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Abstract

Many physical problems involving heterogeneous spatial scales, such as the
flow through fractured porous media, the study of fiber-reinforced materials,
or the modeling of the small circulation in living tissues – just to mention a few
examples – can be described as coupled partial differential equations defined
in domains of heterogeneous dimensions that are embedded into each other.
This formulation is a consequence of geometric model reduction techniques that
transform the original problems defined in complex three-dimensional domains
into more tractable ones. The definition and the approximation of coupling
operators suitable for this class of problems is still a challenge. We develop a
general mathematical framework for the analysis and the approximation of par-
tial differential equations coupled by non-matching constraints across different
dimensions, focusing on their enforcement using Lagrange multipliers. In this
context, we address in abstract and general terms the well-posedness, stabil-
ity, and robustness of the problem with respect to the smallest characteristic
length of the embedded domain. We also address the numerical approxima-
tion of the problem and we discuss the inf-sup stability of the proposed nu-
merical scheme for some representative configuration of the embedded domain.
The main message of this work is twofold: from the standpoint of the theory
of mixed-dimensional problems, we provide general and abstract mathemati-
cal tools to formulate coupled problems across dimensions. From the practical
standpoint of the numerical approximation, we show the interplay between the
mesh characteristic size, the dimension of the Lagrange multiplier space, and the
size of the inclusion in representative configurations interesting for applications.
The latter analysis is complemented with illustrative numerical examples.

Keywords: mixed-dimensional problems, non-matching coupling, Lagrange
multipliers, model reduction, numerical approximation

1. Introduction

The definition, analysis and approximation of boundary value problems gov-
erned by partial differential equations with incomplete constrains at the bound-



ary is a relevant topic in computational fluid dynamics[21]. The so called do
nothing conditions were introduced to accommodate incomplete boundary data.
These techniques were applied to geometric multiscale problems, where domains
with different dimensionality are coupled together by means of suitable inter-
face conditions[15]. Since problems of higher dimensionality (PDEs in two or
three dimensions) are supplied with interface data of low dimensionality (one
dimensional or lumped parameter models), the incomplete information must be
supplemented by some modeling assumptions. These issues become more chal-
lenging if we consider the coupling of PDEs defined in domains of heterogeneous
dimensions that are embedded into each other. These models represent many
real physical problems, such as the flow through fractured porous media, the
study of fiber-reinforced materials or the modeling of the small circulation (mi-
crocirculation) in biological tissues (a representative geometrical configuration
of such problems is shown in Figure 1, left panel). In these examples, physical
models defined in inclusions characterized by a small dimension can be approx-
imated using models of lower dimensionality, giving rise to coupled problems
across multiple spatial scales. As a result, the information that is transferred
at the interface can not match, because of the dimensionality gap. We describe
these cases as non-matching mixed-dimensional coupled problems.

The main objective of this work is to develop a general mathematical frame-
work for the analysis and the approximation of PDEs coupled by non-matching
constraints across different dimensions. Considering the non standard formula-
tion of the coupling conditions, we focus on their enforcement using Lagrange
multipliers (LM). The enforcement and approximation of boundary/interface
conditions using LM is a central topic in the development of the finite element
method[4, 9, 31, 6] among many others. More recently, the LM method has been
applied to couple PDEs across interfaces[10, 29] just to mention a few examples
of a broad field in the literature.

The novelty of this work with respect to such literature consists in the use
of the LM method to couple equations defined on domains with heterogeneous
dimensions. For this reason, an essential aspect of the work is to shed light
on the interaction between the LM formulation and the restriction/extension
operators that govern the transition of PDEs across spatial dimensions. We
work in the abstract framework of saddle point problems in Hilbert spaces and
their approximation through Mixed Finite Elements[5]. An abstract framework
based on exterior calculus has recently appeared for the formulation and the
approximation of mixed-dimensional (coupled) problems[8, 7]. We will explore
the intersection of this work with ours in future works.

We consider here three main aspects of the problem. First, we analyse under
what conditions the stability of the LM formulation is preserved after the ap-
plication of the dimensional restriction operator. In other words, we will study
how PDEs coupled by LM behave when a mixed-dimensional formulation is
adopted. Second, we focus on the gap between physically relevant quantities at
the interface. At the level of the continuous problem formulation, we introduce
an approximation parameter, N , that affects the richness of the LM space that
matches heterogeneous dimensions (being N = 1 the fully nonmatching scenario
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and N →∞ the perfectly matched case) and we study how it influences the sat-
isfaction of the boundary constraints, or equivalently the magnitude of the gap
between interface unknowns. Third, we analyze the difference between the full-
scale formulation and the mixed-dimensional formulation, putting into evidence
how the so called dimensionality reduction error varies with the characteristic
spatial dimension of the problem and with the approximation parameter, N .

With this work, we aim at shedding light on the common mathematical
framework that embraces many recent works involving the applications men-
tioned above. LM formulations for Dirichlet-Neumann type interface conditions
for these problems were recently proposed[1, 18, 19]. In these works, a three
dimensional bulk problem for mechanical deformations is coupled to a one di-
mensional model for the mechanical behavior of fibers and vessels, respectively.
Also, the complementary problem made of thin and slender mechanical struc-
tures immersed into a fluid or solid continuum is particularly relevant[35, 16]
and could be addressed with the proposed tools. A preliminary mathematical
study of these problems was recently developed[25, 26, 27].

After considering the classical Dirichlet-Neumann interface conditions, we
also address Robin type transmission conditions. This variant of the problem
formulation is particularly significant for multiscale mass transport and fluid
mechanics problems[14, 12, 24, 23, 32]. Here, we show how a prototype of these
applications can be formulated and analyzed in the framework of perturbed
saddle point problems.

We organize the work as follows. In section 2 we introduce the problem for-
mulation for Dirichlet transmission conditions and we recall some fundamental
assumptions and results. The reduced Lagrange multiplier formulation of the
problem is presented and analyzed in section 3, where we state the well posed-
ness of the problem. The extension to Robin type transmission conditions is
also addressed here. We illustrate the behavior of the dimensionality reduction
error in Section 4, and in Section 5 we discuss the properties of the restriction
and extension operators when the small inclusion can be described as a map-
ping of a reference domain by means of an isomorphism. Section 6 discusses the
particular but very important case of inclusions isomorphic to a cylinder, where
we enforce the constraints at the boundary of the inclusion by means of the
projection onto a Fourier space truncated to the N -th frequency. The larger N ,
the better is the satisfaction of the constraint at the boundary. We introduce
the numerical approximation of the problem and its properties in section 7, and
finally in section 8 we discuss some numerical experiments in support of this
theory.

2. Model problem and Lagrange multiplier formulation

Consider the following model problem:

−∆u = f in Ω \ V (1a)

u = 0 on ∂Ω (1b)

u = g on Γ := ∂V, (1c)
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Figure 1: (left panel) Geometry of randomly placed cylindrical fibers in a three-dimensional
continuum. The cylinders have radius ε = 0.2 and height η = 0.5 are placed randomly in a
non-overlapping way and at a finite distance from the boundary of the domain. (right panel)
Example of the two dimensional section of a single one fiber, corresponding to the domain V
of radius ε, embedded in a macroscopic domain Ω.

where V , represented in Figure 1, is a set of (possibly disconnected) immersed
inclusions (such as sheets, vasculature networks, or macroparticles, see for ex-
ample Figure 2, left panel), denoted as V := ∪iVi, and whose boundary is
denoted by Γ := ∪iΓi ≡ ∪i∂Vi = ∂V .

To develop our approach, we consider a weak formulation of (1a) that uses
Lagrange multipliers to impose the given boundary condition on Γ. In particu-
lar, we start by testing (1a) with smooth test functions v defined on the entire
domain Ω, and that are zero on ∂Ω

(∇u,∇v)Ω\V + 〈∇u · n, v〉Γ = (f, v)Ω\V ,

where n denotes the outward normal vector to V , and we extend the problem
to the entire domain Ω by adding to it the weak form of −∆u = f̃ in V , and
impose continuity of the function u at the interface Γ:

(∇u,∇v)Ω + 〈(∇u+ −∇u−) · n, v〉Γ = (f̃ , v)Ω.

Here f̃ ∈ L2(Ω) is an arbitrary extension of f in the entire Ω. With a
little abuse of notation, from now on we will not distinguish between f̃ and
f . We denote respectively w+, w− the outer and inner values of a function w
with respect to Γ = ∂V along the outer normal direction n, and we denote by
[w] = w+−w− the jump of w across Γ. Then equations (1a)-(1b) are equivalent
to

(∇u,∇v)Ω + 〈[∇u] · n, v〉Γ = (f, v)Ω, ∀v ∈ H1
0 (Ω), (2)
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where we need an additional condition to impose the value of u on Γ. The nat-
ural way to proceed, is to impose such boundary condition through a Lagrange
multiplier, resulting in the following weak problem:

Given f ∈ H−1(Ω) and g ∈ H1/2(Γ), find u ∈ H1
0 (Ω), λ ∈ H−

1
2 (Γ) such

that

(∇u,∇v)Ω + 〈λ, v〉Γ = (f, v)Ω, ∀v ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω) (3a)

〈u, q〉Γ = 〈g, q〉Γ, ∀q ∈ H− 1
2 (Γ). (3b)

With appropriate conditions on the regularity of Γ, this problem admits a
unique solution, and using integration by parts it is straightforward to show
that

λ = [∇u] · n in H−
1
2 (Γ).

We use the following notations for Sobolev spaces in Ω and Γ := ∂V :

VΩ := H1
0 (Ω), ‖u‖VΩ

:= ‖u‖1,Ω
QΓ := H−

1
2 (Γ), ‖λ‖QΓ := ‖λ‖− 1

2 ,Γ
,

(4)

with which Problem (3) can be represented in operator form as follows:
given f ∈ VΩ

′, g ∈ QΓ
′ find u ∈ VΩ, λ ∈ QΓ such that

〈Au, v〉+ 〈BTλ, v〉 = 〈f, v〉 ∀v ∈ VΩ (5a)

〈Bu, q〉 = 〈g, q〉 ∀q ∈ QΓ (5b)

where

A : VΩ ≡ H1
0 (Ω) 7→ VΩ

′ ≡ H−1(Ω) with 〈Au, v〉 = (∇u,∇v)Ω (6)

B : VΩ 7→ QΓ
′ ≡ H 1

2 (Γ) with 〈Bu, q〉 = 〈u, q〉Γ (7)

BT : QΓ 7→ VΩ
′.

To demonstrate the well-posedness of (3) we first address the main properties
of the operators A and B, which will be also central in the development of the
reduced Lagrange multiplier approach.

Theorem 1 (Infsup on A). The operator A : VΩ 7→ VΩ
′ is symmetric, and it

satisfies the infsup condition, i.e., there exists a positive real number α > 0 such
that

inf
0 6=u∈VΩ

sup
06=v∈VΩ

〈Au, v〉
‖u‖VΩ

‖v‖VΩ

≥ α > 0. (8)

Proof: The proof follows from the definition of A and Poincarè inequality. �

Theorem 2 (Infsup on B). The operator B : VΩ 7→ QΓ
′ satisfies the infsup

condition, i.e., there exists a positive real number βB > 0 such that

inf
06=q∈QΓ

sup
06=v∈VΩ

〈Bv, q〉
‖u‖VΩ‖q‖QΓ

≥ βB > 0. (9)
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Proof: The operator B coincides with the trace operator. By the trace the-
orem [30], it is a bounded linear operator that coincides with the restriction
operator for smooth functions (i.e., Bu = u|Γ forall u smooth), it admits a
bounded right inverse, and therefore it satisfies, for some β0 > 0,

‖Bu‖QΓ
′ ≤ ‖B‖ ‖u‖VΩ ∀u ∈ VΩ

‖Bu‖QΓ
′ ≥ β0‖u‖VΩ ∀u ∈ VΩ \ ker(B).

(10)

By these conditions, it also follows that the operator BT is linear, continuous
and bounding. Moreover, ker(BT ) = {0}. Namely, there exist 0 < ‖BT ‖, βB >
0 such that

‖BT q‖VΩ
′ ≤ ‖BT ‖‖q‖QΓ

, ∀q ∈ QΓ (11)

‖BT q‖VΩ
′ ≥ βB‖q‖QΓ

, ∀q ∈ QΓ. (12)

Condition (12) is equivalent to (9), by the definition of the dual norm of VΩ
′,

and by taking the infimum over QΓ. �

Remark 1. For the forthcoming analysis, it is important to track the depen-
dence of the constant βB on the size of slender inclusions |V |. Let us denote
with ε the length of the smallest dimension of V . From simple scaling arguments,
supported by results on the trace inequality [17], we note that the quantity ‖B‖
is uniformly bounded with respect to ε. Conversely, β0 = O(εp) for some p ≥ 0.
We observe that ‖BT ‖ ' β−1

0 and βB ' ‖B‖−1. In conclusion, inequality (9)
is robust with respect to the diameter of V .

By Theorems 1 and 2 it follows immediately that Problem 3 is well posed and
admits a unique solution (u, λ) (see, e.g., [5]). By construction, the restriction
of u to Ω \ V ⊂ Ω satisfies problem (1).

3. Reduced Lagrange multiplier formulation

When the inclusion V is slender, i.e., one or more of its characteristic di-
mensions are small compared to the measure of Ω, it may be convenient to
reformulate the problem on a subdomain of V whose intrinsic dimension is
smaller than d, i.e., a representative surface, curve, or point γ ⊆ V , see Figure
2. We call m the intrinsic dimension of γ, and we assume that |V | = O(εd−m),
where ε is the smallest characteristic dimension of V , and ε� |Ω|.

The main idea of such reformulation is rooted on the assumption that the
relative measure of the domain V w.r.t. to the measure of Ω allows one to
accurately represent functions in QΓ

′ = H1/2(Γ ≡ ∂V ) using a Sobolev space
Wγ defined only on γ (for example, Hs(γ)N for some s ∈ [0, 1] and for some
N ≥ 1).

The abstract setting that enables us to perform such dimensionality reduc-
tion, is presented in the following assumption.
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Γ ≡ ∂V γ ⊆ V

Figure 2: Example of dimensionality reduction from a general inclusion V with boundary
Γ ≡ γ to a representative subset γ.

Assumption 1 (Restriction operator). There exists a linear restriction op-
erator R : QΓ

′ 7→ Wγ
′ and a positive constant βR > 0 such that

inf
06=w∈Wγ

sup
06=q′∈QΓ

′

〈Rq′, w〉
‖w‖Wγ

‖q′‖QΓ
′
≥ βR > 0. (13)

Assumption 1 is equivalent to asking that the transposed operator RT :
Wγ 7→ QΓ is a linear and bounding extension operator with trivial kernel, i.e.,

‖RTw‖QΓ
≥ βR‖w‖Wγ

∀w ∈ Wγ . (14)

The operator RT defines a closed subspace QRΓ = Im(RT ) ⊂ QΓ. The
restriction of problem 3 to QRΓ reads:

Given g ∈ QΓ
′ , find (uR, λR) in VΩ ×QRΓ such that

〈AuR, v〉+ 〈BTλR, v〉 = 〈f, v〉 ∀v ∈ VΩ

〈BuR, qR〉 = 〈g, qR〉 ∀qR ∈ QRΓ .
(15)

or, equivalently:
Given g ∈ QΓ

′ , find (uR,Λ) in VΩ ×Wγ such that

〈AuR, v〉+ 〈BTRTΛ, v〉 = 〈f, v〉 ∀v ∈ VΩ

〈RBuR, w〉 = 〈Rg,w〉 ∀w ∈ Wγ ,
(16)

where λR = RTΛ. It is straightforward to see that λR = [∇uR] · n in QRΓ .

Lemma 1 (Infsup on RB). Under Assumption 1, the operator RB satisfies
the infsup condition. More precisely, it holds

inf
06=w∈Wγ

sup
06=v∈VΩ

〈RBv,w〉
‖v‖VΩ

‖w‖Wγ

≥ βRβB > 0. (17)

Proof: The proof of (17) follows immediately from Theorem 2 and Assump-
tion 1, observing that ker(B) ⊆ ker(RB) and that:

‖RBu‖Wγ
′ ≥ βR‖Bu‖QΓ

′ ≥ βRβB‖u‖VΩ
∀u ∈ VΩ \ ker(RB).
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As a result the desired inequality holds true. �

Standard results for mixed approximations (see, for example, [5] Theorem
4.2.3, under the additional assumption that the operator A is self-adjoint) allows
one to conclude that there exists a unique solution (uR, λR) = (uR, R

TΛ) to
Problem (15) (or, equivalently, to Problem (16)). Moreover, the solution of the
problem is bounded by:

‖uR‖VΩ
≤ 1

α
‖f‖VΩ

′ +
2‖A‖ 1

2

α
1
2 βRβB

‖Rg‖Wγ
′ ,

‖Λ‖Wγ ≤
2‖A‖ 1

2

α
1
2 βRβB

‖f‖VΩ
′ +

‖A‖
α(βRβB)2

‖Rg‖Wγ
′ .

(18)

3.1. Extension to Robin type transmission conditions

We now generalize problem (1) to embrace the case of Robin-type transmis-
sion conditions as follows,

−∆u = f in Ω \ V (19a)

u = 0 on ∂Ω (19b)

κ[∇u] · n = (u− g) on Γ (19c)

We notice that this problem embraces the one previously addressed. Precisely,
it coincides with (1) for κ→ 0. In the case κ→∞ it represents Neumann-type
transmission conditions.

The weak formulation of such problem, with enforcement of the transmission
equation on Γ by means of Lagrange multipliers reads as follows: find u ∈ VΩ ≡
H1

0 (Ω), λ ∈ QΓ
′ ≡ H− 1

2 (Γ) such that

(∇u,∇v)Ω + 〈λ, v〉Γ = (f, v)Ω, ∀v ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω) (20a)

〈u, q〉Γ − κ〈λ, q〉Γ = 〈g, q〉Γ, ∀q ∈ H− 1
2 (Γ) . (20b)

Problem (20) can be represented in operator form as the following perturbed
saddle point problem: given F ∈ VΩ

′, G ∈ QΓ
′ find u ∈ VΩ, λ ∈ QΓ such that

〈Au, v〉+ 〈BTλ, v〉 = 〈F, v〉 ∀v ∈ VΩ, (21a)

〈Bu, q〉 − 〈Cλ, q〉 = 〈G, q〉 ∀q ∈ QΓ, (21b)

where the operators A and B are defined as for (3) in (6), (7) and the operator
C takes the form,

C : QΓ 7→ QΓ, with 〈Cλ, q〉 = κ〈λ, q〉Γ. (22)

If A and B are continuous operators, A is elliptic, B satisfies the infsup
condition of Theorem 2, and C is of the form (22), then, owing to Theorem
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4.3.2 of [5], problem (20) admits a unique solution u ∈ VΩ, λ ∈ QΓ such that

‖u‖VΩ ≤
β2
B + 4κ‖A‖
αβ2

‖f‖VΩ
′ +

2‖A‖ 1
2

α
1
2 βB

‖g‖QΓ
′ , (23)

‖λ‖QΓ
≤ 2‖A‖ 1

2

α
1
2 βB

‖f‖VΩ
′ +

4‖A‖
κ‖A‖+ 2β2

B

‖g‖QΓ
′ . (24)

Similarly to the case of Dirichlet transmission conditions, we apply the re-
striction operator to problem (20). Using the notation defined before, we obtain
the following abstract problem: given F ∈ VΩ

′, G ∈ Wγ
′ find uR ∈ VΩ, Λ ∈ Wγ

such that

〈AuR, v〉+ 〈BTRTΛ, v〉 = 〈F, v〉 ∀v ∈ VΩ, (25a)

〈RBuR, w〉 − 〈RCRTΛ, w〉 = 〈G,w〉 ∀w ∈ Wγ . (25b)

We note that in the particular case where C is the identity, as in (22), the
perturbation term becomes κ〈RTΛ, RTw〉. The operators A, RB and RCRT

satisfy the assumptions of Theorem 4.3.2 of [5]. Then, the solution of the reduced
problem uR,Λ also enjoys stability estimates analogous to (23)-(24).

4. Dimensionality reduction error

Let us now define and analyze the error due to the dimensionality reduction
induced by the operator R, namely eu = u − uR, eλ = λ − RTΛ. Subtracting
equation (16) from (5) we obtain,

〈A(u− uR), v〉+ 〈BT (λ−RTΛ), v〉 = 0 ∀v ∈ VΩ

〈Bu, q〉 − 〈BuR, RTw〉 = 〈g, q −RTw〉 ∀q ∈ QΓ, w ∈ Wγ .
(26)

For any qR ∈ QRΓ we have the following orthogonality property:

〈B(u− uR), qR〉 = 0 ∀qR ∈ QRΓ .

Since QRΓ is a closed subspace of QΓ, the space of orthogonal functions to QRΓ ,
named QΓ

⊥, is such that QΓ = QRΓ ⊕ QΓ
⊥. Using the orthogonality property

(26) can be written as follows,

〈A(u− uR), v〉+ 〈BT (λ−RTΛ), v〉 = 0 ∀v ∈ VΩ

〈B(u− uR), q⊥〉+ 〈BuR, q⊥〉 = 〈g, q⊥〉 ∀q⊥ ∈ QΓ
⊥.

(27)

Problem (27) becomes: find eu ∈ VΩ, eλ ∈ Q⊥ such that

〈Aeu, v〉+ 〈BT eλ, v〉 = 0 ∀v ∈ VΩ

〈Beu, q⊥〉 = 〈g −BuR, q⊥〉 ∀q⊥ ∈ QΓ
⊥.

(28)
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Then, observing that the infsup stability of B shown in Theorem 2 is satisfied
by the pair of spaces VΩ, QΓ

⊥, exploiting [5, Theorem 4.2.3] applied to problem
(5) we obtain the following bounds:

‖eu‖VΩ
≤ 2‖A‖ 1

2

α
1
2 βB

‖g −BuR‖QΓ
′

‖eλ‖QΓ ≤
‖A‖

(βB)2
‖g −BuR‖QΓ

′ ,

(29)

where α is the coercivity constant of A, and βB is the inf-sup constant of B
(9). We note that all the constants of (29) are independent of R, but they
may depend on the size of Γ through βB . The dimensionality reduction error
and the influence of R only appears through ‖g − BuR‖QΓ

′ . Estimates (29)
can be regarded as a bound of the dimensionality reduction error with respect
to the residual obtained by enforcing the boundary constraint Bu = g on the
closed subspace QRΓ . Notice, however, that it is not enough to guarantee that

g ∈ QRΓ
′

in order to eliminate the dimensionality reduction error, since the
solution uR of the reduced problem (16) does not necessarily coincide with the
full order solution u, due to possible errors in the representation of the Lagrange
multiplier λ in the reduced dimensionality setting.

To obtain an estimate that considers also this error, we start form the fol-
lowing equations, obtained again from a combination of (16) and (5):

〈AuR, v〉+ 〈BTRTΛ, v〉 = 〈Au, v〉+ 〈BTλ, v〉, ∀v ∈ VΩ ,

〈BuR, RTw〉 = 〈Bu,RTw〉, ∀w ∈ Wγ ,

that is, for any w ∈ Wγ ,

〈A(uR − u), v〉+ 〈BTRT (Λ− w), v〉 = 〈BT (λ−RTw), v〉, ∀v ∈ VΩ ,

〈RB(uR − u), w〉 = 0, ∀w ∈ Wγ .

Thanks to the stability of problem (16), namely inequalities (18), we have

‖uR − u‖VΩ
≤ 1

α
‖BT (λ−RTw)‖VΩ

′ (30)

‖Λ− w‖Wγ
≤ 2‖A‖ 1

2

α
1
2 βRβB

‖BT (λ−RTw)‖VΩ
′ . (31)

Finally, exploiting the continuity of BT and of RT , using the triangle in-
equality and recalling that w is a generic function in Wγ , we obtain,

‖eu‖VΩ
≤ ‖B

T ‖
α

inf
w∈Wγ

‖λ−RTw‖QΓ
,

‖eλ‖QΓ
≤
(

1 +
2‖A‖ 1

2 ‖BT ‖‖RT ‖
α

1
2 βRβB

)
inf

w∈Wγ

‖λ−RTw‖QΓ
.

(32)
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We note that, in contrast to (29), the constants of (32) depend on the properties
of R.

We proceed similarly for the case of Robin transmission conditions. By
subtracting problem (25) from (21) and exploiting the representation QΓ =
QΓ

R ⊕QΓ
⊥, we obtain that

〈A(u− uR), v〉+ 〈BT (λ−RTΛ), v〉 = 0, ∀v ∈ VΩ,

〈Bu, q〉 − 〈BuR, RTw〉 − κ〈λ, q〉+ κ〈RTΛ, RTw〉 = 〈g, q −RTw〉, ∀q ∈ QΓ.

From the latter equation, choosing q ∈ QΓ
R we obtain the following relation,

〈B(u− uR), qR〉 − κ〈λ−RTΛ, qR〉 = 0, ∀qR ∈ QΓ
R.

Furthermore, observing that for Λ ∈ Wγ we have 〈RTΛ, q⊥〉 = 0, we obtain
that the dimensionality reduction error related to the Robin-type transmission
conditions satisfy the following problem: find eu ∈ VΩ, eλ ∈ QΓ

⊥ such that

〈Aeu, v〉+ 〈BT eλ, v〉 = 0, ∀v ∈ VΩ,

〈Beu, q⊥〉 − 〈eλ, q⊥〉 = 〈g −BuR, q⊥〉 ∀v ∈ QΓ
⊥,

which shares the same structure of (21), (with the exception that the second
equation is tested on QΓ

⊥, but the infsup stability of B holds true also in this
subspace) and consequently shares the same stability property that is

‖eu‖VΩ
≤ 2‖A‖ 1

2

α
1
2 βB

‖g −BuR‖QΓ
′ , (34)

‖eλ‖QΓ
≤ 4‖A‖
κ‖A‖+ 2β2

B

‖g −BuR‖QΓ
′ . (35)

To conclude this section, we anticipate that we will use both (29) and (32)
to derive a priori estimates of the dimensionality reduction error with respect
to ε. However, we would like to warn the reader that the two results are not
equivalently suited for this purpose. The residual type estimates do not require
additional regularity to the functions on the right hand side. Conversely, the
approximation type estimates leverage on the additional regularity of λ, that
may not be guaranteed, to exploit optimal convergence with respect to N .

5. Weighted restriction and extension operators

Let γ ⊆ V be the lower dimensional representative domain for V (possibly
the union of disjoint connected components). We assume that both V and γ
are Lipschitz, and define a geometrical projection operator

Π : Γ := ∂V 7→ γ

Π−1 : γ 7→ P(Γ)
(36)

11



that maps uniquely each point on ∂V to one point on the lower dimensional γ.
In (36), we indicate with P(Γ) the power set of Γ (i.e., the set of all possible
subsets of Γ), and with Π−1 the preimage of Π. For s ∈ γ, we will also indicate
with |Π−1(s)| the intrinsic Hausdorff measure of the set Π−1(s). In particular
the Hausdorff measure dH(Π−1) is such that |Π−1(s)| :=

´
Π−1(s)

dH(Π−1) for

all s ∈ γ.
We observe that, in principle, for different points s ∈ γ, the set Π−1(s) could

have different intrinsic dimensionality (i.e., it could be a curve, a surface, or a
point). We will focus on the situation where the Hausdorff dimensionality of
Π−1(s) is the same for all s ∈ γ. To simplify the notation, we define

D(s) := Π−1(s), dD(s) := dH(Π−1(s)),

and we assume that |Π−1(s)| > 0 and that |Π−1(s)| is bounded for almost all
s ∈ γ, i.e.,

0 < Dm ≤ |D(s)| ≤ DM <∞ ∀s ∈ γ. (37)

When no confusion can arise, we will also omit from the notation the depen-
dence of the measure dD and of the set D on s.

Under the above assumptions, Fubini’s theorem implies that the integral of
any absolutely integrable function f over Γ can be decomposed as

ˆ
Γ

fdΓ =

ˆ
γ

ˆ
D

fdDdγ. (38)

The projection Π induces naturally, though Π−1, an average operator for
absolutely integrable functions f on Γ defined, for each s ∈ γ, as the average of
f over the preimage D(s):

(A0f)(s) :=
1

|D(s)|

ˆ
D(s)

fdD(s) =:

( 
D

fdD

)
(s), s ∈ γ. (39)

Remark 2 (Examples). Two notable examples of projection operators are those
induced by the extreme choices γ = x0 ∈ V (a single point) or γ ≡ Γ (the full
surface Γ). In the first case, all points on Γ are projected to a single point x0,
and Π−1(x0) ≡ Γ, leading to A0 being the classical average on Γ. In the second
case, instead, Π−1(s) = {s} for all s ∈ Γ, and the Hausdorff measure is the
Dirac measure associated with Γ at the point s ∈ Γ, i.e., A0f is simply the
pointwise evaluation of f .

A natural extension operator from γ to the whole surface Γ can be defined
through the projection operator Π, i.e.,

(E0w)(x) := (w ◦Π)(x), (40)

for any smooth w on γ. Clearly, the extension operator E0 is the right inverse
of the average A0:

A0E0w = w, ∀w ∈ C0(γ), (41)

12



since the function E0w associates to each set D(s) = Π−1(s) ⊆ Γ the constant
value w(s), whose average on D(s) coincides with w(s).

These operators can be generalized to their weighted counterparts by defining

(Eiw)(x) := ϕi(x)(w ◦Π)(x)

(Aif)(s) :=

 
D(s)

ϕifdD(s),
(42)

for a given choice of orthogonal weight functions ϕi ∈ H1(Γ)∩C0(Γ) such that
ϕ0 ≡ 1 (generating the definitions of A0 and E0 above) and such that

(AiEjw)(x) := ciδijw(x), ∀i, j ∈ [0, N), ∀w ∈ C0(γ), (43)

where δij is the Kronecker delta, and ci are positive numbers. We now work
out some sufficient conditions that allow one to extend the operators above to
the Sobolev spaces Hs(Γ) and Hs(γ), respectively, for s ∈ [−1, 1].

To simplify the exposition, we assume that V is a single, simply connected,
and non self-intersecting inclusion, and we assume that

Assumption 2 (Isomorphism of V̂ ). V can be written as the image of an
isomorphism

Φ: V̂ → V, (44)

where V̂ is a reference domain with unit measure. We assume, moreover, that
Φ satisfies the following hypotheses:

i) Φ ∈ C1(V̂ ), Φ−1 ∈ C1(V );

ii) 0 < Jm ≤ det(∇̂Φ(x̂)) ≤ JM <∞ ∀x̂ ∈ V̂ ;

iii) γ̂ is the pre-image of the m-th dimensional representative domain γ, i.e.,
γ̂ := Φ−1(γ), and we assume that γ̂ is a tensor product box containing the
origin, aligned with the the last axes of the coordinates x̂.

The last hypothesis indicates that γ̂ is a straight line directed along the xd-
axis for the cases where the dimension m of γ̂ is one, an axis aligned rectangle
in the x̂d × x̂d−1 plane for the cases where the dimension m of γ̂ is two, and so
on. Since γ̂ contains the origin, any point x̂ ∈ V̂ whose first d−m components
are zero belongs to γ̂. Moreover, the inclusion domain V̂ can be written as a
tensor product domain of the form D̂ × γ̂, and for each ŝ ∈ γ̂, D̂(ŝ) ≡ D̂ is
constant.

The tensor product structure of Γ̂ deriving from Assumption 2 allows one to
define a reference projection operator onto γ̂ by the orthogonal projection on

13



the last m axes in the reference coordinates x̂ using the iso-morphism Φ, i.e.:

Π̂ :V̂ 7→ γ̂

x̂ 7→
d∑

i=d−m+1

(êi ⊗ êi)x̂

Π :V 7→ γ

x 7→ Φ(Π̂(Φ−1(x))).

(45)

For the reference extension and average operators

Ê0ŵ := ŵ ◦ Π̂

Â0q̂ :=

 
D̂

q̂dD̂,
(46)

it is possible to show that there exist two positive constants ĈA0 and ĈE0 such
that

‖Ê0ŵ‖s,Γ̂ ≤ ĈE0 ‖ŵ‖s,γ̂ ∀ŵ ∈ Hs(γ̂)

‖Â0q̂‖s,γ̂ ≤ ĈA0 ‖q̂‖s,Γ̂ ∀q̂ ∈ Hs(Γ̂),
(47)

for s = 0 and s = 1, owing to the tensor product structure of V̂ . The result
follows from an argument similar to [25, Lemma 2.1 and Corollary 2.2].

Similarly, one could pick a set of N reference weight functions and derive
more general estimates for the corresponding weighted operators:

Lemma 2 (regularity of reference weighted operators). Given a set of

N reference weight functions {ϕ̂i}Ni=0 ∈ (C0(Γ̂) ∩ H1(Γ̂))N∗1, then the refer-
ence weighted operators

Êi : Hs(γ̂)→ Hs(Γ̂)

ŵ 7→ ϕ̂iŵ ◦ Π̂,

Âi : Hs(Γ̂)→ Hs(γ̂)

q̂ 7→
 
D̂

q̂ϕ̂idD̂,

(48)

are bounded and linear operators for any s ∈ [−1, 1], i.e., there exist constants

ĈÂi,s and Ĉ Êi,s such that:

‖Êiŵ‖s,Γ̂ ≤ Ĉ Êi,s‖ŵ‖s,γ̂ ∀i ∈ [0, N), ∀ŵ ∈ Hs(γ̂),

‖Âiq̂‖s,γ̂ ≤ ĈÂi,s‖q̂‖s,Γ̂ ∀i ∈ [0, N), ∀q̂ ∈ Hs(Γ̂).
(49)
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Proof: We begin by observing that, for a continous ŵ ∈ C0(γ̂), we have∥∥∥Êi (ŵ)
∥∥∥2

0,Γ̂
=

ˆ
Γ̂

(
ϕ̂i

(
ŵ ◦ Π̂

))2

dΓ̂

≤‖ϕ̂i‖20,Γ̂ ‖ŵ ◦ Π̂‖2
0,Γ̂

≤‖ϕ̂i‖20,Γ̂D̂
2‖ŵ‖20,γ ,

(50)

owing to the tensor product structure of Γ̂ = D̂ × γ̂.
Similarly, for w ∈ C1(γ̂), we have that

|Êiŵ|21,Γ̂ =

ˆ
Γ̂

(
∇̂Γ̂

(
ϕ̂iŵ ◦ Π̂

))2

dΓ̂

≤|ϕ̂i|21,Γ̂‖ŵ ◦ Π̂‖2
0,Γ̂

+ ‖ϕ̂i‖20,Γ̂|ŵ ◦ Π̂|2
1,Γ̂

≤|ϕ̂i|21,Γ̂|D̂|
2‖ŵ‖20,γ̂ + ‖ϕ̂i‖20,Γ̂|D̂|

2|ŵ|21,γ̂
≤C‖ϕ̂i‖21,Γ̂‖ŵ‖

2
1,γ̂ .

(51)

By a density argument, and interpolating the estimates above using the real
method, we obtain

‖Êiŵ‖s,Γ̂ ≤ Ĉ Êi,s‖ŵ‖s,γ̂ , ∀ŵ ∈ Hs(γ̂), s ∈ [0, 1], i ∈ [0, N), (52)

where the constants Ĉ Êi,s depend on i, ϕ̂i, and s. This implies that Êi is a

bounded operator from Hs(γ̂) to Hs(Γ̂) for all s ∈ [0, 1] and i ∈ [0, N).
We now observe that the following identity holds:

(ŵ, Âiq̂)γ̂ =

ˆ
γ̂

ŵϕ̂i

( 
D̂

q̂dD̂

)
dγ̂ =

ˆ
γ̂

ŵϕ̂i

(
1

|D̂|

ˆ
D̂

q̂dD̂

)
dγ̂

=

ˆ
Γ̂

Êi
(
ŵ

|D̂|

)
q̂dΓ̂ =

(
Êi
(
ŵ

|D̂|

)
, q̂

)
γ̂

, (53)

and we conclude that Âi can be identified with the transpose of Êi applied to
w/|D̂|, i.e., Âi is a bounded linear operator from H−s(Γ̂) to H−s(γ̂) for the
same s ∈ [0, 1] above by replacing the L2 scalar product in the identification
(53) with a duality pairing.

The proof for Âi in the case s = 1 follows a similar line:

|Âiq̂|21,γ̂ =

ˆ
γ̂

(
∇̂γ̂

 
D̂

ϕ̂iq̂dD̂

)2

dγ̂

≤
ˆ
γ̂

ˆ
D̂

(
∇̂Γ̂

(
1

|D̂|
ϕ̂iq̂

))2

dD̂dγ̂

≤C‖ϕ̂i‖21,Γ̂‖q̂‖
2
1,Γ̂

∀i ∈ [0, N), ∀q̂ ∈ H1(Γ̂).
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By a density argument, and interpolating the estimate for s = 0 and s = 1
using the real method, we conclude that Âi is a bounded linear operator from
Hs(Γ̂) to Hs(γ̂) for all s ∈ [0, 1] and i ∈ [0, N):

‖Âiq̂‖s,γ̂ ≤ CÂi,s‖q̂‖s,Γ̂, ∀q̂ ∈ Hs(Γ̂), s ∈ [0, 1], i ∈ [0, N), (54)

and again we use the identification (53) to conclude that Êi is therefore also

bounded and linear from H−s(γ̂) to H−s(Γ̂) for all s ∈ [0, 1] and i ∈ [0, N). �

Under Assumption 2, we can now consider the weighted operators Ai and
Ei arising from the projection operator induced by Φ, i.e., Π := Φ ◦ Π̂ ◦Φ−1 and

weighted by ϕi := ϕ̂i ◦ Φ−1. Notice that, for any q ∈ [0, 1] and for Â ⊆ V̂ and
A = Φ(A), we have that the following generalized scaling arguments hold:

‖w ◦ Φ‖q,Â ≤ |Φ|
q

1,∞,V̂ J
− 1

2
m ‖w‖q,A ∀w ∈ Hq(A),

‖w‖q,A ≤ |Φ−1|q1,∞,V J
1
2

M ‖w ◦ Φ‖q,Â ∀w ∈ Hq(A).
(55)

Such arguments are common in the literature of high order finite element
methods, see, for example, [22, Section 3.3], and can be obtained, for a non-
integer q in [0, 1], by interpolating the estimates for q = 0 and q = 1 using the
real method. By using the push forward of the reference basis ϕ̂i, we can now
ensure similar regularity properties also for Ai and Ei:
Theorem 3 (regularity of weighted operators). Given a set of N weight
functions {ϕi}Ni=0 ∈ (C0(Γ)∩H1(Γ))N+1 and provided that Assumption 2 holds,
then the weighted operators

Ai : Hs(Γ)→ Hs(γ)

w 7→
 
D

wϕidD,

Ei : Hs(γ)→ Hs(Γ)

f 7→ ϕif ◦Π,

(56)

are bounded and linear operators for any s ∈ [−1, 1], i.e., there exist constants
CAi,s and CEi,s such that:

‖Aiq‖s,γ ≤ CAi,s‖q‖s,Γ ∀i ∈ [0, N), ∀q ∈ Hs(Γ)

‖Eiw‖s,Γ ≤ CEi,s‖w‖s,γ ∀i ∈ [0, N), ∀w ∈ Hs(γ).
(57)

Proof: The proof follows from a combination of Lemma 2 and the general-
ized scaling arguments (59), where the resulting constants can be shown to be
bounded by

CEi,s ≤ Ĉ Êi,sJ
1
2

MJ
− 1

2
m |Φ|s1,∞,Γ̂|Φ

−1|s1,∞,Γ
CAi,s ≤ ĈÂi,sJ

1
2

MJ
− 1

2
m |Φ|s1,∞,Γ̂|Φ

−1|s1,∞,Γ.
(58)
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Under these rather general assumptions, and taking weight functions ϕi that
are orthogonal and such that the average and extension operators satisfy the
scaling property:

AiEjw = ciδijw, (59)

with ci positive constants, we can construct modal average and extension oper-
ators that group together the individual average and extension operators, i.e.,
we define

RT :Hs(γ)N+1 7→Hs(Γ)

w 7→
N∑
i=0

Eiwi,
(60)

and
P :Hs(Γ) 7→Hs(γ)N+1

q 7→{c−1
i Aiq}Ni=0,

(61)

with the property that P is a left inverse for RT by construction (PRT =
IHs(γ)N+1), and (RTP )2 = RTP is a projection operator from Hs(Γ) to Hs(Γ),
that only retains N modes of q ∈ Hs(Γ) (the projection of q onto the ϕi basis
on Γ). Let us consider the space WN

γ defined below, where the particular case
W0
γ coincides with Wγ ,

WN
γ := (H

1
2 (γ))N+1, ‖w‖2WN

γ
:=

N∑
i=0

‖wi‖21
2 ,γ
, (62)

then RT satisfies the inf-sup condition, i.e., Assumption 1:

Theorem 4 (Modal extension operator). Under the same assumptions of
Theorem 3, the extension operator RT :Wγ 7→ QΓ

′ defined in (60) satisfies the
infsup condition (13) for N ≥ 0, that is, there exists a positive constant βR such
that, for any w ∈ Wγ , we have

‖RTw‖QΓ
≥ βR‖w‖Wγ

. (63)

Proof: The operator RT posseses the left inverse P , defined in (61), which is
bounded and linear owing to Theorem 3 for s = −1/2. Existence of a bounded
left inverse of RT is equivalent to the inf-sup condition (63). �

6. The Fourier extension operator for 1D-3D coupling

As a concrete example of a general extension operator, we consider the case
where the domain V is isomorphic to a cylinder with unit measure through
the mapping Φ, and we set γ̂ to be the reference cylinder centerline, which we
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assume to be aligned with the axis ê3, i.e., γ̂ = {0} × {0} × [0, 1]. We denote

with (̂·) the functions and space coordinates on the reference domain V̂ , and we
define a projection to the centerline γ through Φ and the orthogonal projection
on the ê3-axis in the following way:

Π̂ :V̂ 7→ γ̂

x̂ 7→ (ê3 ⊗ ê3)x̂

Π :V 7→ γ

x 7→ Φ(Π̂(Φ−1(x))).

(64)

With this geometric structure in mind, we define a set of harmonic basis
functions that satisfy the assumptions of Lemma 2 by building them on the
reference domain V̂ , i.e., we set ϕ̂i to be such that

ϕ̂i(x̂) = ϕ̂i(x̂1, x̂2) (65)

where the functions ϕ̂i are harmonic, constant along the ê3 direction, and form
an orthogonal set of basis functions in L2(B̂), where B̂ is the unit ball in Rd−1

that represents the cross section of the unit cylinder V̂ .
We use Fourier modes and cylindrical harmonics to define ϕ̂0(x̂1, x̂2) = 1

and ϕ̂∗i (x̂1, x̂2), i.e., for 1 ≤ i ≤ n and ∗ = c, s, we set (in cylinder coordinates)

ϕ̂ci (ρ̂, θ̂) = ρ̂i cos(iθ̂), ϕ̂si (ρ̂, θ̂) = ρ̂i sin(iθ̂), (66)

where x̂1 = ρ̂ cos(θ̂), x̂2 = ρ̂ sin(θ̂). Then, with a little abuse of notation we
obtain the following weighted projectors,

Â0q̂ =

 
∂B̂

q̂d∂B̂, Â∗i q̂ =

 
∂B̂

q̂ϕ̂∗i d∂B̂, ∗ = c, s, ∀q̂ ∈ Hs(Γ̂) .

The definitions of these weighted average operators on the physical domain
follow similarly and will be used later on.

Using the Fourier modes up to the order n, the total number of modes
become N = 2n+1. We note that for n = N −1 = 0 the extension operator RT

extends a function w defined on γ on the entire domain V , in a constant way on
iso-surfaces of Φ at constant x̂3. Its left inverse operator P takes the average of
a function on sections of Γ and uses that value to construct a function on Wγ .
For n,N > 1, the passage from γ to Γ entails the projection of higher order
moments, using more than one degree of freedom on each cross section of the
cylinder.

6.1. An example: a 1D fiber embedded into a 3D domain

We consider a narrow fiber, V , embedded into the domain Ω. Assuming that
the fiber cross sectional radius, named ε, is small with respect to the character-
istic size of the whole domain (comparable to the unit value), we aim to analyze
how the dimensionality reduction error, namely eu = u − uR, eλ = λ − RTΛ,
scales with respect to the radius of the fiber.
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For simplicity, let us consider a rectilinear fiber V = {x ∈ R3 : x1 =
ρ cos θ, x2 = ρ sin θ, x3 = z, (ρ, θ, z) ∈ (0, ε) × [0, 2π] × (0, L)} isomorphic to

the unit cylinder V̂ through the transformation Φ : ρ = ερ̂, θ = θ̂, z = Lẑ.
It is straightforward to see that det(∇̂Φ(x̂)) = Jm = JM = εL and that
|Φ|1,∞,Γ̂ = εL, |Φ−1|1,∞,Γ = (εL)−1. We notice that in this case the constant

|Φ|−s
1,∞,Γ̂J

1
2
m|Φ−1|−s1,∞,ΓJ

− 1
2

M for s = 1/2 does not depend on ε and L.

In the previous sections, the dimensionality reduction error has been bounded
in two possible ways: in (29) on the basis of the residual obtained by project-
ing the boundary constraint on QRΓ ; in (32) using the approximation error of
QRΓ with respect to QΓ. In what follows we address both approaches for this
particular case.

6.1.1. Model error bound based on the residual

Adopting the first approach, we analyze how ‖g − BuR‖QΓ
′ scales with re-

spect to ε. Here we analyze the main mechanism that governs the decay of the
residual when the radius of the fiber shrinks. Let Ṽ ⊃ V be a fiber of radius
δ > ε and let be ∂B̃ ⊃ ∂B the cross sections of Ṽ and V respectively. As both
cylinders have constant cross sections, we omit to denote the axial coordinate
at which the cross section is evaluated. Let v ∈ H1

0 (Ω) be the weak solution

of −∆v = f in Ω with v = g on ∂Ω, with f ∈ L2(Ω), g ∈ H
1
2 (∂Ω). It is

known that ‖v‖1,Ω ≤ C
(
‖f‖0,Ω + ‖g‖ 1

2 ,∂Ω

)
. Let us finally set the technical

assumption supp(f) ∩ Ṽ = ∅, as a result of which v is harmonic on Ṽ and we
can represent v as follows,

v(ρ, θ, x3) = A0v+

∞∑
i=1

(ρ
δ

)i
[(Aciv)|∂B̃(x3) cos(iθ) + (Asiv)|∂B̃(x3) sin(iθ)] (67)

where (A∗i v)|∂B̃(x3) =
´
∂B̃

vϕ∗i (δ, θ)δdθ and ϕ∗i are defined in (66). We note
that the projector A∗i with ∗ = c, s is related to RTPv previously defined.
In particular, with the exception of constant scaling factors, RTPv coincides
with

∑N
i=0 E∗i A∗i on ∂B̃. Taking the same representation with respect to V and

comparing term by term, we obtain,

(A∗i v)|∂B(x3) =
( ε
δ

)i
(A∗i v)|∂B̃(x3).

Furthermore we have,

‖A∗i v|∂B̃‖0,γ ≤ ‖v‖0,∂Ṽ ≤ C‖v‖1,Ω ≤ C
(
‖f‖0,Ω + ‖g‖ 1

2 ,∂Ω

)
, (68)

with constants independent of ε and thus we conclude that for any 0 < ε < δ
we have

‖A∗i v|∂B‖0,γ ≤ C
( ε
δ

)i (
‖f‖0,Ω + ‖g‖ 1

2 ,∂Ω

)
. (69)

In the analysis, we neglect for simplicity the error arising for the projection
of the right hand side g. More precisely, we assume that g ∈ QRΓ , as a result
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A∗i g|∞i=n+1 = 0, ∗ = c, s. Owing to the second of (15) we obtain that A∗i (BuR−
g)|∞i=n+1 = A∗iBuR|∞i=n+1. Observing that QRΓ and QΓ

⊥ are orthogonal spaces,

and reminding that g ∈ QRΓ and (g − BuR) ∈ QΓ
⊥, we obtain that ‖g −

BuR‖QΓ
′ = ‖Bu⊥R‖QΓ

′ , where Bu⊥R is the projection of BuR onto QΓ
⊥.

The next step is to show that the coefficients of the Fourier expansion of
u⊥R|Γ satisfy the following property:

u⊥R|Γ =
∞∑

i=n+1

( ε
δ

)i
[(AciuR)|∂B̃(x3) cos(iθ) + (AsiuR)|∂B̃(x3) sin(iθ)], (70)

‖(AciuR)|∂B̃(x3)‖0,γ , ‖(AciuR)|∂B̃(x3)‖0,γ ≤ C
(
‖f‖0,Ω + ‖g‖ 1

2 ,∂Ω

)
, (71)

We first observe that uR ∈ H1
0 (Ω) is harmonic in V , then we have

u⊥R(ρ, θ, z) =

∞∑
n=n+1

ρi[Ai(x3) cos(iθ) +Bi(x3) sin(iθ)],

and it is also harmonic in the annulus Ṽ \ V such that

u⊥R(ρ, θ, z) =

∞∑
i=n+1

{[Ci(x3)ρi +Di(x3)(ρ−i)] cos(iθ)

+ [Ei(x3)ρi + Fi(x3)(ρ−i)] sin(iθ)}.

By applying the matching conditions on the jump of uR and its gradients across
Γ we obtain the following constraints on the coefficients Ai, Bi, Ci, Di, Ei, Fi:

Aiε
i = Ciε

i +Diε
−i = 0,

Biε
i = Eiε

i + Fiε
−i = 0

Aiε
i = Ciε

i −Diε
−i = 0,

Biε
i = Eiε

i − Fiε−i = 0,

which imply that Ai = Ci, Bi = Di, Di = Fi = 0 for i > n + 1. Now using
expression (67) we have that Ai = Ci = δ−i(AciuR)∂B̃ , Bi = Di = δ−i(AsiuR)∂B̃
and we can write uR on Ṽ as follows,

u⊥R(ρ, θ, z) =

∞∑
i=n+1

(ρ
δ

)i
[(AciuR)|∂B̃(x3) cos(iθ) + (AsiuR)|∂B̃(x3) sin(iθ)],

that proves (70) by taking ρ = ε. In addition, (71) follows from (68).
The final step is to estimate ‖Bu⊥R‖QΓ

′ using (70) and (71). Let us recall

that for any v ∈ H 1
2 (0, 2π) we have,

if v = A0v +

∞∑
i=1

∑
∗=c,s

A∗i v then ‖v‖21
2 ,(0,2π) = (A0)2 +

∞∑
i=1

∑
∗=c,s

(1 + i)(A∗i )2 .
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We proceed as follows,

‖Bu⊥R‖QΓ
′ ≤

[ ∞∑
i=n+1

(1 + i)
( ε
δ

)2i (
‖(AciuR)|∂B̃(x3)‖20,γ + ‖(AsiuR)|∂B̃(x3)‖20,γ

)] 1
2

≤ C
(
‖f‖0,Ω + ‖g‖ 1

2 ,∂Ω

)( ε
δ

)n+1
[ ∞∑
i=n+1

(1 + i)
( ε
δ

)2(i−n−1)
] 1

2

≤ C
(
‖f‖0,Ω + ‖g‖ 1

2 ,∂Ω

)( ε
δ

)n+1

.

In conclusion, if R represents the projection of QΓ on the first n cross-sectional
Fourier modes defined on a narrow cylinder Γ of radius ε, under the restrictive
assumption suppf ∩ Ṽ = ∅ for any Ṽ ⊃ V we have

‖eu‖VΩ
≤ C

( ε
δ

)n+1 ‖A‖ 1
2

α
1
2 βB

(
‖f‖0,Ω + ‖g‖ 1

2 ,∂Ω

)
,

‖eλ‖QΓ
≤ C

( ε
δ

)n+1 ‖A‖
(βB)2

(
‖f‖0,Ω + ‖g‖ 1

2 ,∂Ω

)
,

(72)

where the constants of (72) do not depend on ε.
A few remarks about the previous analysis are in order. First, we observe

that it does not require regularity assumptions other that the minimal regularity
ensured by the well posedness analysis of the full and reduced problems.

Second, it highlights that the dimensionality reduction error is affected by
the distance of V from the boundary of from any other forcing term, quantified
by means of the parameter δ. In other words, it shows that if δ decreases, then
the projection of higher modes is required to maintain a desired level of error.

Third, we notice that the results until section 5 are general with respect
to the shape of Γ, provided that some regularity assumptions are satisfied by
the mapping Φ. Conversely, the analysis presented here strongly depend on the
assumption that the inclusion V is a cylinder of circular section. For example,
on a generic section it would be no longer true that the projection on N Fourier
modes implies that

u⊥R(ρ, θ, z) =

∞∑
i=n+1

ρi[Ai(x3) cos(iθ) +Bi(x3) sin(iθ)].

6.1.2. Model error bound based on the approximation error

We now address the analysis based on inequalities (32). We observe that

inf
w∈WN

γ

‖λ−RTw‖QΓ ≤ ‖λ−RTPλ‖L2(Γ) , ∀λ ∈ L2(Γ) .

Using the scaling argument (55) with q = 0, we obtain

‖λ−RTPλ‖L2(Γ) ≤ J
1
2

M

∥∥∥∥∥λ̂−
(
Â0λ̂ϕ̂0 +

n∑
i=1

∑
∗=c,s

Â∗i λ̂ϕ̂∗i

)∥∥∥∥∥
L2(∂V̂ )

.
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We now apply the approximation properties of trigonometric polynomials, see
for example [11]. Precisely, for any 0 ≤ q, for any v̂ ∈ Hq(0, 2π) we have∥∥∥∥∥v̂(θ)−

[
Â0v̂(θ) +

n∑
i=1

(
Âci v̂ cos(iθ) + Âsi v̂ sin(iθ)

)]∥∥∥∥∥
L2(0,2π)

≤ Cn−q|v|Hq(0,2π) .

Then, assuming λ̂ ∈ Hq(∂V̂ ) and extending the previous classical error bound
on the whole ∂V̂ and we have,∥∥∥∥∥λ̂−

(
Â0λ̂(x̂3)ϕ̂0(ρ̂, θ̂) +

n∑
i=1

∑
∗=c,s

Â∗i λ̂(x̂3)ϕ̂∗i (ρ̂, θ̂)

)∥∥∥∥∥
L2(∂V̂ )

≤ Ĉn−q‖λ̂‖Hq(∂V̂ ) ,

where the constant Ĉ is clearly independent of ε. Then, using (55), we map
back the right hand side to the physical domain Γ,

‖λ̂‖Hq(∂V̂ ) ≤ |Φ|
q

1,∞,V̂ J
− 1

2
m ‖λ‖Hq(Γ) .

Provided that λ ∈ Hp(Γ), putting together the previous estimates and remind-

ing that the constant |Φ|q
1,∞,V̂ = O(εq), while J

1
2

MJ
− 1

2
m is independent of ε, we

obtain

‖λ−RTPλ‖QΓ
≤ C

( ε
n

)q
‖λ‖Hq(Γ) , (73)

where the constant C is independent of ε.
It is obvious that (73) describes a much faster convergence of the dimen-

sionality reduction error with ε → 0, n,N → ∞ than (72), provided that the
Lagrange multiplier is regular enough, namely λ ∈ Hp(Γ) with p > 1. In absence
of this additional regularity, we rely on (72).

7. Numerical approximation of the 1D-3D coupling

Let us consider the discrete counterpart of problem (16), discretized by
means of the finite element method. We develop the numerical discretiza-
tion in the particular case already addressed in section 6.1, namely V is a
rectilinear fiber V = {x ∈ R3 : x1 = ρ cos θ, x2 = ρ sin θ, x3, (ρ, θ, x3) ∈
(0, ε)× [0, 2π]× (0, L)}. The general case of a curvilinear fiber can be addressed
by discretizing it as a collection of piecewise linear segments, each treated sep-
arately as discussed in what follows. We note that in the discrete case using
the mapping Φ : V̂ 7→ V is impractical because it affects also the computa-
tional meshes. For this reason, in the discrete case we work only on the physical
domain.

Let Xk
h(Ω) ⊂ VΩ be the space of Lagrangian finite elements of polynomial

order k defined on a family of quasi-uniform meshes T Ω
h . Under the assumption

that γ is a straight line, for the discretization of the Lagrange multiplier space
we consider a family of one-dimensional partitions of γ and we define a finite

22



element space Xk
h(γ) ⊂ W0

γ of piecewise polynomials of order k defined on it.

Let N be the total numeber of modes, i.e.N = 2n+ 1, we introduce Xk,N
h (γ) =

(Xk
h(γ))N+1 ⊂ WN

γ . The discretization of problem (16) reads as follows: given

g ∈ QΓ
′ , find (uR,h,Λh) in Xk

h(Ω)×Xk,N
h (γ) such that

〈AuR,h, vh〉+ 〈BTRTΛh, vh〉 = 〈f, vh〉 ∀v ∈ Xk
h(Ω) ,

〈RBuR,h, wh〉 = 〈Rg,wh〉 ∀wh ∈ Xk,N
h (γ) .

(74)

Before proceeding, let us define as πkh(Ω) a stable and conforming interpo-
lation operator V 7→ Xk

h(Ω). For example, we choose the Scott-Zhang operator
[34]. Similarly, let πkh(γ) be the L2 projector W0

γ 7→ Xk
h(γ). With little abuse

of notation we will omit sometimes to denote the domain of application, if clear
from the context.

For the particular case of section 6, let be Xn = span{ϕ0(x), ϕ∗i (x)}ni=1 ∗ =
c, s, the space of basis functions on the cross section of V . We use the functions
ϕi to construct the average operator, P and extension operator RT according
to (61) and (60), respectively. In particular, we chose the basis functions as the
Fourier modes defined in (66).

The following Lemma shows that to obtain sufficient conditions for the sta-
bility of the method, we need conformity restrictions between the partitions of
Ω and γ, as well as between the polynomial order k and the number of modes
n. To formulate these restrictions, we introduce the domain Vh defined as the
collection of all the elements K ∈ T Ω

h that intersect V . Moreover, let Vε+h be
the cylinder of radius ε + h with centerline γ. According to the definition of h
we have V ⊂ Vh ⊂ Vε+h.

Lemma 3. If the basis functions of Xn are as in (66), if k ≥ n and if the
meshes of the 1D and the 3D domains are conforming, namely the faces of the
elements K ∈ T Ω

h ∩ Vh are co-planar with the normal plane to γ at the vertices
of T γh , then we have Xk

h(γ)×Xn ⊂ Xk
h(Vh).

Proof: Let us take the function v ∈ Xk
h(γ)×Xn such that

v = v0
h,c(x3) +

n∑
i=1

(
vch,i(x3)

(ρ
ε

)i
cos(iθ) + vsh,i(x3)

(ρ
ε

)i
sin(iθ)

)
where vh,0(x3), vch,i(x3), vsh,i(x3) ∈ Xk

h(γ).

We observe that the trigonometric polynomials
(
ρ
ε

)i
cos(iθ),

(
ρ
ε

)i
sin(iθ) for

1 ≤ i ≤ n, we can be written as polynomials of x1 and x2 of degree smaller than
or equal to i, where (x1, x2) satisfies (x1, x2) = (ρ cos(θ), ρ sin(θ)). This can be
achieved, for example, by using Chebyshev polynomials.

Then, owing to the assumption that the faces T Ω
h are co-planar with the

normal plane to γ at the vertices of T γh , we conclude that v is also a piecewise
polynomial function of order k conforming to any element K ∈ T Ω

h ∩Vh, namely
v ∈ Xk

h(Vh). �
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For the analysis of (74), we observe that the second equation can be equiv-
alently rewritten as 〈BuR,h, RTwh〉 = 〈g,RTwh〉. Then the stability of the
problem is related to the inf-sup condition stated in the following Lemma.

Lemma 4. Under assumptions of Lemma 3 there exists a constant

βn,εh = CβR

(
1 +

h

ε

)−n
,

where C > 0 is a constant independent of h, n, ε, such that for all wh ∈ Xk
h(γ),

sup
vh∈Xkh(Ω)

〈Bvh, RTwh〉
‖vh‖1,Ω

≥ βn,εh ‖wh‖− 1
2 ,γ

.

Proof: Let q ∈ QΓ
′ = H

1
2 (∂V ) be given. Let x3 be the axial coordinate along

γ. Let A0(x3) and Aci (x3), Asi (x3), for all i ≥ 1 be weighted the averaging
operators introduced before. Then, we consider vq ∈ H1

0 (Ω) such that inside
Vε+h it is given by,

vq = πkh(γ)A0q(x3)

+

n∑
i=1

(
πkh(γ)Aciq(x3)

(ρ
ε

)i
cos(iθ) + πkh(γ)Asi q(x3)

(ρ
ε

)i
sin(iθ)

)
(75)

and outside Vε+h, vq is defined as the harmonic lifting inH1
0 (Ω). Let us note that

vq ∈ Xk
h(γ)×Xn in the cylinder Vε+h. Then, owing to Lemma 3, vq ∈ Xk

h(Vh).
We now show the following properties of vq.

First, for any function w ∈ Xk
h(γ)×Xn,

w = wh,0(x3) +

n∑
i=1

(
wch,i(x3)

(ρ
ε

)i
cos(iθ) + wsh,i(x3)

(ρ
ε

)i
sin(iθ)

)
exploiting that the basis of Xn is orthonormal and that πkh(γ) is an orthogonal
projection, we obtain that

〈vq|∂V , w〉 =

ˆ
γ

[
πkhA0qwh,0 +

n∑
i=1

(
πkhAciqwch,i + πkhAsi qwsh,i

)]
dx3

=

ˆ
γ

[
A0qwh,0 +

n∑
i=1

(
Aciwch,i +Asi qwsh,i

)]
dx3 = 〈q, w〉 .

Second, equation (75) defines a a well posed lifting operator ∂Vε+h → Ω.
Thanks to the stability of such operator we obtain that the following inequality,
with a constant C independent of ε, n

‖vq‖1,Ω ≤ C‖vq‖ 1
2 ,∂Vε+h

.
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Moreover taking vq on ∂Vε+h we get,

vq = πkhA0q +

n∑
i=1

πkhAci
(

1 +
h

ε

)i
cos(iθ) + πkhAsi

(
1 +

h

ε

)i
sin(iθ) .

As a result we obtain,

‖vq‖ 1
2 ,∂Vε+h

≤ C
[
‖πkhA0q‖2L2(γ) +

n∑
i=1

(1 + i)

(
1 +

h

ε

)2i (
‖πkhAciq‖2L2(γ) + ‖πkhAsi q‖2L2(γ)

)] 1
2

≤ C
(

1 +
h

ε

)n [
‖πkhA0q‖2L2(γ) +

n∑
i=1

(1 + i)
(
‖πkhAciq‖2L2(γ) + ‖πkhAsi q‖2L2(γ)

)] 1
2

≤ C
(

1 +
h

ε

)n
‖q‖ 1

2 ,∂V
.

Combining the previous inequalities we get,

‖vq‖1,Ω ≤ C
(

1 +
h

ε

)n
‖q‖ 1

2 ,∂V
.

Finally, let us chose vqh = πkh(Ω)vq. Owing to the properties of πkh(Ω) we have
that vqh = vq in Vh and that ‖vqh‖1,Ω ≤ C‖vq‖1,Ω, where C is a positive constant
independent of ε, h, n. Exploiting the surjectivity of the mapping q 7→ vq 7→ vqh
we then obtain,

sup
vh∈Xkh(Ω)

〈vh, RTwh〉 = sup
q∈H 1

2 (∂V )

〈q,RTwh〉 .

Recalling that the operator RT is linear and bounding with constant βR, i.e.
(14), the previous inequalities directly imply that

sup
vh∈Xkh(Ω)

〈vh, RTwh〉
‖vh‖1,Ω

≥ C
(

1 +
h

ε

)−n
sup

q∈H 1
2 (∂V )

〈q,RTwh〉
‖q‖ 1

2 ,∂V

= C

(
1 +

h

ε

)−n
‖RTwh‖− 1

2 ,∂V
≥ CβR

(
1 +

h

ε

)−n
‖wh‖− 1

2 ,γ
.

�

Owing to the previous results and according to Theorem 5.2.2 of [5], we
obtain the following a-priori error estimates,

‖uR − uR,h‖VΩ
≤
(

2‖A‖
α

+
2‖A‖ 1

2 ‖RB‖
α

1
2 βn,εh

)
‖Eu,h‖VΩ

+
‖RB‖
α
‖EΛ,h‖WN

γ
,

‖Λ− Λh‖WN
γ
≤
(

2‖A‖ 3
2

α
1
2 βn,εh

+
‖A‖‖RB‖

(βn,εh )2

)
‖Eu,h‖VΩ

+
3‖A‖ 1

2 ‖RB‖
αβn,εh

‖EΛ,h‖WN
γ
,
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where ‖Eu,h‖VΩ ‖Eλ,h‖WN
γ

are the approximation errors of the selected finite
element spaces,

‖Eu,h‖VΩ := inf
vh∈Xkh(Ω)

‖u− vh‖VΩ , ‖EΛ,h‖WN
γ

:= inf
wh∈Xkh(γ)

‖Λ− wh‖WN
γ
.

We note that the approximation errors ‖Eu,h‖VΩ ‖Eλ,h‖WN
γ

may not scale op-
timally with respect to h because of the lack of global regularity of the solution
on Ω. Since the solution exhibits low regularity across the interface, strategies
to mitigate this drawback may include using conforming meshes to the interface
or graded meshes in the neighborhood of it.

We conclude this section with a synthesis of the previous analyses about
the modeling error and the approximation error. Putting together the error
estimates in ε,N and h and using the triangle inequality we obtain that there
exist positive constants Ci, i = 1, . . . , 6 independent of ε, n, h, such that

‖u− uR,h‖VΩ ≤ C1

( ε
δ

)n+1

+ C2

(
1 +

h

ε

)n
‖Eu,h‖VΩ + C3‖EΛ,h‖WN

γ
, (76)

‖λ− Λh‖QΓ ≤ C4

( ε
δ

)n+1

+ C5

(
1 +

h

ε

)2n

‖Eu,h‖VΩ

+ C6

(
1 +

h

ε

)n
‖EΛ,h‖WN

γ
. (77)

These results are particularly interesting because they highlight the interplay
between the modeling error and the approximation error and they provide guide-
lines to balance suitably these two error components of the proposed method.

8. Numerical examples

The main objective of this section is to illustrate by means of selected nu-
merical tests the interplay of the parameters h, n, ε, the mesh characteristic size,
the dimension of the Lagrange multiplier space and the size of the inclusion, re-
spectively, on the whole approximation error of the proposed approach, formally
represented in (76)-(77).

The provided examples have been implemented using the open source library
deal.II [2, 3, 33, 28]. In particular, we use bi- and tri-linear finite elements
for the approximation of the solution and of the Lagrange multiplier in the full
order method.

8.1. Two dimensional examples

h-convergence. We start by considering the cross section of a cylindrical vessel
embedded in a cubic domain, where Dirichlet boundary conditions are applied
on the boundary of the vessel, and some manufactured boundary conditions are
imposed on the boundary of the cube to recover a known manufactured solution.
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Figure 3: Example for the numerical solution with global refinements for problem (78) (left)
and with local refinements (right), using a single Fourier mode and r = 0.2.

The corresponding two dimensional setting we consider is that of a square
Ω = [−1, 1]2, with a circular inclusion V ≡ Bε(0), where ε is the radius of the
cross section.

In particular we impose boundary conditions so that the resulting solution
is harmonic in Ω \ Γ, i.e.,

−∆u = 0 in Ω \ Γ ≡ [−1, 1]2 \ ∂Bε(0),

u = − ln(x2 + y2)/2 on Γ ∪ ∂Ω,

λ =
1

ε
= [∇u] · n on Γ ≡ ∂Bε(0).

(78)

For this particular problem, the manufactured solution is a truncated fun-
damental solution, and it represents one of the simplest examples of solutions
around a circular inclusion (or a cylindrical one in three dimensions). The major
characteristic of this solution is that it is harmonic in the entire domain Ω \ Γ,
with a constant jump on the gradient on Γ which increases as the radius of the
inclusion decreases, and it has a constant value u = − ln(ε) on the boundary of
the inclusion.

Such characteristics make this one of the simplest manufactured solution
since both the solution u and the Lagrange multiplier λ are constant on Γ,
allowing one to test the exact solution of the problem when using just one
Fourier mode. Precisely, for this articular case the error on the right hand side
of (32) is null. For this reasons, this is the ideal case to test the h-convergence
of the method, addressed in Figure 4.

The error of the numerical solution with global refinements (left) and with
adaptive local refinements (right), using a single Fourier mode is shown in Fig-
ure 4. The error is computed in the L2 and H1 norms. In the global refinement
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Figure 4: Error of the numerical solution with global refinements (left) and with local refine-
ments (right), using a single Fourier mode for problem (78), when r = 0.2.

case, the orders of convergence are 1.5 for the L2 error, and 0.5 for the H1 error,
as expected from the global regularity of the solution, even though optimal error
estimates may be recovered by measuring the error with weighted norms [20].

The role of n,N . Adaptive finite element methods offer optimal error conver-
gence rates of 2 for the L2 error and 1 for the H1 error [13], providing an
excellent combination of accuracy and efficiency.

Although Figure 4 seems to suggest that the error of the numerical solution
is acceptable even with just one Fourier mode, one should carefully notice that
this is generally not the case in realistic scenarios. An example about the impor-
tance of the parameter n is given by the solution of the following manufactured
problem:

−∆u = 0 in Ω \ Γ ≡ [−1, 1]2 \ ∂Bε(0),

u = x
ε2

x2 + y2
on Γ ∪ ∂Ω,

λ =
x

ε
= [∇u] · n on Γ ≡ ∂Bε(0),

(79)

which has exact solution equal to u(x) = x inside the inclusion V , and u(x) =
xε2/(x2 + y2) outside of the inclusion (see Figure 5, right).

When using a Fourier extension with a single Fourier mode, the numerical
scheme fails to capture the solution (which has zero average on the boundary
of the vessel) (see Figure 5 left). At least two Fourier modes (three cylindrical
harmonics in total) are required to obtain an acceptable solution (see Figure 5
right).
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Figure 5: Example for a numerical solution where the dimensionality reduction error is sig-
nificant, using a single Fourier mode (left) and two fourier modes (right), for problem (79),
when r = 0.2.

This example is extremely relevant and illustrative for the applications of
this method. In fact, the solution reminds of a particle exposed to a shear
flow field. On one side the inclusion is subject to forces in one direction and
on the other side to the opposite direction. This test case clearly shows that
the approximation of the interface conditions with only one Fourier mode (i.e.
n = 0, N = 1) would not be sufficient to model the rotation of the particle. The
approximation based on three modes (n = 1, N = 3) would completely resolve
this issue.

ε-convergence. In Figure 6, where we replicate in spirit the example of prob-
lem (78) for two inclusions with different radii. We impose u = 1 on the bound-
ary of the inclusions, and u = 0 on the boundary of the domain Ω. This setting
reflects more closely what happens in realistic scenarios, where the boundary
conditions on the vessels are dictated by the solution of auxiliary problems
solved in dimension one, and extended (constantly) on Γ.

Recalling that the Lagrange multiplier represents here the jump of the gra-
dients at the interface, we see that while one Fourier mode (i.e. n = 0, N = 1)
would suffice to represent exactly the solution, it fails to capture the Lagrange
multiplier when the radius of the vessel is non-negligible, leading to a solution
where only the average is equal to the desired value on Γ. For this particular
case, a solution obtained with five Fourier modes (not shown here) is indis-
tinguishable from the full order solution (see Figure 6 top left). For smaller
inclusions (see Figure 6 center right and bottom right), the solution obtained
with a single Fourier mode is significantly closer to the full order solution.

The combined effect of h, n, ε. The interplay of the three parameters h, n, ε is
studied rigorously in Figure 7 and 8 for a single inclusion of variable size with
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Figure 6: two inclusions with constant boundary condition. Full Lagrange multiplier solution
(left) VS single Fourier mode solution (right), for decreasing inclusion radius r = 0.2 (top),
r = 0.1 (center), and r = 0.05 (bottom).
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a non trivial solution. In particular, we solve the following problem:

−∆u =0 in Ω \ Γ ≡ [−1, 1]2 \ ∂Bε(0),

u =2x3 − x2 − 6xy2 + x+ y2 + 1 on Γ ≡ ∂Bε(0),

u =
2ε6x

(
x2 − 3y2

)
(x2 + y2)

3 +
ε4
(
−x2 + y2

)
(x2 + y2)

2

+
ε2x

x2 + y2
+

log
(
x2 + y2

)
2 log (ε)

on ∂Ω,

(80)

where the expression of the boundary conditions on Γ and on ∂Ω coincide with
non trivial harmonic solutions of both the interior and the exterior problems.
We solve the problem for ε = {0.2, 0.1, 0.05, 0.025} with varying mesh size h =
2/(2i), for i = {6, 7, 8, 9, 10}, and we compare the L2 and H1 errors (with respect
to the available exact solution) in the solution obtained with a variable number
of Fourier modes N = 1, 3, 5, 7, 9, (n = 0, 1, 2, 3, 4). The results are shown in
Figures 7 and 8, where we (partially) confirm numerically the estimate presented
in the final error estimates (76)-(77).

In the top row of Figure 7, obtained for fixed h = 2/28 and variable ε ∈
[5 · 10−2, 0, 1], the numerical discretization error (proportional to h) dominates
over the dimensionality reduction error for any n > 0. Only for n = 0 we
observe the expected linear decay of the whole error with ε, in agreement with
(76). Conversely, the error plot for n = 4 is almost flat, confirming that the
dimensionality reduction error is negligible in this case, if compared to the
numerical approximation one.

The scenario of the bottom row of Figure 7, obtained using h = 2/212, is
more interesting. At least for the interval ε ∈ [0.1, 0.2] we see that there is a clear
decay of the whole error with ε, confirming that in this regime the dimensionality
reduction error is larger than the numerical approximation one. Interestingly,
and in agreement with (76)-(77), we see the effect of the parameter n in the
error decay rate. Precisely, the decay for n = 1 is larger than the one observed
with n = 0.

The analysis at different levels of refinement (i.e. h-convergence) is shown
in Figure 8. There, we highlight the transition between two main regimes. For
values of ε ∈ [0.1, 0.2] and n = 0, 1 the h-convergence of the scheme is heav-
ily polluted by the dimensionality reduction error, as predicted by the theory.
Conversely, for all radii and for n ≥ 3 the effect of the dimensionality reduction
error disappears, in fact we converge to the full-order solution (not shown here,
but indistinguishable up to the sixth digit of accuracy from the solutions with
n = 3 and n = 4). When the radius decreases, the number of modes that are
necessary to achieve the same accuracy decreases – as predicted – and in par-
ticular we observe that all error curves tend to overlap as ε→ 0 and all of them
exhibit the optimal h-convergence rate of the scheme.

Overall, these tests show that the proposed approach offers full control on
the dimensionality reduction error and numerical approximation error, allowing
us to optimally balance these two components in the different scenarios where
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the inclusion is fully resolved or not resolved by the computational mesh.

8.2. Three dimensional examples

In this section we present some numerical results for the Dirichlet prob-
lem (81) in three dimensions. We start with a qualitative test that mimics the
two inclusions problem presented in Figure 6. We set Ω ≡ [−1, 1]3, and choose
V composed of three non-aligned cylinders of varying radii r and height 0.5, as
shown in Figure 1 for r = 0.2:

−∆u =0 in Ω \ Γ ≡ [−1, 1]3 \ Γ,

u =1 on Γ,

u =0 on ∂Ω.

(81)

In this case we do not have access to the exact solution, however we can
provide a qualitative analysis of the numerical results by observing Figure 10.

When the background mesh resolution is sensibly smaller than the radius of
the inclusions, a single Fourier mode is not enough to capture the behavior of
the solution around the inclusion, showing a large area of the solution inside the
domain Ω where the density is sensibly larger than one, violating the maximum
principle that would dictate a maximum value of the solution equal to one.
However, when the mesh resolution is comparable with the inclusion radius, the
solution is well approximated even with a single Fourier mode.

A further confirmation of this fact is presented in Figure 11, showing the
numerical solution of a complex vascular tree with radius r = 0.01, with constant
Dirichlet value equal to one on the boundary of the vessels, approximated with
one Fourier mode (left) and three Fourier modes (right). In this case, the radii of
the vessels are comparable with the grid size, the solution is well approximated
even with a single Fourier mode, and the dimensionality reduction error is in
the same order of the finite element approximation error.

9. Conclusions

We addressed a Lagrange multiplier method to couple mixed-dimensional
problems, where the main difficulty is about the enforcement and approxima-
tion of boundary/interface constraints across dimensions. We tackled this issue
by means of a general approach, called the reduced Lagrange multiplier formu-
lation, where a suitable restriction operator is applied to the classical Lagrange
multiplier space. The mathematical properties of this formulation, precisely its
well posedness, stability and corresponding error with respect to the original
problem were thoroughly analyzed.

The fundamental ingredients for the reduced Lagrange multiplier formula-
tion are the restriction and extension operators, discussed in Section 5 in the
context of a general framework, and in Section 6 for the particular case of
cylindrical inclusions embedded in three-dimensional domains (named 1D-3D
coupling). This case is of particular interest for many applications, such as,
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fiber reinforced materials, microcirculation and perforated porous media. For
the specific case of 3D-1D mixed-dimensional problems we proposed a numer-
ical discretization based on finite elements and we analyzed the stability and
convergence of it.

This work illustrates that the discrete scheme, including the dimensional-
ity reduction and numerical approximation, is overall governed by three main
parameters, h, n, ε, the mesh characteristic size, the dimension of the Lagrange
multiplier space and the size of the inclusion, respectively. The proposed ap-
proach offers full control on the different error sources, allowing us to optimally
balance these components in the different scenarios where the inclusion is fully
resolved or not resolved by the computational mesh.
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Figure 7: L2 error (left column) and H1 error (right column) in the solution of problem (80)
for different values of the radius r and different number of Fourier modes N , in two different
refinements: # dofs = 66,049 (top) and # dofs = 1,050,625 (bottom).
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Figure 8: L2 error (left column) and H1 error (right column) with respect to the number
of degrees of freedom in the solution of problem (80) for different values of the radius r and
different number of Fourier modes N .
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Figure 9: Contour plot of the numerical solution of problem (80) for different values of the
radius r (r = 0.2 top, r = 0.1 center, and r = 0.05 bottom) and different number of Fourier
modes N (N = 1 left, N = 2 center, and N = 3 right).
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Figure 10: Numerical results for Problem (81) with one Fourier modes (left) and three Fourier
modes (right), for inclusion radius r = 0.2 (top), r = 0.1 (center), and r = 0.05 (bottom).
The plots show iso-surfaces with values u = 1 (red) and u = 0.5 (light grey) of the solution.
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Figure 11: Numerical results for a complex vascular tree with radius r = 0.01, with constant
Dirichlet value equal to one on the boundary of the vessels, approximated with one Fourier
mode (left) and three Fourier modes (right).
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