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Abstract

We address the problem of performing inference on the linear and nonlinear terms of a semiparametric
spatial regression model with differential regularization. For the linear term, we propose a new resampling
procedure, based on (partial) sign-flipping of an appropriate transformation of the residuals of the model.
The proposed resampling scheme can mitigate the bias effect, induced by the differential regularization.
We prove that the proposed test is asymptotically exact. Moreover, we show by simulation studies that
it enjoys very good control of Type-I error also in small sample scenarios, differently from parametric
alternatives. Furthermore, we show that the proposed test has higher power with respect to recently proposed
nonparametric tests on the linear term of semiparametric regression models with differential regularization.
Concerning the nonlinear term, we develop three different inference approaches: a parametric test, and two
nonparametric alternatives. The nonparametric tests are based on a sign-flip approach. One of these tests is
proved to be asymptotically exact, while the other is proved to be exact also for finite samples. Simulation
studies highlight the very good control of Type-I error of the nonparametric approaches, while retaining
high power.

Keywords: Smoothing, roughness penalties, semiparametric regression, resampling tests.

1 Introduction
This work develops inference procedures for the linear and nonlinear terms of Spatial Regression with Partial
Differential Equation regularization (SR-PDE). This is a rich class of semiparametric regression models for
data distributed over space and space-time, observed over complex spatial domains. These methods, originally
introduced in Sangalli et al. [2013] and Azzimonti et al. [2015], have been extended in various modeling directions
by subsequent works, as reviewed, e.g., in Sangalli [2021].

Semiparametric regression models with roughness penalties have been extensively studied in more classical
settings, as evidenced by the numerous textbooks and references available in the field; see, e.g., Green and
Silverman 1994, Bickel et al. 1998, Eubank 1999, Härdle et al. 2000, Ruppert et al. 2003, and references therein.
Due to their flexibility and versatility, these models have been the subject of a large and still ongoing research.
Various approaches have been proposed to make inference for semiparametric regression models, as discussed in,
e.g., Ruppert et al. [2003], Harezlak et al. [2018] and Wood [2017]. Regarding the linear component of the models,
some possibilities include the generalization of undersmoothing approaches, that were originally developed for
nonparametric models (a review can be found in, e.g., Hall and Horowitz 2013), as well as corrections of
Wald-type test statistics, such as the Speckman’s correction in Speckman [1988] and Holland [2017]. Similar
results can be obtained by interpreting the model in a mixed-effects framework, as done for instance by Wood
[2017]. Concerning inference on the nonlinear component, most of the research in the context of semiparametric
regression focus on the asymptotic properties of the estimators; see, e.g., Xiao [2019] and Claeskens et al.
[2009], for a review in the context of penalized spline estimators. For smoothing spline models, Liu and Wang
[2004] conduct various simulations to compare the performances of several parametric tests, like the locally
most powerful test by Cox et al. [1988], the generalized maximum likelihood ratio test, and the generalized
cross validation test by Wahba [1990], estimating their null distribution via computationally intensive Monte
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Carlo methods. Crainiceanu et al. [2005] explore likelihood ratio tests for testing polynomial regression versus
an alternative model based on penalized splines, relying on a mixed-effects model representation, and assuming
Gaussian errors. Within the same context, Chen et al. [2014] propose an alternative approach based on the
smoothing spline estimator, in order to test the significance of the regression function and its nonparametric
deviation from a polynomial model. Wood [2013] proposes a Wald type test statistic to test the significance of the
smooth components of an extended generalized additive model. Yu et al. [2019] instead propose confidence bands
in generalize geoadditive models. Another possibility is to reformulate the model in a Bayesian framework,
as demonstrated for instance in Marra and Wood [2012], Nychka [1988, 1990], Silverman [1985], Wahba [1983],
Wang [2011] and Wood [2017] in analogous contexts.

Despite this large body of literature on inference for classical semiparametric regression models with roughness
penalties, the definition of correct and powerful inference procedures for SR-PDE still presents many challenges.
Ferraccioli et al. [2022] and Ferraccioli et al. [2023] make some first proposals for inference on the linear term of
these models, showing that parametric tests, based on Wald and Speckman approaches, have poor performances.
In particular, they show that the classical parametric tests on the linear term have poor control of Type-I error,
due to the bias induced by the regularizing term of SR-PDE models. They hence propose a nonparametric
alternative, based on a resampling approach [Pesarin, 2001], that leverages on the innovative sign-flip procedure
of the scores of the model, introduced in more classical linear regression settings by Hemerik et al. [2020].
However, this resampling test is still affected by the bias induced by the PDE regularization, resulting in a
reduction in power. Moreover, inference on the nonlinear term of the models has not been explored yet.

Here we tackle inference for both the linear and nonlinear components of SR-PDE models. The work is composed
of two parts. In the first one, we investigate in detail the impact of the bias on the nonparametric test for the
linear component, proposed by Ferraccioli et al. [2022]. We show that the components of the Eigen-Sign-Flip
statistic defined by Ferraccioli et al. [2022] are differently affected by the bias induced by the regularizing term.
Moreover, we demonstrate that the different impact of the bias on the Eigen-Sign-Flip components is related
to the spectral properties of the residualizing matrix associated with the nonparametric part of the model. We
hence propose a Partial Eigen-Sign-Flip procedure, that limits the impact of the bias, by sign-flipping only
some components of the considered statistic. We demonstrate that the proposed partial resampling test is
asymptotically exact. We moreover show by means of simulation studies that the proposed test has a good
control of Type-I error also in small samples, and that it enjoys higher power than the proposal by Ferraccioli
et al. [2022]. In the second part of this paper, we focus on developing tests for the nonlinear component
of the SR-PDE models, an issue that has never been addressed in previous studies. We derive a standard
parametric approach and two nonparametric alternatives based on the sign-flip of the scores of the model. The
two nonparametric tests estimate the conditional distribution of the statistic by resampling, via sign-flip of
the residuals, or a transformation of the residuals, under the null hypothesis. This approach is inspired by
the proposals by Huh and Jhun [2001] and Kherad-Pajouh and Renaud [2010] in the context of classical linear
regression. We demonstrate that the first of these nonparametric approaches is asymptotically exact, whilst the
second is exact also in final sample scenarios.

The proposed methods are implemented in the fdaPDE library [Arnone et al., 2024], available on CRAN, with
a particular attention to computational efficiency and sustainability, also in the context of massive datasets, by
leveraging on state-of-the-art approaches of numerical linear algebra and stochastic approximation.

The paper is organized as follows. In Section 2 we briefly recall the SR-PDE model and the available inference
approaches. In Section 3 we propose a novel approach for inference on the linear part of the model: we first
study how the bias affects the Eigen-Sign-Flip test statistic; we then describe the proposed Partial Eigen-Sign-
Flip test and demonstrate its asymptotic unbiasedness. In Section 4 we focus on inference for the nonlinear
part of the model. We first derive a Wald-like test; we then define two nonparametric methods based on the
sign-flip approach; we moreover study the large sample properties of the proposed tests. In Section 5 we report
simulations that show the good performances of the proposed inference approaches. Finally, in Section 6 we
discuss our results and highlight possible future research.

2 Semiparametric regression with partial differential equation reg-
ularization

In this section we briefly recall Spatial Regression with Partial Differential Equation regularization [SR-PDE;
see, e.g., Sangalli, 2021; Sangalli et al., 2013]. We consider a bounded domain, Ω ⊂ Rd, with d = 2, 3, and a
smooth boundary ∂Ω ⊂ Cd, along with a set P = {pi}i∈1,...,n of n spatial locations pi ∈ Ω, for i ∈ 1, . . . , n. At
each location pi, we observe a variable of interest yi ∈ R and, possibly, a set of covariates xi ∈ Rq. We consider
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the following model:
yi = x⊤

i β + f(pi) + ϵi, i ∈ 1, . . . , n, (1)

where β ∈ Rq is a vector of unknown regression coefficients, that explains the linear effects of the covariates on
the mean of the variable of interest, f : Ω → R is an unknown field, that characterizes the spatial structure of the
phenomenon being studied, and ϵi, for i ∈ 1, . . . , n, are uncorrelated homoscedastic errors, with zero mean and
finite variance σ2. In SR-PDE, the unknown β and f are estimated minimizing a regularized sum-of-square-error
functional:

J (β, f) =
n∑

i=1

(
yi − x⊤

i β − f(pi)
)2

+ λ

∫
Ω

(Lf − u)2, (2)

where λ > 0 is a smoothing parameter and Lf = u is a PDE that expresses the problem-specific knowledge
about the unknown spatial field. The regularization term in (2) typically incorporates diffusion, advection, and
reaction terms, which enable the modeling of different types of anisotropy and non-stationarity, allowing for
the description of complex spatial phenomena; see, e.g., Azzimonti et al. [2015]; Sangalli [2021]. Additional
information about the problem can be provided by specifying boundary conditions. These conditions may
concern the value of f or its derivatives on the boundary ∂Ω of the spatial domain, permitting a very flexible
modeling of the behaviour of the field at the boundaries of the domain of interest, as detailed, e.g., in Azzimonti
et al. [2015]. For simplicity of exposition, in the following discussion we consider u = 0 and homogeneous
Neumann conditions, that are the natural conditions used when no prior information on the behavior of f at
the boundary is available. We provide some insights on the case u ̸= 0 in Remark 1.

2.1 Discretization of the estimation problem and discrete estimator

The problem of minimization of the functional in (2) does not enjoy a closed analytical solution. A numerical
solution can be obtained using the finite element method [see, e.g., Quarteroni et al., 2013]. Let ΩT be the
discretization of Ω obtained by a triangulation of Ω, such as a Delaunay triangulation [see, e.g., Hjelle and
Dæhlen, 2006]. Let {ξj}j∈1,...,N be the N nodes of ΩT , that is, the vertices of the elements (triangles or
tetrahedra) in ΩT . Let {ψj(p) : Ω −→ [0, 1]}j∈1,...,N be the set of N linear finite element basis functions defined
on ΩT . These are continuous functions, that are linear once restricted to any element of ΩT , and such that
ψj(ξk) = 1 if j = k and ψj(ξk) = 0 if j ̸= k. Using an expansion in such bases, the spatial field f(·) can be
expressed as:

f(·) =
N∑
j=1

fjψj(·) = f ·ψ(·),

whereψ = [ψ1, . . . , ψN ]⊤ is the vector ofN finite element basis and f = [f1, f2, . . . , fN ]⊤ = [f(ξ1), f(ξ2), . . . , f(ξN )]⊤

is the vector of coefficients of the basis expansion. Setψx = [∂ψ1/∂x, . . . , ∂ψN/∂x]
⊤, ψy = [∂ψ1/∂y, . . . , ∂ψN/∂y]

⊤

and ∇ψ = [ψx,ψy]. Define the n × N matrix Ψ of evaluations of the basis functions at the spatial locations,
Ψij = ψj(pi), and the following N ×N matrices: R0 =

∫
ΩT
ψψ⊤, R1 =

∫
ΩT

(∇ψ⊤K∇ψ+∇ψ⊤bψ⊤ + cψψ⊤),

and P = R⊤
1 R

−1
0 R1.

Let y = [y1, y2, . . . , yn]
⊤ be the vector of the observed values at the n locations. Let also X be the n× q matrix

whose ith row is given by x⊤
i , the vector of covariates associated with observation yi at pi, and assume that X

has full rank. Moreover, set Q = I −X(X⊤X)−1X⊤, where I is the identity matrix of dimension n× n. It can
be shown [see, e.g., Sangalli, 2021] that a unique pair of estimators (β̂, f̂) exists, which solves the discrete form
of the estimation problem, and are given by:

f̂ = (Ψ⊤Ψ+ λP )−1Ψ⊤(y −Xβ̂)

β̂ = (X⊤X)−1X⊤(y −Ψf̂).

(3)

2.2 Current approaches for inference on the linear component β

Ferraccioli et al. [2022] show three different approaches for testing

H0 : β = β0 vs H1 : β ̸= β0. (4)

Among these, two classical parametric approaches are considered, Wald and Speckman, based respectively on
the asymptotic distribution of β̂ and on Speckman’s correction [Speckman, 1988]. Ferraccioli et al. [2022]
show that relying on such classical parametric approaches can result in inadequate control of Type-I error,
particularly when dealing with covariates that have a strong spatial structure. To address this issue, the same
work also proposes a nonparametric alternative to test (4), named Eigen-Sign-Flip (ESF) test, which implicitly
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recovers the null distribution via an appropriate nonparametric resampling procedure. We here briefly recall the
definition of the ESF test on β. Consider the normal equation for β of model (1), i.e., X⊤(y −Xβ −Ψf) = 0,
and the corresponding score statistic

Tβ = X⊤(y −Xβ0 −Ψf̂H0
), (5)

where f̂H0 is the estimate of f under H0, i.e., f̂H0 = (Ψ⊤Ψ + λP )−1Ψ⊤(y − Xβ0). Let also B and Λ be the
matrices:

B = Ψ(Ψ⊤Ψ+ λP )−1Ψ⊤ and Λ = I −B. (6)

Consider the singular value decomposition of Λ = V DV ⊤. Set Π = diag(π1, . . . , πn), where π = (π1, . . . , πn) is
a vector of random sign-flips, i.e., π is uniformly distributed in {−1, 1}n. Consider the n× q matrix defined as
X̃ = D1/2V ⊤X and the vector of score residuals

r̃ = D1/2V ⊤r = D1/2V ⊤(y −Xβ0). (7)

Starting from equation (5), plugging-in f̂H0 and rearranging the terms, we can define the statistic Tβ = X̃⊤ r̃.
The Eigen-Sign-Flip statistic Tβ,Π is then obtained by applying the sign-flip matrix Π to the score residuals r̃:

Tβ,Π = n−
1
2X⊤VΠV ⊤Λ(y −Xβ0) = n−

1
2 X̃⊤Π r̃, (8)

where the term n−1/2 ensures good asymptotic properties for Tβ,Π. The p-value is computed as the relative
rank of the observed statistic Tβ,I with respect to the set of M sign-flip statistics Tβ,Π, where Π is resampled
each time. Under some regularity assumptions, discussed in Ferraccioli et al. [2022], the test statistic (8) is
shown to be asymptotically unbiased and the ESF test is shown to be asymptotically exact.

The main limitation of the three discussed inferential approaches in regularized regression models is that, in
finite sample scenarios, the considered statistics suffer from the effect of the bias, induced by the penalty term
in the functional (2). In particular, the two parametric tests, Wald and Speckman, pay the price of such bias in
term of a very poor control of Type-I error; the ESF tests instead, even though it maintains a good control of
Type-I error, pays the price of the bias in terms of a reduced power with respect to the parametric alternatives.
This aspect is described in depth in the next section.
Remark 1. It should be mentioned that Ferraccioli et al. [2022] restrict their attention to the special case
Lf = ∆f , where ∆f is the Laplace operator, with homogeneous forcing terms and boundary conditions, thus
considering a simple isotropic and stationary roughness penalty. However, thanks to the asymptotic properties
recently obtained in Arnone et al. [2023], the tests proposed by Ferraccioli et al. [2022] and their properties
also hold for the general regularizing terms considered in the estimation functional (2). Moreover, all the
results in Ferraccioli et al. [2022], as well as the results proposed in the present work, can be extended to
u ̸= 0. Indeed, when u ̸= 0, plugging f̂H0

in Tβ leads, after some rearrangements, to a statistic of the form
Tβ,Π = n−

1
2X⊤Λ(y −Xβ0)− λX⊤(Ψ⊤Ψ+ λP )−1R⊤

1 R
−1
0 u. However, the second term on the right-hand-side

is fixed, and, therefore, it can be dropped, thus falling back to the case here detailed.

3 Bias effect on Eigen-Sign-Flip inference on the linear component
β

Consider the expression of the bias of Tβ,Π, for any given Π:

bλ := E[Tβ,Π] = n−
1
2X⊤VΠDV ⊤Ψf. (9)

From (8) and (9), we observe that we can partition the statistic Tβ,Π and its bias bλ into n components, each
depending solely on a single sign-flip πk and a single eigenvalue-eigenvector pair (dk,vk)of the matrix Λ, as
stated in the following proposition.
Proposition 1. The statistic (8) and its bias (9) can be decomposed as follows:

Tβ,Π = n−
1
2

n∑
k=1

Tβ,Π,k where Tβ,Π,k = (X⊤vk)(πkdk)(v⊤
k (y −Xβ0))

bλ = n−
1
2

n∑
k=1

bλ,k where bλ,k = (X⊤vk)(πkdk)(v⊤
k Ψf).

(10)

(11)
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The proof is reported in Section 1.1 of the Supporting Information. Proposition 1 provides some understanding
of the impact of the bias in the ESF test. Indeed, we can rewrite Tβ,Π,k as

Tβ,Π,k = (X⊤vk)πkd
1
2

k r̃k =

= (X⊤vk)(πkdk)(v⊤
k Ψf) + (X⊤vk)(πkdk)(v⊤

k ϵ) =

= bλ,k + (X⊤vk)(πkdk)(v⊤
k ϵ), (12)

where r̃k is the kth component of the score residuals r̃ = D1/2V ⊤(y −Xβ0), in equation (7). Notice that the
last term on the right hand side of (12) is zero centered. However, the sign-flip πk affects not only this zero
centered part of Tβ,Π,k, but also the bias bλ,k, as shown by (11). This implies that the variance of Πr̃ is larger
than that of r̃. As a result, the variance of Tβ,Π is larger than that of Tβ. Figure 1 illustrates this issue.
We here consider data generated as in Section 5.1, with locations coinciding with the mesh nodes, and a single
covariate generated as xi ∼ N (0, 1). In the top panel, we plot the distribution of r̃, resampling the measurement
error 5000 times, as described in Section 5.1. In the central panel, we plot the distribution of Π r̃, sampling
one sign-flip matrix Π for each generation of the measurement error ϵ. Since the distribution of r̃, in the top
panel, is not zero centered, the distribution of Πr̃ displays a larger variance. The bottom panel of the same
figure shows the distribution of the Partial ESF sign-flipped residuals on which our new proposed test statistics,
defined in Section 3.2, rely. Before proposing such new test statistics, in Section 3.1, we investigate the link
between the bias that affects the kth component of Tβ,Π and the spectral properties of the residualizing matrix
Λ.
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Figure 1: Top panel: distribution of the score residuals r̃ in (7), for 5000 repetitions of the noise. Central
panel: corresponding distribution of the ESF residuals Π r̃, where Π is sampled once for each repetition of the
noise. Bottom panel: distribution of the proposed Partial ESF (PESF) residuals ΠJPESF

r̃, which corrects for
the extra-variability of the ESF statistic.

Test statistics

Statistic Equation
Tβ Score statistic for the linear component β (5)
Tβ,Π Eigen-Sign-Flip (ESF) statistic for the linear component β (8)
Tβ,Π,k kth component of the Eigen-Sign-Flip test for the linear component β (10)
Tβ,ΠJ

Partial Eigen-Sign-Flip (PESF) statistic for the linear component β (13)
Tf Score statistic for the nonlinear component f (15)
Tf,Π Sign-Flip (SF) statistic for the nonlinear component f (17)
TE

f,Π Eigen-Sign-Flip test on the nonlinear component f (18)

Table 1: For the convenience of the reader, this table indicates the main statistics considered.
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3.1 Spectral properties of the residualizing matrix

In this section we show that the bias of the ESF statistic Tβ,Π is concentrated on a few components Tβ,Π,k.
This fact is related to the spectral properties of the residualizing matrix Λ, and of the associated smoother B,
defined in equation (6). Indeed, Proposition 1 highlights that the bias bλ,k of Tβ,Π,k derives from the projection
of Ψf onto the eigenvector vk of Λ (that are the same of B since Λ = I−B). Moreover, equation (12) shows that
the components more affected by bias are those in which v⊤

k Ψf is significantly larger than v⊤
k ϵ. Because of this,

since f is a smooth function, and ϵ is an uncorrelated noise, the bias is mostly associated with less oscillating
eigenvectors vk, whilst it is instead negligible in components associated with highly oscillating eigenvectors vk.
At this point, it is important to notice that the eigenvectors vk can indeed be distinguished by their oscillation
frequencies.

In particular, in the simpler case of a 1-dimensional smoothing problem, with penalization of the second deriva-
tive and splines discretization, Demmler and Reinsch [1975] prove that the eigenvectors of the smoothing ma-
trix, which plays the same role as the matrix B in equation (6), discretize the sinusoidal functions described by
Grebenkov and Nguyen [2013]. Such eigenvectors thus have an increasing oscillating frequency, that is directly
proportional to the order of the eigenvector k. In the case of the considered SR-PDE models, it is unfortunately
not possible to give an equivalent analytical characterization of the increasing oscillatory behavior of the eigen-
vectors of B in full generality, namely for general forms of the domain Ω and of regularizing terms involving
elliptic PDEs, and for general discretizations based on finite elements. However, such periodic behavior is always
observed in practice, and can be proved analytically for specific choices of the domain, of the regularizing term,
and of the finite element discretization, as shown in the following proposition.
Proposition 2. Let Ω be a squared domain, discretized by a uniform mesh. Consider data locations coinciding
with the mesh nodes and an SR-PDE model with regularizing term

∫
Ω
(∆f)2. Then, the eigenvalues of B are

monotonically non-increasing and the corresponding eigenvectors are increasingly oscillatory. Specifically, the
eigenvalue-eigenvector couples of B converge to the couples (di,j = 1

1+λ(i2+j2) , cos(ip1) cos(jp2)) for i, j ∈ N,
that are the eigenvalue-eigenfunctions couples of the Laplace eigenvalue problem.

The proof is reported in the Section 1.1 of the Supporting Information, and relies on results on the finite
element discretization of the Laplace eigenvalue-eigenfunction problem [Boffi, 2010; Evans, 1998; Grebenkov
and Nguyen, 2013]. The first row of Figure 2 reports some eigenvectors of B in the setting of Proposition 2,
highlighting their increasing oscillatory nature. The second row shows that the same behaviour is observed in
practice also for domains with different shapes. Thanks to this oscillatory behaviour, the bias is concentrated
on a few components Tβ,Π,k, corresponding to projections of Ψf on the low frequency eigenvectors vk.

Figure 2: From left to right: 3D representations of the 5th, 10th, 40th eigenvectors of the smoothing matrix
B, for Laplace regularization with regular finite element mesh and data locations at mesh nodes on a square
domain (top) and on an irregular domain (bottom). In each panel, the blue transparent plane represents the
zero-level. The image highlights that the eigenvectors have an increasingly oscillatory behavior along both the
axes.
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3.2 Partial ESF on the linear component

Our objective is to develop a more powerful inference approach on β, by defining a new sign-flip statistic, that is
less affected by the impact of bias then the ESF statistic in (8). To this end, we exploit the fact that the bias bλ

of Tβ,Π can be decomposed as the sum of the biases bλ,k specific to the components Tβ,Π,k of Tβ,Π, as detailed
in Proposition 1. The idea is then to define a new sign-flip statistic, where we do not sign-flip the components
associated with the highest biases, imposing the corresponding sign-flip to πk = 1. As described in this section,
this partial sign-flip approach has the benefit of mitigating the bias effect, reducing the extra-variability induced
by the bias of the observed test statistic, while retaining the test’s information. Moreover, we show that the
corresponding test remains asymptotically exact. In particular, Proposition 3 demonstrates that the test based
on a ESF statistic is asymptotically exact, even when only a portion of the components is sign-flipped, for any
given choice of the set of components to retain fixed.
Proposition 3. For a set of indices J ⊂ {1, . . . , n}, let ΠJ be a diagonal matrix with entries πkk = 1 if k ∈ J ,
and πkk ∼ U{−1, 1} otherwise. Consider the Eigen-Sign-Flip statistic defined replacing Π by ΠJ . Consider the
test that rejects H0 if and only if Tβ,I > Tβ,[1−α], i.e., if and only if the rank of Tβ,I is at least 1− α. Then,
under the null hypothesis, the test is asymptotically exact and the rejection probability P(Tβ,I > Tβ,[1−α]) is
at most α.

The proof is reported in Section 1.1 of the Supporting Information. Notice that, when the sample size n is too
small, fixing many components may reduce the range of significance levels a user may be able to test. However,
in practical applications, this effect is not relevant.

To understand which components of the test statistic should not be sign-flipped, we now focus on estimating
the amount of bias present in each component. Consider the decomposition (11) presented in Proposition 1.
An estimator b̂λ for the bias can be obtained estimating the term v⊤

k Ψf by α̂k = v⊤
k (y −Xβ̂), obtaining:

b̂λ = n−
1
2

n∑
k=1

b̂λ,k = n−
1
2

n∑
k=1

(X⊤vk)(dkπk)α̂k.

We are interested in fixing the components that have a high relative bias, with respect to the test statistic
Tβ,Π,k. We quantify this relative bias by |α̂k| and fix the components with |α̂k| > γ · σ̂2, where σ̂2 is the
estimator of the noise variance σ2. The constant γ regulates the number of fixed components, and we fix γ = 10
by empirical validation. This threshold allows to correct the effect of bias, when present, at a cost of a minimal
loss of sign-flips (i.e., few components fixed), whilst no sensible modification is induced when low or null bias is
present (e.g., in large sample scenario). This leads to the following definition.
Definition 1 (Partial Eigen-Sign-Flip test on β). Let JPESF ⊂ {1, . . . , n} be the set of indices such that
|α̂k| > γ · σ̂2, and let ΠJPESF be the associated partial sign-flip matrix. The Partial Eigen-Sign-Flip statistic
TΠJ

is defined as:
Tβ,ΠJPESF

= n−
1
2X⊤VΠJPESFV

⊤Λ(y −Xβ0). (13)

The Partial Eigen-Sign-Flip (PESF) test on β, for the set of hypotheses in (4), rejects the null hypothesis if
and only if Tβ,I > Tβ,[1−α]JPESF

, i.e., if the rank of Tβ,I is at least 1− α.

For the convenience of the reader, we summarize the main statistics considered in Table 1. Proposition 3
ensures that the Partial Eigen-Sign-Flip test is asymptotically exact. In the bottom panel of Figure 1, we
plot the distribution of the sign-flipped residuals ΠJPESF

r̃, where ΠJPESF
is a partial sign-flip matrix built

accordingly to PESF procedure. The distribution of the partial sign-flipped residuals ΠJPESF
r̃ has similar

center and variance as the distribution of r̃, contrary to the distribution of Πr̃, that instead displays a larger
variance.
Remark 2. The p-value for the proposed partial ESF two sided hypothesis test is computed as twice the
minimum of the one-sided p-values. This approach is followed because the distribution of Tβ,Π is not zero
centered, and simply considering the absolute value of the test statistic Tβ,I , as done in Ferraccioli et al. [2022]
would assign a different weight to the two tails of the score statistic distribution. This would marginally affect
the power of the test, depending on the sign and magnitude of the bias bλ.
Remark 3. Confidence Intervals (CI) for β may be computed employing the test statistics here proposed. A
(1 − α)−level CI can be always defined as the set of parameters for which the corresponding null hypothesis
is not rejected at level α. Despite the simplicity of the theoretical definition, the computation of a CI can be
demanding. Section 2 of the Supporting Information presents an iterative procedure that retrieves the set of
points in the CI, avoiding the full exploration of the possible values of β.
Remark 4. It is worth to point out that, proceeding as in Section 4.4 of Ferraccioli et al. [2023],we may also test
subsets of covariates. In principle, this is equivalent to treat the covariates whose coefficients are not targeted
by the test as nuisance parameters, in analogy to what is done for the spatial field f . For the sake of simplicity,
in this work we thus present tests on all the coefficients β simultaneously. We refer to Ferraccioli et al. [2022]
for further details.
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4 Inference on the nonlinear component
Inference on the nonlinear term in nonparametric or semiparametric regression has been addressed for more
classical models based on splines and extensions [see, e.g., Harezlak et al., 2018; Wood, 2017, for a comprehensive
overview of the existing methods]. In this section, we extend some of these approaches to the non-linear
component of SR-PDE. In particular, we describe a parametric method that draws inspiration from Wald-
like approach in Wood [2013], which deals with testing smooth components of generalized additive models.
Furthermore, we extend to the non-linear component f the nonparametric approaches based on the sign-flip
approach previously presented for the tests on β.

Our interest lies in testing the equality of the function f to a smooth function γf0, where f0 is known, whilst the
scaling factor γ may be unknown. The test is performed at a generic set of locations Z = {z1, . . . , znZ} ⊂ Ω.
We thus consider the following set of hypothesis:

H0 : f(z) = γf0(z) ∀z ∈ Z vs H1 : ∃z ∈ Z | f(z) ̸= γf0(z). (14)

For simplicity, we assume that the function f0 lives in the considered space of finite elements functions. This
assumption is not restrictive, since this space is chosen rich enough to provide accurate approximations of
smooth functions. Moreover, also in absence of such assumption, the results presented in the following sections
hold true at the mesh nodes. Notice that, to test the equality of the function f to a function γf0 over all
the domain, it suffices to set Z = {ξj}j∈1,...,N , where ξj is the jth mesh node, since a finite element function
is fully determined by its values of the mesh nodes. Moreover, thanks the presence of the possibly unknown
scaling factor γ, the set of hypothesis (14) is rather general. For instance, we can test the significance of the
nonparametric term of the SR-PDE model, by setting f0 to a constant function.

4.1 Wald inference on f

Wald inference on f relies on the asymptotic distribution of the corresponding estimator f̂ in (3). Under some
regularity assumptions, Theorem 1 in Arnone et al. [2023] shows that this estimator has asymptotic normal
distribution

(̂f − f)|X ∼̇ NN (0, VA),

where VA is the N × N asymptotic variance given in the same theorem of Arnone et al. [2023] and 0 is the
vector having N elements equal to 0. This justifies Wald type inference on f , as detailed in the following section.
Notice that, similarly to what happens for the inference on β, the asymptotic variance VA does not involve the
smoothing parameter λ, which instead should be accounted for in finite sample scenarios. Hence, in practice,
we employ the finite dimensional variance of f̂, given by

Vf̂ =
(
Ψ⊤QΨ+ λP

)−1
Ψ⊤QΨ

(
Ψ⊤QΨ+ λP

)−1

that asymptotically converges to VA. We denote by ΨZ the matrix of basis evaluations at the testing locations
Z. For Z = P the matrix ΨP coincides with the matrix Ψ defined in Section 2.1. We moreover denote by f̂Z
the estimator of f at the testing locations Z, i.e., f̂Z = ΨZ f̂. Finally, to lighten the notation, we let f0 be the
vector of evaluations of f0 at the testing locations Z, i.e., f0 = f0,Z . We now detail the Wald test, starting from
the simplest case of known scaling factor γ.

Test (14) with known γ

Let γ = γ0 be known and, without loss of generality, set γ0 = 1. The Wald test statistic, under the null
hypothesis H0 in (14) with γ = γ0 = 1, follows asymptotically the χ2 distribution

(̂fZ − f0)⊤VWald
−r (̂fZ − f0) ∼ χ2

r,

where VWald
−r indicates a rank-r pseudo-inverse of the variance matrix VWald = ΨZVf̂Ψ

⊤
Z . Notice that

rank(VWald) = min{nZ , rank(Vf̂)}, and VWald may be singular. Even when VWald is invertible, it might have
eigenvalues close to zero. Thus the use of a rank-r pseudo-inverse is always recommendable, as commented in
a similar context by Wood [2013].

Test (14) with unknown γ

We proceed by estimating γ. In particular, Theorem 6 in Arnone et al. [2022] proves the consistency of the
estimator f̂, under mild regularity assumptions. Therefore, we can provide an estimator γ̂ that converges in
probability to γ. Relying on this result, we can prove the following statement.
Proposition 4. Under the null hypothesis H0 in (14), with unknown γ, we have: f̂Z |X ∼̇ NN (γf0, VA).

The proof of Proposition 4 is reported in Section 1.2 of the Supporting Information. Leveraging on this results,
we can define an asymptotically exact test, following the same procedure detailed for the case of known γ.
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4.2 Score statistic for f

As we show by the simulations studies in Section 5.2, the parametric test in Section 4.1 may suffer a poor
control of Type-I error, due to the presence of the bias induced by the regularizing term. For this reason, we
here propose two nonparametric alternatives, based on the sign-flip approach. This approach, likewise the test
for β, is based on the score statistic, and avoids the direct estimation of the Fisher information matrix for the
calculation of p-values, in order to test the hypothesis (14), for both known and unknown γ. The score statistic
is defined under the null hypothesis (14) and is not affected by the regularization of the model, inducing tests
that enjoy good control of Type-I error as well as high power. For simplicity, we here focus on the case where
the testing locations are a subset of the data locations, i.e., Z ⊆ P. Such assumption is not restrictive and
permits to test equality of f to any function γf0 over the whole domain, as long as Ψ⊤

ZΨZ is invertible.

Let yZ , XZ and QZ denote the restriction of y, X, and Q to the nZ locations in Z ⊆ P, and let β̂Z,H0 =
(X⊤

ZXZ)
−1X⊤

Z (yZ − ΨZ f0) be the corresponding estimator for β under H0 in (14). Starting from the score
equation of the model (1) for f , we can define the following score statistic for f :

Tf = n
−1/2
Z Ψ⊤

Z(yZ −XZ β̂Z,H0
−ΨZ f0) = n

−1/2
Z Ψ⊤

Z(yZ −XZ(X
⊤
ZXZ)

−1X⊤
Z (yZ −ΨZ f0)−ΨZ f0) =

= n
−1/2
Z Ψ⊤

Z((I −XZ(X
⊤
ZXZ)

−1X⊤
Z )(yZ −ΨZ f0) = n

−1/2
Z Ψ⊤

ZQZ(yZ −ΨZ f0) = n
−1/2
Z Ψ⊤

ZQZrZ , (15)

where rZ = (yZ −ΨZ f0). The statistic Tf is unbiased, since E(Tf ) = 0 due to the fact that QZXZ = 0. Let
VTf

= σ2Ψ⊤
ZQZΨZ . The following theorem states that the statistic Tf has asymptotic normal distribution.

Theorem 1. Under H0 in (14) the score statistic Tf defined in (15) is asymptotically normally distributed,
with:

√
nZ V

−1/2
Tf

Tf ∼ NN (0, IN ).

The proof is reported in Section 1.2 of the Supporting Information. It is worth noting that the score statistic is
a N -dimensional vector, and each of its components is a weighted sum of the nZ observed residuals evaluated
under the null hypothesis, namely:

Tf = n
−1/2
Z Ψ⊤

ZQZrZ =


n
−1/2
Z

∑nZ
i=1 ψ1(zi)(QZrZ)i

...
n
−1/2
Z

∑nZ
i=1 ψN (zi)(QZrZ)i

 (16)

where (QZrZ)i indicates the ith element of the vector QZrZ . This expression highlights that the jth entry of
Tf can be interpreted as the estimate of the residual at the jth mesh node under the null hypothesis.

4.3 Sign-Flip test

Expression (16) highlights that each entry of the score statistic Tf can be seen as a weighted sum of nZ
independent contributions, that are zero centered under the null hypothesis. We can use this information to
derive the null distribution of each entry of the score statistic . Following the sign-flip approach, we can define
the following Sign-Flip test on f , starting from the score statistic Tf .
Definition 2 (Sign-Flip test on f). Let Π = diag(π1, . . . , πnZ ) be a sign-flip matrix, where π = (π1, . . . , πnZ )
is a random vector uniformly distributed in {−1, 1}nZ . The Sign-Flip score statistic is defined as:

Tf,Π = n
−1/2
Z Ψ⊤

ZΠQZrZ . (17)

The observed test statistic Tf = Tf,I corresponds to the case where πi = 1, for all i ∈ 1, . . . , nZ . Let Tcomb
f,Π be

the sign-flip combined statistic. Then the p-value for the test on (14) is computed as the rank of Tcomb
f,I with

respect to a sample of M sign-flips π, divided by M .

Different combination methods can be considered [Pesarin, 2001]. In this work we consider the Mahalanobis
distance, that is Tcomb

Π = n−1
Z T⊤

f,ΠV
−1
Tf

Tf,Π. The following propositions gives the mean and variance of the
sign-flip statistic Tf,Π under the null hypothesis and state the asymptotic exactness of the Sign-Flip test in
Definition 2.
Proposition 5. For a given sign-flip matrix Π, the expected value and variance of the score test statistic under
H0 in (14) are:

EH0
[Tf,Π] = 0

VarH0
[Tf,Π] = n−1

Z σ2Ψ⊤
ZΠQZΠΨZ .

Proposition 6. The Sign-Flip test on f defined in Definition 2 is asymptotically exact.

The proofs of Propositions 5 and 6 are reported in Section 1.2 of the Supporting Information. Notice that the
Sign-Flip test on f is only asymptotically exact, since the distribution of the Sign-Flip test statistic Tf,Π depends
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on a specific matrix Π. In this test we are applying the sign-flip transformation to the score contributions,
that under H0 are symmetric around zero but not independent. In fact, we have that EH0

[QZrZ ] = 0 and
VarH0

[QZrZ ] = σ2QZ . In general, the projection matrix QZ is not diagonal and hence it induces correlation.
However, for nZ large enough, the projection matrix QZ is approximately an identity matrix and, under the
null hypothesis, the distribution of QZrZ is approximately a multivariate normal, leading to an asymptotically
exact test, as stated by Proposition 6. In the next section we instead provide a modified version of the Sign-Flip
test, that is exact also in the finite sample scenarios.
Remark 5. Notice that, if the errors are assumed to be normally distributed, and no covariates are present,
then the Sign-Flip tests is exact. Indeed, in this case, the projector QZ is an identity also in the finite sample
case.
Remark 6. It is relevant to highlight the particular setting where Z ⊆ {ξj}j∈1,...,N , where ξj are the mesh
nodes. In this case, many of the common combinations that are usually employed to produce the global
statistic, among which there is the Mahalanobis distance, may not be appropriate for the sign-flip procedure
here considered. This happens because ΨZ is a subset of the identity matrix I, and this eliminates the effect of
the sign-flip transformation. However, this issue can be solved by combining the contributions of nearby nodes,
as detailed in Section 3 of the Supporting Information.

4.4 Eigen-Sign-Flip for f

In this section we propose a modification of the Sign-Flip test on f described in Section 4.3, in order to correct
for the lack of invariance under H0 of the covariance of the sign-flip statistic Tf,Π. Notice that, differently to
what happens for the Eigen-Sign-Flip test on β, this test is exact also in finite-sample scenarios. Therefore,
there is no need to provide a bias reduction procedure as the one discussed in Section 3.2. The new test, named
Eigen-Sign-Flip test for f , is defined as follows.
Definition 3. (Eigen-Sign-Flip test on f) Let us consider the spectral decomposition QZ = V V ⊤, where
V is the nZ × (nZ − q) matrix of eigenvectors corresponding to the nonzero eigenvalues of QZ . Let Π =
diag(π1, . . . , πnZ−q) be a sign-flip matrix, with π = (π1, . . . , π(nZ−q)) a random vector uniformly distributed in
{−1, 1}(nZ−q). Then the Eigen-Sign-Flip score statistic is defined as:

TE
f,Π = n

−1/2
Z Ψ⊤

ZVΠV ⊤QZrZ = n
−1/2
Z Ψ̃⊤

ZΠr̃Z (18)

where Ψ̃Z = V ⊤ΨZ and r̃Z = V ⊤rZ . The observed statistic TE
f = TE

f,I ∈ RN corresponds to the case where
πi = 1, i ∈ 1, . . . , n‡. Let Tcomb

Π be the sign-flip combined global statistic. Then the p-value is computed as the
rank of Tcomb

I with respect to a sample of M sign-flips π, divided by M .

The main idea behind the Eigen-Sign-Flip test is to exploit the fact that QZ is the projection matrix onto the
subspace orthogonal to span(XZ). Hence it is idempotent and, assuming that XZ has full rank q, it has exactly
nZ − q eigenvalues equal to 1 and the remaining equal to 0. Then, as already proposed by Kherad-Pajouh and
Renaud [2010] in the classical linear regression framework, we can premultiply the residuals by the matrix of
eigenvectors corresponding to the non-zero eigenvalues. This procedure allows to reduce the cardinality of the
residuals and makes the resulting nZ − q pseudo-residuals uncorrelated. The properties of the Eigen-Sign-Flip
test statistic are summarized in the following propositions.
Proposition 7. For a given sign-flip matrix Π, under H0 in (14), the expected value and variance of the score
test statistic TE

f,Π are:
EH0 [T

E
f,Π] = 0

VarH0
[TE

f,Π] = n−1
Z σ2Ψ⊤

ZQZΨZ .

Proposition 8. The Eigen-Sign-Flip test in Definition 3 is exact.

The proofs are similar to the one used in the Sign-Flip case, and are reported in Section 1.2 of the Supporting
Information. As shown by the simulations in Section 5, the Sign-Flip and Eigen-Sign-Flip tests on f are
more robust than the parametric Wald test, and offer a very good control of Type-I error, differently from the
parametric test. We can also construct CI for f(p) based on the Sign-Flip and Eigen-Sign-Flip tests, analogously
to the procedure detailed for β in Section 2 of the Supporting Information.

5 Simulation studies
In this section we assess the validity of the proposed inference methods by means of simulations. Simulation 1
focuses on the linear component of the model β, whilst Simulation 2 focuses instead on the nonlinear component
f .
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The library fdaPDE [Arnone et al., 2024] provides an exact and an approximated implementation for all the
considered approaches. In particular, all the tests involve the inversion of large sparse matrices, that, when
performed exactly, yields large dense matrices, heavy to compute and difficult to store. The approximated
inversion is computed by adapting the Factorized Sparse Parallel Approximate Inverse (FSPAI) algorithm,
proposed by Huckle [2003] to our modeling framework. The FSPAI algorithm approximates the dense inverse
of a matrix with a sparse matrix, resulting in a significant saving of time and memory.

5.1 Simulation 1: inference on the linear component

We present a simulation study that investigates the finite sample performances of the Partial Eigen-Sign-Flip
test (PESF) for β proposed in Section 3.2. We consider the following competing methods:

Wald: the classic Wald test based on the asymptotic distribution of β̂;

Speck: the variant of Wald test based on the asymptotic distribution of the Speckman version of β̂ [Holland,
2017; Speckman, 1988];

ESF: the Eigen-Sign-Flip score test introduced in Ferraccioli et al. [2022];

PESF: the Partial Eigen-Sign-Flip test proposed in Section 3.2.

We simulate from model (1), with Ω = [0, 1]×[0, 1] and p1, . . . ,pn randomly sampled from a uniform distribution
on Ω, with n = 225. For the nonparametric component of the model, we consider the test function 2 from the
function set gamSim in the R package mgcv [Wood, 2017], defined in Section 4 of the Supporting Information.
We consider one covariate, and we generate x1, . . . , xn according to four different stochastic processes:

a) a Gaussian random field with zero mean and scale 0.05;

b) a Matérn random field with ν = 1, σ = 2 and scale 0.1;

c) the function cos(5(p1 + p2)) + (2p1 − p1p2
2)

2 with an added Gaussian random field with scale 0.05;

d) the function cos(5(p1 + p2)) + (2p1 − p1p2
2)

2 with an added Matérn random field with ν = 1, σ = 2 and
scale 0.1.

The covariate and the true f are standardized, before computation of the response variable y, so that their
relative contributions to the response are comparable. We consider H0: β0 = 0. We generate data from model
(1), both with β = 0 and with other 10 different values of β, from 0.01 to 0.1, in order to check Type-I error,
as well as the power of the test. Finally, we add i.i.d. random errors ϵ1, . . . , ϵn, with zero mean and standard
deviation 0.1. For each test case, the generation of the covariates and noise is repeated 1000 times. For each
simulation repetition, we obtain the estimate using SR-PDE with penalization of the Laplacian, employing
linear finite elements on a uniform mesh with 283 nodes and smoothing parameter λ selected by generalized-
cross-validation. The test are performed with nominal value 0.05. For ESF and PESF tests, we consider 1000
random sign-flips. Moreover, we show results with both exact and approximated FSPAI inference, with FSPAI
tolerance ϵFSPAI = n · 10−4. The results for the four cases (a)-(d) are shown in Table 2. Figure 3 shows the
power curves for the most interesting casesm (b) and (d), where the spatial correlation in the covariates induces
more bias in the estimators. Cases (a) and (c) are reported in Section 4 of the Supporting Information. Both
parametric alternatives, Wald and Speckman, have poor performances, with very poor control of Type-I error
in all scenarios. On the converse, the nonparametric tests have an excellent control of Type-I error, even in
the most challenging scenarios. The PESF test here proposed has systematically higher power with respect
to the standard ESF in Ferraccioli et al. [2022]. Moreover, the proposed PESF test is robust to the FSPAI
approximation, whilst ESF test may lose power, especially in the most challenging scenario (d).

5.2 Simulation 2: inference on the nonlinear component

We now show some simulation studies to assess the performances of the tests proposed for f . In particular we
consider three different ways to move away from the null hypothesis in (14), generating data under the following
alternative hypothesis H1:

e) Scale. We multiply f0 by a scale factor κ: f(p) = κf0(p), κ ∈ R.

f) Shift. We add to f0 a shift factor c: f(p) = f0(p) + c, c ∈ R.

g) Linear combination. We consider an alternative function f1 defined in Section 5 of the Supporting
Information, and we take a linear convex combination of f0 and f1, with weight α: f(p) = (1 −
α)f0(p) + αf1(p), 0 ≤ α ≤ 1.
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Type-I error

Exact (a) (b) (c) (d)
Wald 0.109 0.219 0.109 0.223
Speck 0.096 0.100 0.093 0.101
ESF 0.043 0.046 0.041 0.039
PESF 0.048 0.051 0.047 0.049
FSPAI (a) (b) (c) (d)
Wald 0.170 0.438 0.321 0.515
Speck 0.092 0.104 0.090 0.111
ESF 0.045 0.046 0.044 0.043
PESF 0.046 0.057 0.043 0.052

Table 2: Simulation 1, inference on β for the four simulated settings (a)-(d) and the different methods: Wald
(Wald), Speckman (Speck), Eigen-Sign-Flip (ESF) from Ferraccioli et al. [2022] and Partial Eigen-Sign-Flip
(PESF) proposed in Section 3. The estimates that are lower of the threshold of 0.0635 (i.e., that are inside of
the confidence interval for the Type-I error for a nominal level of 0.05 with 1000 replicates) are highlighted in
bold. Top: exact computations are used for all methods. Bottom: FSPAI approximation of S (Wald) and of Λ
(Speck, ESF, PESF) matrices is used for all methods.

We compare the performances of the methods proposed in Section 4, namely the classic Wald test introduced
in Section 4.1; the Sign-Flip (SF) test introduced in Section 4.3; and the Eigen-Sign-Flip (ESF) test introduced
in Section 4.4.

We generate data as detailed in Section 5.1, case (a), with β = 1. To asses the power of the tests we also
generate data under the alternative, considering 21 values for κ from 0.80 to 1.20 with step 0.02 for case (e),
and 21 values for c and α from −0.20 to 0.20 with step 0.02 for cases (f) and (g). The function f1 used in case
(g) is defined in Section 5 os the supporting information file. The generation of the noise is repeated 1000 times.
For both the SF and ESF tests, we consider 1000 random sign-flips.

Figure 4 reports the results obtained considering exact computations. Section 5 of the Supporting Information
reports the results obtained for the stochastic approximated inference. In all scenarios, Wald test has an
extremely poor control of Type-I error, around 50 %; instead the proposed nonparametric tests have a very
good control of Type-I error. The SF and ESF tests to do not display any appreciable difference in the power
curves.

6 Discussion
In this work we have proposed accurate and powerful nonparametric inference approaches for inference on the
linear as well as nonlinear terms of SR-PDE models. The simulation studies highlight that the proposed Partial
Eigen-Sign-Flip test on the linear component has higher power with respect to the already existing nonparametric
tests, while retaining the same control of Type-I error. Regarding the nonlinear component, both the proposed
nonparametric tests have very good control of Type-I error in small sample scenarios, differently from the
parametric Wald-type inference, that has instead extremely poor control of Type-I error. All the considered
tests on f have high power. Efficient algorithms for the computation of confidence intervals on the linear and
nonlinear part are also presented in the supporting information file.

All the results presented in this work could be generalized to a wider class of SR-PDE models, handling
for instance spatio-temporal data [Arnone et al., 2019; Bernardi et al., 2017], as well as data coming from
distributions different from the Gaussian [Wilhelm et al., 2016]. Finally, in this work we assume that the λ
parameter is given and fixed. A very interesting future research direction consists in exploring the effects of
the choice of the smoothing parameter λ on the inference, similarly to what is done for instance in Wood et al.
[2016] to correct AIC index in the context of Generalized Additive Models. These developments will be object
of dedicated future studies.
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Figure 4: Simulation 2, inference on f . Rejection rates for 1000 repetitions, with exact inference computation;
Wald test (red dotted curve, with circle markers), SF nonparametric test (blue solid curve, with circle markers)
and ESF test (green dashed curve, with square markers).
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Abstract

This document contains supporting information for the article: Sign-Flip inference for spatial regression
with differential regularization. We prove the theoretical results detailed in the main article. We propose
an efficient algorithm for the computation of Confidence Intervals on the linear component of the model β,
based on the nonparametric tests discussed in the main article. We provide details on the nonparametric
inference on f when the locations tested are a subset of the mesh nodes. Finally, we provide further details
on the simulations presented in the main article.

1 Proofs

1.1 Proofs of theorems on the linear component β

Proof of Proposition 1. To lighten the notation, we omit the subscript β, using the notation T· = Tβ,·,
where · is any other symbol also used as T subscript. We can rewrite TΠ as follows.

TΠ = n−
1
2X⊤VΠV ⊤Λ(y −Xβ0) = n−

1
2X⊤V DΠV ⊤(y −Xβ0) = n−

1
2X⊤

n∑
k=1

(πkdkvkv⊤
k )(y −Xβ0) =

=n−
1
2

n∑
k=1

(X⊤vk)(πkdk)(v⊤
k (y −Xβ0)) = n−

1
2

n∑
k=1

TΠ,k,

and bλ, for a given Π, as:

bλ = E[TΠ] = n−
1
2

n∑
k=1

(X⊤vk)(πkdk)(v⊤
k E[y −Xβ0]) = n−

1
2

n∑
k=1

(X⊤vk)(πkdk)(v⊤
k Ψf) = n−

1
2

n∑
k=1

bλ,k.

We obtain the desired result observing that both the expressions of bλ,k and TΠ,k depend on (dk,vk).

Proof of Proposition 2. Let Ω be a square domain and consider the eigenvalue-eigenfunction problem (∆f)2 =
µf for f : Ω =⇒ R, with homogeneous Neumann boundary conditions [see, e.g., Evans, 1998]. Grebenkov and
Nguyen [2013] prove that the eigenvalue-eigenfunction couples are of the form (µi,j = i2+ j2, cos(ip1) cos(jp2)),
for i, j ∈ N. Now consider a uniform mesh discretizing the square domain Ω, and the associated Finite Ele-
ment discretization P of (∆f)2. Section (3.1) of Boffi [2010] proves the convergence of the finite dimensional
eigenvalue-eigenvector couples of P to the infinite-dimensional couples above, with quadratic rate. Now let the
data locations {pi}i∈1,...,n coincide with the mesh nodes {ξj}j∈1,...,N . Then Ψ = I, and, as a consequence, the
eigenvectors of B coincide with the eigenvectors of P , which converge to cos(ip1) cos(jp2) for i, j ∈ N, and the
eigenvalues are di,j = 1

1+λµi,j
, which in turn converge to di,j = 1

1+λ(i2+j2)

Proof of Proposition 3. To lighten the notation, we omit the subscript β, using the notation T· = Tβ,·, where
· is any other symbol also used as T subscript. For the same reason, we replace the symbol ΠJr by Πr. Let
m = 2n−r. We want to show that, asymptotically, the distribution of T = (TI , . . . ,TΠr,m)⊤ is invariant under
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partial sign-flip transformations Πr. We denote by d
= the equality in distribution. We have that Πr ◦ T =

Πr ◦ (TI ,TΠr,1 ,TΠr,2 , . . . ,TΠr,m)⊤ = (TIΠr ,TΠr,1Πr ,TΠr,2Πr , . . . ,TΠr,mΠr ), so the desired result is equivalent

to prove that T
d
= Πr ◦ T. We proceed as in [Ferraccioli et al., 2023] to provide such proof. Consider the

eigendecomposition Λ = V DV ⊤, let r̃ = D1/2V ⊤(y − Xβ0) and let X̄ be the diagonal matrix of dimension
n× n with elements (X̃1, . . . , X̃n). The ESF test statistic can be rewritten as

TΠr
= n−

1
2 X̃⊤Πr r̃ = n−

1
21⊤ΠrX̄ r̃,

where 1 is an n-dimensional vector with all entries 1. TΠr
can hence be interpreted as the sum of n contributions,

where the elements of X̄ r̃ that are not in Jr are sign-flipped through Πr. The variance of TΠr
can be written

as
Var(TΠr ) = n−1σ21⊤X̄DX̄⊤1.

Let ΠT be the matrix with m rows and n columns collecting all the m = 2n−r vectors (of length n) of sign-
flips. Then, we have that T = ΠT X̄ r̃ and Πr ◦ T = ΠTΠrX̃ r̃. The joint distribution of T is asymptotically
multivariate normal with zero mean and variance Var(T) = σ2n−1ΠT X̄DX̄Π⊤

T . It remains to show that,
asymptotically, Πr ◦T has the same distribution for all Πr. Observing that the expected value is not affected
by the transformation Πr, we have that Πr ◦T has asymptotically null mean. Furthermore, for the variance we
have

Var(Πr ◦T) = n−1σ2ΠTΠrX̄DX̄ΠrΠ
⊤
T =

= n−1σ2ΠTΠrΠrX̄DX̄Π⊤
T =

= n−1σ2ΠT X̄DX̄Π⊤
T .

Applying Theorem 15.2.1 in Lehmann and Romano [2008] and Theorem 1 in Hemerik and Goeman [2018], we

thus obtain the null invariance T
d
= Πr ◦T. Consequently, under H0, we have that P(TI > T[1−α]) ≤ α.

1.2 Proofs of theorems on the nonlinear component f

Proof of Proposition 4. Consider the expression of γ̂ =
1

nZ

∑nZ
i=1 f̂Z,i

1
nZ

∑nZ
i=1 f0(zi)

. In the following, we assume that As-

sumptions 3-5 in Arnone et al. [2022] are satisfied when nZ increases. For nZ large, the term 1
nZ

∑nZ
i=1 f0(zi)

converges to
∫
Ω
f0(z)dz. Moreover, Theorem 6 of Arnone et al. [2022] proves the consistency of the estimator

f̂ . Thus, the numerator 1
nZ

∑nZ
i=1 f̂Z,i of γ̂ converges in probability to γ

∫
Ω
f0(z)dz. Applying Slutzky theorem

[Gut, 2005], we have that γ̂ converges in probability to γ and asymptotically, E[̂fZ − γ̂f0] = 0. It remains to
show that Var[̂fZ − γ̂f0] −→ Var[̂fZ − γf0] for nZ −→ ∞. This is a direct consequence of the convergence in
probability of γ̂ to γ and of Slutzky theorem [Gut, 2005]. The desired result is obtained proceeding as in the
proof of Theorem 1 in Arnone et al. [2023].

Proof of Theorem 1. To lighten the notation, we omit the subscript f , using the notation T· = Tf,·, where
· is any other symbol also used as subscript of T. We begin to show the proof for H0 when γ = γ0 = 1
is known, and then we extend it to the case of unknown γ. Under the null hypothesis H0 in (14), we have
T = n

−1/2
Z Ψ⊤

ZQZ(yZ −ΨZ f0). Thus:

EH0
[T] = n

−1/2
Z Ψ⊤

ZQZE[XZβ + ϵZ ] = 0,

VarH0
[T] = n−1

Z Ψ⊤
ZQZVar[XZβ + ϵZ ]Q

⊤
ZΨZ = n−1

Z σ2Ψ⊤
ZQZΨZ ,

where ϵZ is the vector containing the errors associated with the nZ locations under test, and we have exploited
the fact that under the null hypothesis yZ = XZβ +ΨZ f0 + ϵZ , with E[ϵZ ] = 0 and Var[ϵZ ] = σ2I, and that
QZXZ = 0. Therefore, T can be rewritten as a sum of nZ independent random vectors as follows:

T = n
−1/2
Z Ψ⊤

ZQZ(yZ −ΨZ f0) = n
−1/2
Z Ψ⊤

ZQZϵZ = n
−1/2
Z

nZ∑
i=1

[Ψ⊤
ZQZ ]iϵi

where [Ψ⊤
ZQZ ]i indicates the ith column of the N×nZ matrix Ψ⊤

ZQZ . It then follows from the Lindeberg-Feller
central limit theorem [see, e.g., Vaart, 1998] that T is also asymptotically normal. Consider now the case of
γ unknown. Let γ̂ be defined as in the proof of Proposition 4. Under the null hypothesis H0 in (14), we have
that T = n

−1/2
Z Ψ⊤

ZQZ(yZ − γ̂f0), and thus, for large nZ :

EH0 [T] = n
−1/2
Z Ψ⊤

ZQZE[(γ − γ̂)f0 +XZβ + ϵZ ] = 0,

VarH0 [T] = n−1
Z Ψ⊤

ZQZVar[(γ − γ̂)f0 +XZβ + ϵZ ]Q
⊤
ZΨZ = n−1

Z σ2Ψ⊤
ZQZΨZ .
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Again, to derive the above expressions, we have exploited the fact that, under the null hypothesis, we have that
yZ = XZβ+γf0+ϵZ , with E[ϵZ ] = 0 and Var[ϵZ ] = σ2I, and that QZXZ = 0. Moreover, since γ̂ converges to
γ in probability, for Slutzky theorem [Gut, 2005], we also have that Var[(γ− γ̂)f0+XZβ+ϵZ ] = Var[XZβ+ϵZ ].
Therefore, T can be rewritten as a sum of nZ independent N -dimensional random vectors

T = n
−1/2
Z Ψ⊤

ZQZ(yZ − γ̂f0) = n
−1/2
Z Ψ⊤

ZQZ(ϵZ + (γ − γ̂)f0) = n
−1/2
Z

nZ∑
i

[Ψ⊤
ZQZ ]i(ϵi + (γ − γ̂)f0,i).

It then follows from the Lindeberg-Feller central limit theorem [Vaart, 1998] that T is asymptotically normal.

Proof of Proposition 5. To lighten the notation we will omit the subscript f , using the notation T· = Tf,·,
where · is any other symbol already used as T subscript. It is trivial to prove that the expected value is zero.
Concerning the variance, we have:

VarH0 [TΠ] = n−1
Z Ψ⊤

ZΠQZVarH0 [yZ −ΨZ f0]Q⊤
ZΠΨZ = n−1

Z σ2Ψ⊤
ZΠQZQ

⊤
ZΠΨZ = n−1

Z σ2Ψ⊤
ZΠQZΠΨZ

exploiting the fact that nZVarH0
[yZ −ΨZ f0] = VarH0

[ϵZ ] = σ2I and that QZQ
⊤
Z = QZ .

Proof of Proposition 6. To lighten the notation, we omit the subscript f , using the notation T· = Tf,·, where
· is any other symbol also used as T subscript. Consider the jth component of the score statistic defined in
equation (17) of the main article, corresponding to the jth row of Ψ⊤

Z , for which we have T j
I = n

−1/2
Z

∑nZ
i=1 ν

j
i ,

with νji = ψj(pi)[QZrZ ]i. Let m = 2nZ . Let ΠT be the matrix with m rows and nZ columns, collecting
all the m vectors (of length nZ) of sign-flips, with ΠT,1 = 1. Consider the m-dimensional vector of statistics
Tj = (T j

1 , . . . , T
j
m), where T j

h = T j
ΠT,h

, for 1 ≤ h ≤ m. Under H0 in (14), we have that E[T j
h ] = 0 and

Var[T j
h ] = n−1

Z
∑nZ

i=1 Var[νji ] =: s2nZ
, for 2 ≤ h ≤ m, as ΠT,h is a nZ -dimensional vector of independent

sign-flips. On the converse, the variance of the observed score statistic is:

Var[T j
1 ] = n−1

Z

nZ∑
i=1

Var[νji ]− 2n−1
Z

∑
i∈1,...,nZ
l∈1,...,nZ

i<l

Cov(νji , ν
j
l ) ≤ n−1

Z

nZ∑
i=1

s2nZ
,

with Cov(νji , ν
j
l ) = σ2ψj(pi)QZ,i,lψj(pl), for i, l ∈ 1, . . . , nZ , which vanishes asymptotically. Moreover, the

covariance matrix of the vector Tj has zeros entries off diagonal, due to the fact that (ΠT,h)i, for 2 ≤ h ≤ m, are
independent with zero mean. Then, by the Lindeberg-Feller central limit theorem, Tj converges in distribution
to a vector of i.i.d. random variables, with asymptotic multivariate normal distribution with zero mean and
covariance limnZ→∞ s2nZ

I. Consequently, we can use Lemma 11 in Hemerik et al. [2020] to derive the asymptotic
exactness of the test corresponding to the jth component. Finally, from the multivariate central limit theorem
[Vaart, 1998] and Theorem 8 in Hemerik et al. [2020] follows the asymptotic exactness of the global test using
the combined statistic Tcomb

Π .

Proof of Proposition 7. To lighten the notation, we omit the subscript f and the superscript E, using the
notation T· = TE

f,·, where · is any other symbol also used as T subscript. It is trivial to prove that the expected
value is zero. Concerning the variance, we have:

VarH0
[TΠ] = n−1

Z σ2Ψ⊤
ZVΠV ⊤QZQ

⊤
ZVΠV ⊤ΨZ = n−1

Z σ2Ψ⊤
ZVΠ InZ−qΠV

⊤ΨZ = n−1
Z σ2Ψ⊤

ZQZΨZ .

where we exploited the fact that QZQ
⊤
Z = QZ , QZ = V V ⊤ and V ⊤V = InZ−q.

Proof of Proposition 8. To lighten the notation, we omit omit the subscript f and the superscript E, using the
notation T· = TE

f,·, where · is any other symbol also used as T subscript. The argument proceeds along the lines
of the proof of Proposition 6. Consider the jth component of the N dimensional statistic (18), corresponding to
the jth row of Ψ⊤

Z , T j
I = n

−1/2
Z

∑nZ
i=1[Ψ

⊤
ZV ]i[V

⊤QZrZ ]i. Let m = 2nZ . Let ΠT be the matrix with m rows and
nZ columns collecting all the m vectors (of length nZ) of sign-flips, with ΠT,1 = 1. Consider the m-dimensional
vector of statistics Tj = (T j

1 , . . . , T
j
m), where T j

h = T j
ΠT,h

, for 1 ≤ h ≤ m. We can rewrite T j
h as

T j
h = n

−1/2
Z 1⊤

nZ
ΠhΨ̃Z r̃Z

The above expression highlights that T j
h is a sum of nZ contributions, each one sign-flipped through Π. Moreover,

under the null hypothesis (14):
E[T j

h ] = 0,

Var[T j
h ] = n−1

Z σ21⊤
nZ

Ψ̃ZΨ̃Z1nZ .

3



We can express the vector Tj as:
Tj = n

−1/2
Z ΠTΨ̃Z r̃Z .

Thus, Tj has zero mean and variance given by

Var[Tj ] = n−1
Z σ2ΠTΨ̃ZΨ̃ZΠ

⊤
T.

Applying a sign-flip transformation Π to Tj we have that Π ◦Tj = n
−1/2
Z ΠTΠΨ̃Z r̃Z . Clearly, the matrix of the

sign-flips Π does not affect the expected value and also the variance is invariant to its application:

Var[Π ◦Tj ] = n−1
Z σ2ΠTΠΨ̃ZΨ̃ZΠΠT = n−1

Z σ2ΠTΨ̃ZΨ̃ZΠ
⊤
T.

Using Lindeberg-Feller multivariate central limit theorem we have that Tj and Π ◦ Tj converge to the same
asymptotic multivariate normal distribution, which proves the asymptotically exactness of the test corresponding
to the jth component of the test statistic. We can then derive the exactness of the global test using the
multivariate central limit theorem [Vaart, 1998] and Theorem 8 in Hemerik et al. [2020].

2 Confidence intervals

In this section we describe how to compute Confidence Intervals (CI) for β, based on the proposed PESF
statistic. Let p(b) be the p-value for the nonparametric test H0 : β = b vs H1 : β ̸= b. For the sake of simplicity,
we here focus on the case q = 1. Let [L,U ], with L ≤ U , be the desired confidence interval of level 1 − α for
β, i.e., P(L < β < U) ≥ 1 − α. Let Ll, Lu, Ul, Uu be four values such that Ll ≤ L ≤ Lu and Ul ≤ U ≤ Uu.
Algorithm 1 details how to determine U such that P(β > U) ≤ α

2 . The algorithm determines the upper bound
U of the CI in two steps. In the first step, starting from a guess obtained by means of the parametric CI,
either Speckman of Wald, two values Uu and Ul are determined, such that p(Uu) ≤ α

2 and p(Ul) ≥ α
2 . Then U

is obtained via a bisection algorithm, starting from Uu and Ul. Using Speckman in step 2 of the algorithm is
computationally convenient, as it requires to compute the same quantities that are also needed for the partial
ESF tests.

Algorithm 1 Computation of upper extreme of CI(1− α) for β

1: Compute β̂
2: Compute Speckman CI range Rs

3: Uu = β̂ + RS

4 , Ul = β̂ − RS

4
4: while (!((p(Uu) ≤ α

2 )&(p(Ul) ≥ α
2 ))) do

5: if (p(Uu) >
α
2 ) then

6: Uu = Uu + 1.5 ∗ Uu−Ul

2
7: end if
8: if (p(Ul) <

α
2 ) then

9: Select Ul =
Ul+β̂

2
10: end if

11: end while
12: Start bisection algorithm:
13: while (Uu − Ul >

Rs

20 ) do
14: Un = Uu+Ul

2
15: if (p(Un) ≤ α

2 ) then
16: Uu = Un

17: else
18: Ul = Un

19: end if
20: end while
21: U = Uu+Ul

2

3 Sign-Flip for f: when locations coincide with mesh nodes
We detail here the proposed nonparametric inference on f for the specific case in which all tested data locations
in Z in eq (14) of the main manuscript are a subset of the mesh nodes. Consider, for simplicity of exposition,
the Sign-Flip test. Then the score test statistic becomes:

Tf,Π = n
−1/2
Z Ψ⊤

ZΠQZrZ

where all the Z-subscripts stress the fact that the test statistic is computed using the chosen nZ data points
in P. In particular the nZ × N matrix ΨZ has at most one entry equal to 1 in each row, while all the other
entries are zeros, due to the fact that each point coincides exactly with one node. Hence, each component of
the N -dimensional score statistic is either zero, if the corresponding location has not been selected for the test,
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or is equal to the residual at that location, sign-flipped according to Π. In fact, the score test statistic becomes:

Tf,Π = n
−1/2
Z Ψ⊤

ZΠQZrZ = n
−1/2
Z



π1r1
...

πjrj
...

πNrN

 ,

where rj is the component of QZrZ that corresponds to the jth node, if the jth node is under test, otherwise
the entry is zero. Such configuration prevents the use of the global statistic Tcomb

Π defined in the main article.
Indeed if we consider the sum of squares for combination, its value is invariant with respect to Π and the test
is no longer meaningful. A possible practical solution consists in combining the values of nearby nodes. Indeed,
instead of considering only the residual corresponding to the jth node, we can sum all the residuals of the closest
nodes in the mesh. We define the following matrix:

G =

IG1
(p1) . . . IG1

(pnZ
)

... . . .
...

IGN
(p1) . . . IGN

(pnZ
)


where IGj (pi) = 1 if and only if point pi belongs to the neighborhood Gj of node j. Then the score test statistic
becomes:

Tf,Π = n
−1/2
Z GΠQZrZ

and we can take again as global test statistic Tcomb
Π the sum of squares of the Tf,Π entries. For what concerns

the Eigen-Sign-Flip test the approach is analogous, replacing ΨZ with G in Definition 3.

4 Simulation 1: inference on the linear component
This section reports details and additional results for the simulation studies described in Section 5.1 of the main
manuscript. The true spatial function f0 is defined as:

f0(p)=0.4π0.3

(
1.2exp

(
− (p1−0.2)2

0.32
− (p2−0.3)2

0.42

)
+0.8exp

(
− (p1−0.7)2

0.32
− (p2−0.8)2

0.42

))
.

Figure 1 shows the power curves for the cases a) and c) in Simulation 5.1, in analogy to what has already
displayed in the main article, concerning for the cases b) and d).

5 Simulation 2: inference on the nonlinear component
This section contains details and additional results concerning the simulations described in Section 5.2 of the
main manuscript. The function f1 is defined as:

f1(p)=0.4π0.3

(
1.6exp

(
− (p1−0.55)2

0.32
− (p2−0.15)2

0.42

)
+0.5exp

(
− (p1−0.85)2

0.32
− (p2−0.4)2

0.42

))
.

Figure 2 reports the rejection rates curves when inference is computed with stochastic approximation for Simu-
lation 5.2. The setting is the same shown in the main article, except that inference is computed efficiently using
the approximation with FSPAI tolerance ϵFSPAI = n ·10−7. Notice that, despite the higher precision requested
in this case with respect to Simulation 5.1, the Wald inference performance greatly worsen with respect to the
results observed in Simulation 5.2. On the converse, the nonparametric tests maintain perfect control of Type
I error and high power.
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Figure 1: Simulation 1, inference on β. Rejection rates over 1000 repetitions, with covariates generated as in
case (a) (top) and (c) (bottom), employing exact (left) and approximated (right) computations; Wald test (red
dotted curve, with circle markers), Speckman (violet dash-and-dotted curve, with cross markers), standard ESF
test (green dashed curve, with square markers) and the proposed PESF test (light blue solid curve, with circle
markers).
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Figure 2: Simulation 2, inference on f . Rejection rates for 1000 repetitions, with approximated inference
computation; Wald test (red dotted curve, with circle markers), SF nonparametric test (blue solid curve, with
circle markers) and ESF test (green dashed curve, with square markers).
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