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ABSTRACT

In nuclear oncology, radiopharmaceuticals (RP) emerged as theranostic tools able to bind specifically to cancer biomark-1

ers and inflict subsequently systematic and irreparable damage to the DNA of the targeted cells. That is why radioisotopes-2

based therapies entered the clinical practice to diagnose and treat tumours simultaneously and may potentially overcome3

therapeutic resistance encountered in various cancers. Despite these advancements, tumoural heterogeneity and poor anti-4

cancer drug penetration in solid tumours turns out to be overlooked pieces of the personalized oncology puzzle, leading to5

treatment failure. In this study, we propose MOSAIK, an oncological digital twin framework to simulate the intra-tumour up-6

take of radiopharmaceutical agent, specifically [89Zr]Zr-girentuximab in clear cell Renal Cell Carcinoma (ccRCC). Our com-7

prehensive approach integrates patient-based insights in space and time for reflecting the multi-faceted nature of RP up-8

take. We develop models to segment blood vessels and identify neoplastic regions, enabling the characterization of the9

biological domain. To discuss the intra-tumour heterogeneity contribution to the drug diffusion process, we spatially cor-10

relate immunochemistry images-derived parameters with the baseline drug accumulation captured through micro PET11

imaging. Additionally, the model is informed with temporal features leveraged from the compartmental model of the RP12

agent. The presented Deep Learning (DL) framework incorporates interpretable spatial and temporal inputs stemming from13

histopathology images. This work aims to provide a computational model with predictive capabilities in drug retention in14

tissues to move beyond the one-size-fits-all paradigm in nuclear medicine.15

INTRODUCTION16

Radiopharmaceuticals (RP) represent a cornerstone in the evolving landscape of precision medicine, where patient-centred ap-17

proaches align therapeutic decisions with individual genetic and biological profiles. By combining radioisotopes and pharmaceu-18

ticals, RP therapies bridge diagnostic imaging and targeted treatments, allowing the accurate delivery of radioactive payloads to19

cancer cells1 . This dual diagnostictherapeutic function provides clinicians with valuable molecular insights into tumour behaviour20

and raises new expectations for managing advanced cancers often refractory to conventional therapies2 . However, the clinical suc-21

cess of such approaches depends on a deep understanding of cancer biology and onmodelling the complex cellular and micro-22

environmental processes, such as aberrant neovascularizationthat constrain drug diffusion and limit therapeutic efficacy in solid23

tumours. Within this framework, Digital Twins (DTs) emerge as a promising paradigm for representing tumour evolution and thera-24

peutic response. DTs, conceived as dynamic computational replicas of biological systems continuously updated with patient-specific25

data, enable predictive and knowledge-driven strategies to anticipate treatment resistance and failure3 .26

Despite remarkable progress, current literature still faces major challenges in integrating tumour heterogeneity into predictive mod-27

els of radiopharmaceutical diffusion and retention. Tumour heterogeneity, arising both from genetic variability among tumour cells28

(inter- and intra-tumoural) and from spatial differences in the tumour micro-environment (TME), including vasculature, permeabil-29

ity, hypoxia, and necrosis remains a principal determinant of therapy failure4–7 . Numerous studies have underlined the prognostic30

and diagnostic relevance of TME heterogeneity metrics across cancer types. For instance, in renal cell carcinoma (RCC), Carbonic31

Anhydrase IX (CAIX) expression not only defines the clear cell RCC subtype but also correlates with improved survival outcomes8 .32

Yet, standard compartmental models, widely used to analyse dynamic Positron Emission Tomography (PET) data following RP ad-33

ministration, assume homogeneous tumour regions and disregard spatial variations in tracer kinetics. Consequently, such models34
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overlook how intra-tumoural heterogeneity shapes the spatio-temporal evolution of radiopharmaceutical uptake, hindering their35

ability to yield clinically actionable predictions about treatment efficacy.36

Several recent works have sought to overcome these limitations through novel computational and imaging methodologies. Ap-37

proaches combining mathematical modelling with high-resolution 3D imaging, for example, have reconstructed tumour vascular38

networks and simulated intratumoural drug diffusion using optical projection tomography and MRI-based diffusion analyses9,10 .39

These studies demonstrated that tumour tissues exhibit non-uniform and temporally varying diffusion behaviours, confirming the40

need for spatially resolved models that account for the heterogeneous tumour architecture. Nevertheless, existing models largely41

remain constrained by limited interpretability, reliance on coarse morphologic indicators (e.g., tumour size or bulk morphology), or42

dependence on partial histological sections, often from animal models, insufficient to represent global tumoural responses11,12 .43

Moreover, most in-silico frameworks addressing radiopharmaceutical pharmacokinetics have been developed at the whole-body44

scale, neglecting the complex intra-tumoural interactions between vasculature, neoplastic cells, and supporting stroma13,14 .45

To address these gaps, we introduce MOSAIK, an in-silico framework designed to simulate intra-tumoural uptake of [89Zr]Zr-girentuximab46

in clear cell renal cell carcinoma (ccRCC). Our approach integrates deep learning-based spatial characterization of tumour histology47

with immunokinetic modelling of radiopharmaceutical dynamics, enabling spatially resolved predictions of tracer accumulation.48

Specifically, baseline drug uptake is inferred from ex-vivo micro-PET imaging of tumour slices, while segmentation models auto-49

matically delineate blood vessels and tumour regions on whole-slide histology images. By mapping histology-derived parameters50

that describe the TME composition and structure, MOSAIK quantitatively links microscopic tissue architecture to macroscopic ra-51

diopharmaceutical distribution. This multimodal framework thus contributes to the broader goal of implementing oncological Digi-52

tal Twins capable of forecasting therapeutic outcomes and supporting personalized treatment planning.53

The contributions of this work are threefold. First, we provide a hybrid deep learning andmechanistic modelling framework that54

captures intra-tumoural heterogeneity in RP diffusion and retention. Second, we establish a pipeline linking histology-based tissue55

characterization with immunokinetic modelling, allowing interpretable prediction of radiopharmaceutical uptake patterns. Third,56

we demonstrate the feasibility of the proposed approach in ccRCC, quantitatively relating spatial tracer distribution to CAIX expres-57

sion as a biological marker of tumour aggressiveness.58

The remainder of this paper is organized as follows. Section 2 details the methodological framework and dataset, including the59

modelling of tracer kinetics and histological analyses. Section 3 presents the experimental setup and evaluation metrics. Section60

4 reports and discusses the results, highlighting the predictive capabilities and interpretability of MOSAIK. Finally, Section 5 con-61

cludes with perspectives on the integration of such frameworks into future oncological Digital Twin systems for precision radiophar-62

maceutical therapy.63

SIMULATION PIPELINE64

Overview of the workflow65

Building upon the challenges identified in digital pathology analysis, we propose a precision medicine framework to simulate tu-66

moural response to RP therapy. The framework constructs multimodal inputs for a digital twin network by combining: (i) charac-67

terisation of the biological domain from histology, (ii) mapping of intra-tumour heterogeneity, and (iii) resolution of an immunoki-68

netic (compartmental) model for [89Zr]Zr-girentuximab. The workflow leverages IHC-derived proxies of intra-tumour heterogeneity69

to translate microscopic-scale information into macroscopic-scale predictors of radiopharmaceutical uptake and retention. Imple-70

mentation was performed in Python (v3.12.7) using OpenSlide for WSI handling and pydicom for PET data.71

A high-level overview of the processing pipeline is provided in Figure 1: two spatial inputs (multi-scale masks and heterogeneity72

matrices) are obtained from histological analysis, while the temporal input (time concentration curves) is derived from the immunoki-73

netic compartmental model described in Section 2.6.74

Clinical protocol and data acquisition75

The clinical protocol is summarised in Figure 2. Two patients with different grades of clear-cell renal cell carcinoma (ccRCC) received76

a single intravenous injection of [89Zr]Zr-DFO-girentuximab (37 MBq ± 10%). Whole-body PET/CT acquisitions were obtained at77



Figure 1: Overview of the framework for constructing multimodal inputs to the digital twin model. Two spatially resolved inputs related to
radiopharmaceutical diffusion are obtained from histological analysis, while the temporal input is derived from the [89Zr]Zr-girentuximab
immunokinetic model.

days 3, 5 and 7 post-injection. Surgical resection was scheduled at day 14 post-administration to reflect radionuclide behaviour in78

vivo. Primary tumours were excised and bisected along the imaging plane; ex vivo biosamples were imaged using a high-resolution79

preclinical microPET scanner to obtain PET reconstructions of the tumour halves (see Step 3 in Figure 2). From the bisected spec-80

imen, 4 ţm sections were prepared from formalin-fixed paraffin-embedded tissue, stained with H&E, and processed for CD34 and81

CAIX immunostaining to visualise vasculature and biomarker expression, respectively. All sections were digitised with WSI scanners,82

producing the histology images used throughout the pipeline.83

Pre-processing of Whole-Slide Images84

Whole-Slide Images (WSIs) were processed in a tile-based fashion to generate spatially consistent inputs for downstream analysis85

andmodelling. The following sub-steps describe the extraction and harmonisation of image tiles and the generation of labels from86

PET. The full procedure is illustrated in Figure 3 and yields a consistent extraction mask for tile sampling across multiple stains.87

Slide mask extraction88

The tissue region on eachWSI was delineated by generating a downsampled thumbnail (downsample factor = 50) and convert-89

ing it to grayscale. Contrast inversion was applied when required, followed by Otsu thresholding to obtain a primary binary mask.90

Morphological operations (dilation, hole filling, removal of small objects) refined this mask, and a kernel-based filling operation com-91

pleted the delineation of the region of interest.92

Tile dataset extraction93

Patches were sampled from the highest-quality WSI level. Overlapping tiles were arranged on a regular grid covering the extraction94

mask, with 25% overlap horizontally and vertically. The initial grid of “inner tiles” excluded tiles covering less than 95% of their area95

by the tissue mask. “Border tiles” were appended along the mask boundary to ensure coverage, subject to a minimum 50% tissue96

overlap. Because multiple stains correspond to adjacent sections, the CD34-derived mask was chosen as the reference; masks from97

other stains were aligned and rotated by centroid matching to this reference to ensure consistent tile coordinates across stains.98

H&E stain normalization99

To mitigate colour variability and staining artifacts that impair automated analysis, an adapted Macenko stain-normalisation method15100

was applied to H&E tiles. The algorithm operates in the optical density (OD) space, applies colour deconvolution to estimate refer-101

ence staining matrices and stain concentrations, and returns harmonised tiles suitable for segmentation and feature extraction.102



Figure 2: Overview of the clinical protocol applied to each patient. Step 3 yields an ex vivo microPET image of the excised biosample, while Step
5 results in H&E staining and two immunostaining procedures for specific tissue property annotation onWhole-Slide Images (WSIs). The clinical
dataset is illustrated for patient 1.

Label extraction and PET normalization103

PET images were converted from activity concentration (Bq/mL) to Standardised Uptake Value (SUV) to enable inter-subject com-104

parison. SUV normalisation used body surface area (BSA) computed with the Du Bois formula16 , incorporating tissue activity, ad-105

ministered dose and patient anthropometrics. To reconcile the large resolution mismatch between histology tiles ( 0.25 ţm/px) and106

microPET ( 0.4 mm/px), tiles were assigned labels by mapping tile coordinates to PET voxels: each high-resolution tile approximately107

corresponds to a single PET voxel, using reference coordinates to compute physical distances from a common origin.108

Characterization of the biological domain109

A biologically informed representation of the tissue domain was constructed by segmenting vasculature, delineating neoplastic vs110

non-neoplastic compartments, and segmenting cell nuclei. These outputs form the multi-scale semantic masks and microscopic111



Figure 3: Procedural stages for extracting and preprocessing the tiles dataset from aWhole-Slide Image. Slide mask extraction ensures
consistent tile sampling across multiple stains representing distinct biological elements. Stain normalisation on standard H&E tiles yields a
harmonised dataset suitable for subsequent automatic segmentation tasks.

parameter sets used downstream. Figure 4 overviews the characterization pipeline.112

Blood vessel segmentation113

CD34 immunostaining highlights endothelial cells and was used to detect vasculature supplying the tumour. On extracted tiles,114

CD34-positive endothelial regions appear brown against hematoxylin counterstain. Tiles were converted to HSV colour space and a115

brown-hue range was thresholded to identify candidate vascular objects. Morphological closing and size filtering removed spurious116

elements and retained relevant vessels.117

Tissue segmentation118

To distinguish neoplastic tissue from surrounding stroma, we trained a pixel-wise segmentation model on H&E tiles manually an-119

notated by a pathologist into three classes: neoplastic, non-neoplastic and background. A DenseNet169 backbone was fine-tuned120

with a segmentation head composed of four terminal downsampling layers. Training parameters are reported in Table 1. The trained121

pixel classifier was applied tile-wise across the dataset and the resulting semantic masks were stitched to produce slide-level bio-122

logical domain maps.123



Table 1: Tissues segmentation training parameters

Train / Validation 70 / 30
Batch size 8
Optimizer Adam

Loss function Cross-entropy
Class weights [0.45, 0.24, 0.31]

Number of epochs 25

Cell nuclei segmentation124

Nuclear segmentation was performed on H&E tiles to derive cellular morphometry features. We used StarDist with the pretrained125

“2D_versatile_he” model (trained on TCGA and TNBC datasets) to obtain instance-level nuclear masks for downstream feature ex-126

traction.127

Figure 4: Segmentation workflow for extracting vascular, tissue and nuclear compartments fromWSIs. Tissue segmentation pipeline uses a
DenseNet-based pixel classifier; blood-vessel segmentation is performed tile-wise and aggregated to slide level; nuclei segmentation is
performed tile-wise for morphometric analysis.

Heterogeneity analysis128

To capture the multifaceted intra-tumour heterogeneity relevant to RPT uptake, we computed and aggregated three classes of pa-129

rameters: vasculature-derived features, cell nucleiderived features, and a tile-wise CAIX score. The heterogeneity analysis consisted130

of three steps: (i) parameter mapping, (ii) parameter selection via spatial correlation with PET uptake, and (iii) spatial cluster identifi-131

cation using local Morans Index.132

Parametric maps extraction133

For each vascular or nuclear metric, local values were computed per tile and averaged to produce tile-wise parameter values. CAIX134

was scored per tile by combining staining intensity and the fraction of CAIX-positive cells. Tile-wise values were interpolated into135

continuous heatmaps over the extraction mask using Inverse Distance Weighted (IDW) interpolation. IDW estimates values at un-136

known locations as a distance-weighted average of neighbouring tile centres, producing continuous parameter maps aligned to137

the tile grid for subsequent spatial correlation.138

Parametric maps selection139

To select robust macroscopic proxies for RPT uptake, we measured the spatial association between each parameter map and the140

baseline microPET slice co-registered to the histology section. PET labels were subjected to IDW interpolation andminmax nor-141

malisation to [0, 1]. We computed Pearson (linear) and Spearman (monotonic) correlation coefficients between parameter maps142



and PET-derived uptake. For vascular- and nuclear-derived metric groups, we selected the parameter that maximised the absolute143

value of both correlation metrics across slides. CAIX was evaluated as a standalone parameter given its direct mechanistic role in an-144

tibody targeting. This selection strategy captures both linear and non-linear spatial relationships between tissue features and tracer145

distribution17,18 .146

Spatial cluster identification147

For deeper characterisation, tile-wise parameter sets were subjected to local spatial autocorrelation analysis via local Morans In-148

dex. Tile values were normalised to z-scores and an 8-neighbour connectivity (Moore neighbourhood) defined spatial weights. Lo-149

cal Morans Index identifies clustered hot spots and cold spots as well as high-low and low-high outliers. Statistical significance was150

assessed under the null hypothesis at p = 0.005. Each tile was labelled as one of: hot spot, cold spot, high-low outlier or low-high151

outlier. The three Morans I outcomes (one per selected proxy) were aggregated into a heterogeneity representation for each tile and152

used as a 3-channel input to the learning model.153

Compartmental model for [89Zr]Zr-girentuximab154

Girentuximab is a chimeric monoclonal antibody targeting Carbonic Anhydrase IX (CAIX), expressed in the majority of ccRCC cases19 .155

The [89Zr]-girentuximab kinetics is represented by a non-linear three-compartment model focused on plasma and cellular dynam-156

ics20 . Upon injection, the antibody circulates in plasma (compartment 1), binds CAIX on cell surfaces forming a bound compart-157

ment (compartment 2) and is subsequently internalised into an intracellular compartment (compartment 3). The model assumes158

negligible dissociation of bound antibody from surface antigen during the time scales considered. Plasma time-activity curves act159

as the input function to the tumour and the tumour binding rate k(2, 1) is time-varying and non-linear, capturing antigen-limited160

binding dynamics. Measured parameters include the association rate constant ka and total antigen concentration Ctot,Ag (in vitro).161

The three-compartment system is governed by:162

dCfree

dt
= −k(2, 1) · Cfree (1)

dCbound

dt
= k(2, 1) · Cfree − k(3, 2) · Cbound (2)

dCint

dt
= k(3, 2) · Cbound − k(0, 3) · Cint (3)

with the non-linear binding rate:163

k(2, 1) = ka · (Ctot, Ag − Cbound) (4)

Parameter values and initial conditions used for integration in our experiments (Patient 1) are listed in Table 2. Time-activity curves164

(TACs) computed from this model are used as temporal inputs to the MOSAIK learning model (see Section 3).165

Table 2: Compartmental model parameters (Patient 1).

Parameter Unit Value
ka h−1.M−1 3.5× 1010

Ctot,Ag µM 0.3662
k(3, 2) h−1 0.2
k(0, 3) h−1 8.33× 10−4

Molecular
weight

g.mol−1 150× 103

Injected dose mg 0.1
Cfree,0 µM 7.32× 10−2

Cbound,0 µM 0
Cint,0 µM 0

MOSAIK MODEL: [89Zr]ZR-GIRENTUXIMAB UPTAKE PREDICTION166

Multimodal input construction167

The multimodal dataset integrates spatial, heterogeneity, and temporal information extracted fromWSIs and the compartmental168

model (Section 2). Inputs are structured to retain tile-level granularity while incorporating local and global contextual cues.169



Spatial inputs: The biological domain masks generated in Section 2.4 (neoplastic, non-neoplastic, and blood vessel compartments)170

were extracted for each tile. To incorporate multi-scale context, two additional masks were generated: a regional mask covering171

an 11×11 tile neighbourhood centred on the target tile, and a global mask covering 27×27 tiles. Both regional and global masks172

were downsampled to match the target tile size, enabling hierarchical feature extraction reflecting the pathologists multi-scale per-173

spective.174

Heterogeneity inputs: Each tile is annotated with the hot/cold or outlier labels derived from local Morans I analysis for the three se-175

lected proxies (vascular, nuclear, CAIX). Labels were encoded numerically: Average = 0, Hot spot = 1, Cold spot = 2, High-low outlier176

= 3, Low-high outlier = 4. For each tile, 11×11 neighbourhoodmatrices were created for all three proxies, forming a 3-channel het-177

erogeneity input.178

Temporal inputs: Time-Activity Curves (TACs) from the compartmental model were computed using LSODA integration of the sys-179

tem of equations (Section 2.6). The free, bound, and internalised antibody curves (Cfree(t), Cbound(t), Cint(t)) were sampled at patient-180

specific timepoints and normalised. These curves provide the temporal dynamics of antibody uptake at the tile level.181

Model architecture182

The MOSAIK architecture (Multi-modal Spatial Aggregation of Instance Knowledge) is a tile-level, multiple instance learning (MIL)183

framework designed to integrate spatial, heterogeneity, and temporal features into robust predictions of RPT uptake (see Figure 5184

for an overview of the model architecture).185

Spatial block: Processes multi-scale masks for each tile via a tri-branch convolutional network. Each branch independently extracts186

features from tile, regional, and global masks. Feature maps are concatenated and passed through residual blocks with layer nor-187

malization to preserve spatial information.188

Heterogeneity block: Handles the 3-channel heterogeneity matrices representing hot/cold/outlier classifications. A context-aware189

attention mechanism prioritises regions with significant intra-tumour variability, effectively making the model heterogeneity-attentive.190

Features from vascular, nuclear, and CAIX channels are embedded into a shared latent space and fused via cross-channel self-attention.191

Temporal block: LSTM layers process TACs (Cfree(t), Cbound(t), Cint(t)) to capture temporal dependencies in uptake. Features from192

bound and internalised curves are concatenated and passed through fully connected layers, while Cfree(t) is processed separately193

before integration.194

Feature aggregation and output: Features from all three blocks are concatenated and passed through a lightweight feed-forward195

network. The model outputs two predictions per tile: (i) a classification of tile contribution to slide-level uptake (hot/cold/outlier), and196

(ii) regression of the SUV value. This dual-task design leverages multi-task learning to improve generalisation and predictive accu-197

racy.198

Training procedure and optimization199

The MOSAIK model was trained using a combination of classification and regression objectives. The joint loss function is:200

L = αLCE + λLMSE

where LCE is the class-weighted cross-entropy loss for tile classification and LMSE is the mean squared error for SUV regression. α201

and λ are hyperparameters balancing the contributions of each task.202

Training details:203

Early stopping andmodel checkpoints were employed to prevent overfitting. Training used mini-batch stochastic gradient descent204

with the Adam optimizer, as specified in Table 3. Input modalities were normalised to zero mean and unit variance to stabilise learn-205

ing.206

Output predictions and learning tasks207

MOSAIK performs two complementary tasks:208



Figure 5: MOSAIK model architecture: a multi-modal, multi-instance learning framework combining spatial, heterogeneity, and temporal
features to predict tile-level radiopharmaceutical uptake.

Table 3: MOSAIK model training parameters

Train / Validation [%] 75.35 / 24.65
Batch size 12
Optimizer Adam

Learning rate 3× 10−5

Loss classification categorical cross-entropy
Loss regression mse

Activation classification Softmax
Activation regression Sigmoid

α 0.3
λ 0.7

Class weights [0.632, 0.916, 1.927, 5.336]
Number of epochs 25

1. Tile classification: Assigns each tile to a class representing its contribution to slide-level uptake (hot, cold, high-low or low-209

high outlier). This coarse-grained task informs the global spatial heterogeneity of uptake.210

2. SUV regression: Predicts the quantitative tracer uptake per tile, enabling fine-grained, spatially-resolved reconstruction of PET211

SUVmaps.212

The dual-task framework benefits from shared feature extraction while providing task-specific outputs. Classification guides the213

model to focus on heterogeneous regions, while regression provides continuous quantitative predictions. Aggregation of tile-level214

predictions allows reconstruction of slide-level uptake maps, providing interpretable spatial insight into RPT distribution across the215

tumour microenvironment.216

RESULTS AND DISCUSSION217

In this data-driven approach, we developed a comprehensive framework to simulate the spatial distribution of [89Zr]Zr-girentuximab218

within ccRCC tumours. Our workflow integrates a compartmental model with analyses of H&E, CD34-immunostained, and CAIX-219

immunostained digital histologies from two patients at different disease stages. This methodology translates extracted tiles into in-220

terpretable instances reflecting tissue behavior within tumours. Unlike conventional WSI analyses that directly extract patterns from221

patches after stain normalization, our approach explicitly considers the compartments of the immunokinetic modelgoverning ra-222

diolabelled antibody diffusion and retention over timealongside a local characterization of the biological domain and intra-tumour223

heterogeneity parameters. Furthermore, the digital twin model was designed as Heterogeneity-Attentive and Context-Aware, en-224

abling the integration of microscopic and macroscopic information. In the following subsections, we present the results collected225



across the processing pathways, the input construction, and model validation.226

Tissue Characterization227

Accurate pathological segmentation is pivotal in our framework, as it enables the study of drug interactions with distinct tissue types,228

particularly differentiating tumour and non-tumour regions. Preserving spatial patterns at the slide scale requires providing the229

model with robust, spatially informative content. The fine-tuned model exhibited strong performance on the validation dataset,230

demonstrating its reliability and generalizability to large-scale slides. Metrics on accuracy and precision are summarized in Table 4.231

Table 4: Compartments segmentation performance

Per-class metrics Background Neoplastic Non neoplastic
Accuracy 0.968 0.948 0.958
Precision 0.964 0.822 0.975

Overall metrics
Accuracy 0.937
Precision 0.929

These metrics demonstrate the models capability to generate accurate tile-level segmentation masks. The aggregated slide-level232

map in Figure 10 provides a cohesive representation of the pathological landscape.233

Macroscopic Proxies for Heterogeneity234

The heterogeneity analysis aimed to identify parameters with the highest spatial correlation to observed drug uptake patterns, high-235

lighting factors underlying tissue retention mechanisms.236

Parameter Selection Histological regions (A2A5 for patient 1 and B8 & B11 for patient 2) showed variable correlations, both posi-237

tive and negative, with baseline micro PET RPT accumulation. Figure 7 presents a Spearman correlation heatmap for nuclear-derived238

parameters and the CAIX score, while Figure 8 shows Pearson correlations for vascular parameters. Blue hues indicate positive cor-239

relations, red hues negative correlations. The dual-axis scatterplots in Figure 9 highlight the parameters optimizing both correlation240

metrics, revealing spatially relevant features for drug uptake: nuclear difference entropy, vascular equivalent diameter, and the CAIX241

score. Notably, CAIX expression showed a high average correlation with baseline uptake, confirming its value as a clinical biomarker242

for ccRCC targeting. These findings underscore the importance of capturing spatial heterogeneity across scales, aligning with previ-243

ous microscopic studies.244

Spatial Cluster Identification Parameters identified through correlation analyses underwent local Moran’s Index evaluation, gen-245

erating tile-wise heterogeneity maps with hot and cold clusters, including outliers (Figure 10). These cluster/outlier labels ensure246

the digital twin appropriately considers tumour heterogeneity at multiple spatial scales.247

Digital Twin Model Evaluation248

Predictions were generated by applying the trained digital twin to tiles from an unseenWSI (slide B11). Tile-level predictions were249

aggregated and interpolated using the IDWmethod to form the predicted RPT uptake map, compared to the ground truth in Fig-250

ure 11.251

The simulation demonstrates the models ability to predict intra-tumour uptake patterns with high fidelity at the slide scale. For SUV252

values normalized in [0,1], the MSE for slide B11 was 0.0065 (MAE = 0.0591). Contextual integration from tile-level to broader re-253

gions contributed to global consistency, avoiding overprediction in low-uptake areas. However, intermediate and high-variation254

regions were occasionally overpredicted. The pervasive nature of heterogeneityoperating locally, regionally, and globally, as well as255

inter-patient variabilitylimits the models ability to fully capture complex spatial patterns.256

Despite the small cohort, these results support the feasibility of using Deep Learning to reveal critical determinants of therapeutic257

retention at the tissue level, potentially guiding clinical decision-making. Future work should incorporate dynamic imaging to bet-258

ter inform temporal aspects of drug distribution and account for inter-patient variability. Additionally, integrating spatial measure-259



Figure 6: Tissue characterization process on slide B11: 1. H&E slide thumbnail, 2. Global tissue segmentation mask.

ments of tumour grade could enhance model interpretability and generalizability, mitigating the risk of learning artifacts and im-260

proving reliability for clinical applications.261

CONCLUSIONS262

As radiopharmaceuticals advance precision medicine in oncology, data-driven models are increasingly pivotal for predicting ther-263

apeutic outcomes. In this work, we implemented a comprehensive framework to account for multiple aspects of radiopharmaceu-264

tical absorption within tumours, providing a novel computational pathway to enhance precision oncology. Our theranostic digital265

twin integrates both spatial and temporal dimensions through a multimodal, multi-input approach, capturing the complex factors266

that govern drug diffusion in tumour tissues. By explicitly considering the spatial organization of the tumour microenvironment,267



Figure 7: Spatial correlation heatmap for nuclear-derived parameters and CAIX score across slides.

our model provides insights into tumour heterogeneitya key contributor to therapeutic failure in refractory and metastatic cancers.268

Furthermore, by incorporating the immunokinetic model of the radiotracer, we account for the mechanisms driving retention ki-269

netics within tumour tissues. Collectively, this work lays the foundation for predictive evaluation of treatment efficacy, enabling ex-270

ploration of intra-tumour uptake patterns and supporting optimized strategies for improved cancer management.271
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Figure 9: Average spatial correlation metrics between parameter mappings and baseline drug uptake maps. The equivalent diameter stands
out among vascular-derived parameters, while difference entropy is prominent among nuclear-derived parameters. (Psn: Pearson, Spm:
Spearman)



Figure 10: Selected parameters from the heterogeneity analysis with tile-wise Moran’s I maps: 3. Vascular equivalent diameter mapping and
clusters, 4. Nuclear difference entropy mapping and clusters, 5. CAIX score mapping and clusters.



Figure 11: Validation of simulated RPT uptake against ground truth: 6. Micro PET image of intra-tumour [89Zr]-girentuximab uptake, 7.
Aggregated tile-level predictions.
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