Vázquez-Tarrı́o et al.
(2019)), while the effects of sediment transport are particularly prominent in mountain streams due
to the abundant availability of sediment material and the swift time of concentration leading to sig-
nificant sediment mobility even for events of short duration, such as several tens of hours (Sear et al.
(1995), Stover and Montgomery (2001), Lane et al. (2007), Longoni et al. (2016a)).

Individual pebble tracing has been outlined as an innovative method which allows for the collec-
tion of bedload transport field data, which could provide insights in the dynamics of the process at
a variety of temporal and spatial scales. Radio Frequency Identification (RFID) transponders (a.k.a.
Passive Integrated Transponders or PIT tags) have been used as sediment tracers and deployed in
field and flume experiments to understand particle transport. Both active and passive tracers have
been used by a number of authors for pebble tracking (e.g. Cassel et al. (2017)). While the former
feature higher detection ranges and thus a lower loss rate, the latter are significantly less expensive
and thus a larger sample of tracer-equipped pebbles could be created. Recent reviews on passive tag
pebble tracking can be found in (Hassan and Bradley 2017), (Vázquez-Tarrı́o et al. 2019) (Ivanov
et al. 2020a). The possibility to monitor the sample with a desired frequency permits the correla-
tion of quantities such as the pebbles’ mobility, displacement, and velocity to river discharge and
meteorological events’ parameters.

Pebble tracing data is generally processed so as to analyze trends in travelled distances, virtual
velocity, and proportion of mobile pebbles. Those control parameters are to be put in relation to vari-
ables considered key drivers of sediment transport such as river discharge, as well as predisposing
factors such as pebbles’ dimensions or, less commonly, the local morphological conditions (e.g. Fer-
guson et al. (2017), Vázquez-Tarrı́o et al. (2019), Cain and MacVicar (2020), Ivanov et al. (2020a)).
The proportion of mobile pebbles within the period of observation provides an indication on the mo-
bilizing capacity of the stream during a given event. This parameter was analysed in the work of
Papangelakis and Hassan (2016), who established a linearly increasing trend with respect to the total
excess flow energy expenditure over an entire season with a quite good fit (R2 = 0.78 and R2 = 0.72,
respectively for two investigated reaches), while its relation to the peak flow discharge demonstrated
a weaker relationship. No dependency was established between the proportion of mobile pebbles
and their size. Further, Ferguson et al. (2017) report a weakly increasing trend of pebble mobility
with increasing peak flow rate, observed at the event-scale for 6 events. Instead, Ivanov et al. (2020a)
did not find any correlation between dimensionless peak flow rate and the ratio of mobile particles
over a dataset including 18 event observations. This difference in results from studies carried out
at different timescales highlights the intermittency of the process as well as the multifaceted nature
of sediment mobilization, where factors such as sediment size and morphology hinder a clear trend
to be established at the event-scale level. The discrepancies between results obtained by different
authors suggest that the dynamics of the process can vary significantly when pebble tracing data are
analyzed at the event scale, while general trends of bedload behaviour become more obvious when
seasonal or yearly data are considered. It is likely that the multifaceted nature of pebble mobility
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renders it hard to describe with a simple regression, typically used to relate pebble tracking data to
control variables. More complex nonlinear models could therefore be able to incorporate the variety
of factors affecting the mobility of pebbles at the event scale.

Advanced analytical approaches which may allow to model the complex phenomena taking place
in sediment transport may be grouped at least in two classes (i) purely physics-based approaches,
or (ii) highly non-linear, data-driven approaches. In the former case, systems of partial-differential
equations (PDE) are used to model the dynamics of the flow, and consistently assess the sediment
transport (see, e.g. Vetsch et al. (2017)). In this case, field data can be used to calibrate the PDE, both
in terms of providing sensible input parameters (e.g. Bakke et al. (2017), Gatti et al. (2020)), or to
validate the model outputs (e.g. Brambilla et al. (2020)). Critical points of this class of methods typi-
cally lie in the numerical complexity of solving the PDEs, in the data assimilation process, and in the
uncertainty quantification of the model, which often require the development of ad-hoc techniques.
In this work, the focus shall be on the latter approach instead. Data-driven methods can be used to
build empirical models for the sediment transport, in which data are used directly to infer on the
connection between the sediment transport and the stream/bedload characteristics – without relying
on the physical laws governing the system. Data-driven models have the advantage of being typically
characterized by a lower number of input parameters to be calibrated, beside being often naturally
suitable to effectively perform uncertainty quantification (e.g., via resampling methods, Friedman
et al. (2001)).

Amongst the data-driven approaches available in the literature, we here consider the comparison
of two viewpoints to the problem of predicting the probability of pebbles’ movement, namely (a) a
machine learning approach based on boosting methods, and (b) a functional geostatistics framework.
In the first case, a model for the probability of pebbles’ movement is built based on decision trees
applied iteratively, in the framework of gradient boosting decision trees (see, e.g., Friedman et al.
(2001)). Note that the iterative construction of the trees precisely allows one to build a highly non-
linear model for the relation between the probability of movement of single pebbles and the charac-
teristics of the pebbles themselves (e.g., shape, size), and of the stream (e.g., flow, geomorphology).
In the second case, a functional data analysis (FDA, Ramsay and Silverman (2005)) approach is used
to reconstruct the non-linear functional relation between the probability of pebbles’ movement and
their characteristics (i.e., shape, size). These functional forms –which can be estimated only locally–
are then predicted at unsampled locations along the river, by relying on the theory of object-oriented
spatial statistics (O2S2, Menafoglio and Secchi (2017)) which provides a methodological framework
to analyze functional observations distributed in space (e.g., via kriging). These two different view-
points to the problem shall be here compared in terms of actual error in validation analyses (both
in a cross-validation setting and on an independent dataset), and the results interpreted from the
geomorphological standpoint, highlighting the strengths and limitations of both approaches.

The remaining of this work is organized as follows. Section 2 presents the available the study
area, and the available data in terms of pebbles characteristics and position, stream flow and river
geomorphology. Section 2.2 describes a preliminary analysis of the dataset, to highlight its key fea-
tures and introduce the concept of typical rainfall event, which will be instrumental to the application
of the data-driven approaches considered in this work. These will be introduced in Section 3, and
applied to the data in Section 4. Section 5 discusses the application of the proposed approaches on an
independent dataset, collecting pre- and post-event granulometric distributions at a number of sites
in the study region, highlighting the critical points of this process. Finally, Section 6 will provide a
discussion and draw conclusions of the work. All the data analyses here presented were performed
using the software R (R Core Team 2020); source codes to reproduce the analyses are freely available
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at the link: github.com/alexdidkovskyi/YP_Paper.

2 The Field Case

2.1 Data Description
The investigation carried out in this work is based on field data collected in the hydrographic basin
of the Caldone river. This area was subject to an extensive study in recent years (Ivanov et al.
(2016a), Ivanov et al. (2017), Papini et al. (2017), Ivanov et al. (2020a), Ivanov et al. (2020b), Gatti
et al. (2020)) aimed to assess the hydrogeological instability and hazard within the region. The
data available for the present study come from four main sources, which are illustrated in greater
details below: geomorphological characteristics of the domain, sediment information (pebbles’ size,
dimension, etc), pebbles’ locations, and river flow information. All these sources of information were
independently measured. Data on domain characteristics and pebbles’ dimensions are the only static
information, while the other sources are dynamic, and strictly related with the sediment transport
phenomenon.

The domain The hydrographic basin of the Caldone river (Fig. 1) covers an area of 28 km2

and collects an average yearly rainfall depth of around 1400 mm. The main stream is 11 km long
and outlets into the Como Lake after its passage through the town of Lecco. As in most pre-Alpine
environments, active geomorphic processes include colluvial and fluvial transport responsible for
the yield and further propagation of sediment downstream (Ivanov et al. 2016b). The steep slopes
characterizing the stream and the limited time of concentration promote the rapid development of
flood waves that are capable of transporting large amounts of sediment. The gradient of the river
varies in the range 10 – 40 % in the upstream portion of the basin, and 1 – 5.5 % in its lower part.
The channel width is typically less than 10 m. The sediment grain size distribution extends from
fine sand to boulders of metric dimensions. The discharge at the downstream end of the basin ranges
from 0.2 m3/s in normal conditions up to peak values of more than 100 m3/s. The river reach that
is the on focus in this work (henceforth referred to as the domain), extends for about 1km from the
confluence of the Caldone with its main tributary (Fig. 1).

From a geomorphological point of view, the domain is characterized by several subdomains.
Morphological units identified in the reach are the following. A cascade zone characterized by a
swift and shallow tumbling flow, disturbed by the presence of coarse sediment. Downstream, the
channel transitions into a step-and-pool zone characterized by longitudinal steps composed of large
clasts that separate the consecutive pools which contain finer grain sediment. The stream in this zone
alternates from swift over the steps to slow within the pools. Finally, the monitored domain ends
with a plane-bed area which is a flat relatively featureless bed with a lower gradient that allows for
the undisturbed flow of the stream. The domain is laterally confined by a bank zone that is often
vegetated and the stream flow here is rather slow with respect to the centre of the channel. Along
the entire monitored reach, there is the formation of longitudinal and side bars which effectively
represent sediment build-up zones. Those zones typically act both as source and deposition zone
during moderate and high flow events. The reach is further characterized by the presence of large
boulders of metric dimensions. The morphological units typically have a compound nature and they
consist of a set of disjoint morphological sectors. These morphological sectors are depicted in Figure
1 as individual polygons.
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Figure (1) The hydrographic catchment of the Caldone river. Monitored domain and subdomains.
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Indicator Mean Sd
a-axis 108.57 25.08
b-axis 79.40 17.24
c-axis 53.46 12.49
Nominal diameter 76.60 14.34
Weight 726.66 404.73
Elongation 0.75 0.13
Platyness 0.51 0.12
Sphericity 0.72 0.09

Table (1) Pebbles’ primary and secondary indicators: summary statistics

Figure (2) Typical pebbles included in the dataset.

Sediment information Although, in general, a complete characterization of the shape of a
pebble may require a complex representation, in our study this is summarized by its primary and
secondary indicators. The primary indicators are the 3 main dimensions of the pebble (in cm), and
its weight. These dimensions are computed as the length of the pebble along its three main axes,
named a-, b-, and c-axis, these lengths being in a decreasing order. The secondary indicators are
derived from the primary ones; they are elongation (b/a), platyness (c/a), sphericity (( c2

ab )
1/3) and

nominal diameter ((abc)1/3). Typically, these indicators are correlated; for instance, the weight is
strongly correlated with the nominal diameter. Thus, summaries, or only part of the indicators can
be used for a more efficient characterization of the shape and dimension of the pebbles (see Section
2.2). An illustrative example of typical pebbles belonging to the study is reported in Figure 2. Table
1 reports the mean and standard deviation of the primary and secondary indicators for the set of 664
pebbles considered for this study.

Pebbles scattering The limited cost of the RFID tags allowed for their insertion in the 664
pebbles considered in this study. Before deployment into the river, the pebbles were drilled, each one
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(a) RFID tags (b) Pebbles before and after coloration

Figure (3) Experimental setup: inclusion of RFID and coloring of pebbles

was equipped with an RFID tag, and they were finally painted in a bright yellow color for visual aid
as illustrated in Fig. 3. The weight and dimensions (a-, b-, and c-axis) of each pebble were recorded
and associated to the respective RFID unicode. The deployment in the river (Fig. 1) was carried out
in several tranches and the movement of the pebbles was monitored with a portable antenna after
each significant rainfall event along the period 06/2016 - 09/2018. The successive position of the
pebbles was recorded on a photorealistic model of the reach (Fig. 1). The unicode contained in
each transmitter allowed each pebble to be attributed with a position before and after a flood event.
Detailed explanation of the experimental procedure can be found in Papini et al. (2017).

River flow data During the period 2016-2018, the pebble samples were surveyed after 28 pre-
cipitation events. The river flow rate just downstream of the monitored reach was recorded during the
event. Values of river discharge are obtained from the observation of water depth at the gauge station
with a hourly resolution (Fig. 4) and the respective depth-discharge curve (detailed information can
be found in Ivanov et al. (2020a), Ivanov et al. (2020b)). In this analysis, peak values of water depth
and river flow rate were considered for each event. Ivanov et al. (2020a) identified a dimensionless
discharge threshold for sediment mobility on the basis of a subset of the data presented in this work.
The threshold value was then translated into water depth. This allowed for the definition of event
duration, taken as the duration over which the water depth, and respective river discharge, remained
above the threshold value. According to the type of event, its duration can range from a hour (the
highest observation frequency) to as long as several days. Mobilizing events could be outlined as
two general types – high peak discharge and short duration, and events with a limited intensity but
a longer duration. Since the water depth threshold is empirically estimated, a sensitivity analysis
was carried out on the threshold definition as it directly impacts the duration of each event – the
higher the threshold, the shorter the event’s duration and vice versa. A record of rainfall depth is
available for the period of observation. However this datum is collected at the downstream end of
the hydrographic basin – at a considerable distance away from the monitored reach (Fig. 1) .

2.2 Data exploration and pre-processing
To construct the dataset for models’ training out of initial raw data, each data source is pre-processed
separately. Data pre-processing consists of: (1) data selection and treatment of missing values, and
(2) dimensionality reduction of pebbles’ and flow’s indicators. Step (1) aims at cleaning the dataset,
concerning particularly the management of missing data due to the fact that not all the pebbles could
be found after the rainfall events. In this regard, we observe that around 20% of the pebbles were
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Figure (4) River depth during mobilizing event 15 (27/09/2017-30/09/2017)

registered during nonconsecutive events (i.e., 20% of the pebbles have at least one missing value).
For instance, several pebbles were lost for three consecutive events and then found at their respective
initial place. This could be due to a temporary increase in water depth (and consequently, in the
distance between a pebble and the antenna during the survey). However, given that their position
did not change, these pebbles can be assumed as still during all these events when they were lost.
Treatment of missing data is thus performed through the following rules:

1. If a pebble is lost for N ≥ 1 events and then found after the (N + 1)-th event at the same
location, it is considered as steady at the same place along all the N+1 events (thus marked as
not-moved at all the events).

2. If a pebble is lost for N ≥ 1 events and then found at a different location, the partial information
about this pebble is not used.

3. If a pebble is found upriver, we interpret this as a positioning error and the data point is re-
moved.

Furthermore, in order to isolate erroneous data, we also use a simple heuristic allowing to identify
observations with a potential positioning issue. Note that the domain is characterized by a slope from
upstream to downstream, and, consequently, a downslope propagating river flow. Hence, assuming
one directional flow, the expected pebble displacement is in the direction of the flow. We thus exclude
all observations that are associated with an upstream movement and displacement larger that 1 m.
This heuristic identified 65 observations with positioning issues out of 2200.

Step (2) (i.e., dimensionality reduction) was separately performed on pebbles’ and flow’s indi-
cators. Focusing on pebbles dimensions, we consider the primary indicators (a-axis, b-axis, c-axis),
and perform principal component analysis (PCA) to filter out the redundancy within this set of in-
formation. For the same purpose, secondary indicators are not considered further for the analysis, as
strongly correlated with primary ones. The first PC (hereinafter PC1) is responsible for 77% of the
variance of the data, while the second PC (hereinafter PC2) explains an additional 13% of variance.
Interpretation of the loading of PC1 (e1 = (0.84,0.48,0.24)T ) suggests a strong association of PC1
with overall pebbles’ size (the higher the score, the larger the pebble). In turn, the PC2 appears
associated with the elongation of the pebble (e2 = (0.54,−0.71,−0.44)T ) – the higher the score, the
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(a) Rainfall Events Dendrogram. Numbers are IDs
of mobilizing events

(b) Events’ clusters

Figure (5) Rainfall Events Clustering

more elongated the pebble is. The weight of the pebbles appears to be strongly correlated with PC1
(correlation: ρ = 0.87), and is thus excluded from the predictors to avoid collinearity.

Concerning flow data, exploration of the dataset suggests the presence of three macro-groups
of mobilizing events, namely typical events (T), short intense events (SI), and long mild events
(LM). These clusters are clearly evidenced when applying hierarchical clustering, see, e.g., the results
obtained with Euclidean distance and Ward linkage reported in Figure 5. Here, groups T, SI, LM are
reported as black, green and red symbols, respectively. It is noticeable that the typical events (T)
share a good degree of similarity in terms of river flow data, beside representing 20 out of 28 rainfall
events (corresponding to 1594 out of the 1989 pebbles’ observations).

Dimensionality reduction of the river flow data is based on PCA of the scaled values of (i) mo-
bilizing event duration (hours), (ii) average river depth (cm), and (iii) average water flow (m3/hour),
when all the groups of events are considered together. These variables were scaled using min-max
normalization, i.e., they were separately scaled to range in the [0,1] interval. The first PC of the flow
data, named PC1 f low, explains 71% of variability and is interpreted as a contrast between duration
and flow characteristic (v1 = (0.11,−0.69,−0.71)T ) – high scores being associated with short in-
tense events, low scores with long and less intense events. The second PC, PC2 f low, is responsible
for an additional 28% of variance and it is strongly associated with duration (v2 =(0.99,0.01,0.01)T )
– high scores being representative of higher durations.

In the following, only pre-processed data shall be considered for our analyses, each observation
being built out of the following set of variables: PCs of pebble’ dimensions, PCs of flow data (for
each event), pebble’ locations (after each event) and associated geomorphological domain. Pebbles’
locations are used to compute their displacement after an event as the Euclidean distance between
their positions before and after the event. The measured displacement di j of the i-th pebble after the
j-th event is then used to classify it as moved (di j > 0) or not-moved (di j = 0).
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3 Methods
In this section, we describe the two classes of methods that shall be here considered for the classi-
fication problem on sediment transport data. Results of data analysis are reported in the following
Section 4.

3.1 XGBoost: forecasting pebbles’ movement from a scalar perspective
Forecasting sediment transport during multiple mobilizing events can be considered as a classifica-
tion problem for a set of single pebbles, the target classes being moved (M) and not-moved (NM). It
is thus natural to frame this problem in the context of two-class classification methods, that allow one
to estimate the probability of movement of single pebbles based on pebbles’ characteristics, locations
and flow data. Denote by (x1,y1), ...,(xn,yn) the set of n available observations, where yi is a target
variable and xi is a vector of features linked to the observation i. In this case yi ∈ {0,1} (NM or M)
and xi ∈ Rp, p being the number of features.

The training process of the classifier is typically based on minimization of the cost function J(θ)
over a set of parameters θ , in a parameter space Θ. In the context of gradient boosting (Chen and
Guestrin 2016 Ke et al. 2017), the objective functional is written as J(θ) = L(θ) +Ω(θ), where
L(θ) is a training loss and Ω(θ) is a regularization term which constraints the model complexity
and prevents overfitting. In the case of two-class classification, the logistic loss can be selected as
training loss:

L(θ) = ∑
i

[
−yi log(p̂i(θ))− (1− yi) log(1− p̂i(θ)

)
],

where p̂i(θ) is the predicted probability for the observation i given the parameters θ ∈Θ, and log(·)
is the natural logarithm. Note that, to express the probability of movement for each pebble as a
function of the available predictors, one may consider a very general functional, characterized by the
desired degree of complexity.

Training GBdt Gradient Boosting decision trees (GBdt) are amongst the most-common ap-
proaches to train non-linear classifiers based on a set of features. They allow to break down the non-
linear dependencies of the classifier into an extensive set of binomial rules, represented as binary
decision trees. Various implementations of GBdt exist (e.g., XGBoost, Chen and Guestrin (2016) or
LightGBM Ke et al. (2017)), the main difference relying in the way decision trees are built.

In this work, we focus on XGBoost, which nowadays is amongst the most used boosting methods,
particularly to deal with relatively small datasets, with a moderate number of categorical variables.
XGBoost consists of creating a set of weak classifiers ft(x1), each ft belonging to a space of binary
decision trees F . Given the (t− 1)-th tree, the t-th tree is built upon the residuals of the prediction
from the previous tree, i.e.,

ŷi
t =

t

∑
k=1

fk(xi) = ŷi
(t−1)+ ft(xi).
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At the step t, the objective function J(θ) is thus decomposed as

J(t) =
n

∑
i=1

l
(

yi, ŷ
(t)
i

)
+

t

∑
i=1

Ω( fi)

=
n

∑
i=1

l
(

yi, ŷ
(t−1)
i + ft (xi)

)
+Ω( ft)+ const, (1)

where l
(

yi, ŷ
(t)
i

)
is the value of the loss function for the i-th prediction at the t-th step and const =

∑
t−1
i=1 Ω( fi). Note that the term ∑

t−1
i=1 Ω( fi) in (1) is constant because, at step t, (t−1) trees have been

already elaborated, and their are kept fixed for in the construction of the t-th tree. Note that, in (1),
the dependence of ŷ(t−1)

i , ft and J(t) on θ was dropped just for simplicity of notation.
In the case of two-class classification, the predicted probability p̂i is typically obtained using a

sigmoid (i.e., logistic) function, i.e., p̂i = S(ŷi) =
1

1+e−ŷi
. Consistently, the predicted probability at

step t is obtained as p̂t
i = S(ŷt−1 + ft(xi)). Thus, the loss function at the step t can be explicitly

written as

l
(

yi, ŷ
(t)
i

)
=

n

∑
i=1

[
yi log

(
1+ e−(ŷ

t−1
i + ft (xi))

)
+(1− yi) log

(
1+ e(ŷ

t−1
i + ft (xi))

)]
.

Minimization of the cost functional J(t), for t = 1,2, ..., then yields the construction of a cascade
of trees, which jointly build the predicted probabilities and, ultimately, the classifier – obtained by
appropriate thresholding of the predicted probability p̂.

Finally, we recall the expression gradient boosting in GBdt refers to the usage of a second order
approximation with respect to ultimate prediction ŷi

(t−1); we refer the reader to (Chen and Guestrin
2016) for further details on this point.

Hyperparameters optimization The XGBoost model has a number of hyperparameters. These
control, e.g., the proportion of features or observations that is used at the t-th step, the depth of the
trees, and the learning rate. Here, finding the global optimum for the loss function is extremely hard,
as the objective functional is highly non-linear and non-convex. To increase the model accuracy,
one can consider fine-tuning of hyperparameters or their Bayesian optimization (Akiba et al. 2019).
Although it can provide a notable improvement in terms of errors, hyperparameters optimization is
a time-consuming process. Nevertheless, it is worth noting that, even with the default settings of hy-
perparameters1. a XGBoost model often outperforms competitor models, such as generalized linear
models, random forest, or support vector machines.

In the following, to reduce the training time of our model, we focus only on the optimization of
the parameter max depth which controls the maximum depth of the tree (i.e., the maximum number
of steps between a root of the tree and any tree node). In this work, the selection of max depth is
performed using B = 7 repeated K-fold cross-validation (CV) procedures (Rodriguez et al. 2009).
The B repetitions shall be here used to stabilize the result with respect to possible artifacts due to the
splitting of the dataset in folds (see also Section 3).

1The extensive list of hyperparameters and their default values can be found at xgboost.readthedocs.io/en/latest/
parameter.html
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3.2 Functional Kriging: forecasting pebbles’ movement from a functional
perspective

In this section, we consider a different viewpoint to the problem of forecasting the probability of
movement of pebbles along the stream, which grounds upon the theory of functional geostatistics.
The approach is based on the assumption that the dependency between pebbles’ dimensions, river
flow data, pebbles’ locations, and probabilities of movement can be modeled as a continuous function
with respect to all these features. This means that one may consider the data as observations from
a continuous functional surface, relating the value of the features x to the probability of movement
p(x). Note that such surface may be evolving along the stream domain D (i.e., p(x) = p(x;s)),
because of its composite nature. Being able to reconstruct the surfaces p(x;si), for the observation
sites si in the domain D, could thus potentially lead to a dataset of functional observations, to be then
projected over unsampled locations along the stream in a (functional) kriging setting. Inference on
p(x)= p(x;s) could be of a particular interest from the application viewpoint, as it would allow one to
provide a direct and interpretable characterization of the bedload drivers and predisposing conditions
for sediment transport. In the following, we discuss the operational steps which we follow to realize
this idea in the following analyses.

Reconstruction of functional profiles In general, the estimation of the multi-dimen- sional
surface p(x;si) could require an enormous amount of data. We here cope with the complexity of
this estimation problem by (i) reducing the dimensionality of the vector of inputs xi, and (ii) using
a local neighborhood N(si) of location si to build the estimate p̂(x;si). Note that both steps could
be partially avoided in the presence of a larger database, in terms of events and pebbles. For step
(i), we reduce the vector x of features by considering only the first PC of the pebble characteristics
(PC1), and by averaging the effect of the flow over the typical mobilizing events only (events T , see
Section 2.2). This allows us to simplify the problem to the analysis of univariate functional profiles
p(PC1;s), indexed by the spatial index s in D. Note that summarizing the information of the pebbles’
characteristic through PC1 is justified by virtue of the high proportion of variance explored by this
PC, whereas the second choice is motivated by the observation that typical mobilizing events appear
similar from the flow viewpoint (see Section 2.2). Further justification on this choice is provided in
Section 4.1.

For step (ii), we consider a local estimate of p̂(x;si), based on a spatial neighborhood of si.
Note that these probability curves need to be estimated from sparse observations, the term sparsity
referring both to the spatial dimension and to the variable PC1. In fact, focusing on a single pebble
(i.e., on a single value for PC1), data are realizations of Bernoulli random variables, for which a
limited number of realizations (i.e., events) are observed. Similarly, when focusing on a single
location si, no more than 3 observations are typically available. To estimate p̂(PC1;si), we thus use
not only the observations related to the location si, but also those from a neighboring zone N(si),
where N(si) is a circle of radius r > 0 centered at si – the hyperparameter r > 0 being fixed by CV in
a range of candidates (r ∈ {3,5,7} m). Note that such neighborhoods are also constrained to belong
to the same geomorphological subdomain as si, to preserve the domains’ characteristic through the
estimation procedure. To reduce the estimation bias induced by the consideration of neighboring
data, only locations si with at least nmin = 12 observations in N(si) shall be considered. Moreover,
whenever the neighborhood N(si) contains more than nmax = 30 observations, we build the estimate
p̂(PC1;si) upon the nmax closest observations. This allows to balance the bias-variance trade-off
affecting the estimate of p(PC1;si), adjusting for the different spatial density of the observations. The
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(a) Neighborhood zone for a point si =
(9.426,45.874). Radius of the circle r = 5 m

(b) Curve estimated using N-W approach. Kernel
bandwidth h = 20

Figure (6) Construction of functional profiles p̂(PC1,si) from raw pebbles’ data. (a) Pebbles’
locations are indicated as grey points; the location si is indicated as a blue point, the blue circle being
the boundary of N(si). (b) black symbols indicate the binary observations (0 for NM, 1 for M); the
solid lines indicates the estimated curve p̂(PC1,si).

parameters nmin,nmax were both selected by CV within a range of candidates (nmin ∈ {5,7,10,12},
nmax ∈ {15,20,25,30,35}).

Figure 6 depicts an illustration of the curves generation process, highlighting a location si =
(9.24,45.87) (marked by a blue point in Fig. 6a), the neighborhood N(si) considered for the estimate
(marked as a blue circle in Fig. 6b), and the associated estimate of p̂(PC1;si) (black curve in Fig.
6b). This latter curve was obtained by Nadaraya–Watson kernel regression (Nadaraya 1964 Watson
1964), using a Gaussian kernel K with bandwidth parameter h, i.e.,

p̂(PC1 = x,si) =
∑ j:s j∈N(si) Kh(x− x j)y j

∑ j:s j∈N(si) Kh(x− x j)

where the x j’s are the values of PC1 for the observed pebbles in N(si) and the y j’s are their associated
binary outcomes (0 for NM, 1 for M; black symbols in Fig.6b). The kernel bandwidth was set
to h = 20, to balance the roughness of the curve with its capability to adapt to the data. For the
estimation of p(PC1,si), i = 1, ...,n, a common support I is defined as the range of values of PC1
in the training data, i.e., I = [PC1min,PC1max]. Only the curves observed on the whole interval I are
used during training procedure.

Functional geostatistics for probability curves From a mathematical standpoint the (esti-
mated) relation p̂(PC1,si) between the probability of movement of a pebble in si and its PC1 can be
interpreted as a functional data point and analysed in the framework of object-oriented spatial statis-
tics (O2S2, Menafoglio and Secchi (2017)). Similarly as in scalar geostatistics (Cressie 2015), in
O2S2 the set of functional data p̂(PC1,si), i = 1, ...,n, is modeled as a partial observation of a func-
tional random field { p̂(PC1,s),s ∈ D}. Here, typical goals are modeling of the spatial dependence
and spatial prediction (i.e., kriging). Given that the probability curves p̂(PC1,si) are constrained in
their values in [0,1], we shall consider as data the following logit transformation of these curves

χsi = log
p̃(PC1,si)

1− p̃(PC1,si)
= logit p̃(PC1,si),
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where p̃(PC1,si) = 1− ε if p̂(PC1,si) = 1 and p̃(PC1,si) = ε if p̂(PC1,si) = 0, ε being a small
threshold allowing for the definition of the logit function when p̂(PC1,si) = 0 or p̂(PC1,si) = 1.

For a location s in D, we consider χs as a random element of the functional space L2 of square
integrable functions, and decompose χs into the sum of a linear drift term ms and a second-order
stationary residual δs, such that (Menafoglio et al. 2013)

χs = ms +δs,

ms = E[χs] =
L

∑
l=0

al · fl(s), (2)

δs s.t. E[δs] = 0; Cov(δs1 ,δs2) = E[〈δs1 ,δs2〉L2 ] =C(s1− s2).

In (2), the parameters al are functional coefficients in L2, fl are know spatial regressors, and C(·) is
the (stationary) trace-covariogram of the residual field, which represents the functional counterpart
of the classical covariance function (Cressie 2015). In this work, the spatial regressors that will
be considered are the binary variables dk, indicating whether the location si belongs to the k-th
geomorphological subdomain (dk(si) = 1) or not (dk(si) = 0).

In this setting, our goal is to build an optimal prediction χ∗s0
of the function χs0 at the unobserved

location s0, based on the available data. This would ultimately allow one to (i) obtain a prediction
p∗(PC1;s0) for the probability curve p(PC1;s0) as p∗(PC1;s0) = logit−1(χ∗s0

), and (ii) yielding a
classification for the pebbles’ movement in the river domain, e.g., by thresholding p∗(PC1;s0). To
this end, one may formulate a functional kriging (FK) predictor, that is the best linear unbiased com-
bination of the observed data, χ∗so = ∑

n
i=1 λ ∗i χsi . Here, the λ ∗i ’s are scalar coefficients that minimize

the variance of prediction error under unbiasedness, i.e.,

minλ1,...,λn E
[
‖χ∗s0
−χs0‖2

]
s. t. E

[
χ∗s0
−χs0

]
= 0.

(3)

Similarly as in scalar geostatistics, problem (3) admits a unique solution, which can be obtained
by solving a linear system depending on the covariance between elements of the random field – as
determined by the trace-covariogram – and on the regressors fl (see, e.g., Menafoglio et al. (2013)).
Building good estimates of the trace-covariogram is thus crucial for the prediction problem. In this
setting, one may alternatively estimate the trace-variogram of the field

2γ(s1− s2) = E[‖δs1 −δs2‖
2],

which again has the same interpretation as its classical counterpart. The trace-variogram can be
estimated by fitting a valid variogram family (e.g., Matérn, spherical) to the empirical variogram
from the (estimated) residuals

2γ̂(h) =
1

N(h) ∑
(si,s j)∈N(h)

‖δ̂s1 − δ̂s2‖
2],

where N(h) is the set of pairs of locations (si,s j) approximately separated by a vector h, h≈ si− s j.
Methods and algorithms for an effective estimation of the residuals and of the trace-variogram have
been extensively studied in the literature; we refer the reader, e.g., to Menafoglio et al. (2013; 2016)
Menafoglio and Secchi (2017).
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3.3 Error metrics and models’ validation
In this section we introduce the methodology which will be used to compare the performances of the
two proposed perspectives, when used to infer on the sediment transport classification problem.

Error metrics The error metrics which will be used in the following are: accuracy, precision,
recall, F1-score, and AUC (Powers 2011) –their definition being recalled below. All these metrics
are widely used to evaluate and compare classification methods. Denote by P (Positive) the number
of pebbles that moved, and by N (Negative) those that did not move. In the set of pebbles predicted
to move, we call TP (True Positive) the number of pebbles which actually moved, and FP (False
Positive) those that did not move. In the set of pebbles predicted not to move, we call TN (True
Negative) those that actually stayed still, and FN (False Negative) those that moved instead. We then
define the error metrics as

• Accuracy: T P+T N
T P+FP+T N+FN ;

• Precision: T P
T P+FP ;

• Recall: T P
T P+FN ;

• Fβ -score: (1+β 2)∗precision∗recall
β 2 precision+recall (typically β = 1 and the score is called F1 score (Dice 1945 Sørensen

1948)).

The metric AUC is finally defined as the area under the ROC curve, which compares the true positive
rate with the false positive rate when varying the threshold used to built the classification from the
predicted probability (see, e.g., Friedman et al. (2001)).

Threshold setting The outcome of both the proposed approaches is the probability of move-
ment p∗(x;s), during a rainfall event, for a particular pebble at a given location s. Hence, part of
the models’ post-processing is to select, in an optimal way, a threshold α , such that the pebble is
classified as M (moved) for p(x;s)≥ α , or NM (not-moved) for p∗(x;s)< α . Setting this threshold
can be performed by cross-validation, using as optimality criterion the F1 score defined above (i.e.,
selecting α which maximises F1(α) (Dice 1945 Sørensen 1948)). Alternatively, one can consider
the maximization of the Youden’s J criterion, based on the index J = T P

T P+FN + T N
T N+FP −1 (Youden

1950). Given that balancing precision and recall is task-specific, in the following we shall consider
the results for optimal values of the threshold α set by using both Youden’s J and the F1-score.

Validation of the XGBoost approach To validate the machine learning approach based on
XGBoost presented in Section 3.1, we consider a K-fold CV approach based on the following
scheme.

0. Initialize the hyperparameters: XGBoost hyperparameters (particularly the depth of the trees
max depth), the set Iα of candidate thresholds α;

1. Split the pebbles into K folds;

2. Perform CV iteration. For k = 1, ...,K
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(a) Split the data into training and test sets, the test set being the k-th fold;

(b) Build the XGBoost classifier based on the vectors of features xi, i = 1, ...,ntrain, of the
data within the training set;

(c) Obtain p∗(x j;s j), j = 1, ...,ntest , for the pebbles in the test set, based on their actual
features x j and location s j;

Result of the CV iteration: p∗(xi;si), for i = 1, ...,n (each estimated when the i-th observation
is left out of the training sample).

3. Select the optimal threshold αb within Iα :

(a) Based on the results at step 2., for each α ∈ Iα , classify the pebbles as M or NM by
thresholding p∗(PC1i,si), i = 1, ...,n, through α;

(b) Select the optimal αb ∈ Iα , i.e., that associated with the optimal score (F1 or Youden’s J).

4. Calculate the error metrics from the set of classifications at step 3(a), for the optimal value αb.

5. Repeat the steps 1.-4. for B = 7 different splits in K folds.

The threshold α∗ used for the final classifier is selected as the average of the thresholds αb obtained
for the B = 7 repetitions of the CV. This CV procedure is also used to set the hyperparameters of the
method, as illustrated in Section 3.1.

Validation of Functional approach To validate the functional approach presented in Section
3.2, we consider a K-fold CV approach, similar to that discussed above, and based on the following
scheme.

0. Initialize the hyperparameters: the bandwidth h of the N-W kernel, the radius r of the neigh-
borhood, the tolerance ε , the set Iα of candidate thresholds α;

1. Split the pebbles into K folds;

2. Perform CV iteration. For k = 1, ...,K:

(a) Split the data into training and test sets, the test set being the k-th fold;

(b) Generate the curves p̂(PC1i,si), i = 1, ...,ntrain (from the training subset data only);

(c) Perform the geostatistical analysis; and build the prediction p∗(PC1 j,s j), j = 1, ...,ntest ,
for the pebbles in the test set, based on their actual values PC1 j and location s j;

Result of the CV iteration: p∗(xi;si), for i = 1, ...,n (each estimated when the i-th observation
is left out of the training sample).

3. Select the optimal threshold αb within Iα :

(a) For each α ∈ Iα , classify the pebbles as M or NM by thresholding p∗(PC1i,si), i= 1, ...,n
through α;

(b) Select the optimal αb ∈ Iα , i.e., that associated with the optimal score (F1 or Youden’s J).

4. Calculate the error metrics from the set of classifications at step 3(a), for the optimal value αb.
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5. Repeat the steps 1.-4. for B = 7 different splits in K folds.

The threshold α∗ used for the final classifier is again selected as the average of the thresholds αb
obtained for the B = 7 repetitions of the CV. Given that during a CV iteration the curves p̂(PC1,s)
are generated from the training set only, the value of PC1i for an observation in the test set may
be out of the support of p∗(PC1,si). In this case, the probability is calculated as the p∗(x∗,si), x∗

being the the nearest value of PC1 within the support (x∗ = PCmin if PC1i < PCmin, or x∗ = PCmax if
PC1i > PCmax).

4 Results
In this section, we illustrate the results of the data analyses performed according to the methodologies
described in Section 3. We shall first apply the approaches separately, and then compare their results.
We shall highlight the limitations of both models in terms of precision and recall, with particular
reference to the morphological zones where one model outperforms the other and viceversa.

4.1 Results for XGBoost
The aim of this subsection is twofold. First, we aim to show the results and performances of XGBoost
for the problem at hand. Second, we aim to verify the impact of dimensionality reduction – through
the PCA presented in Section 2 – on the performances of the classifier. To do so, we distinguish the
results in terms of (i) type of rainfall event (all events or typical events T) and (ii) dimensionality of
the feature vector. In the latter case, we shall focus on two options, including within the model (a)
all the pebbles’ features, their locations and flow data (named all-features), or (b) only the pebbles’
locations and the data PCs (named PCs): PC1, PC2, PC1 f low, PC2 f low (see Section 2). This set of
analyses serves also as a support to the dimensionality reduction needed to develop the functional
approach discussed in Section 4.2. All the results presented in this section were obtained using the
R package (Grujic and Menafoglio 2017).

All events Based on a 5-fold CV analysis repeated B = 7 times, we set the maximum depth of
the trees to max depth = 7 when all the features are used, and max depth = 6 when PCs are used
instead.

The error metrics for XGBoost are presented in Table 2. Tables 3, 4 report the average confusion
matrices of the XGBoost model, when this is based on all the features (Table 3) or only on the PCs
(Table 4). Here, the threshold α for the classification was built by optimization of the F1 metric
(see Section 3.3) – the average being α∗ = 0.643 for the case of all the features, α∗ = 0.544 for the
PCs only. One may notice a that the PCs case appears to be associated with a higher accuracy and
precision with respect to the all-features case. In general, the all-features case appears to present
a lower number of FP, but a higher number of FN, thus yielding a general slight overestimation of
the sediment transport w.r.t. the PCs case. These analyses anyway suggest that representing the
features through the PCs only does not represent a significant loss of information for the purpose of
classification.

Typical events We now aim to study the impact of the flow data (PC1 f low and PC2 f low) on
XGBoost models when calibration is based on typical events only. Note that typical events appear to
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AUC ACC Precision Recall F1-score

All features 0.94 0.859 0.755 0.858 0.803
Only PCs 0.939 0.87 0.803 0.81 0.806

Table (2) Results of XGBoost when all the rainfall events are considered. The optimal threshold
for classification was set by optimization of the F1 score.

Actual

not-moved moved

Predicted not-moved 570.3 185.4
moved 94.7 1138.6

Actual

not-moved moved

Predicted not-moved 538.7 132.4
moved 126.3 1191.6

Table (4) PCs: Average confusion matrix across CV repetitions

be similar in terms of flow (see Section 2). Therefore, one may argue that it is reasonable to suppose
that, in this setting, exclusion of PC1 f low and PC2 f low should not significantly affect the prediction
power of the models. We thus compare two models, obtained by training XGBoost either on PCs
data (PC1, PC2, PC1 f low and PC2 f low) or PC1 only, still considering in both models the locations
and the subdomains binary features (i.e., dk(s)).

Similarly as in the previous paragraph the optimal depth of both models was selected using B = 7
repetitions of K-fold CV, with K = 5. The results of the procedure are max depth = 6 for the model
trained on PCs and max depth = 5 in the second case. The F1-thresholds estimated for two models
are, in both cases, α∗ = 0.663, suggesting that a balance between FP and FN is preserved. The
error metrics of both models are reported in Table 5. One may note that the model based on PCs
attains better results, although the difference in performance is limited compare to the significant
reduction in the input dimensionality. The main source of gain in accuracy for the first model relies
in FNs. According to Tables 6 and 7, the average absolute difference between FNs (∆FN = 277.1−
188 = 89.1) in the two model is more than 3.5 times bigger than the absolute difference in terms
of FPs (∆FP = 96.1− 70.7 = 25.4). Reducing the dimensionality of the inputs thus turns in an
overestimation of the incidence of the NM class (i.e., the model tends to underestimate the amount
of mobilized sediment). This tendency shall be confirmed by the results of the functional approach,
which are discussed in the next section.

AUC Accuracy Precision Recall F1-score

PCs 0.925 0.838 0.739 0.891 0.808
Only PC1 0.873 0.766 0.652 0.842 0.733

Table (5) Results of XGBoost when typical rainfall events are considered. The optimal threshold
for classification was set by optimization of the F1 score.
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Actual

not-moved moved

Predicted not-moved 538.3 188
moved 70.7 797

Actual

not-moved moved

Predicted not-moved 512.9 277.1
moved 96.1 707.9

Table (7) PC1: Average confusion matrix across CV repetitions

(a) A sample of 50 estimated probability curves
p̂(PC1i,si) using N-W kernel Regression

(b) Averages of the estimated curves within seven
subdomains

Figure (7) Estimated probability curves: data and mean within groups. In panel (b), the scale on
the y-axes was set to [0.6, 1] to better appreciate the difference in p(PC1;Dk) between groups.

4.2 Results for the functional case
In this subsection, we illustrate the results of the analyses when these are based on the functional
perspective described in Section 3.2. Recall that the functional approach is based on the considera-
tion of just the feature PC1, and of the observations related with typical events (T) only. Moreover,
the main hyperparameters for the method are (see also Sec. 3.2): the minimum/maximum num-
ber of points to generate a curve, set to nmin = 12; nmax = 30; the support of the curves, set to
[PC1min;PC1max] = [−50,50]; the tolerance, set to ε = 0.01; and the kernel bandwidth, set to h = 20.
Moreover, in the following we shall consider a Bessel model for the calibration of the variogram.
All the results presented in this section were obtained by using the R package fdagstat (Grujic and
Menafoglio 2017).

A 5-fold CV analysis run as described in Sec. 3.3 suggests to set the radius of the neighborhoods
to r = 5. These parameter settings allowed us to estimate the curves p̂(PC1;si) for the sample

AUC ACC Precision Recall F1-score

All features 0.844 0.756 0.654 0.773 0.708

Table (8) Results for the functional approach, when setting the optimal threshold according to the
F1 score.
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(a) Variogram with a drift dependent on the geo-
morphological subdomains

(b) Variogram with a drift dependent on the geo-
morphological subdomains

Figure (8) Variograms

location si, i = 1, ...,n. A subset of this dataset of functional profiles is reported in Figure 7. One may
observe a notable variability in the shape of the curves, suggesting a highly non-linear dependence
between the probability of movement and the pebbles’ characteristics, which varies over space in
a non-trivial fashion. Figure 7b displays the means p(PC1;Dk) of the probability curves within
the geomorphological subdomains Dk, k = 1, ...,7. More precisely, these curves were computed by
back-transforming the sample mean of the logit-transformations of the curves p̂(PC1;si), i.e.,

p(PC1;Dk) = logit−1

(
1
n ∑

si∈Dk

logit p̃(PC1;si)

)
,

the transformation logit and p̃(PC1,si) being defined as in Section 3.2. Such curves are thus rep-
resentative of the mean values ms assumed by the object χs = logit(p̃(·;s)) within the subdomains.
One may notice a relatively high variability across groups, which suggests to consider the binary
variables dk(s) (dk(s) = 1 if s ∈ Dk, dk(s) = 0 otherwise) in the model for the drift term. However,
CV analyses suggest that slightly better performances are obtained when using a stationary approach
instead, which is that discussed hereafter. For the sake of completeness, Figure 8 reports the vari-
ograms of the residuals (estimated as described in Section 3.2), when these refer to a stationary drift
term (i.e., ms is spatially constant; Figure 8a), or to a drift dependent on the geomorphological subdo-
mains through the variables dk(s)’s (Figure 8b). Both variograms are compatible with the residuals’
stationarity; selection of the stationary model is thus based on the CV results.

Table 9 reports the confusion matrix of the method (averaged over the CV repetitions), which
suggests that the classifier built upon the functional approach tends to be associated with a relatively
high number of false positive (FP: 250 out of 1594 pebbles), which is however consistent with those
associated with XGBoost based on PC1 for typical events, discussed in Section 4.1. The next section
provides further discussion and comparison between these approaches.

4.3 Comparison between the two perspectives
We now proceed with a comparative analysis between XGBoost and FK results. For the purpose of
coherency between the information that is used for training, we here compare the XGBoost model
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Actual

not-moved moved

Predicted not-moved 470.7 250.1
moved 138.3 734.9

Table (9) Results of the functional approach: Average confusion matrix across CV repetitions

AUC Accuracy Precision Recall F1

FK F1 0.844 0.756 0.654 0.773 0.708
J 0.759 0.659 0.769 0.709

XGBoost F1 0.873 0.766 0.652 0.842 0.733
J 0.767 0.654 0.842 0.734

Table (10) Results for the functional approach and XGBoost, when setting the optimal threshold
according to the F1 score or the Youden’s J

trained on typical events only (as presented in the Section 4.1) and the FK model calibrated on the
same data (see Section 4.2).

We first perform a comparison of the models based on PC1 only, which is representative of the
performances of the methods based on similar inputs. The first two lines of Table 10 report the
classification performances, assessed by B = 7 repetitions 5-fold CV, of the functional predictor.
Here, the first line corresponds to a threshold α∗ set by optimization of the F1 criterion (α∗ = 0.613),
whereas the second line to the optimization of the Youden’s J (α∗ = 0.604). The last two lines
of Table 10 are referred to the analogous quantities related to the XGBoost model trained on PC1
only, which are associated with a threshold α∗ = 0.663 (approximately the same α∗ being set for
both Youden’s J and F1 criteria). Results presented in Table 10 suggest that all the four settings are
practically equivalent in terms of accuracy (ca 76%) and precision (ca 65%). The main differences
are related to AUC, which is slightly better in the XGBoost case (87%) than in FK (84%), indicating
an overall better ordering of probabilities. Moreover, recall is higher in XGBoost that in FK (84% vs
77%), indicating a better performance for the former in terms of FPs, that is also observed in Tables
7, 9. A comparison of the performances by subdomains is provided in Table 11. Here, one can
note that XGBoost has overall a better performance, e.g., in bars zone, although FK proves better
in a number of subdomains, e.g., within the step-pool zone. It is worth mentioning that the number
of pebbles places in bars zone is more than twice those in step-pool zones, coherent with observed
differences in absolute values related of FPs and FNs.

We finally compare the methods in terms of local CV errors, displayed in Figures 9, 10. Both
figures display visualizations of the results of 7-repeated CV. Figure 9 represents the CV results
for each pebble separately, the colors being associated with the number of times the single pebble
was correctly classified along the B = 7 repetitions of the 5-fold CV. Figure 9 displays the average
accuracy within the subdomains Dk identified according to the local morphology of the riverbed.
Graphical inspection of Fig. 9 suggests that, although the two models appear similar in terms of
the error metrics, slightly different patterns are observed in their errors. For instance, XGBoost is
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Average
number of
misclassified
pebbles

Average
proportion of
misclassified
pebbles

Subdomain
Number
of Pebbles XGBoost FK XGBoost FK

Banks 208 64.57 65.86 0.31 0.32

Bars 159 18.71 28.14 0.12 0.18

Cascade 727 248.43 249.71 0.34 0.34

Plane bed 103 0.86 0 0.01 0

Pools 12 1.14 1 0.1 0.08

Run-rapid 322 26.86 30.71 0.08 0.1

Step
pool-zone 63 10.43 8.29 0.17 0.13

Table (11) XGBoost vs FK: misclassified pebbles for each subdomain

associated with noticeably less correct predictions for the left bottom corner, while, on average, its
predictions are of high quality in the central and upper part of the domain. Similarly, observing
Figure 10 one may notice that the main difference between the two models appears in the center-left
of the domain, and in its left bottom part.

Even though the comparison of the models based on PC1 suggests an overall consistency of the
results obtained with the two approaches, one should note that, when using all the PCs, improved
results were obtained with XGBoost (see Section 4.1). This suggests that the input simplification
needed to build the dataset of probability profiles prior to FK may have induced a loss of predictive
power with respect to a scalar approach based on state-of-the-art machine learning methods. On the
other hand, the functional approach clearly allows for a direct interpretation of the relation between
the tendency of pebbles to moved, and their characteristics, as further highlighted in the next Section
4.4. This is a clear advantage to XGBoost, whose interpretability still appears to be limited. Finally,
it is worth mentioning that additional analyses on the same dataset – not discussed here for brevity
– showed that FK outperforms other ‘more standard’ statistical methods such as GLM, anyway sug-
gesting the validity of the approach in the framework of model based-statistical classification.

4.4 A geomorphological interpretation of the results
Looking at the results from a geomorphological point of view, the zones where the predictive models
encounter difficulties in correctly classifying the probability of movement appear to be the banks and
cascade with around 30% of misclassified observations by both models. A particular concentration
of misclassified cases can be identified in the central section of the reach under investigation. This
zone is characterized by a complex morphology where the presence of a large boulder forces the
stream into a rapid s-curve trajectory, unlike the surrounding environment. The upstream end of
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(a) XGBoost 7-repeated CV correctness map (b) FK 7-repeated CV correctness map

Figure (9) CV error maps

(a) XGBoost. Average accuracy of 7-repeated CV
by polygon

(b) FK. Average accuracy of 7-repeated CV by
polygon

Figure (10) CV: Average accuracy by morphological sector
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the reach is also characterized by a high concentration of misclassified cases. This area is close to
the placement location of a large number of pebbles. Hence this could be attributed to the effect of
initial pebble deployment that would likely behave in an odd manner with respect to sediment that
has already undergone some settlement. The concentration of misclassified cases in the banks zone is
not surprising as well. Those zones are marginally affected by the flow rate during low to moderate
flow rate events and a slight increase/decrease in water depth could determine if a pebble will be
affected by the flow or not. The definition of the boundaries of those zones could be somewhat
ambiguous due to e.g. the presence of vegetation in summer and its absence in winter.

As a results of the functional kriging approach, we obtained the probability of pebble move-
ment as a function of pebble’s dimensions in the different morphological units (10). This outcome
illustrates a general similarity between banks, bars, and cascade zones, while there is a consider-
able difference in the predicted values for plane bed, run/rapid, and step and pool zone. For the
former three subdomains there appears to be an agreement that very small and very large pebbles
tend to have a similar probability of movement while average-sized ones are slightly less likely to
be mobilized. Such a difference is present also in the case of the step and pool zone although it is
much more pronounced in the former cases. The effect of pebble size on mobility rates has often
been under discussion by several authors, arguing that the sediment mobility could be independent
on the sediment dimensions in some morphological conditions. For instance, according to Lieder-
mann et al. (2013) coarser particles are harder to mobilize yet, once mobilized, they may travel even
farther than smaller ones. Ferguson et al. (2017) attributed the size-selectiveness of the sediment
mobility to the different types of channel morphology – a finding that finds correspondence in the
present work. For instance, the probability of pebble movement in a plane bed morphological unit
appears to be entirely sediment size independent, while in a run/rapid local morphology a strong
size-dependency can be observed, where smaller particles are characterized by a lower probability of
movement and vice versa. Church and Hassan (1992) noted that smaller particles are characterized
by a higher likelihood to be trapped when the stream channel is composed of large grains and this
could strongly influence the dependency of the sediment mobility on the grain’s size. The estimated
mean probability of movement is above 50% in all the cases, which indicates that during moderate
flow events the bedload mobility is quite pronounced in the presented range of pebble dimensions.

5 Application to an independent dataset
To enrich the comparison between the two considered approaches, we here apply them on an in-
dependent dataset, that did not participate in the training illustrated in the previous sections. Here
an Eulerian approach was adopted to observe the mobility of pebbles in a fixed spatial reference,
as opposed to the Lagrangian approach used to track each single sediment particle along the river
course.

Red pebbles’ data The observation zones represent 30cm x 30cm squares within which the
riverbed was painted in red. The observation zones were captured before and after a flood event
in order to identify the number of mobilized pebbles and their size. The size of individual pebbles
was estimated from the images using the automatic object detection software Basegrain (Detert et al.
2012), that allowed us to estimate the size of a- and b-axis of each detected red pebble. Figure 11
illustrates the steps of the tracking process. The available dataset consists of 7 sets of observations
that were gathered in correspondence of three events (events 11, 14, and 16, that took places during
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Figure (11) (a) Red pebbles painted before an event, (b) post-event image of the same area; (c)
estimation of the dimensions of the remaining pebbles

the year 20172), which can be considered as typical in terms of associated flow. Besides assessing the
capability of the proposed methods to deal with this type of data, this case is used to show a potential
approach to the application of the models on sets of sediment particles (instead of single particles).

Limitations of RP data A technical limitation of this measurement campaign is the difficulty
in finding a dry portion of the riverbed that can be painted, typically during low flow. Moreover,
in the case of “red pebbles” (RPs), all the pebbles from the outlined zones were considered for the
measurements, while, in the “yellow pebbles” (YPs) case, only the particles big enough for insertion
of an RFID tag were used. This inevitably turns in a selection bias for both cases, which renders the
two analyses only partially comparable. In fact, some substantial differences are present between the
grain size distributions of the two datasets. For instance, the RPs are in general much smaller than
the YPs used to calibrate the models, the nominal diameters of the latter being, on average, 70 mm
shorter than the diameters of the former (see Table 12).

Another limitation relies in the fact that the estimation of RP measurements is elaborated based
on the 2D projections of the original 3D objects (see Fig. 11c). This hinders the computation of the
three axes (a-,b-,c-axis), since one of the axes (presumably the c-axis) remains covered. In fact, the
estimate of the two visible axes may be itself associated with a non-negligible uncertainty. Moreover,
the visible dimensions of RP gathered before mobilizing events may not correspond to the ones gather
after the events, because pebbles tend to rotate or move –even without location change– influenced
by the flow. Hence, these data cannot be used to find a one-to-one correspondence between particles
before and after the events and to verify whether they moved or not, but rather they can be used to
assess joint summaries about the set of particles (e.g., granulometric distributions).

Applicability of the models Application of XGBoost and FK models on the RP data should
take into account the specific features (and limitations) of this database. For instance, concerning
FK, one should note that just 3% of red pebbles has PC1 larger than -50 (when estimating the c-axis
as 3/4 of the b-axis). Hence, the remaining 97% of data would be given the prediction p∗(−50,s),
which is associated to all the particles with a size leading to PC1 < −50 (see Section 3.2). In fact,
application of our models to RP data requires particular care, as one should pay close attention when
testing models out of the range of training data, no matter of the approach they are using. For the

2Event 11 occurred between 26/04 and 30/04; Event 14 between 06/06 and 07/06; Event 16 between 01/09 and 02/09
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Figure (12) Locations of RP data

purpose of this study, we shall thus consider a slight modification of the models described in Section
4, which aims to render the features of the YP training set as compatible as possible with those of
the RP test set, by using pebbles’ diameters.

A classification approach based on particles’ diameters To cope with the lack of corre-
spondence between pre-mobilizing and post-mobilizing event data, we here consider a variant of the
classifiers built in Section 4 which is based on the nominal diameter, defined as di =

√
ai ∗bi. Note

that the range of di for YP is [43.87,160.16]; the range of diameters in RP is found in Table 12. One
can note that a partial overlap is attained between the diameters of YPs and RPs. In XGBoost, this
variable is considered as input, together with the location of the pebbles and the flow data – the model
being trained on typicall events only. In the functional approach, the probability profile p(di;s) is
estimated at the sampled locations, and then projected via functional kriging at unknown sites along
the river domain.

The application of the model to the RP data is performed as follows. Given a square region R j
and a mobilizing event e, j ∈ {1,2,4,5,6,8,9}, e ∈ {11,14,16}, we call S−je = {S1, ...,Sn−je

} the set

of n−je red pebbles in R j before the event e, and S+je = {S1, ...,Sn+je
} the set of n+je red pebbles which

are still in R j after the event e. Table 12 reports the values of n−je for the regions and events available
in the dataset. Considering a single pebble Si ∈ S−je, we may estimate its probability p∗i of movement,
based on the set of features associated with the considered pebble and one of the calibrated models
(XGBoost or FK). To describe the joint probability of movement of the set of pebbles in S−je, we
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Location Event Subdomain Total
Number of
pebbles with
PC1 >-50

Diameters
Before
Event

Diameters
After
Event

R1 11 Plane bed 341 15 [8.64, 85.08] [20.90, 81.39]

R2 11 Cascade 351 2 [8.53, 68.87] [20.58, 66.92]

R4 14 Cascade 447 7 [8.60, 91.77] [34.38, 69.48]

R5 14 Bars 275 1 [8.53, 67.29] [9.13, 64.02]

R6 16 Plane bed 248 5 [8.20, 90.60] [13.64, 92.99]

R8 16 Cascade 245 15 [8.67, 101.53] [9.39, 103.82]

R9 16 Bars 259 11 [9.19, 125.68] [9.23, 66.39]

Table (12) Summary of red pebbles (RPs) data

can then consider their joint law, which, under independence, reads: p∗je = ∏
n−je
i=1 p∗i . This allows to

simulate a set of realizations from such distribution, to be then compared with the actual observa-
tions in S+je. Comparison of the empirical distribution of the particle diameters –a.k.a. particle-size
distributions (PSDs)– with the actual PSD after the events allows to evaluate the capability of the
models to adapt to this type of data.

Results and comparison As a way of example, Figure 13 displays a set of M = 100 empirical
cumulative distribution functions (ECDFs) of the diameters of the particles found in location R6 after
event 16 (grey lines). These are compared with the ECDF of the PSD estimated from the pebbles in
P+

6,16, depicted as black lines.
Graphical inspection of Figure 13 suggests that both methodologies fail to correctly represent the

displacement of the pebbles with relatively small diameters (between 8 and 30 mm), possibly due to
the partial incompatibility of the data in the YP and RP datasets. In particular, both models appears to
be associated with an underestimation of the mobility of small particles and an overestimation of that
of large particles (see also Table 13). Nevertheless, the XGBoost approach seems to be associated
with a slightly higher variability of the estimated PSDs, particularly for relatively large diameters.
The cloud of simulated PSDs seems thus able to get closer to the actual observation than for FK.
Looking at the results displayed in Table 13, one may observe that, overall, both approaches result
in a significant overestimation of the proportion of stationary pebbles w.r.t. the data, particularly for
R4 and R5.

A quantitative overall comparison between the simulated and actual PSDs can be obtained by
computing the Wasserstein distance (see, e.g., Villani (2008)) between these distributions, which is
obtained as

d(Pm,Pobs) =

(∫ 1

0
(P−1

m (t)−P−1
obs(t))

2dt
)1/2

,

Pm,Pobs being the PSD of the m-th simulation (cumulative distribution functions), m = 1, ...,100,
and the observed post-event PSD, respectively, and P−1

m ,P−1
obs the respective quantile functions.

Table 13 reports the average Wasserstein distance, i.e., 1/m∑
M
m=1 d(Pm,Pobs), for the observed
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(a) ECDFs of realizations sampled from estimated
probabilities of movement obtained using XGBoost

(b) ECDFs of realizations sampled from estimated
probabilities of movement obtained using FK

Figure (13) Sampled ECDFs of distributions pebbles that didn’t move, and actual PSD, at location
R6.

regions R j. One may note a small discrepancy between the approaches – XGBoost performing only
slightly better than FK.

Besides the efforts made to render the YP and RP datasets compatible, these analyses suggests
that the YP data are only partially informative on the phenomenon described by the RP data. This
reflects on poorer performances of the models calibrated on the former dataset, when applied to the
latter one. More in general, the limitations highlighted within the section may point to directions
of improvement for the design of experiment of future campaigns, if these are intended to support
the construction of models better representative of the joint behavior of sediment particles within the
regions R j’s.

6 Discussion and Conclusions
In this work we proposed a comparison of two methodological approaches to the problem of predic-
tion of sediment transport in a pre-Alpine region. To this end, we considered state-of-the-art machine
learning and geostatistical methods, namely XGBoost (Chen and Guestrin 2016) and functional krig-
ing (FK,(Menafoglio and Secchi 2017)). Results on real data suggest that both approaches have good
performances on the problem at hand, with a slightly better predictive power of XGBoost over FK.
Nonetheless, FK yields more interpretable results, since it allows for an explicit prediction of the
probability of movement of a single pebble at a site s as a function of its dimension (characterized
through PC1). These results are in agreement with the general pros/cons evidenced in the compari-
son between machine-learning and model-based statistical methods, where the former are often able
to outperform the latter in terms of prediction power, while the latter are typically associated with
higher interpretability.

However, the methods developed in this work are subject to a number of limitations, that should
be taken into account when applying the calibrated models to independent data. Beside the limita-
tions for the use of the models for independent data only partially compatible with our training set
(e.g., for RP data, see Section 5), one should note that not all the regions of the spatial domain are
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Number of
still pebbles

Proportion
of still pebbles

Average Wasserstein
Distance

Location Actual XGBoost FK Actual XGBoost FK XGBoost FK

R1 18 3.71 7.09 0.053 0.011 0.021 37.657 36.87

R2 21 269.95 134.19 0.06 0.769 0.382 16.374 16.294

R4 12 180.08 143.49 0.027 0.403 0.321 29.956 30.248

R5 129 54.37 58.44 0.469 0.198 0.213 4.021 4.215

R6 9 26.97 41.89 0.036 0.109 0.169 20.209 19.537

R8 30 89.6 27.42 0.122 0.366 0.112 13.367 20.925

R9 23 90.26 55.11 0.089 0.348 0.213 15.31 15.404

Table (13) Comparison between XGBoost and FK on red pebbles data

densely covered by the observations, which turns in a spatially varying uncertainty in predictions.
Analyses have shown that the pebble location is indeed informative on its probability to move. For
instance, if one trains the XGBoost model without the feature si, a relevant decrease in accuracy and
AUC would be observed (on all the events, with all the other features: AUC = 0.915, Accuracy =
0.815, F1 = 0.758, compared with the results in Table 2). As such, higher degrees of uncertainty are
associated with the areas of the domains where data are sparse. Note that FK is associated with a
measure of prediction uncertainty (named kriging variance, see e.g. Menafoglio et al. (2013)), which
also accounts for the data sparsity. This is not the case of XGBoost, where measures of uncertainty
are only indirectly available (e.g., through CV analyses).

Another aspect which is worth mentioning concerns the river flow data. In XGBoost models,
flow data are used as features, and these appear to be associated with improved accuracy w.r.t. the
cases where flow data are not considered (see Table 2). However, one should note that values of flow
data are only available after the end of the rainfall event. To use the model in a real-world application
aimed to forecast sediment transport, one should thus consider predicted flow data, or perform a
scenario-based analysis. In both cases, an additional degree of uncertainty would characterize the
final forecast on sediment transport. In this sense, although the fact that FK does not account for
flow data may appear as a limitation of the approach –yielding to decreased accuracy– this may not
be really the case in the actual use of the model.

Nevertheless, an intrinsic limitation of FK is the need of estimating the functional profile p(x,s)
from raw data, which in turns imposes a limitation on the dimensionality of the feature vector x. This
aspect led us to assume all the typical events to be similar from the flow viewpoint, and work in an
average flow scenario. In this respect, larger databases may allow for a higher dimensionality of x
than that considered in this work, to partially account for the dynamic of the event being considered.
Indeed, even if the average characterizations of mobilizing events are similar, events’ dynamics could
vary drastically, with a possible impact on the actual probability of movement of sediment particles.

It is worth noting that the majority of mobilizing events are characterized by moderate-flow.
That is, events sufficiently energetic to provoke sediment mobility, but not exceptional. While the
dataset includes observations of pebble mobility during high-flood events, these data are limited to
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four events, effectively participating in the XGBoost analysis through the PCA on river flow data, but
excluded from the FK analysis due to its above-mentioned limitations. On the other hand, the distinct
separation and analysis of high-flow data would be quite interesting as it has been pointed out that the
major portion of bedload transport is contained in extreme flood events (Coppus and Imeson (2002),
Turowski et al. (2009)). In fact, the differences in pebble mobility in the different morphological
units could become negligible considering that particularities of each unit would be overcome by the
energy of the flow. For instance, banks that are typically marginally affected by the stream would
experience a higher discharge. The estimation of the probability of pebble movement presented
here suggests that, during moderate flow events, the mobilized YPs sample is on average between
50% and 100% depending on the morphological unit, while looking at RPs –characterized by a
considerably smaller grain size distribution– the proportion of mobile pebbles is over 90% with the
exception of bars, where this value is around 55%. While those two parameters are obtained through
different methodologies and based on different (only partially comparable) datasets, they effectively
correspond to the same conceptual quantity – the proportion of motion (Ballio et al. 2018). The
combination of those two parameters indicates that (i) there appears to be a general dependency of
pebble’s mobility on the grain size and (ii) moderate flow or ‘typical’ events contribute significantly
to the dynamics of bedload transport. A further step in the investigation would be to try and quantify
this effect in terms of the distances travelled by the pebbles, as well as their velocity (or virtual
velocity). Analyses in this direction are currently ongoing, and will be the scope of future work.
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