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Abstract

In this work, we develop patient-specific cardiocirculatory models with the aim of building Dig-
ital Twins for hypertension. In particular, in our pathophysiology-based framework, we consider
both 0D cardiocirculatory models and a 3D-0D electromechanical model. The 0D model, which
consists of an RLC circuit, is studied in two variants, with and without capillaries. The 3D-0D
model consists of a three-dimensional electromechanical model of the left ventricle, coupled with a
0D model for the external blood circulation: this representation enables the assessment of additional
quantities related to ventricular deformation and stress, and offers a more detailed representation
compared to a fully 0D model. Sensitivity analysis is performed on the 0D model, with both a
mono- and a multi-parametric approach, in order to identify the parameters that most influence
the model outputs and guide the calibration process. We studied three different scenarios, corre-
sponding to systemic, pulmonary and renovascular hypertension, each in three nuances of severity.
To maintain a fair comparison among the models, a parameter calibration strategy is developed;
the outputs of the 0D model with capillaries are utilized to enhance the 3D-0D model. The results
demonstrate that the 3D-0D model yields an accurate representation of cardiocirculatory dynam-
ics in the presence of hypertension; this model represents a powerful step toward digital twins for
real-time hypertension control, providing refined and clinically meaningful insights beyond those
achievable with 0D models alone.

Keywords: Cardiovascular Modeling; Hypertension; Digital Twins; Hypertension Simulation; Ven-
tricular Electromechanics; Sensitivity Analysis; Parameter Calibration

1 Introduction

Hypertension, along with higher than normal or elevated blood pressure levels, is one of the world’s
leading risk factors for death and disability [1, 2], since it may cause stroke, ischaemic heart disease,
altered vascular conditions and kidney disorders [3, 4]. High systolic blood pressure is responsible
for more deaths than any other health risk. According to [1], it accounted for over 10 million deaths
annually and contributed to over half of all cardiocirculatory-related deaths worldwide in 2019 [5];
furthermore, in less than 30 years, the number of hypertensive individuals doubled: from 650 million
in 1990 to 1.3 billion in 2019 [6]. According to the most recent World Health Organization report [2]



“in 2024, an estimated 1.4 billion people aged 30-79 years were affected worldwide, yet fewer than 1
in 5 (320 million) had the condition adequately controlled”.

Hypertension is often referred to as the “silent killer” because it is typically asymptomatic: unless
blood pressure is measured, most individuals remain unaware of their condition until they experience
a clinical complication, i.e. heart attack, stroke or kidney failure. Proper management of hypertension
requires accurate diagnosis, prompt initiation of treatment in severe cases and continuous monitoring
of progress. Timelines are crucial: the longer a person suffers from undiagnosed or poorly managed
hypertension, the worse the health consequences are likely to be [1, 2].

Due to hypertension profound impact on global health, a comprehensive understanding of this con-
dition is crucial. Mathematical models are increasingly recognized as indispensable tools for studying
complex physiological phenomena, offering insights that traditional approaches alone may not pro-
vide. Within this context, the concept of Digital Twins (DTs) is gaining ground in cardiovascular
research [7, 8]. Unlike a simple patient-specific model, a digital twin establishes a continuous interac-
tion between the physical and digital entities: patient data drive the calibration of the computational
model, while the predictions obtained from the model can guide clinical choices, such as the selection
of therapeutic strategies [9]. By integrating clinical and sensor data into mathematical models, DTs
allow simulations tailored to the individual patient, enabling accurate reproduction of haemodynam-
ics and prediction of disease progression. Hypertension has already been investigated using machine
learning models, as evidenced by works such as [10, 11]; nonetheless, there has also been an increasing
use of differential equation (DE)-based models to simulate the cardiocirculatory system and study
hypertension (e.g. [12, 13]). The use of DE-based models, combined with real patient data, enables
the creation of personalized models tailored to individual patients: by incorporating patient-specific
physiological information, these models are able to simulate cardiocirculatory haemodynamics with
greater accuracy and reflect the unique characteristics of each patient’s condition. When combined
with real patient data, such DE-based models naturally lend themselves to the construction of DT, as
they can reproduce patient-specific cardiocirculatory dynamics and reflect the unique characteristics
of individual conditions.

Albeit advanced and complex models are increasingly being used as complementary tools to the
study of pathological conditions, hypertension modeling has been little explored in literature. This
paper is proposed as an innovative contribution in this direction, providing a framework that not only
simulates different forms of hypertension but also provides a foundation for future developments toward
cardiovascular DTs. The adopted approach, which combines lumped-parameter models and detailed
electromechanical representations, makes it possible to explore the dynamics of the cardiocirculatory
system with a hitherto little studied level of detail: the current work stands as a forerunner in the
modeling of hypertension, helps to fill a gap in the existing literature and supports the advancement
of patient-specific DTs for predictive and personalized analysis.

Several differential mathematical and numerical models are employed to analyze the dynamics of
hypertension, simulate its effects under various conditions and compare the simulated outputs with
clinically observed trends and reference values from the literature: in particular, a lumped-parameter
cardiocirculatory model (from now on referred to as (¢) or 0D model), based on a 0D representation
by an RLC circuit, and an electromechanical model ([14]) coupled with a lumped-parameter model
(from now on referred to as 3D-0D model), where the left ventricle is represented in 3D through
sophisticated electromechanical modeling, coupled with a 0D model of the blood circulation. The
integrated approach not only enhances the understanding of hypertension, but also contributes to the
development of improved diagnostic, therapeutic and preventive strategies, within a DT framework.
Through the proposed modeling framework, the simulations reproduce the haemodynamic alterations
associated with various forms and grades of hypertension; the results show the effect of increased vas-
cular resistance and reduced compliance on both systemic and pulmonary circulation, demonstrating
how these changes deeply affect pressure dynamics and cardiac workload. Furthermore, the compar-
ison between 0D and 3D-0D models yields valuable insights into advantages and limitations of each
approach, emphasizing the importance of patient-specific modeling for an accurate representation of
hypertensive conditions.

The current paper is organized as follows: Section 2 provides a clinical overview of hypertension,



with a brief description of its causes and effects; in Section 3, the employed mathematical models are
presented, along with an analysis of the relevant parameters involved; Section 4 illustrates the imple-
mentation of different kinds of hypertension within the mathematical framework, with a description of
the necessary modifications and assumptions for correct modeling; Section 5 is devoted to numerical
results obtained from the simulations, comparison of the model outputs with real-world clinical data
and evaluation of their consistency; finally, conclusions follow in Section 6.

2 Pathophysiology of Hypertension

In accordance with the 2023 European and current international guidelines [15], hypertension is diag-
nosed when office blood pressure measurements (i.e. taken in a clinical or healthcare setting) is equal
or higher than 140 mmHg for systolic blood pressure or 90 mmHg for diastolic blood pressure, although
recent USA guidelines have adopted a lower threshold, i.e. equal or higher than 130/80 mmHg. Al-
ternative definitions are considered to identify related conditions such as pulmonary hypertension, as
described below. Hypertension can be classified in several ways considering aspects such as the under-
lying causes, the severity of blood pressure elevation, the timing and consistency of measurements, the
presence of associated complications, or other risk factors. An important distinction is made between
primary and secondary hypertension: while primary hypertension has no clearly identifiable cause
and accounts for the vast majority of cases, secondary hypertension arises from specific, diagnosable
medical conditions (e.g. renal, endocrine or vascular disorders) [16]. Hypertension can be further
classified based on its origin and the vascular district involved. Here, the forms that are more related
to this work are briefly described:

1. systemic hypertension refers to elevated pressure in the systemic circulation and is the most
common form [16]. It is typically associated with increased peripheral resistance and large
artery stiffening, affecting left ventricular function and contributing to long-term cardiovascular
damage;

2. pulmonary hypertension by contrast, is defined as a mean pulmonary artery pressure above
20 mmHg at rest [17]. It affects the pulmonary circulation and can be caused by a variety
of mechanisms, including left heart dysfunction, lung diseases, hypoxia exposure, or vascular
abnormalities. It leads to increased right ventricular workload and is associated with a high
morbidity and mortality risk;

3. renovascular hypertension is a form of secondary hypertension caused by reduced renal perfusion,
most commonly due to atherosclerotic renal artery stenosis or fibromuscular dysplasia [18]. The
decrease in renal blood flow promotes renin secretion, vasoconstriction, sympathetic stimulation
and fluid retention, all of which contribute to a sustained elevation in systemic blood pressure.

2.1 Etiology and Clinical Manifestations

Hypertension is a multifactorial condition with both genetic and environmental influences. It may be
asymptomatic in its early stages but can lead to progressive damage to key organs such as the heart,
brain, vasculature and kidneys as blood pressure rises [19]. Hypertensive individuals often exhibit
enhanced vasoconstriction in both large and small arteries. This phenomenon, alongside the increase
in blood pressure, appears to be favored by systemic autoregulation, triggered by the preliminary
increase of blood volume and cardiac output; this mechanism refers to the ability of blood vessels to
maintain a constant blood flow, despite changes in blood pressure [20]. Hypertension is very commonly
associated with impaired vasodilation, due mostly to endothelial dysfunction and structural changes in
blood vessels [21]. In small vessels, remodeling of arterioles results in smooth muscle layer thickening
and lumen narrowing, increasing overall vascular resistance [22]. Other studies documented a two-way
relation between aortic stiffness and hypertension, as one condition increases due to the other one in
a self-promoting circle. A known impact of stiffness is the transmission of pressure into the smaller
vessels, which may cause harm to the organs [23].



Chronic high blood pressure puts stress on the left ventricular wall by increasing the afterload,
promoting left ventricular remodeling and hypertrophy; the latter is a well-established risk factor for
adverse cardiocirculatory outcomes, such as myocardial infarction, heart failure, atrial fibrillation,
stroke and cardiocirculatory mortality [19]. Long-term elevated pressure in the left ventricle may lead
to the dysfunction of the left atrium through dilation. There is ample evidence linking hypertension
with the etiology of valvular heart disease [24]: an increased systolic blood pressure has been associated
with an elevated risk of conditions such as aortic stenosis and aortic regurgitation. The effects of
hypertension involve endothelial dysfunction, vascular remodeling and enhanced vascular stiffness,
which not only contribute to the development of the disease, but are also results of it in turn [25]. The
kidney is also a key actor in the development and sustainment of hypertension: regulating systemic
vasoconstriction and blood pressure through both direct hormonal actions and feedback mechanisms,
including fluid balance, sodium handling and sympathetic activity [26, 27]. Hypertension and chronic
kidney disease are closely linked in a complex relationship: the former can be considered both a cause
and a consequence of the latter, promoting its progression [28].

3 Differential Mathematical Models for the Cardiocirculatory Sys-
tem

This section provides an overview of the models adopted for this paper, describing their mathematical
formulation, the key assumptions, the functionality and the involved parameters [29, 30, 31]. In
Section 3.1, the 0D models are illustrated, while the 3D-0D coupled model is described and briefly
analyzed in Section 3.2.

3.1 A 0D Model for Closed-Loop Blood Circulation

The 0D model (%) [29, 31] describes the haemodynamics of the cardiocirculatory system by means of a
lumped-parameter approach: it represents the entire circulatory network as a set of 0D interconnected
components, and allows the system to be modeled using ordinary differential equations (ODEs). (%)
is based on the assumption that the cardiocirculatory system can be simplified into discrete elements
that capture the mean features of blood flow and pressure dynamics. This type of models have been
implemented in two variants (Figure 1a): (4¢) which includes capillaries and (éxc) which does not.
The circulation is simulated over a time period T, long enough to reach a periodic limit cycle in the
output variables, with period that of the cardiac cycle; this periodicity is a property of the simulation
rather than the model itself. Only results belonging to the last heartbeat, lasting Typ, are then
considered.

In (%), both the systemic and pulmonary circulations are represented by a resistance-inductance-
capacitance (RLC) circuit: the resistance corresponds to the opposition to blood flow, the inductance
accounts for the inertial effects of the blood, and the capacitance represents the elasticity of the
vessel walls. The heart is modeled as a series of time-varying elastance elements, describing dynamic
variations of the force developed by the cardiac muscle during the cardiac cycle. Such elements
characterize each of the four cardiac chambers, allowing for the simulation of contraction and relaxation
phases of the heart. The four heart valves are represented as non-ideal diodes: they capture the
unidirectional blood flow and the resistance to backflow when the valves are closed. The heart elements
are integrated into a closed-loop system, where the interactions between the heart and the blood vessels
are modeled to replicate the complete haemodynamic behaviour of the cardiocirculatory system.

The two variations of the model are based on distinct systems of ODEs, reflecting the inclusion or
exclusion of capillaries; below, the system of ODEs for (¢énc¢) is presented:
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for t € (0, T], and coupled with suitable initial conditions.

(¢c) introduces modifications to Equations (1c¢) and (1f), respectively:
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for ¢t € (0, T], and adds the additional ones, here presented:
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for t € (0, T], to account for the haemodynamics of the capillary network, while the others remain
unchanged between the two models.
In both the models, the pressures in the four heart chambers are computed as:

pi(t) = pEX(t) + Ez' (t) (Vz(t) - VO,i)7 (XS {LA7 LV, RA? RV}? (3)

while the fluxes through the four heart valves are defined as:

~ pra(t) —prv(t) _ prv(t) — pitpiL(t) .
Qrv(h) = Ry (pra(t), pry(t))’ Qev(t) = Ryv (prv (), pRp- (1)) (42)
Quy(t) = 2l — ) Quv(t) = 2o A () (4b)

Ruv (pLa(t), pv(t)) Rav (pv(t), iR (1))

where Vo ; is the resting volume of heart chamber i; ppx(t) is the pressure exerted outside the heart
by the surrounding organs and respiration, and in this work will always be set to 0.
Equations (2¢), (2f) and (2g) introduce the following new flux variables:
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A compact representation suitable for both the 0D models is provided here:

dclt(t) =D(t,ci(t),ca(t)) fort e (0,T],
(%) 4 es(t) = W(t,er(t)) for t € [0,T), (6)
C1 (0) = 0170.

The same notation of Equation (6) can be used to represent both (¢¢) and (énc).

3.2 The 3D Electromechanical Model coupled with the Lumped-Parameter Model

The 3D-0D model employed in this paper is the one presented in [29], which couples a detailed
3D electromechanical model of the left ventricle with a 0D model of the systemic and pulmonary
circulations. The 3D left ventricle is represented by the computational domain €y C R3, with its
boundary 9 being split into three distinct sections: the endocardium (I'§*4°), the epicardium (I'g™)
and the ventricular base (T52); the latter represents the artificial boundary where the left ventricle
geometry is cut.

The multiphysics and multiscale model of cardiac electromechanics comprises five separate core
models:

1. transmission of cardiac electrical potential (&);
2. ion dynamics (¥);

3. contraction of cardiac muscle cells ();

4. mechanical behaviour of tissue (.Z);

5. blood circulation (%).
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(a) 0D model. (b) 3D-0D model.

Figure 1: 0D cardiocirculatory models with (center) and without (left) capillaries. The 3D-0D coupling
between the left ventricle 3D electromechanical model and the 0D circulation model without capillaries
is shown on the right. Source: [29, 31] and graphical modifications.

These core models capture the various physical processes involved in cardiac function, at different
spatial and temporal dimensions. Furthermore, a volume conservation constraint (%) ensures the
proper interaction between (.#) and (%). In Figure 1b, the complete 3D-0D model is presented. Such
a model includes multiple unknowns, depending on both time and space, that represent the variables
related to each core model and describe the interactions between them; u denotes the transmembrane
potential, w and z represent the ionic variables, s indicates the state variables of the force generation
model, d refers to the mechanical displacement of the tissue, ¢; is the state vector of the circulation
model, and pry represents the pressure of left ventricle.

The 3D-0D complete model is defined by sets of partial differential equations (PDEs); the detailed
formulation is reported in A. In (&), the dynamics of the transmembrane potential u are captured by a
diffusion-reaction PDE, which governs the electrical behaviour of cardiac muscle cells [32, 33, 34]. For
the purpose of electromechanic coupling, a proper modeling of the ionic fluxes across the cell membrane
is mandatory [35]; the latter involves the inclusion of two variables: the recovery variables w, which
characterize the proportion of open ionic channels, and the concentration variables z, describing the
concentrations of critical ionic species, such as intracellular calcium ions [Ca2+] ;» which play a pivotal
role in triggering mechanical contraction.

In the electrophysiological framework defined by (&) — (.#), the transmembrane potential u propa-
gates through gap junctions; this phenomenon is governed by the diffusion term V- (J F_IDMF_TVU),
which incorporates the influence of tissue deformation and introduces a feedback mechanism, linking
electrical behaviour to mechanical stretch. Here, F = I + Vd is the deformation gradient tensor,
while Dy represents the diffusion tensor, which captures the anisotropic characteristics of cardiac
tissue. The applied current, Z,,, (), simulates the role of the Purkinje network: these fibers form the
outermost component of the cardiac conduction system and their primary function is to ensure the
swift and synchronized activation of the ventricular myocardium [36]. Additionally, the ionic current
Zion(u, w, z) encapsulates multiscale interactions at both cellular and tissue levels. Electrically isolated
interfaces are modeled using homogeneous Neumann boundary conditions.

Cardiac contraction arises from interactions between actin and myosin proteins within sarcomeres,
the fundamental contractile units of heart muscle [37]. To simulate the mechanism in (), the RDQ20-
MF model has been employed [38] instead of RDQ18 in [29]: it provides a complete biophysical
model that characterizes the behaviour of sarcomeric proteins, along with the causes that support the
responsiveness of the heart towards variations in calcium levels. RDQ20-MF is a system of differential



equations, where the state variables are represented by the vector s; it outputs the permissivity P,
representing the fraction of contractile units in the force-generating state, from which the effective
active tension T, is derived. Inputs to the model include calcium concentration [Ca2+]l. (properly
described using a ionic model), sarcomere length (SL) and its time derivative from the mechanical
model.

Tissue displacement d is described by the momentum conservation equation (.#). The Piola-
Kirchhoff stress tensor P represents both the passive and active mechanical properties of the tissue.
Under the assumption of hyperelasticity, the passive component of the stress tensor is derived from
the strain energy density function W, while the active component depends on tissue stretch along
the fiber direction and on the active tension T,. To capture the anisotropic properties of cardiac
muscle, the Guccione strain energy density function as W(F') [39, 40] is used, which depends on the
Green-Lagrange strain energy tensor. Additionally, to penalize large volume variations and enforce
weak incompressibility, a term involving J = det F is added to W(F') [41].

To model the interaction between the left ventricle and the pericardium [42], a generalized Robin
boundary condition is applied on the epicardium ngl: this condition is designed to simulate the
effect of the right ventricle, major veins and arteries, i.e. to restrict rigid rotations of the ventricle
around the apico-basal axis (the direction from the base of the heart to its apex), while permitting
torsion. At the base Fgase, an energy-consistent boundary condition is enforced: this ensures the
correct stress distribution at the base boundary. For the endocardium and", the applied boundary
condition accounts for the pressure pry(t), which reflects the pressure exerted by the blood within
the ventricle. Lastly, the mechanical model (.#) influences (/) by determining the local sarcomere
length (SL); the sarcomeres are aligned with the muscle fibers, so the local sarcomere length directly
correlates with the tissue stretch along the fiber direction.

In the 3D-0D coupled framework, the 0D cardiocirculatory model used does not include the cap-
illary network. The 0D model, as introduced in Section 3.1, represents each cardiac chamber as a
time-varying elastance element and yields a simplified 0D representation of the circulatory system.
However, the coupled model integrates this 0D circulatory model with the 3D left ventricular model,
which is governed by equations (&), (.#), (&) and (#). To achieve this integration, the elastance
element of the left ventricle is removed from the 0D model and replaced by the 3D electromechan-
ical model. Additionally, the 3D-0D coupled model must satisfy a volume consistency condition
vt € (0,T], as described by Equation (14f); Vi3 (c(t)) and V3P (d(t)) stand for the left ventricular
volumes in the 0D and 3D models, respectively. The introduction of this volume-consistency condition
leads to an additional unknown variable, pry, which is no longer determined by Equation (3), but
serves as a Lagrange multiplier enforcing the constraint (#7). Consequently, a “reduced” vector € is
defined, where ¢f = (prv, &} ): this allows for the reformulation of Equations (3) and (4) as:

Co (t) =W (tv C1 (t)vpLV(t)) :
As aresult, the reduced version of Equation (6) can be expressed as Equation (14e), where the following

expression for D is employed:

~ pLv
D(t7 clvpLV) =D tacla ~ .
W (t, 1, pry)

Finally, the coupled 3D-0D model is obtained, as reported in Equation (14), with the number of
equations in the model matching the number of unknowns.

In this paper, a left ventricle geometry is utilized, derived from the Zygote Solid 3D heart model
[43]; this model represents the 50" percentile of a healthy Caucasian male in the U.S., reconstructed
from a high-resolution computed tomography scan. The model is acquired at 70% of diastole and
captures the late phase of diastasis when passive filling of the ventricles has slowed, but before atrial
contraction completes active filling. The mesh used, denoted as T, consists of 6079 vertices, 6682 tri-
angles and 27492 tetrahedra, with an average element size hpean = 3.7 mm. The numerical methods,
as briefly introduced above, are implemented within the 1ife* [44, 45] framework in a parallel envi-
ronment, that utilizes high-performance computing (HPC) resources (total available: 48 Intel Xeon
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Figure 2: Most relevant total Sobol indices, computed for (énxc). The index S,Z"T in position (k, j)
quantify the contribution of parameter pj, to the output y;. Only Sfc’T > 0.2 are shown.

ES-2640 CPUs) at MOX, Politecnico di Milano. For more details about 1ife*, its documentation can
be retrieved here, while refer to [46] for the last updates.

4 Computational Models in Hypertension

In this section, the computational models used to investigate hypertensive conditions are analyzed,
focusing on their applicability in reproducing clinically relevant haemodynamic behaviours.

4.1 Sensitivity Analysis in 0D Models

The sensitivity analysis of the 0D models is performed to identify the most influential parameters
on the outputs of interest. This analysis is conducted using single- and multi-parameter approaches,
respectively in Sections 4.1.1 and 4.1.2.

4.1.1 Single-Parameter Sensitivity Analysis by means of Sobol Indices

Sobol indices [47] are a form of global sensitivity analysis: they rely on the decomposition of the
variance of the model’s output into components, which correspond to different input variables and their
interactions. In this paper, total Sobol indices S,JC’T have been employed: they take into consideration
both the direct effect of a parameter p; and its interactions with the others. The methodology and
analysis of this section are directly derived from [48].

The 0D cardiocirculatory model includes a large number of parameters, however, for practical and
methodological reasons, some parameters are not included in the sensitivity analysis: HR is excluded,
as can be directly and clinically measured; parameters related to the timings of the cardiac cycle are
excluded due to their significant influence on the shape of pressure-volume (PV) loops, as they can lead
to non-physical results, and complicate the analysis without providing further insights. Moreover, the
total blood volume was not included among the parameters, since in this framework it is implicitly
determined by the choice of initial conditions rather than treated as an independent variable. For
both (4nc) and (4c), quantification of the influence of parameters and interpretation of their impact
on model outputs follow the same principles and hence makes both configurations compatible and
comparable.
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The N, starting parameters, denoted as pt € RY» (B), are selected to be those which generate
a simulation for a healthy individual. To simplify the analysis, the parameters are assumed to be
independent; furthermore, to reflect the diversity across different healthy and hypertensive individuals,
the parameters are allowed to vary in a multidimensional space, a hypercube with its center in p*. The
amount of variation along each axis is % of the reference parameter value, therefore each parameter
pi is sampled within the interval:

2 2
Ik:|:<1_3>p§’<1+3>p?], kFeNand 1<k <N,

ensuring the representation of various physiological conditions.

In the parameter sampling process, Sobol sequences are used to ensure a more uniform and space-
filling coverage of the hypercube, by minimizing clustering and gaps. This quasi-random structure
allows for faster convergence of the sample mean to the expected value compared to standard Monte
Carlo sampling, thereby reducing the number of simulations needed to explore the parameter space
effectively [49]. Sobol indices are computed using Saltelli’s method [50]: this technique guarantees a
high-resolution variance decomposition, providing an accurate information on the contribution of each
parameter and its interactions. Though computational effort of Saltelli’s method scales linearly with
the number of parameters, it is still feasible, since (énc) and (4c) are computationally cheap, and
parallelization limits the time taken for processing. In this paper, N, = 26 parameters are analyzed
for (¢nc), while, in the case of (4¢), the number of parameters taken in account rises up to 32; the
method generates 2N (N, + 1) samples (N = 2'? is a user-defined value), resulting in 221,184 samples
for (énc) and 270,336 samples for (6c). The most relevant total Sobol indices (> 0.2) for (énc),
obtained through this procedure and subsequently utilized, are shown in Figure 2.

4.1.2 Multi-Parameter Sensitivity Analysis

Multi-parameter sensitivity analysis extends the traditional sensitivity analysis in order to understand
the combined effects that related parameters have on model outputs: this approach aggregates them
into meaningful groups, often based on physiological, structural, or functional similarities. This ap-
proach is particularly beneficial for complex models characterized by a large number of parameters,
whose collective influence can not generally be interpreted in an elementary way with respect to their
individual influence on the model.

In this section, groups of parameters (specifically, resistances, inductances and capacitances) re-
lated to specific parts of the cardiocirculatory system are considered in order to understand how
changes in those groups produce variations in the model’s behaviour, in both the systemic and pul-
monary circulation cases. Namely, the impact on the simulation of the variation of arterial, venous
and capillary parameters is studied; the parameters related to the left ventricle (Efy;, Eﬁv and Vo rv)
are analyzed to assess how keeping them fixed in the 3D-0D model may limit its ability to accurately
reproduce certain hemodynamic conditions (Sections 3.2). The goal is to understand whether fix-
ing these parameters hinders the model from capturing relevant physiological changes, and to what
extent this choice influences the simulation outcomes. A noteworthy aspect is the arbitrary choice
of groups of parameters; another drawback of the current approach is the fact that other groups of
possibly influential parameters may not be considered at all. The sensitivity analysis of these groups
of parameters is performed for both (4nc) and (4¢); for (4¢), the systemic and pulmonary capillary
circulation is considered separately.

All the mentioned parameters undergo modification by the multiplication with coefficients in such
a way that they are constrained within realistic intervals, while all the others remain unchanged.
The modeling of hypertension by means of lumped-parameter models is a topic that has not been
systematically exploited yet; different studies employ different models, each with different structures
and peculiarities, such as in [51, 52, 53]. Since our sensitivity analysis focuses on the hypertensive
setting, constructing realistic parameter intervals is not a trivial task; in this paper, inspiration has
been taken from [51, 52, 53] and Section 2, in order to obtain coefficients that would be acceptable and
useful for carrying out the sensitivity analysis. These coefficients have been chosen to reflect the typical
parameter variations observed during the progression of hypertension: resistances and inductances are

10



increased while conductances are decreased, and vice versa; active and passive elastance of the left
ventricle are enhanced while the resting volume is reduced, and vice versa. Such modifications try
to reproduce the haemodynamic alterations reported in clinical and modeling studies, while keeping
the parameters within physiologically plausible ranges. The coefficients are defined as follows: The
coefficients are defined as follows:

nr = 1+ 0.15p, nL =1+ 0.075p, nc = 1—0.06p, (7a)
Ne = 14 0.12p, np =1+0.14p, no =1 —0.05p, (7b)

where nr, 1, and nc are the coefficients applied to resistances, inductances and conductances, re-
spectively; 74, 17, and 7y represent the coefficients applied to active elastance, passive elastance and
resting volume of left ventricle, respectively; the auxiliary parameter p is defined as p € Z\{0}, with
the constraint |p| < 5.

In this section, to simplify the notation, given a generic parameter or output « (time dependent or
independent), the symbol & will denote the reference value of the parameter or the output computed
using the reference parameters, while & will indicate the value of the parameter after being modified
according to the guidelines outlined earlier, or the output computed with the modified parameters.
Therefore, the following relation holds: & = n,a, for some parameter o and the corresponding coeffi-
cient 74.

The time-independent outputs monitored in this analysis are listed in C. The variation of an output
¢ is quantified using the following formula:

r'(¢) = (g - 1> -100. (8)

The variables that represent the solutions to the ODE system (Section 3.1) within the simulation are
also monitored, along with the pressures in the heart chambers, the fluxes through the cardiac valves
and, only for (é¢), the non oxygenated pulmonary capillary flux. Since these variables are functions
of time (represented as vectors in the numerical solution), four indicators are introduced to simplify
the monitoring process and provide scalar values for analysis. They are computed for each variable v

as follows: -
U —0v)dt _ 3}
T'r(v) = fT‘TTHB( ) 1100, T(v) = <meantv - 1) 100,
fT—THB o dt mean; v

Tw(v) = <maXt” - 1) - 100, T (v) = (mm”’ - 1) - 100.

max; U ming v

(9)

Additionally, the variation in the PV loops I';, for i € {LA,LV,RA, RV}, is measured as the ratio
between the area of the cycle obtained with modified parameters and the area of the cycle obtained
with unmodified parameters.

As the analysis begins, the parameters of a group are modified by means of the coefficients in
Equation 7, while all the other parameters remain fixed at reference values. When a simulation is
performed, a certain number of time-independent outputs and time-dependent variables are computed:
in particular, 45 outputs and 20 variables are computed if (¢n¢) is employed, while 46 outputs and 25
variables are calculated if (4¢) is utilized (refer to C for the outputs, to Section 3.1 for the variables).
Additionally, in the case of (énc), five groups are considered, while seven groups are taken for (%6¢).
By using the coefficients in Equation (7), both models’ parameters are changed over ten nuances of
variation for each considered group: whence, 50 simulations are run for (éxc) and 70 simulations
for (¢c). For each output, the indicator in Equation (8) is calculated, while, for each variable, the
four indicators in Equation (9) are computed; four additional indicators (I'pa, I'yv, T'ra, [rv) are
also considered, once for each nuance of variation of each group. All in all, a simulation employing
(énc) produces 129 indicators and a simulation adopting (4¢) generates 150 indicators, which gives
an overall total of 16,950 indicators across all simulations, taking in account every group, every nuance
and every model.

At the end of the analysis, the parameters to calibrate comprehend: the active and passive elas-
tances, and the unstressed volume of the four cardiac chambers, the valve maximal and minimal
resistances and all the RLC components of the vascular circulation (Section 3.1).
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4.2 Implementation of Hypertensive Scenarios

In order to simulate the impact of hypertension in the 0D cardiocirculatory model, it is necessary to
introduce systematic modifications of model parameters. Changes in parameters are implemented
in such a way that simulated alterations in haemodynamics align with clinical and physiological
expectations: this would present a realistic reproduction of hypertensive pathophysiology within the
framework of 0D modeling. The modifications are done in the form of percentage changes relative to
baseline parameters of a healthy individual, collected in B: all those adjustments try to represent the
physiological processes explained in Section 2, maintaining a consistent representation of hypertensive
condition. The result obtained from sensitivity analysis (Section 4.1) are supporting guidelines to
enhance the modifications, helping to achieve the desired haemodynamic effects within the model.

In this study, three distinct types of hypertension are considered (Section 2.1), each characterized
by different haemodynamic implications and clinical relevance:

1. systemic hypertension, mostly affecting the systemic arterial circulation and commonly associ-
ated with increased peripheral resistance;

2. pulmonary hypertension, involving elevated pressure in the pulmonary circulation;

3. renovascular hypertension, due to abnormalities in kidneys, which gives rise to compensatory
mechanisms, further increasing systemic blood pressure; the examined condition is also aggra-
vated by secondary pulmonary hypertension.

For each of these conditions, three different levels of severity (mild, moderate and severe) are inves-
tigated, in an effort to capture the progressive nature of the disease and its effects on the circulatory
dynamics; the choice of these three levels of severity was made in such a way as to represent the range
of hypertensive conditions that might be observed in a realistic patient population. The parameter
changes are listed in Table 1, indicating the parameter adjustments for each condition and severity
level.

4.3 Models Calibration

In this section, two different calibration procedures for the 0D and the 3D-0D models are presented,
respectively in Sections 4.3.1 and 4.3.2; since the models are profoundly different also in terms of
the computational cost required to solve them, it was deemed appropriate to adopt two different
calibration strategies.

4.3.1 Calibration of the 0D model

The calibration procedure that is presented in this section follows the framework described in [31],
which, in turn, relies on the method presented in [54]. The process begins by defining a loss function
that quantifies the discrepancy between simulation results and target values. The aim of calibration
is identifying the parameter configuration p/ € © = RN, with N, being the number of parameters
to calibrate, that minimizes the loss function; in order to find the configuration p’, parameters are
iteratively modified within predefined bounds, untill the loss function is sufficiently small. In [31], the
loss function is given by the sum of squared relative errors between model outputs and target data,
for the specific individual j, as follows:

p’ = argmin £7(p), (10)
pEo

with the relative error (5% and the loss function £/, defined as:

5(p) = 7 ) L(p)=> )’ (11)
k
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Systemic Pulmonary Renovascular

Parameter Mild Moderate Severe Mild Moderate Severe Mild Moderate Severe

HR — +5% +10% - +5% +10% - — +10%
Efy +10%  +20% +40%  +5%  +10% +15% - - -
Vo,Lv — — —-10% — — —-10% — — —
RIS +10%  +30% +50%  — - +5%  +15% +40% +85%
C% —10% —20% —40% - - —10% —10% —15% —25%
RYEX - - +5% - - - - - -
CYiN - - —5% - - - - - -
RERE - — +10%  +20% +50% +100% +5%  +15% +40%
chyk - - -10%  —10% —25% —50% - - -
RUEK - - - +10%  +25% +50%  — - —
CUEN - - - —10% —25% —50%  — - -
RZYS - - +10% - - - - - -
CgYs - - -20% - - - - - —
REVE - - - +10%  +30% +60%  +5%  +10% +25%
covk - - - - - -20% - — -
Rav +25%  +50% +100% — — — +25% +50% +100%
Ray - +10% +20% - - - +10%  +20% +30%
Rpy - - — +25%  +50% +100% +25% +50% +100%
Rty - - - +10% +25% +50%  +10% +25% +50%

Table 1: Modifications applied to the model parameters to simulate mild, moderate and severe hyper-
tension. The changes are expressed as percentage variations relative to the baseline parameters of a
healthy individual, which are reported in B.

where Nj is the number of available data for individual j, di represents the k-th target data value of
individual j, and qf;]j(k) (p) is the corresponding model output. The index m for ¢hism e {1,...,Ng},
where N, is the total number of distinct model outputs. For more details about parameters p to be
calibrated, refer to Section 4.1.

To minimize £7, parameters are optimized within predefined intervals I;, where i € {1,...,N,}.
These intervals are set around some initial reference values in such a way that, after the optimization,
the changes in parameters remain physically and clinically relevant. The value of the loss function
falling below some given small threshold, set to 1073, is assumed to indicate a successful calibration.
Nevertheless, there are cases where the procedure might be unsuccessful, such as when the loss func-
tion’s minimum is located above the threshold, meaning the parameter set is not able to reproduce
the reference data within the given constraints. The minimization of £/ is performed in Python using
the Quasi-Newton optimization algorithm L-BFGS-B [55], as implemented in the SciPy library [56].

An Alternative Choice for the Loss Function. Apart from the choice of an optimization al-
gorithm, another important issue in model calibration is related to the selection of a suitable loss
function, which drives the optimization procedure. The selection or design of an appropriate loss
function is particularly critical in the context of cardiocirculatory models, where complex physiologi-
cal dynamics must be captured with high fidelity during the calibration process. The method is based
on constructing alternative loss functions that apply distinct penalizations to different magnitudes of
parameter values; subsequently, these various loss functions are applied for the calibration process so
that the results of the estimated parameters and the associated calibration performance could be com-
pared. Since the following analysis does not focus on the individual from whom the data is provided
but rather the functional form of the loss function, the index j in Equations (10) and (11) will be
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Figure 3: Comparison of the eight loss functions used in this study: on the left, they are represented
in linear scale for § € [0, 1.2], while on the right in semi-logarithmic scale on y axis for ¢ € [1, 10].

omitted to simplify the notation; additionally, the index r and the total parameter deviation A, are
introduced as follows:

] =
] =

['r(p) = Ir (5k(p)) ) Ar(p) =

k=1 k=1

0%(P); (12a)

such that f. denotes a different function as r changes in the subsequent analysis. By defining the
following functions:

fo(8) = 6%, g(0) = log (coshd), h(6) =1+ %log (14 0%),

it is possible to express the different functions f, besides fo (Figure 3), chosen to be subsequently
analyzed, as follows:

RO =g@).  12(6) = 467 [5(5) = 181 90 Fa(®) = (6, F5(6) = 50 4(6)"

(13a)

1o6) = 62 0), 716 = 2 hs), 7u8) =~ h), (13)
1+ 6|2 1+ 62

To investigate the impact of the different choices of f,. in the loss function definition in Equa-
tion (12), a systematic study has been conducted. In the absence of real clinical data, a synthetic
approach is adopted: data from a healthy individual (B) are used as a baseline, and modifications are
introduced to replicate the causes and effects of hypertension. These modified datasets are employed
as input for simulations performed using the (%) model, that has been discussed in Section 3.1;
time-independent outputs from these simulations are then collected to serve as reference data. The
next step involves calibrating (énc), presented in Section 3.1, using these time-independent outputs
as targets: for the selection of the outputs utilized in the calibration process, all the outputs included
in C are considered. As for the parameters to be calibrated, reference is made to the total Sobol
indices S” presented in Figure 2: specifically, only those parameters py such that 3 : S,i’T > 0.2 are
selected for calibration.

This setup is intentionally designed to enable a focused comparison of different loss functions,
without introducing additional variability related to capillary dynamics in the model being calibrated.
Using (4c) to generate the reference data and calibrating (éxc) ensures that the evaluation of the
loss functions is not influenced by the added complexity of capillary parameters. Moreover, (6¢) is
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Figure 4: Calibration times (in seconds, on the left) and total parameter deviations A, (on the
right) at the end of calibration for (¢xc). The following conditions are studied: systemic, pulmonary
and renovascular hypertension with secondary pulmonary hypertension. Three severity levels (mild,
moderate and severe) are considered for each condition, and the calibration is performed using different
choices for the loss function.

not calibrated anywhere in this study, both because the calibration procedure is more challenging and
because it tends to produce parameter values that result in less physiologically realistic cardiac and
circulatory dynamics compared to those obtained with (énc).

For each candidate loss function in Equation (13), the calibration process is carried out to determine
the optimal parameter configuration, and the time needed is recorded; then, the vectorial outputs from
the two models as in D are compared. This procedure is repeated for the cases presented in Section 4.2,
encompassing systemic hypertension, pulmonary hypertension and renovascular hypertension with
secondary pulmonary hypertension. Each of these conditions is further studied at three different
levels of gravity (mild, moderate and severe hypertension), allowing a thorough check of the loss
functions in a wide variety of situations. The whole analysis has been performed on a MacBook Pro
(Apple M1 Pro, 10 cores, 3.2 GHz, 16 GB RAM). Times necessary to complete the calibration for each
analyzed case with a different choice of the loss function are summarized in Figure 4. Among all the
candidate functions, f; stands out as the optimal selection: even if the total parameter deviations in
Figure 4 are generally smaller for fg and f7, fi requires the shortest calibration time, being the best
compromise between quality of the parameters and calibration time. As a result of this analysis, all
subsequent calibrations are performed using f; as the function defining the loss; for simplicity, from
this point onward, the loss function will be denoted as L in place of L.

4.3.2 Calibration of the 3D—0D model

In general, the calibration of a 3D-0D model is computationally expensive, due to the high complex-
ity of the three-dimensional representation of the left ventricle, making both single-parameter and
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Figure 5: Workflow illustrating the calibration process of 3D-0D models for a generic clinical scenario.

multi-parameter sensitivity analysis unfeasible. Even a direct calibration would be impractical, as
it would require, among other things, solving the 3D-0D model many times, an operation that is
computationally expensive. In addition, a whole calibration process would be required for each case
of hypertension that is to be analysed, nine in total (Section 4.2), making the approach even less
feasible; lastly, all the adjustments performed to simulate hypertension involve only parameters of the
0D circulation model (as detailed in Section 4.2). In light of all these considerations, an alternative
and more computationally efficient approach, depicted in Figure 5, is preferred.

The workflow starts by exploiting the 0D model with capillary circulation, (4¢), which allows a
direct manipulation on parameters related to capillaries: through modification of (é¢), a direct action
is exerted on the capillary circulation in order to ensure that, after the calibration of the electrome-
chanical model, the 3D-0D representation also reflects the effects of hypertension at the capillary
level, despite capillaries are not physically included in the 3D—0D model. Taking the parameters of a
healthy individual (B), the adjustments to simulate hypertension, as outlined in Section 4.2, are then
applied to this model. A simulation is performed, and its time-independent outputs are used to cal-
ibrate, following the procedure illustrated in Section 4.3.1, a 0D model without capillary circulation,
(énc): such a procedure allows for direct manipulations of the capillary network and ensures that
(é~c) properly captures the effects produced by these manipulations.

It is important to remark here that all the parameters related to the left ventricle, which are active
and passive elastance and the unstressed volume, are not included in this calibration procedure: such a
choice is indeed motivated by the fact that, in the 3D-0D framework, the left ventricle is represented
by means of a 3D electromechanical structure, as described in Section 3.2, which is inherently not
including these latter parameters; the mesh employed in the 3D-0D model is generated from the left
ventricle of a healthy individual, as explained in Section 3.2. It would hence be inconsistent to modify
the 0D left ventricle parameters because changes in such parameters can not be replicated in the 3D
electromechanical model. For additional information, refer to the details about the left ventricle, in
Chapter 2, and Sections 4.1 and 4.2.

As illustrated in Figure 5, the parameters of (énc) are calibrated, using the time-independent
outputs of (4¢), and then included in the 3D-0D model. It is noteworthy that the parameters of the
3D-0D model related to the electromechanical component of the left ventricle are never modified: as
they are very delicate quantities and closely linked to the specific model itself, it would be unfeasible
to try to adapt them to simulate hypertension. For this reason, the same parameters defined in [29]
are employed. Finally, a simulation is performed under this comprehensive framework, allowing for
the analysis of the model’s behaviour under hypertensive conditions. The results obtained from (%)
and from the 3D-0D model are then compared to check if the calibration is performed successfully:
by effectively aligning the outputs of (4¢) and the 3D-0D model, the latter is now able to give real
insight into the complex dynamics of hypertension, achieving this goal with minimal computational
effort.

This calibration workflow also lays the foundation for cardiovascular DTs. By aligning the outputs
of the 0D and 3D-0D models, it becomes possible to generate patient-specific representations of
cardiac dynamics under hypertensive conditions. Such personalized models could be further exploited
for predictive simulations, risk assessment and clinical monitoring, highlighting the potential of DTs
in supporting individualized diagnosis and therapy planning.
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0D model 3D-0D model

Output  Unit Healthy Mild Moderate Severe Healthy Mild Moderate Severe
LVgw mmHg-L 5.9 6.3 6.9 7.5 6.3 6.5 7.1 7.2

CI m? - L/min 2.9 29 3.0 3.0 3.0 3.0 3.0 3.1
SAPpax mmHg 109.6 117.0 128.2 144.4  106.9 111.4  120.9 127.4
SAPnin  mmHg 71.2 74.5  80.2 83.8 72.8 76.5  81.5 80.8

Table 2: Variations of selected time-independent outputs in systemic hypertension, from both (%¢)
and 3D-0D model.

5 Numerical Results and Discussion

Each simulation generates a total of 25 time-dependent variables and 46 outputs, if carried out with
(¢éc), or 20 time-dependent variables and 45 outputs, if the 3D-0D model is employed (Section 3.1 for
further details); in addition, the 3D-0D model calculates key quantities from the electromechanical
model (Section 3.2), of the left ventricle mesh. For both 0D and 3D-0D models, right and left
ventricular stroke work (respectively, RVgw and LVgw) is computed as the area enclosed within the
corresponding PV loop. Stroke work was not used for parameter calibration because it showed low
sensitivity to model parameters, making it less informative for optimization purposes. Moreover, the
information it provides is largely redundant with that already captured by the pressure and volume
curves, which are directly included in the loss function. Although these quantities are not directly
used for parameter calibration, they provide valuable insight into ventricular function.

Each condition is simulated through parameter adjustment, as outlined in Section 4.2; the timestep
employed in 0D simulation is 1073 s, whereas a more restrictive value of 1074 s is preferred for the 3D
0D model to account for the fast time scale charachtering electrophysiology. The calibration process
for (¢c) is performed as described in Section 4.3.1, while the calibration for the 3D-0D model is
carried out as outlined in Section 4.3.2. As mentioned in Section 4.3.2, in order to ensure consistency
in the calibration process, the left ventricle parameters remain unchanged in the 3D-0D model, since
the left ventricle mesh is constructed on the basis of a healthy individual: from a clinical point of
view, this fact may be interpreted as a representation of an individual with a hypertensive condition,
which might also be very severe, but not of long-standing duration, i.e. the high pressure has not yet
seriously compromised the left ventricular structure. It is worth noting that the results presented in
the following sections also illustrate the potential of the calibrated models to serve as the foundation
for patient-specific cardiovascular DTs, enabling personalized insights and predictive analyses.

5.1 Systemic Hypertension

Starting from pry, in Figures 6a and 6¢ (6¢) shows a marked increase in peak and end-systolic values,
reflecting the increased afterload that forces the ventricle to generate higher pressures. The 3D-0D
model confirms this trend but also reproduces a more realistic pressure curve, closer to patient data,
with the distinct behaviors of pressure in the different phases more clearly visible, together with an
increase in both pry and Viy in Figures 6b and 6d: this leads to a more consistent description of
ventricular mechanics in hypertensive conditions [23]. As shown in Table 2, the effect on LVgw is
evident in both models, with a progressive raise as vascular resistance increases. In the 0D case, this
increase represents the ventricle’s attempt to compensate for the increase in afterload, even though it
proves insufficient to sustain adequate flow. The 3D-0D model also predicts a higher LVgw, but with
a pressure-volume evolution that better matches clinical expectations, as the loop shows an upward
shift in the minimal and maximal pressure, thus providing a more accurate picture of the increase
in workload [57]. Considering Qay in Figures 6e and 6f, both models show a reduction with disease
progression, due to compromised filling and limited ejection, with the 3D-0D model displaying more
realistic peak values [58], due to the more accurate simulation of systolic ejection dynamics by the 3D
ventricle.

As shown in Table 2, CI shows opposite trends in the two models: in (4¢), it appears to increase
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Figure 6: Time-dependent variables from (%) (on the left) and from the 3D-0D model (on the right).

Mild, moderate and severe systemic hypertension (in orange, light red and dark red) is compared with
a healthy individual (in blue).
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Figure 7: Evolution of the active tension T, in the left ventricle during the last cardiac cycle. Each
picture is displayed on the reference configuration 2g. Mild, moderate and severe systemic hyperten-
sion is compared with a healthy individual.
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Figure 8: Evolution of the Green-Lagrange strain trace tr(E) in the left ventricle during the last
cardiac cycle. Each picture is warped by the displacement vector d. Mild, moderate and severe
systemic hypertension is compared with a healthy individual.

slightly, mainly due to the greater pressure generation by the ventricle; however, this result is not
consistent with clinical evidence [59]. The 3D-0D model avoids this artefact, showing a more stable
CI, which is more in line with the haemodynamic response expected in systemic hypertension [59].
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0D model 3D-0D model

Output Unit Healthy Mild Moderate Severe Healthy Mild Moderate Severe
RViepv mL /m? 68.2 70.3 734 78.1 71.5 73.6 78.6 86.0
RVigsv mL/m? 32.6 35.0 38.7 44.8 34.2 36.2  40.2 46.9
RVEr % 52.2 50.2  47.3 42.6 52.2 50.9 48.9 45.5
RVgsw mmHg-L 1.2 1.3 1.5 1.6 1.5 1.6 1.8 2.0
max Vpay mmHg 17.3 19.6 22.6 27.6 26.4 284 31.0 35.1

Table 3: Variations of selected time-independent outputs in pulmonary hypertension, from both (%¢)
and 3D-0D model.

Focusing on p%&s in Figures 6g and 6h, both models capture the increase in systolic and diastolic

values. In (%(), this is reflected in an increase in SAP,,x and SAP,;, (Table 2), indicative of the
heavier load imposed on the heart; the 3D-0D model confirms these trends, but with a slightly lower
systolic peak. Quantitatively, SAP .y increases steadily, while SAP i, increases more moderately
before showing a slight decrease in the most severe phase (Table 2). With regard to Qi\ﬁs in Figure 6i,
(6c) suggests initial stability followed by a decline, which could lead to a reduction in peripheral
perfusion. Furthermore, in Figure 6j the 3D-0D model shows that pig{L remains nearly unchanged in
mild severity, consistently with clinical evidence indicating that systemic hypertension primarily affects
the systemic circulation, with pulmonary pressures increasing only in advanced stages due to backward
transmission, i.e. the rise in left heart pressures being passively transmitted to the pulmonary vessels.

Finally, active tension in Figure 7 shows a notable peak increase during isovolumetric contraction
and ejection, reflecting the need for higher contractile force to counteract the increased afterload; in
addition, spatially resolved active tension peaks in the top portion of the left ventricle at t = 0.26 s and

t = 0.35s, suggesting regional stress, potentially due to local hypertrophy or contractile heterogeneity
[60]. The trace of the Green-Lagrange strain tensor E = §(C —I) in Figure 8 shows only minor

changes, with a slight increase in |tr(E)| maximal values. This indicates a marginal increase in
ventricular dilation and a slightly stronger contraction during the cardiac cycle, consistent with the
higher arterial pressure. The overall volumetric deformation remains close to the physiological case.

5.2 Pulmonary Hypertension

Considering the right ventricular PV loop in Figures 9a and 9b, both end-systolic and end-diastolic
pressures increase in (éc), and the ventricle becomes stiffer. The 3D-0D loop shows a similar overall
trend, but the 3D representation allows for a more physiologically accurate description of ejection
dynamics and regional mechanics [61].

Looking at right ventricular volumes, as shown in Table 3, both models detect a marked increase in
RVigpv, reflecting higher filling pressures and ventricular dilatation. In (4¢), RVigsy also increases,
leading to a reduction in RVgr and impaired Qpy in Figure 9c. The 3D-0D model confirms the increase
in RVigsy and the decrease in RVgp, highlighting the progressive inefficiency of right ventricular
emptying. In particular, unlike the 0D model, Qpy remains relatively stable in the 3D-0D case
(Figure 9d), suggesting that the right ventricle compensates through increased pressure generation to
preserve stroke volume despite increased resistance.

As shown in Table 3, RVgw increases in both models, reflecting the increased energy demand
imposed by pulmonary hypertension. While (4¢) quantifies this increase as a compensatory response
to maintain flow, the 3D-0D model integrates this increase with the spatial distribution of ventricular

contraction, providing a more realistic assessment of workload [62]. pi%L increases in both models

(Figures 9e and 9f), demonstrating the afterload imposed on the right ventricle; QE}{L decreases in 0D
due to limited ventricular ejection (Figure 9g), whereas in the 3D-0D model, the flow curve is flatter
and more prolonged, reflecting a delayed peak and a more physiological right ventricular ejection
under pulmonary hypertension. [63] (Figure 9h). In Figures 9i and 9j, QY% is compromised in the
0D model, potentially causing congestion, while in 3D-0D it increases as a compensatory mechanism

to attenuate pressure variations, although this may ultimately fail in cases of further aggravated

20



35
30 30 =
RS 5
T
Ezo 520
=15 15
10 10
5 5
60 80 100 120 140 V[mL] 60 80 100 120 140 160V [mL]
(a) RV PV loop. (b) RV PV loop.

04 0.5 0.6 0.7  tls]

0.4 0.5 0.6 0.7 t[s]

— Healthy
Mild
—— Moderate
—— Severe

(e) pREL. (f) phEk.

[mL/s]

5
0 0.1 0.2 03 0.4 0.5 0.6 0.7 t[s] 0 0.1 0.2 03 04 0.5 0.6 0.7 ts]

0.4 05 0.6 0.7 tls] . . . 04 05 0.6
(1) QVER- () QU

Figure 9: Time-dependent variables from (%) (on the left) and from the 3D-0D model (on the right).
Mild, moderate and severe pulmonary hypertension (in orange, light red and dark red) is compared
with a healthy individual (in blue).
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0D model 3D-0D model

Output  Unit Healthy Mild Moderate Severe Healthy Mild Moderate Severe
LVigpy mL/m? 59.7 61.6 69.0 79.6 69.9 714 754 82.3
LVigsy mL/m? 23.9 25.8  30.7 38.7 29.5 31.0 328 34.4
RVigpy mL/m? 68.2 69.0 75.3 83.7 71.5 724 79.7 93.8
RVigsy mL/m? 32.6 33.5 37.2 43.2 34.2 34.8 385 45.2
LVsw mmHg-L 5.9 6.4 8.4 11.6 6.3 6.8 7.8 9.5
RVsw mmHg-L 1.1 1.3 1.6 2.1 1.5 1.5 1.9 2.7

Table 4: Variations of selected time-independent outputs in renovascular hypertension with secondary
pulmonary hypertension, from both (4¢) and 3D-0D model.

conditions. Finally, max Vp;ay rises in both models (Table 3), reflecting reduced filling efficiency
and reduced overall cardiac performance. Interventricular interactions may further compromise left
ventricular filling, an effect present in 0D and less pronounced in 3D-0D due to more accurate spatial
resolution.

As pulmonary hypertension mainly affects right ventricular dynamics, only marginal effects are
expected on the left ventricle in the absence of left-sided dysfunction [17, 63]; then, no figures related
to 3D left ventricular variables are included.

5.3 Renovascular Hypertension with Secondary Pulmonary Hypertension

In both models, the left ventricular PV loop (Figures 10a and 10b) shows a clear increase in end-
systolic pressure due to high systemic vascular resistance, leading to an increase in LVgw (Table 4);
however, in the 3D-0D model, systolic work is slightly lower in severe hypertension, suggesting a more
physiologically realistic redistribution of workload, likely due to the spatial heterogeneity of myocardial
contraction captured by the 3D mechanics. As presented in Table 4, LVigpy increases progressively
in both models, but the 3D-0D predictions are slightly higher than (4¢), indicating more pronounced
ventricular dilatation; LViggy also increases in both models, but the 3D—0D increase is more moderate,
reflecting relatively preserved systolic emptying compared to the 0D results.

The right ventricle responds to secondary pulmonary hypertension with elevated end-diastolic and
end-systolic volumes in both models, as shown by RVigpy and RViggy in Table 4, and by the right
ventricular PV loops in Figures 10c and 10d. The 3D-0D model generally predicts slightly higher
values, in line with increased filling in the presence of higher afterload. RVgw and RViggy increase in
both models, with the 3D-0D simulation showing slightly higher values, reflecting the greater energy
demand and ventricular filling under increased pulmonary resistance.

Both pjsﬁéls (Figures 10e and 10f) and Qi\ﬁs (Figures 10g and 10h) increase in both models, as
the circulation adapts to preserve systemic perfusion. In (%¢), these increases appear more uniform
throughout the entire cardiac cycle, while in the 3D-0D model they are more concentrated around the
systolic peak: this difference originates from the more detailed spatial representation of the left ventri-
cle in the 3D-0D framework, which captures the non-linear interplay between ventricular contraction,
pressure wave propagation and vascular impedance. As a result, the 3D—-0D model provides a sharper
and more realistic distribution of pressures and flows, whereas (4¢), due to its lumped nature, tends to
smooth out temporal variations and therefore depicts a more averaged behaviour. In Figures 10i and
10j, pE}J{L also increases due to secondary pulmonary hypertension, while the 3D-0D model highlights
how the right ventricle buffers left ventricular preload, maintaining higher volumes and systolic work
and capturing ventriculo-vascular interactions more accurately than the 0D simulation. In Figure 11,

raised ngL and QEUL suggest altered lung microcirculation in the 0D representation, risking fluid

buildup and impaired gas exchange, while increased p%YS and Q%YS point to systemic microvascular
dysfunction, leading to tissue oedema and impaired nutrient delivery [64].

In Figure 12, active tension markedly increases in maximal mean values, enhancing pumping
during ejection; maximal and minimal values rise over the entire left ventricle, with the upper ventricle

showing the greatest increase at t = 0.26s and ¢ = 0.35s. The trace of E in Figure 13 exhibits more
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Figure 10: Time-dependent variables from (%) (on the left) and from the 3D-0D model (on the
right). Mild, moderate and severe renovascular hypertension with secondary pulmonary hypertension
(in orange, light red and dark red) is compared with a healthy individual (in blue).
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Figure 12: Evolution of the active tension 7T, in the left ventricle during the last cardiac cycle.
Each picture is displayed on the reference configuration 2g. Mild, moderate and severe renovascular
hypertension with secondary pulmonary hypertension is compared with a healthy individual.

t = 0.26s

t =0.35s

pronounced positive and negative peaks, reflecting greater volumetric deformation of the left ventricle,
with stronger dilation and more intense contraction during the cardiac cycle. These larger variations
are consistent with the altered loading conditions imposed by renovascular hypertension, indicating
increased mechanical stress on the ventricular myocardium.
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Figure 13: Evolution of the Green-Lagrange strain trace tr(E) in the left ventricle during the last
cardiac cycle. Each picture is warped by the displacement vector d. Mild, moderate and severe reno-
vascular hypertension with secondary pulmonary hypertension is compared with a healthy individual.

t=0.15s

t=0.23s

6 Conclusions

This work developed and applied a computational modeling framework to study hypertension in sys-
temic, pulmonary and renovascular forms and in three nuances of severity, using both 0D models (with
and without capillaries) [31] and a 3D-0D coupled model with electromechanical representation of the
left ventricle [29], within a perspective that moved toward the development of cardiovascular DTs.
The methodology included parameter calibration, global and multi-parametric sensitivity analysis and
systematic comparison between models with and without capillaries.

The calibration approach allowed for a clear distinction between degrees of hypertension, repro-
ducing physiological trends: increase in systolic and diastolic blood pressure, alterations in valve flows,
changes in cardiac volumes and systemic venous and pulmonary pressures. The 0D model with capil-
laries (¢¢) demonstrated a high degree of flexibility in representing a broad spectrum of haemodynamic
conditions: it was able to incorporate variations in cardiovascular parameters, consistent with the typ-
ical alterations observed in clinical cases of hypertension. The comparison with the version without
capillaries (énc) showed that, by adjusting the parameters appropriately, comparable results can be
obtained, confirming the robustness of the simplified model. The comparison between the 0D model
and the 3D—0D model showed substantial differences in the ability to reproduce haemodynamic phe-
nomena, especially under pathological conditions. The 3D-0D model, thanks to the three-dimensional
mechanical description of the left ventricle, returned more realistic pressure-volume curves, consistent
with literature clinical observations. It showed a more physiological behaviour of the cardiac index
in systemic hypertension, greater sensitivity in the representation of right ventricular dysfunction in
pulmonary hypertension, and better consistency of venous and arterial flows and pressures in the
renovascular form. Furthermore, the spatial distribution of stresses and strains in the ventricle made
it possible to pick up early signs of pathological remodeling that the more simplified 0D model tends
to overlook.

Overall, the model responded positively to its objective: to represent the hypertensive condition
in a realistic and robust way and to provide a foundation for patient-specific DT frameworks capable
of integrating both reduced-order and high-fidelity electromechanical descriptions.
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We recognize that our study has certain limitations. The calibration was conducted on synthetic
data generated by (4c) model: it ensures a controlled comparison, but introduces the risk of not fully
reflecting the individual variability of real patients. The lack of direct calibration of the 3D-0D model
means that some mechanical aspects of the ventricle (particularly electrophysiological parameters and
active contractility parameters) remain unoptimised and potentially less realistic, as certain physio-
logical mechanisms regulating contraction may not be fully captured. 3D simulation requires high
computational effort, limiting the number of scenarios that can be explored and its applicability in
real-time clinical settings; this can be circumvented by means of reduced order models [65].

A significant extension of the work could arise from the integration of real clinical data to cali-
brate and validate the models. Using specific measurements, such as pressure, flow, volume, cardiac
geometries, would allow the creation of true cardiovascular DT's, potentially useful for personalised di-
agnostics and monitoring. Such an approach requires more robust strategies to handle inter-individual
variability and implement adaptive cost functions. Possible avenues of extension include 3D modeling
of vascular and cardiac structures relevant in hypertension (e.g. [12, 30, 66)):

1. Systemic hypertension: 3D modeling of the aorta, carotids and femoral arteries to study pressure
wave propagation.

2. Pulmonary hypertension: include right atrium, right ventricle and pulmonary vessels to better
validate heart-lung interaction.

3. Renovascular hypertension with secondary pulmonary hypertension: add a 3D representation of
the renal circulation, with dedicated arteries and veins, and the inclusion of equations describing
the effect of sodium concentration on pressure control. The kidney contributes to hypertension
both through diuretic and natriuretic mechanisms [67, 26] and by modulating sympathetic tone
through reflexes that increase nerve activity and blood pressure [27]: these aspects are partic-
ularly important in salt-sensitive cases and in chronic conditions, particularly in renovascular
hypertension.

Finally, the possibility of directly calibrating the 3D-0D model, including electromechanical pa-
rameters, shall be considered. Although computationally demanding, this extension would represent
a crucial step toward DT-ready electromechanical models, bridging the gap between high-fidelity sim-
ulations and real-time personalised applications.
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A 3D—-0D Model Equations

The complete 3D-0D model is defined by the set of Equations (14): Equations (14a)—(14d) are solved
in the space-time domain €y x (0, T], while Equation (14e) in (0, T], and Equation (14f) represents

the coupling condition between 3D and 0D.

JXm Cm% + Zion (v, w, z)| =V - (JFleMF*TVu) = JXm Zapp(t),
(€) (JET'DyFTVu) - N =0 on 9 x (0,T],
U = ugQ inQQX{O},
ow
-~ _H —
8t (u7w) 07
() % - G(u,w,z) =0,
w=wy, z= 2 in Qo x {0},
s OSL
2 _F 24+ ) | P—
(,Q{) 8t act (87 [Ca :|7,’S ) 8t > 9
S =9y iIlQ()X{O},
0%d
psw -V-P (daTa(S)) - 07

od

P (d, T,(s)) N + K°Pid + Cepia =0 on I x (0,T],
() \ P (d, Tu(s)) N = pry(t) [ JE-TN|vbase  on Thase x (0,T],

P (d,T,(s))N = —pry(t)JF TN on T§rde x (0, T,

| d = do, %‘::do in Qg x {0},

dCl(t) B ~ .
(Cg) dt D(ta C1 (t)’pLV(t)) m (07 T]v

c1(0) = c10,
(V) VY (er(t) = Vi% (d(1)) in (0, T].

B Healthy individual parameters

Parameter 7 =LA i=LV i=RA i =RV Unit
EY 0.255 8.442 6-102 0.495 mmHg/mL
Ef 0.1512 0.126 7-1072 7-1072  mmHg/mL
T¢ 0.15 0.25 0.1 0.25 s
Th 0.8 0.5 0.7 0.4 s
té, 0.75 0 0.8 0 s
VO,i 4 42 4 16 mL
Rimin 75-107% 75-107% 7.5-1073% 7.5-107* mmHg-s/mL
Runax 75006.2  75006.2  75006.2  75006.2 mmHg-s/mL

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

Table 5: Reference parameter values for a healthy individual, used in (¢nc), describing the heart

chambers.
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Parameter 7=SYS +¢=PUL Unit

AR 0.42 0.104 mmHg - s/mL
Lig 5-100%  5-100%  mmHg-s?/mL
"R 0.96 5 mL/mmHg
Ri g 0.352  1.05-1072 mmHg-s/mL
LN 5-107*  5.107*  mmHg-s?/mL

Clan 60 16 mL/mmHg

Table 6: Reference parameter values for a healthy individual, used in (¢nc), describing the circulation.

Parameter i =LA 1 =LV 1 =RA 1 =RV Unit

E¢ 0.38 2.7 0.126 0.43 mmHg/mL
EP 0.27 6.9-1072 0.195 412641072  mmHg/mL
T, 0.1 0.265 0.1 0.3 s

Th 0.8 0.4 0.7 0.4 s

té, 0.75 0 0.8 0 S

Vo 4 3.541 3.5385 8.4067 mL
Rimin 6.2872-1073 6.2872-1073 6.2872-107% 6.2872-107% mmHg-s/mL
Runax 94168 94168 94168 94168 mmHg - s/mL

Table 7: Reference parameter values for a healthy individual, used in (%¢), describing the heart
chambers.

Parameter i=SYS i =PUL Unit
"R 0.5911 714-107%  mmHg-s/mL
Lig 2.0643-107%  2.0643-10° mmHg-s?/mL
"R 1.3315 6.0043 mL/mmHg
VEN 0.3596 3.75-1072  mmHg-s/mL
LY g 2.0643-107° 2.0643-10~° mmHg-s?/mL
CEN 75 13.181 mL/mmHg

Table 8: Reference parameter values for a healthy individual, used in (4¢), describing systemic and
pulmonary circulation.

Parameter Unit
RYYS 2.17-1072  mmHg-s/mL
Ccgys 0.27981 mL/mmHg
REVL 1.7538 - 1072 mmHg - s/mL
cEvr 5.7803 mL/mmHg
Rsn 0.35174 mmHg - s/mL
Csn 4.9043-10"2  mL/mmHg

Table 9: Reference parameter values for a healthy individual, used in (4¢), describing capillary
circulation.

Note: the parameters presented in Tables 5-9 are a modification of literature values [68, 69] in such a
way that the model outputs lie in the healthy individual’s ranges, listed in C.
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C Healthy individual’s ranges

Output Healthy range  Unit Source Output Healthy range  Unit Source
LA vVmax [24,57] mL/m?  [70] RAVimax [28, 76] mL/m?  [70]
LA Vmin [9, 28] mL/m?  [70] RAIVmin [9, 45] mL/m?  [70]
LAvpreAC [15, 46] mL/m?  [71] RAVpreAC (19, 61] mL/m?  [71]
LAp.ssER 8, 44] % [71] RApassER [4,41] % [71]
LAActER [17, 58] % [71] RAActER [11,55] % [71]
LArotgr [37,70] % [70] RATotER [29, 68] % [70]
LApmax 6, 20] mmHg [72] RApmax 2, 14] mmHg [72]
LApmnin [—2,9] mmHg [72] RApmnin [—2, 6] mmHg [72]
LApmean [4,12] mmHg [72] RApmean [—1,8] mmHg [72]
Table 10: Left atrium-related ranges of outputs  Table 11: Right atrium-related ranges of outputs
computed for a healthy individual. computed for a healthy individual.
Output Healthy range  Unit  Source Output Healthy range  Unit  Source
LVisv (30, 66] mL /m? [70] RVigv [28, 75] mL/m? [70]
LVigpy [47,107] mL/m?  [70] RViepyv [53,123] mL/m?  [70]
LVigsy [11,47] mL/m?  [70] RVigsy [17,59] mL/m?  [70]
LVgr [51,76] % [70] RVgr [42,72] % [70]
LVpmax (90, 140] mmHg [72] RVpmax [15, 28] mmHg [72]
LVpmnin [4,12] mmHg [72] RVpmin [0, 8] mmHg [72]
Table 12: Left ventricle-related ranges of outputs Table 13: Right ventricle-related ranges of out-
computed for a healthy individual. puts computed for a healthy individual.
Output Healthy range Unit Source
CI [2.8,4.2] m? - L/min [72]
SAP max [0, 140] mmHg [73]
SAP nin [0, 80] mmHg [73]
PAP ax [15, 28] mmHg [72]
PAP hin [5,16] mmHg [72]
PAP can [10, 22] mmHg [72]
PWPax [9, 23] mmHg [72]
PWPin [1,12] mmHg [72]
PWPean [6, 15] mmHg [72]
SVR [11.3,17.5] mmHg - min/L  [72]
PVR [1.9,3.1] mmHg - min/L  [72]
Sy [0, 0.05] 1/m? [74]

Table 14: Further ranges of outputs computed for a healthy individual.

Note: the ranges presented in Tables 1014 are derived from echocardiography (the ones taken from
[73, 72]) and magnetic resonance imaging (MRI) (the ones taken from [70, 71]), meaning that using
general healthy ranges may not always be entirely appropriate; however, this is not an issue since,
despite the differences between echocardiography and MRI, the quantities computed by both (énc)
and (¢c) for a healthy individual fall within all ranges.

29



Algorithm 1 Parameter matching algorithm for capillary and non-capillary 0D models

Input: 65, OONC, n, k
Output: 0y, ¢
0o «— (67, 65°]
MNC +— 0DMOoODELNOCAPILLARY(65©)
MC <— ODMODELCAPILLARY(6))
e +— CoMPUTEERROR(MNC, MC)
for 0 € 6y do
for j=1,...,ndo
0+—0-k
MC <— ODMODELCAPILLARY (UPDATEPARAMETER(6, 0)))
0 «— COoMPUTEERROR(MNC, MC)
if < € then
0y +— UPDATEPARAMETER(, 8p)
g<— 94
else
break
end if
end for
: end for
return 60, ¢

[ S e T e o e
@ L P I P TRwyYPQ

D Parameter Tuning for Cross-Model Equivalence

When comparing two sets of output coming from simulations carried on with different 0D models,
it is essential to assess whether the presence of capillaries introduces significant variations that com-
promise the validity of the comparison. The idea is to determine the parameters of (4¢) such that its
simulated outputs are as close as possible to those obtained from (éx¢). For this purpose, Algorithm 1
has been implemented. Firstly, a set of parameters 8)¢ is chosen for (¢x¢), and a simulation (MNC)
is performed. Then, a simulation (MC) is executed by means of (6¢): in this case, the same parameter
set BBIC is employed, with the addition of values corresponding to capillary circulation parameters,
denoted by Og . The initial tolerance ¢ is calculated as the error between the outputs of these two

simulations in the following way:
o0V,

Ziox (2477 1

E =

where:

C 1

T
5V = / V() — vE()| dt, Ve VCw)| dt,
T—-TuB

TuB Jr—Tys
with {Va},ec 4 being the set of variable that contribute to the error computation; it comprehends a total
of 20 variables: pressures and volumes of the four heart chambers, pressures and fluxes of systemic and
pulmonary (arterial and venous) circulation, and fluxes through the four heart valves. Having defined
the initial guess 8y = [0, 0(1;10]7 the parameters of (4¢) are adjusted iteratively: each parameter 6
is modified individually using a scaling coefficient k. After each modification, a new simulation of
MC is performed, and the error § is computed as the distance between the outputs of MNC and the
current MC, using Equation (15). If the new error is smaller than that of the previous step, the
current parameter 6 is updated (line 13 in Algorithm 1; the function UPDATEPARAMETER (A, 6) takes
as input € and 6y, and returns as output the new set of parameters, in which 6 has been replaced with
6), and the previous error ¢ is replaced with the new one. This procedure is repeated n times for each
parameter.

In order to reduce the error between the outputs of the two simulations below a desired threshold,
the whole algorithm has to be iterated several times, for different values of n and k. Specifically, k
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Figure 14: Evolution of the error (in blue) measuring the distance between the output variables of
(¢nc) and (6c), as a function of the number of iterations, until it reaches 0.92. The y-axis is in
logarithmic scale. The red point indicates the iteration where the error falls below the threshold of
1.5, which is considered an acceptable value.

is chosen within a neighbourhood of 1 (k € U(1)), alternating between values greater and less than
1: this ensures that parameters can be either increased or decreased as needed. It is also possible
to apply the algorithm backwards, adapting the parameters of the (énc) so that its output variables
are as close as possible to those of the (4¢). In this way, depending on the application to be made
or the model that is used as reference, the procedure can be flexibly applied in either direction. A
strict threshold of 0.92 is chosen, since reaching a lower threshold becomes computationally expensive
without significantly reducing the error; furthermore, a second threshold of 1.5 is adopted, representing
a good balance between computational cost and quality of the parameters. The whole analysis has
been performed on a MacBook Pro (Apple M1 Pro, 10 cores, 3.2 GHz, 16 GB RAM); typically, the
entire process takes only a few hundreds of iterations, in which the parameter set 8¢ is effectively
updated (lines 12-14 in Algorithm 1): the reason is partly because the same starting parameter set,
65C, is employed for both models (%xc) and (%c), hence the variables are already sufficiently close
at the first step.

In order to highlight the versatility of Algorithm 1, an example is provided in which the goal is
optimizing parameters of (é¢) in such a way that it minimizes deviations of its output variables from
the reference model (énc). As shown in Figure 14, to achieve an error below the specified threshold
of 0.92, approximately 76 minutes are required; nevertheless, an acceptable solution, defined as one
having an error less than 1.5, is already obtained in 16 minutes. Importantly, all time-independent
outputs stay within healthy ranges (C for more information about the healthy ranges), validating the
adjusted parameters. To reduce the computation time even further, it is possible to remove some
variables from the matching process, or the tolerance may be increased, depending on the desired
accuracy. The values of the parameters used in this example as initial guess are provided in B, while
the changes applied to the parameters of (é¢) are shown in Table 1.

In conclusion, the outputs from (4¢) and (énc) can be compared reliably since, by adjusting the
parameters of one model to the other, very similar results can be achieved.
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