Lipschitz Stability for a Stationary 2-D Inverse Problem with Unknown Polygonal Boundary

Valeria Bacchelli and Sergio Vessella*

Abstract

We consider the stability issue for the inverse problem of determining an unknown portion Σ of a two-dimensional simply connected domain from overdetermined boundary data for the Laplace equation. In this paper we study the case in which Σ is a polygonal line. We prove a Lipschitz stability estimate under further a priori geometric assumptions on Σ .

2000 Mathematical Subject Classification. 35R30, 35R25, 35R3510.

Key words. Inverse boundary value problems, corrosion, thermal imaging, unique continuation, stability.

1 Introduction

Let Ω be a bounded simply connected domain of \mathbb{R}^2 with a Lipschitz continuous boundary $\partial\Omega$, a closed part of which, Σ , is not known and not accessible. Let $\Gamma = \partial\Omega \setminus \Sigma$ and assume that Γ is known and accessible. Let γ be an open subset of Γ and let f be a nontrivial function belonging to the trace space $H^{1/2}(\partial\Omega)$, whose support is contained in γ . Let us consider the Dirichlet boundary value problem

$$\begin{cases}
\Delta u = 0, & \text{in } \Omega, \\
u = 0, & \text{on } \Sigma, \\
u = f, & \text{on } \Gamma.
\end{cases}$$
(1)

We consider the inverse problem of determining Σ provided that $\frac{\partial u}{\partial \nu|_{\gamma}}$ is known, where ν is the exterior unit normal to $\partial\Omega$.

This problem arises from non-destructive testing in corrosion detection [13], [14] and in thermal imaging [7], where in general the non stationary model is considered. In these cases Σ represents a corroded part of $\partial\Omega$ or a privileged isothermal line [6] and one would like to determine Σ from suitable inspections and measurements on the accessible portion Γ of the boundary.

^{*}This work was partially supported by MURST, grant number 2004011204