

MOX-Report No. 64/2022

A Deep Survival EWAS approach estimating risk profile based on pre-diagnostic DNA methylation: an application to Breast Cancer time to diagnosis

Massi, M.C., Dominoni, L., Ieva, F., Fiorito, G.

MOX, Dipartimento di Matematica Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it

http://mox.polimi.it

A Deep Survival EWAS approach estimating risk profile based on pre-diagnostic DNA methylation: an application to Breast Cancer time to diagnosis

Michela Carlotta Massi^{1,2}*, Lorenzo Dominoni¹, Francesca Ieva^{1,2,3}, Giovanni Fiorito⁴,

1 MOX Laboratory for Modeling and Scientific Computing, Dept. of Mathematics, Politecnico di Milano, Milan, Italy

 ${\bf 2}$ Center for Health Data Science, Human Technopole, Milan, Italy

3 Center for Healthcare Research and Pharmacoepidemiology, Bicocca University, Milan, Italy

4 Laboratory of Biostatistics, Dept. of Biomedical Sciences, University of Sassari, Sassari, Italy

 $\ ^* \ michela carlotta.massi@polimi.it$

Abstract

Previous studies for cancer biomarker discovery based on pre-diagnostic blood DNA methylation profiles, either ignore the explicit modeling of the time to diagnosis (TTD) as in a survival analysis setting, or provide inconsistent results. This lack of consistency is likely due to the limitations of standard EWAS approaches, that model the effect of DNAm at CpG sites on TTD independently. In this work, we argue that a global approach to estimate CpG sites effect profile is needed, and we claim that such approach should capture the complex (potentially non-linear) relationships interplaying between sites. To prove our concept, we develop a new Deep Learning-based approach assessing the relevance of individual CpG Islands (i.e., assigning a weight to each site) in determining TTD while modeling their combined effect in a survival analysis scenario. The algorithm combines a tailored sampling procedure with DNAm sites agglomeration, deep non-linear survival modeling and SHapley Additive exPlanations (SHAP) values estimation to aid robustness of the derived effects profile. The proposed approach deal with the common complexities arising from epidemiological studies, such as small sample size, noise, and low signal-to-noise ratio of blood-derived DNAm. We apply our approach to a prospective case-control study on breast cancer nested in the EPIC Italy cohort and we perform weighted gene-set enrichment analyses to demonstrate the biological meaningfulness of the obtained results. We compared the results of Deep Survival EWAS with those of a traditional EWAS approach, demonstrating that our method performs better than the standard approach in identifying biologically relevant pathways.

Author summary

Blood-derived DNAm profiles could be exploited as new biomarkers for cancer risk stratification and possibly, early detection. This is of particular interest since blood is a convenient tissue to assay for constitutional methylation and its collection is non-invasive. Exploiting pre-diagnostic blood DNAm data opens the further opportunity to investigate the association of DNAm at baseline on cancer risk, modeling the relationship between sites' methylation and the Time to Diagnosis. Previous studies mostly provide inconsistent results likely due to the limitations of standard EWAS approaches, that model the effect of DNAm at CpG sites on TTD independently. In this work we argue that an approach to estimate single CpG sites' effect while modeling their combined effect on the survival outcome is needed, and we claim that such approach should capture the complex (potentially non-linear) relationships interplaying between sites. We prove this concept by developing a novel approach to analyze a prospective case-control study on breast cancer nested in the EPIC Italy cohort. A weighted gene set enrichment analysis confirms that our approach outperforms standard EWAS in identifying biologically meaningful pathways.

Introduction

DNA methylation (DNAm) is a chemical modification that consists of the addition of a methyl group via a covalent bond to the cytosine ring of DNA, in correspondence of CpG sites (CpGs), and a large body of evidence has demonstrated that CpG islands hypermethylation is implicated in loss of expression of a variety of critical genes in cancer [1].

These alterations can be detected both in the target tissue (e.g., cancer biopsy vs tumor-free adjacent tissue) and in blood-derived DNA. DNAm dysregulation in target tissue are likely the effect of the disease rather than vice versa [2], whereas DNAm alterations in blood are commonly used as biomarkers of long-term exposure and insults to the DNA which includes variability related to genetic predisposition or individual response to risk factors. The above suggest the possibility to use blood-derived DNAm profiles as new biomarkers for cancer risk stratification and possibly, early detection. Investigating DNA methylation data from blood samples is of particular interest since it is a convenient tissue to assay for constitutional methylation and its collection is non-invasive. Moreover, exploiting pre-diagnostic blood DNAm data opens the opportunity to investigate the association of DNAm at baseline on cancer risk, modeling the relationship between sites' methylation and the Time to Diagnosis (TTD). That would indeed be desirable, as to improve the effectiveness of current screening procedures via the definition of novel effective and non-invasive biomarkers (e.g., via DNAm-based scoring methods) is a public health necessity.

10

11

12

13

14

15

16

17

18

19

20

21

In this work, we focus on the identification of blood DNAm profiles predictive of TTD, with the aim to improve the reliability/reproducibility of the results, as well as their biological meaningfulness. Indeed, previous studies based on pre-diagnostic blood DNAm, either ignore the explicit modeling of TTD as in a survival analysis setting, or mostly provide inconsistent results (e.g. [3] and references therein). This unsatisfactory outcome may be induced by the limitations of the most traditional approaches for the analysis of whole-genome DNAm data, i.e., Epigenome-Wide Association Studies (EWAS). Indeed, EWAS analyses traditionally comprise multiple independent tests of individual CpG sites or regions, seeking for significant associations by imposing p-value thresholds corrected for multiple comparisons.

The main limitations of this approach are: (i) the extremely high dimensionality of epigenome-wide DNAm data affects the reliability of multiple testing correction, driving p-value thresholds down to extremely low values, (ii) the strong correlation among methylated sites, that is usually not considered in statistical modelling, (iii) the presence of several (likely unmeasured) confounders, since DNAm profiles are influenced by environmental exposures and lifestyle behaviors [4]. Additionally, the context of pre-diagnostic blood DNAm carries further complexities due to the (iv) very low signal-to-noise ratio of differential methylation, as both cases and controls are healthy at the time of DNAm collection. Lastly, (v) these methods based on independent testing do not account for any of the complex and potentially non-linear interactions that might exist between CpG sites or the combined effect of multiple loci together on the phenotype. Indeed, findings from previous studies [5], suggest the need for an epigenome-wide approach, that assigns individual parameters while accounting for sites' combined effect on the phenotype. We refer to this set of parameters as an effects profile. Nonetheless, exploiting biostatistical approaches s.a. Cox Proportional Hazard (CoxPH) regression, to model survival outcomes and infer this effect profile including all CpG sites as predictors together, would lead to further methodological pitfalls. Firstly, modeling such a large number of covariates leads to effect size overestimation. Moreover, CoxPH models suffer the multi-collinear nature of CpG sites and are based on strong assumptions, such as the additive nature of covariates' effect on the outcome, unless including an even larger number of terms to account for interactions. These limitations and the complexities of DNAm data can be naturally handled by Machine Learning (ML) approaches, such as Neural Networks (NN) and Deep Learning (DL)-based methods. Indeed, NN are optimized to extract rich latent features from DNAm data, handling multi-collinearity, noise, and considering the complex non-linear interactions between very large amounts of input covariates [6]. Some recent works demonstrated the usefulness of AutoEncoders (AE), Variational AE (VAE) and DL models to obtain DL-based EWAS (henceforth, Deep EWAS) [7–9], especially when coupled with post-hoc Explanation Methods (EM) [6]. EM like SHapley Additive exPlanations (SHAP) [10,11] try to overcome the "black box" aspect of these complex models assigning a contribution score (i.e., an importance weight) to each input feature, based

24

25

26

27

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

on how much it contributed to the model prediction. In Deep EWAS, EMs are exploited to provide insightful information on how DNAm input determine the outcome, and the weights can be considered as an estimation of the aforesaid effects profile on the phenotype. Nonetheless, the highly parametrized deep models are prone to overfitting, unless they are presented with very large training samples, and a suboptimal training may result in unstable and unreliable explanations (i.e., importance weights). Indeed, to obtain effective explanations to derive meaningful conclusions from, both model's accuracy and importance weights stability should be maximized [12].

While ML and DL approaches to EWAS are gaining momentum, the task of modeling TTD with the objective of inferring robust Epigenome-Wide DNAm effects profiles in a survival setting has been largely unexplored and there has not been any application yet in the context of blood DNAm. Indeed, to the best of our knowledge, the existing Deep EWAS literature mainly focuses on classification settings (e.g., cancer type, cancer status, patients' clinical condition, etc.). The most prominent examples of this effort come from the works from Levy et al. [6], that, in its seminal work, proposes an effective Deep EWAS framework based on VAE-based encoding of DNAm data, followed by a prediction model explained through SHAP. Despite the flexibility of the algorithm, no effort has been devoted to tackle the specific facets of a time to event setting. Only one related study [8] deals with DNAm data and time of BC recurrence to filter significant latent features. Yousefi et al. [13] propose a general framework for genome-wide data, but their automatic hyperparameter optimization does not account for the stability of their back-propagation based explanations. Despite the lack of efforts in modeling blood-derived DNAm via modern ML-based techniques, we argue that the search for effective prognostic biomarkers from this type of data would instead benefit from a paradigm shift from standard EWAS approaches. Indeed, we believe that to achieve reliable and biologically meaningful results in the search for TTD biomarkers from blood-derived DNAm data, a global approach to estimate CpG sites effects profile is required. Furthermore, we claim that such approach should exploit the potential of DL-based methods to capture the complex and potentially non-linear relationships interplaying between sites, after a proper tailoring of the model to deal with time-to-event outcomes and the facets of real-life epidemiological studies.

In this work, we validate our hypothesis by analyzing blood based DNAm data from a prospective case-control study on Breast Cancer (BC) nested in the EPIC Italy cohort. 100 This cohort, that was previously analyzed in [3,5], presents all typical complexities of 101 pre-diagnostic DNAm studies, i.e., small sample size, risk of confounders effect due to 102 the long time from recruitment to cancer diagnosis, and the challenge of identifying 103 differentially methylated sites among individuals that are healthy at the time of blood 104 collection. 105

To tackle this data and prove our concept, we develop a new DL-based approach that assesses the relevance of individual CpG Islands in determining TTD while

66

67

68

69

71

72

73 74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97 98

99

106

modeling them all together in a survival analysis setting. The methodology is inspired by previous Deep EWAS approaches [6,8,14,15] and adapted for survival data, therefore we name it Deep Survival EWAS. Our Deep Survival EWAS models the complex relationships among CpG sites and between sites and TTD, and ultimately estimates the desired CpG Islands effects profile through SHAP, in terms of importance weights in determining the hazard rate.

In summary, the objectives and contributions of this study are multiple:

- We highlight the need of novel approaches to cancer TTD modeling from blood-derived DNAm. To derive meaningful and robust biological insights the proposed method overcomes the limitations of standard EWAS approaches and take into account the combined effect of DNAm sites on cancer onset.
- We present our original approach to the problem, i.e. Deep Survival EWAS. Besides its natural capability to model complex and potentially non-linear interactions among CpG Islands, the overall algorithm has several valuable methodological details meant to deal with the complexities arising from this crucial real-life biological research context, s.a. small samples, noise, and low signal-to-noise ratio of blood-derived DNAm.
- We validate the aforementioned hypothesis presenting the results of our Deep Survival EWAS in an in-depth analysis of a prospective case-control BC study nested in the EPIC Italy cohort. To demonstrate the biological meaningfulness of the obtained effect profile, we perform weighted gene-set enrichment analyses (GSEA), comparing the results of Deep Survival EWAS with those of a traditional EWAS approach. The GSEA results, indicate that our method performs better than the standard approaches both looking at the biological reliability and the statistical stability of genes and pathways identified.
- Finally, we confirm the value of a DL-based model accounting for predictors
 interactions comparing our method with a simpler Cox model with additive effects
 only.

Results

DNAm data preprocessing

In this study we exploit blood based DNAm data collected for a BC study nested in the ¹³⁹ EPIC Italy cohort. After data preprocessing, sample and probe filtering our primary ¹⁴⁰ dataset includes DNAm values for 13,499 CpG sites in 248 incident BC cases and ¹⁴¹ one-to-one matched controls. DNAm values are expressed as the ratio of methylated ¹⁴² cytosines over total cytosines (named from here on β values). DNAm β values for CpGs ¹⁴³ pertaining to the same CpG island (according to the UCSC annotation [16]) were ¹⁴⁴

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

137

grouped as described in Methods section, where we refer the reader to for an in-depth description of the data preparation pipeline (cf. EPIC Breast Cancer Data). The final dataset is composed of DNAm data for 3,807 CpG islands.

Overview of the Deep Survival EWAS approach

To enhance the extraction of relevant information from blood DNAm data, we defined our methodological approach, i.e. the Deep Survival EWAS algorithm, as a set of steps tailored to face the aforementioned facets of these complex dataset and research settings. In Fig 1, we represent the visual schema of the overall procedure.

In brief, as a first step, we subdivide the study population between cases (i.e., individuals diagnosed with cancer within the study follow-up) and controls (i.e., individual remained healthy until the end of follow-up). We begin with exploiting the population of cases, and we agglomerate CpG Islands through Hierarchical Feature Ranking based on Euclidean Distance of β -values. Once the clusters are defined, we aggregate cluster-specific β -values computing their mean. Through this step, we obtain a feature matrix $F_{cases} \in \mathbb{R}^{N \times J}$, where N is the number of cases and J is the number of feature clusters. Henceforth, these aggregated CpG Islands will be referred to as $features F_j$. We apply the same clustering structure to the CpG Islands of the controls' population to obtain $F_{controls} \in \mathbb{R}^{M \times J}$, where M is the number of controls.

Then, to make a robust and reliable estimation of the EWAS weights associated with 163 the input F_{cases} , we generate K random splits of the dataset into training and test set, 164 with 80/20 ratio and for each training-test split: (i) we model the complex non-linear 165 relationship between the input and TTD, by exploiting a deep survival feed-forward 166 neural network predictive of the log-risk function; (ii) we exploit Kernel Shap from 167 SHAP framework [10] to estimate weights $(w_i^{(k)})$ associated to each feature $f \in F$. 168 Notably, SHAP relies on the use of a "background dataset" to estimate the expected 169 model output and estimates individual feature's impact on prediction as their 170 contribution to the difference between the observed and the expected prediction (more 171 details in the following section). Therefore, choosing the right background data is 172 crucial to obtain contextually meaningful explanations. Indeed, to resemble the 173 differential estimation of DNAm effects in EWAS, we compute the importance of the 174 features in F_{cases} using $F_{controls}$ as reference for SHAP. 175

Deep Survival EWAS on the case-control study of Breast Cancer nested in the EPIC Dataset

We applied the just described Deep Survival EWAS to the BC sample from EPIC Italy, to infer an effect profile associated to the blood-derived DNAm CpG Islands in the dataset. As many ML or DL based algorithms, our approach comprises several building blocks that require specific choices in terms of hyperparameters and/or implementation details, that need to be optimized to provide a robust estimation of the desired effect profiles. Indeed, the better the underlying K models will perform in predicting the

148

153

154

155

156

157

158

159

160

161

Fig 1. Algorithm pipeline of the methodology applied in this study. (A) We started from the EPIC BC cohort, equally split between cases (i.e., patients enrolled healthy but diagnosed with BC within the study time frame) and matched controls (i.e. patients matching cases at baseline, that were not diagnosed with BC within the study time frame). (B) The first step is feature aggregation via hierarchical clustering, exploiting CpG Islands continuous β values of the population of cases to infer the J clusters of features. The same clustering structure is then applied to both cases and controls, grouping their CpG Islands accordingly. (C) The cases population is exploited to generate K independent and randomly split training and test sets, each of them with 80% patients in training set and 20% patients in the test set. (D) Each of the K splits goes through step D independently. In particular, the k-th training set is used to train a Deep Survival Model, that then is used to estimate SHAP weights profiles (w^k) on the k-th test set using the controls' population as background data. (E) After generating independently K sets of weights profiles, they are aggregated to obtain the final estimation of the effects profile for BC TTD.

survival outcome, the more meaningful the feature importance weights derived by 184 SHAP will be. Concurrently, a stable feature importance ranking suggests that the K 185 models trained on different data subsets are consistently capturing and exploiting the 186 information from a specific set of features to obtain such prediction. A satisfactory 187 performance on both aspects together translates in a trustworthy and effective effects 188 profile estimation [17]. Considering the above, we first needed to select the optimal 189 number of feature clusters (J) and identify the best Deep Survival model in terms of 190 architecture and hyperparameters. These two aspects were jointly optimized to 191 maximize the time to event prediction on the population of cases, averaged across 192 K = 10 random splits, and the robustness of the K derived effects profile. The 193 performance for the time to event prediction was measured with the Harrel's 194 Concordance Index (CI), while the robustness of profiles with the Kendall Tau Ranking 195 Stability (KT-stability). Further details on the best model selection and performance 196 metrics' definitions, including rationale for our choices, can be found in the Methods 197

Fig 2. Deep Survival EWAS estimated effects profile. On the left panel, the top 10 aggregated features with the highest associated \bar{w}_j value in the effects profile at Feature's level. On the right, sharing the same y-axis, the effects profile at CpG Island, where each methylated islands in the dataset is associated with the \bar{w}_j value of the feature they are clustered in.

Fig 3. Post-hoc analysis results. (A) Distribution of aggregated DNAm beta-values in the feature (F_{120}) associated with the highest impact in the estimated effect profile. Subjects are binned according to their TTD into four classes. (B) Kaplan-Meier curves of low DNAm (below 25th percentile of β -values distribution) and High DNAm (above 75th percentile) populations' in CpG Island 9:34518796-34619343. This island belongs to the cluster that is aggregated into feature F_{120} . The plot reports the Log-Rank test p-value for the difference between the two groups; the lower part of the plot reports the count of subjects in High DNAm and Low DNAm populations for CpG Island 9:34518796-34619343, according to TTD.

Section, whereas complete results are available in Supporting Information, S1 Table. ¹⁹⁸ The final results presented here, corresponding to the chosen best Deep Survival EWAS ¹⁹⁹ configuration, were obtained by grouping CpG Islands into J=128 clusters. The latter ²⁰⁰ were used as the input for the Deep Survival NN model with a J-dimensional input layer ²⁰¹ followed by three fully connected layers of 64, 32, and 16 nodes respectively. This model ²⁰² resulted in an average CI of 0.702 ± 0.019 and an average KT-Stability of 0.669 ± 0.036 . ²⁰³

In Fig 2, left panel, we show the features that correspond to the top 10 highest values 204 in the obtained effects profile on log risk prediction. As mentioned in the previous 205 section, these weights (\bar{w}_i) were derived as the average impact on log risk prediction of 206 each feature across the K = 10 random resamples. As for the background dataset, in 207 this case impact was measured w.r.t. the control group of all BC controls. We 208 performed some post-hoc analyses to showcase the tight relationship between the most 209 relevant features according to the estimated effects profile and TTD. In Fig 3, panel A, 210 we split the population of cases into time-to-event classes (i.e., early event [0 - 3.5y], 211 mid-early event [3.5y - 7y], mid-late event [7y - 10.5y] and late event [10.5 - 16y]) and 212 we plot the distribution of the aggregated β values of the most important feature (F_{120}). 213 The boxplot shows a decreasing trend of the feature value with increasing TTD. Note 214 that F_{120} groups 20 CpG Islands (cf. Table 1), meaning that higher methylation values 215 on those 20 sites are associated with earlier diagnosis (i.e., higher log risk). 216

CpG Island					
1:90945518-90945656					
1:158090642 - 158091676					
10:102493904-102494072					
10:119294070-119294143					
14:87862626-87863008					
16:85096322-85097146					
18:75811758-75814395					
19:1704275-1706659					
19:13070446-13070515					
2:100086548-100088317					
20:21438169-21438255					
20:21449303-21449404					
22:37180713-37182260					
4:149584089-149584799					
6:1570179-1570756					
6:43530362-43531683					
6:166137998-166138866					
8:21701267-21701566					
8:145119282-145120028					
9:34618796-34619343					

Table 1. CpG Islands in Feature 120. List of CpG Islands agglomerated in F_{120} , therefore assigned to the highest effect weight.

As a further validation, for each CpG Island pertaining to F_{120} , we extracted two 217 sub-population of cases: the hypermethylated population, composed of patients with β 218 value above the 75^{th} percentile for that CpG island, and the hypomethylated population, 219 composed of patients with values below the 25th percentile. Then, we compared the risk 220 profiles of the two groups via Kaplan-Meyer (KM) test. In Fig 3, panel B, we plot the 221 KM curve obtained and the log-rank test p-value for CpG Island 9:34518796-34619343, 222 as representative of the 20 islands in F120. Similar behavior and log-rank test results 223 was obtained for the other 19 islands in F120 (all KM curve plots for the CpG Islands in 224 F_{120} are reported in S1 File). As expected, modeling TTD of BC cases only, both KM 225 tend to 0 as t increases. However, it is clear from KM and test results how methylation 226 on those sites is associated with TTD for those patients. It is crucial to note that, 227 despite modeling cases TTD only, the inference of features' relevance exploits data form 228

Deep Survival EWAS Enrichment Analysis Results

Fig 4. Enrichment analysis results of Deep Survival EWAS on Breast Cancer Controls reference group. In blue are highlighted the significantly associated pathways, i.e. those with empirical p-value above 0.05 (red vertical line), estimated through 10,000 permutations.

the controls group used as the reference (i.e. background). In other words, CpG Islands 229 associated with higher weights by our Deep Survival EWAS approach are those with 230 higher influence on the difference of risk prediction (hazard rate) compared to an 231 expected model built with methylation profiles from the control group. Finally, the 232 right panel of Fig 2 represents the resulting effects profile in terms of CpG Islands, that 233 is the final goal of our Deep Survival EWAS. Specifically, to this end we associated each 234 site to the weight of the feature it was clustered in. The whole list of the ranked 235 features F, with the respective CpG Islands they cluster and the resulting effects profile 236 can be found in S2 Table (first sheet for BC controls' reference group). 237

Validation through Gene Set Enrichment Analysis

To validate the biological relevance of the identified effects profile, we performed a Gene239Set Enrichment Analyses (GSEA) using a Weighted Kolmogorov-Smirnov (WKS)240test [18] (cf. Methods). For each CpG site, the weight (input for the enrichment241

1 BC Matching Controls		2 All Controls		3 All Controls w. Cases	
Pathway	p-value	Pathway	p-value	Pathway	p-value
Pathways in cancer	<0.0001	Pathways in cancer	<0.0001	Pathways in cancer	<0.0001
Signaling pathways regulating pluripotency of stem cells	0.003	PI3K-Akt signaling pathway	0.002	PI3K-Akt signaling pathway	0.002
Gastric cancer	0.003	Signaling pathways regulating pluripotency of stem cells	0.002	Signaling pathways regulating pluripotency of stem cells	0.002
PI3K-Akt signaling pathway	0.004	Proteoglycans in cancer	0.003	Proteoglycans in cancer	0.003
Proteoglycans in cancer	0.004	Gastric cancer	0.004	Gastric cancer	0.004
Calcium signaling pathway	0.013	Breast cancer	0.008	Breast cancer	0.008
Mineral absorption	0.017	Human papillomavirus infection	0.014	Human papillomavirus infection	0.014
Human papillomavirus infection	0.018	Calcium signaling pathway	0.015	Calcium signaling pathway	0.015
Neuroactive ligand-receptor interaction	0.024	Mineral absorption	0.017	Mineral absorption	0.017
Breast cancer	0.036	Cytokine-cytokine receptor interaction	0.035	Cytokine-cytokine receptor interaction	0.035
cAMP signaling pathway	0.049	Epstein-Barr virus infection	0.037	Epstein-Barr virus infection	0.037
Epstein-Barr virus infection	0.051	cAMP signaling pathway	0.052	cAMP signaling pathway	0.052
Cytokine-cytokine receptor interaction	0.068	Neuroactive ligand-receptor interaction	0.052	Neuroactive ligand-receptor interaction	0.052
Intestinal immune network for IgA production	0.069	Intestinal immune network for IgA production	0.063	Intestinal immune network for IgA production	0.063
Transcriptional misregulation in cancer	0.092	Transcriptional misregulation in cancer	0.068	Transcriptional misregulation in cancer	0.068
Endocytosis	0.11	Ras signaling pathway	0.085	Ras signaling pathway	0.085
Ras signaling pathway	0.144	Endocytosis	0.119	Endocytosis	0.119
Renin secretion	0.158	Renin secretion	0.119	Renin secretion	0.119
Rap1 signaling pathway	0.159	Regulation of actin cytoskeleton	0.139	Regulation of actin cytoskeleton	0.139
Vascular smooth muscle contraction	0.193	Rap1 signaling pathway	0.162	Rap1 signaling pathway	0.162

Deep Survival EWAS Enrichment Analysis Results (additional reference groups)

Fig 5. Weighted enrichment analysis results from Deep Survival EWAS (additional reference groups). In blue are highlighted the pathways with significant association, i.e. empirical p-value based on 10,000 permutations.

analysis) is that of the feature F_i the CpG site belongs to. In Fig. 4 we present the 242 KEGG pathways enriched according to the WKS procedure. We found 12 pathways 243 with empirical p-value (1,000 permutations) lower than 0.05, being 'Pathways in Cancer' 244 the most significant (empirical p < 0.0001). Interestingly, all the identified pathways 245 were previously described as dysregulated in breast cancer, including 'Human Papilloma 246 virus infection' [19] and 'Epstein-bar virus infection' [20] in addition to well-known BC 247 related pathway like 'Breast Cancer', 'PI3K/Akt/mTOR signalling pathway', 'Calcium 248 Signaling pathway' and 'Mineral absorption' [21, 22], and some cancer generic pathways 249 like 'Signaling pathways regulating pluripotency of stem cells', 'Proteoglycans in cancer', 250 'Neuroactive ligand-receptor interaction', and 'Cytokine-cytokine receptor interaction'. 251 As mentioned, the inference of feature importance, and the derived effects profile, can 252 be influenced by the chosen *background*. Thus, different biological insights can be 253 gathered by tailoring the reference group to answer different research question. For this 254 study we wished to investigate both the robustness of the enrichment results changing 255 the background sample, and whether some additional biological associations could be 256 collected on EPIC BC case-control study estimating weights $\bar{\mathbf{w}}$ according to different 257 *background* control groups. Therefore, we created 3 additional reference groups to use as background: 258

- 'BC Matching Controls' was defined specifically for each of the K splits. In other words, for the k-th test set including 20% of BC cases, we defined the k-th BC Matching Controls group including only the matched controls of those cases. Therefore, we had K BC Matching Controls datasets (with potential subjects' overlap) to use as background data in estimating effect profiles.
- 'All Controls' sample included all female control subjects collected for breast, lung and colon cancer. It contained 556 healthy individuals supplied together as Background data.
- 'All Controls with Cases' included all subjects of the previous sample, with the addition of female cases diagnosed with lung or colon cancer during the EPIC follow up period.

To perform these additional analyses, we kept the same optimal configuration of Deep 271 Survival EWAS, supplying to SHAP applied to the survival NN different background 272 samples to estimate w_j for the 128 features. In Fig. 5, we report the results of the three 273 additional enrichment analyses. The full tables of enrichment analyses results for all 274 four reference groups can be found in Supporting Information S3 Table. 275

Deep Survival outperforms Standard EWAS in identifying biologically meaningful effects profiles

In this work we argue that a complex DL-based approach to estimate a global effects 278 profile on TTD from blood-based DNAm can provide better biological insights 279 compared to traditional approaches. Therefore, to prove our concept and investigate 280 whether taking into account the complex interrelationships among features and outcome 281 modeled with Deep Survival leads to more relevant discoveries than Standard EWAS, 282 we compared the enrichment analyses of the two approaches. In Fig. 6, we report the 283 results of the weighted GSEA for Standard EWAS, where weights were estimated 284 independently for each CpG Island as the test statistic of a univariate Cox Survival 285 Model. For consistency with our approach, we modeled each univariate CoxPH for the 286 cases population only. Detailed tabular results (i.e. p-values and test statistics) are 287 reported in Supporting Information S4 Table). The deriving estimated weights profile 288 (i.e. all CpG Islands p-values, with or without Bonferroni adjustment) are represented 289 in S1 Fig. Finally, Standard EWAS GSEA tabular results are reported in S5 Table. We 290 found eight pathways with empirical p-value lower than 0.05, being 'Non-small cell lung 291 cancer' the most significant. Among the identified pathways, two of them are related 292 with the immune system regulation 'Intestinal immune network for IgA production' and 293 'Chemokine signalling pathway'; two of them with inflammatory processes 'Leukocyte 294 transendothelial migration' and 'C-type lectin receptor signalling pathway', whereas 295 none of them have been previously described as BC specific. 296

265

266

267

268

269

270

276

Standard EWAS Enrichment Analysis Results

Fig 6. Weighted enrichment analysis results from Standard EWAS approach

The value of complex non-linear modeling of CpG sites interactions

So far, we validated our claim on the need for a global approach to blood-based DNAm. 299 In our Deep Survival EWAS, this global view is obtained by modeling complex and 300 potentially non-linear interactions between DNAm sites via a deep non-linear survival 301 NN. Nevertheless, a global approach can, by definition, be estimated with a simpler 302 model accounting for the effects of all CpG Islands together with additive contribution 303 on the phenotype only. An example of such a simpler model is a CoxPH model for TTD 304 with a multivariate input and no interaction terms. Therefore, to justify our choice of 305 including a more complex Survival NN model in our procedure, we tested a multivariate 306 epigenome-wide CoxPH model against the two metrics we deem relevant to evaluate the 307 reliability of the derived effects [12]: model prediction performance and robustness of 308 the estimated effects across the K subsamples, using the C-index and KT stability 309 metrics respectively. For consistency, we supplied as input to the CoxPH model the 310 CpG Islands aggregated in the same features exploited by our Deep Survival EWAS 311 approach. As detailed in the Methods Section, we tested the performance of the CoxPH 312 model for all feature aggregation (J) tested when optimizing our approach. To compute 313

297

CoxPH KT-stability, the weights rank was derived from the regression parameters (i.e., $_{314}$ the effect size) of the CoxPH model. Complete results are reported in S6 Table in $_{315}$ Supporting Information. For all values of J, our approach outperforms CoxPH on both metrics, especially for the CI (cf. S2 Fig and S3 Fig). $_{317}$

Discussion

In this work, we presented our approach to solve the complex task of determining the 319 effect of pre-diagnostic blood DNAm in prospective epidemiological studies. Specifically, 320 we focused on the time from recruitment to cancer diagnosis outcome, with the aim of 321 modeling the effect of DNAm CpG sites on the phenotype as in a survival (time to 322 event) analysis setting. To demonstrate the need of a paradigm shift from Standard 323 EWAS approaches (i.e. multiple independent tests) for the analysis of blood based 324 DNAm, we developed and applied a novel approach, Deep Survival EWAS, that 325 robustly estimates weights associated to each CpG Island by considering the combined 326 (global) effect of CpG islands and their complex interactions on the phenotype. To this 327 aim, we modeled the non-linear relationships and interplay between CpG sites and TTD 328 by first grouping them into aggregated features and then feeding them as input to a 329 non-linear deep survival NN, deriving the effects profile through SHAP. We validated 330 our claims analyzing pre-diagnostic blood-derived DNAm from a BC case-control study 331 nested in the EPIC Italy cohort. This is the first attempt to analyze a dataset from an 332 epidemiological prospective study trying to model explicitly the TTD using a DL 333 approach. Notably, BC research is one of the areas that could mostly benefit from a 334 proper modeling of TTD from blood based DNAm, as well as one that suffered the most 335 from inconclusive outcomes (e.g. [3] and references therein). This makes the case study 336 presented in this work an interesting yet challenging testing ground for our proof of 337 concept. 338

By estimating the desired global effects profile for BC TTD on EPIC DNAm data, we note that the CpG islands grouped in the most relevant features show a clear association of blood DNA methylation with the TTD, with higher methylation values associated with a higher risk of BC in the short term, as shown in the KM curves. Moreover, the overall biological meaningfulness of our procedure was confirmed by the results of a GSEA that identified pathways previously described as associated with cancer onset (with some BC-specific pathway). Instead, a GSEA analysis based on the results of a Standard EWAS (one association test for each CpG island) identified molecular pathways indirectly associated with cancer onset (via immune system dysregulation or inflammatory processes), whereas none of them was BC specific. This results suggest how a global model of methylation profile captures the relationship with the phenotype better than considering DNAm variables one-by-one.

Then, we compared the survival modeling and weights' reliability performances (i.e., ³⁵¹ CI and KT-stability) of our approach against a multidimensional CoxPH model, ³⁵² demonstrating that even after CpG islands aggregation into features clusters, a global ³⁵³

318

339

340

341

342

343

344

345

346

347

348

349

yet simpler additive effects-based model could not obtain comparable results, further supporting the need to account for non-linear interactions among DNAm predictors as well.

Besides the applied methodology is computationally more expensive than Standard 357 EWAS, or more parametrized and complex than a more traditional survival model, the 358 above results provide strong evidence about the advantages of using such an approach 359 in Epigenome-Wide prospective studies using blood DNAm data. Additionally, we 360 compared the results from GSEA by varying the reference group. This is the first time 361 this peculiarity of SHAP is exploited to gain more insights from a biological perspective, 362 comparing the biological function of the different weights associated to CpG Islands. 363 Specifically, we did not observe significant differences when including women who 364 developed other type of cancers (lung and colon) within the control group. These 365 results suggest our findings provide a specific DNAm signature of BC cancer risk rather 366 than a DNAm signature for all cancer risk. 367

Whilst we believe the most relevant highlight of this study lies in Deep Survival EWAS 369 achievement of an improved biological interpretability of blood-derived DNAm data on 370 TTD, the tailored choices we made in algorithm design deserve some attention as well. 371 First of all, we decided to focus on modeling TTD for BC cases only. This approach 372 resembles the case-only analysis performed through a standard EWAS approach in [23]. 373 From a methodological standpoint, it allowed to improve survival modeling accuracy. 374 increasing the reliability of the derived explanations [17]. Other methodological details 375 were included to account for all the complexities and peculiarities of both DNAm data 376 facets, and real-life research settings. In particular, clustering CpG Islands based on 377 similarity had the objective of reducing noise and dimensionality simultaneously. The 378 latter aspect reduces the effort in parametrizing the downstream survival model based 379 on NN, alleviating the risk of overfitting on very small sample size, and obtaining 380 suboptimal training results. Besides, this step had a biological justification in that 381 previous studies identified potentially non-contiguous genetically controlled methylation 382 clusters significantly associated to several diseases [24]. Furthermore, the rationale for 383 the metrics exploited in CpG Islands clustering (i.e. Euclidean Distance and mean) was 384 inspired by the results presented in Gagliardi et al. [5], where the association between 385 blood-based DNAm and the phenotype was modeled under the hypothesis that extreme 386 methylation values (i.e., epimutations) are significantly associated with the outcome. 387 The Euclidean Distance would first identify Islands with similar beta values distribution 388 across patients, while computing their mean (a metric that is sensitive to outlier values) 389 we wish to preserve the effect of extreme values. Likewise islands agglomeration, the K390 training-test split and subsequent aggregation of results, aims at alleviating the risk of 391 overfitting when the sample size is small, providing a final weight profile that 392 potentially generalizes better on unseen patients. Finally, NN optimal parametrization 393 is aided by pretraining and network regularization (see Methods). This care for 394 attaining a model with carefully estimated parameters is indeed extremely relevant for 395

354

355

356

the estimation of reliable weight profiles through SHAP. Notably, most of the aforementioned methodological cautions meant to tackle the real-life complexities of epidemiological studies and blood-based DNAm data, can be considered per se valuable algorithmic suggestions whose rationale apply to a broader systems biology research context. For instance, the risk of overfitting resonates with any analysis trying to model complex high-dimensional omic data (s.a., genomic, transcriptomic, metabolomic, gut microbiome, etc.) with ML or DL-based methods when sample size is small. To the best of our knowledge, closely related methods for DNAm data, irrespectively of the specific task, mostly test on large datasets from public biobanks. Similarly, the attentions devoted to the reliability of SHAP-derived explanations, or the peculiar use of the background data to answer precise research question, are relevant aspects that have been largely ignored.

Conclusion

In conclusion, the contributions of this work are twofold: on the one side, by presenting 409 the results of a case study in the context of BC research, we defend our claims and 410 highlight the need for a paradigm shift from Standard EWAS approach when modeling 411 blood-derived DNAm data in the search for effective TTD biomarkers; on the other, we 412 describe the methodology we applied to effectively achieve the desired effect profile, that 413 has per se several notable and transferrable points of attention. A limit of the present 414 study is the lack of external validation. However, the complex multi-step algorithm 415 based on highly parametrized models we applied here opens the way for future works, 416 that will investigate on what of these algorithms should be transferred as-is on new data 417 (e.g., feature clusters, model parameters, etc.) or retrained from scratch. Nevertheless, 418 the strength of the biological results obtained on the highly challenging case study 419 presented here, and the generalizable methodological cautions, make the present work a 420 relevant milestone in the advancement of blood-based DNAm studies and 421 epidemiological studies in general, whenever robust inference of global effect profiles on 422 a time to event outcome is needed. 423

Materials and Methods

Study sample description

The European Prospective Investigation into Cancer and Nutrition (EPIC) is a large 426 European study on diet and cancer and has been previously described elsewhere [25]. 427 The Italian component of EPIC (EPIC-IT) [26] recruited 47,749 adult volunteers (men 428 and women) at five centres. It is a prospective cohort study with blood samples 429 collected from healthy participants at recruitment. After recruitment, participants were 430 then observed for over 15 years for the insurgence of cancer, cardiovascular diseases and 431 all-cause mortality. At the end of the follow up, all breast, colon and lung cancer cases 432

396

397

398

399

400

401

402

403

404

405

406

407

408

424

with available blood sample suitable for epigenetic analyses were paired with an equal number of controls, individually matched on age (± 5 years), sex, season of blood collection, center, and length of follow-up.

A detailed description of data collection, DNA methylation measurements and pre-processing and sample filtering can be found in S1 Appendix.

In this work, we focused on the BC case-control study, composed of 248 BC cases and 439 an equal number of matching controls. Additionally, we exploited samples collected for 440 lung cancer (168 control subjects) and colon cancer (140 control subjects) to enlarge our 441 controls group exploited for effects profile weight estimation as described in section 442 Validation through Gene Set Enrichment Analysis. Each subject was described in terms 443 of CpG sites methylation scores, reported as β -values, i.e., the proportion of methylated 444 cells per site over the total. Therefore, each CpG site is a continuous value bounded 445 between 0 (no methylation) and 1 (complete methylation). After DNAm data 446 preprocessing, quality control and filtering, we had data for 313.324 CpG sites per 447 subject. In this work we focus on CpG sites corresponding to transcription factor 448 binding sites of EZH2 and SUZ12: two proteins pertaining to the Polycomb Repressive 449 Complex 2 (PRC2). This choice was motivated by previous evidence of the 450 accumulation of DNAm outliers values in these genomic regions, considering also 451 previously described association of the total number of DNAm outliers with BC risk [5]. 452 After filtering on EZH2 and SUZ12 CpG sites, we decided to perform an additional 453 pre-processing by grouping CpG sites into CpG Islands. CpG islands are regions of the 454 genome with a high proportion of CpG dinucleotide repeats in which DNAm is generally 455 conserved. To derive CpG islands β -values we aggregated all single sites falling in a 456 specific island by computing their mean. By doing that, we eventually obtained a 457 DNAm representation of 3,807 methylated islands for each subject, that was the input 458 dataset for the algorithm described below. 459

Ethics statement

This study was performed according to the principles of the Declaration of Helsinki; all EPIC Italy participants provided written informed consent; the Human Genetics Foundation (HuGeF) Ethics Committee approved the study as reported elsewhere [27].

Details of the proposed approach

The algorithm we crafted for Deep Survival EWAS on blood DNAm comprises several steps: (i) the Feature Agglomeration of CpG Island methylation profiles, (ii) the non-linear survival modeling of the aggregated features to model the complex relationship between the CpG Islands-derived features and BC TTD and (iii) the estimation of the relevance of each of those features in determining TTD (i.e. their importance in predicting survival risk). A schematic graphical representation of the vertex of the features flow is reported in Fig 1. In this section we will provide a more detailed 471

433

434

435

436

437 438

460

description of the applied algorithm with theoretical underpinnings when needed.

Feature agglomeration

The first step of our approach comprises a hierarchical feature clustering that is spatially independent. This technique is similar to a hierarchical agglomerative clustering procedure, but recursively merges features instead of samples.

Specifically, given the initial input data $\mathbf{X}^{(cases)} \in \mathbb{R}^{N \times Q}$, where N is the total number of cases and Q the total number of CpG Islands, to identify J clusters of CpG Islands we exploited the Euclidean Distance with Ward linkage. Then, we computed the representative value of the j-th agglomerated feature as

$$F_j^{(cases)} = \frac{1}{|C_j|} \sum_{q \in C_j} x_q$$

Where C_j is the *j*-th cluster and $x_q^{(cases)}$ is the *q*-th CpG Island, expressed as β -value bounded in [0,1], in the sample of cases. We exploit the same clustering structure (i.e., the same groups C_j of indexes *q*) to compute $F_j^{(controls)}$ from $\mathbf{X}^{(cases)} \in \mathbb{R}^{N \times Q}$. As mentioned, throughout this Chapter we refer to the aggregated CpG Islands as *features*.

Deep Non-Linear Survival Modeling

To model the relationship between the just defined input features and BC TTD we 482 exploit a Deep Survival NN, closely related to DeepSurv [28], to account for the 483 complex non-linear interactions determining the phenotype. In particular, our Deep 484 Survival model is a multi-layer feed-forward NN which predicts the effects of a patient's 485 covariates on their hazard rate parameterized by the weights of the network θ . The 486 input to the network for patient i is its baseline data in terms of DNAm features $(F^{(i)})$, 487 while the output $\hat{h}_{\theta}(F^{(i)})$ is a single node with a linear activation which estimates its 488 log-risk function. Let T be the times to disease and E the event indicator, the objective 489 function to optimize becomes: 490

$$\mathcal{L}(\theta) = -\sum_{i:E_i=1} \left(\widehat{h_{\theta}}\left(F^{(i)}\right) - \log \sum_{j \in \mathcal{R}(T_i)} e^{\widehat{h_{\theta}}\left(F^{(j)}\right)} \right)$$
(1)

where the risk set $\mathcal{R}(t) = \{i : T_i \ge t\}$ is the set of patients still at risk of disease at time t.

Deep Survival Model Architecture and Training

The architecture of the Survival NN was inspired by DeepSurv containing a set of consecutive fully connected layers of decreasing dimensionality (i.e., number of nodes), each followed by a batch normalization layer. The output layer is composed of one node only, that makes a linear combination of the nodes in the second-last layer to predict the log-risk function $\hat{h}_{\theta}(F)$. The number of layers and the number of nodes in each

481

493

472

473

474

475

layer were optimized as described in Section .

Among other choices to improve Deep Survival Model training and mitigate the risk of 501 suboptimal parametrization, we included an *unsupervised pre-training* step before 502 training our model to minimize the survival loss function. In particular, given a NN 503 model architecture from input to second-last layer (embedding layer) before the single 504 output node, hereby defined encoder, we initialized its parameters through 505 AutoEncoder (AE) Layer-wise pretraining. In this work, we exploit the concept of AEs 506 to identify an initial set of parameters for the Survival NN. To do that, we train 507 progressively deeper AEs: starting from the input dimensionality of the model (input 508 layer), we build an AE with the next layer as bottleneck and we train it to reconstruct 509 the input; then, we retain the parameters from input layer to first layer to build and 510 train the next AE from input to second layer of our Survival NN, and we progress until 511 we have included all available layers in the encoder as bottlenecks. 512

At the end of this process, the parameters of the encoder are retained as initialization for the Survival NN.

While pretraining is known to aid network regularization, the set of parameters from second-last to output node are initialized at random, therefore we foster their regularization adding a Drop-out layer in between. 517

CpG Islands effects profile estimation through SHAP

To estimate the effect of the CpG Island-derived features on the prediction of the log-risk function we exploit a post-hoc explanation method applied to the deep survival NN. Among the existing methods, SHapley Additive exPlanation (SHAP), by [10], an algorithm that aims at explaining the prediction of an instance by computing the contribution of each feature to the prediction. This contribution is estimated in terms of Shapley regression values, an additive feature attribution method inspired by the coalitional game theory [29]. In the original Shapley formulation, feature impact is defined as the change in the expected value of the model's output when a feature is observed versus unknown. Given a specific prediction f(x), we can compute the Shapley values $\varphi_i(f, x)$ using a weighted sum that represents the impact of each feature being added to the model averaged over all possible orders of features being introduced:

$$\varphi_i(f, x) = \sum_{S \subseteq S_{all \setminus i}} \frac{|S|! (M - |S| - 1)!}{M!} [f_x(S \cup \{i\}) - f_x(S)]$$

where S is a subset of all the features (S_{all}) used in the model, M is the number of features and $f_x(S)$ is the prediction for feature values in set S that are marginalized over features that are not included in that set. This computation is prohibitive, therefore SHAP's authors proposed several sampling-based alternatives to estimate these values. Among them, we chose KernelSHAP [10], that is model agnostic.

499 500

513

514

518

519

520

521

522

In KernelSHAP, "Missing features" in a sampled feature coalition are simulated by averaging the model's prediction over bootstrapped samples with values for these features sampled from the so called **background** dataset. This makes the estimation dependent on the choice of such reference, an aspect that we exploited to gather different biological insights by changing the BC cases composition of the background dataset supplied to the method (cf. Section).

In general, in our algorithm, to derive the importance weights that constitute the global effects profile, for each of the K splits, we trained the model on the training data and we computed SHAP values of test data w.r.t. the background control group. As SHAP values are computed locally for each observation, we estimate the features' impact $(w^{(k)})$ as the mean of the absolute value of local estimates.

Moreover, to reduce computational time of the nested sampling to estimate SHAP values, as suggested by the authors [11], we supplied to the algorithm the background data grouped into 20 centroids, i.e. a sample of 20 representative observations derived from the application of k-means algorithm (with k = 20) to the reference sample.

Performance measures

Time-to-event prediction performance

To evaluate the modeling performance of both our Deep Survival NN model and CoxPH we exploited the traditional Harrel's Concordance Index (CI) [30]. The Harrel CI is a measure of rank correlation between the models' predicted risk scores and the observed time points. It quantifies how well a model predicts the ordering of patients' diagnosis times. It can be computed by the following formula:

$$CI = \frac{\sum_{i,j} 1_{T_j < T_i} \cdot 1_{\eta_j > \eta_i} \cdot E_j}{\sum_{i,j} 1_{T_j < T_i} \cdot E_j}$$

where η_i is the risk score of unit *i*.

Weights profiles robustness

To estimate the robustness of the effects profile estimated across K iterations in our 544 Deep Survival EWAS, we exploited the metric developed in [17]. Specifically, for each 545 split k, with k = 1, ..., K, we get a different $w_i^{(k)}$ and we rank order features based on 546 these importance scores. To measure weights robustness we measure the dispersion of 547 these K SHAP-derived importance rankings $\mathbf{r}_1, \ldots, \mathbf{r}_K$. To do that, for each pair of 548 ranked vectors \mathbf{r}_i and \mathbf{r}_i we compute their dissimilarity as the **Kendall Tau Distance** 549 between two rank vectors [31]. This distance can be expressed as the minimum 550 number of bubble swaps needed to convert one rank vector to the other, divided by the 551 total number of pairs in the vector. Additionally, we impose a 1/j penalty on any 552 comparison involving the j-th rank as it is more relevant to identify the top predictors 553 of a model, rather than accurately rank all features. Finally, we truncate the rank 554

531

532

533

534

535

540

541

542

vectors after the top 10 ranks to reduce computation time. The mean of these $\binom{K}{2}$ pairwise distances represent the stability of our measurements, that we define **Kendall Tau Stability** (**KT-stability**).

Algorithm Design and Optimization

To optimize the design of the overall pipeline of the algorithm we needed to make 559 several architectural and hyperparameter choices. In particular, we had to optimize 560 jointly the dimensionality of the input to the Survival NN model (i.e. the number of 561 features clusters) and the architecture of the NN itself. To do that, we tested a set of 562 combinations and compared their performances on CI and KT-stability, with the 563 ultimate goal of achieving a reliable set of weights for the effects profile. In particular, 564 we defined a set of input dimensions $J \in [128, 256, 512, 1024]$, and for each of those 565 dimensions we tested two alternative NN architecture, reducing the number of nodes in 566 half at each subsequent layer down to a final embedding layer of either 16 or 32 nodes. 567 Therefore, in total, we tested 8 NN configurations. The dimensions of NN layers were 568 defined as mentioned in order to aid memory efficiency in model training, and to make 569 these modular architectures more comparable. In total, we tested 8 NN configurations, 570 as reported in S1 Table in Supporting Information. For pre-training, model parameters 571 were initialized randomly following the approach in Glorot et al. The MSE loss function 572 was optimized by mini-batch stochastic gradient descent with momentum with a 573 learning rate of 0.1 and a momentum parameter of 0.9, in accordance with the most 574 common hyperparameters definition for this optimizer. The mini-batch size was set to 575 32, counting for around 15% of the training set. We trained the model for 150 epochs. 576 After pre-training, the resulting parameters were exploited as initialization parameters 577 for the overall survival NN, fine-tuned through gradient descent of the previously 578 defined survival loss function, while the last layer was initialized randomly. The 579 optimization was performed with adaptive moment estimation, inspired by DeepSurv, 580 with a learning rate of 0.0001, a mini-batch size of 32 samples and a drop-out 581 probability of the last fully connected layer of 0.1. We fine-tuned the whole network for 582 150 epochs leaving all other hyperparameters to default. To identify the best 583 combination of input dimensionality and survival model, we first defined the 4 grouped 584 input datasets by varying J in feature agglomeration, then we run the entire pipeline 585 from NN pretraining to SHAP weights estimation (using all BC controls as background 586 data) repeated on 10 random data splits, comparing the average results (cf. S1 Table). 587 As an additional decision support resource, we compared the distributions of CpG 588 Islands grouped in each aggregated feature for the different K values (S4 Fig). As none 589 of the alternative showed significantly superior performances on the two metrics 590 together, we opted for the smaller model (i.e. 128 nodes in the input and 16 nodes in 591 the last fully connected layer before output) that granted comparable results to the 592 others with significantly less parameters to train. Moreover, the size distribution with 593 input granularity of 128 features (cf. S4 Fig) shows an average of features' size between 594

555

556

557

19 and 35 CpG Islands per feature, which seemed a balanced and reasonable clustering 595 considering the input of almost 4,000 Islands. 596

Supporting information

S1 Appendix. Detailed Data Description. Supporting information on cohort description and DNA methylation data extraction and preprocessing.

Optimization Results Performance in terms of Kendall-Tau Stability S1 Table. 600 (robustness) and Harrell C-Index (survival prediction performance) for all the Deep 601 Survival Network architecture trained in optimization. Performance is averaged across K 602 splits; 95% confidence intervals are reported in parentheses. In the first column (Input) 603 the input shape (J), referring to the granularity of the CpG Island agglomeration. In 604 the second column (Latent) the dimensionality of the Survival NN layer before output. 605 In the second column (Architecture), the list of layers with respective number of nodes, 606 up until before output layer (one single output node for all architectures). 607

S2 Table. Deep Survival EWAS Effects profile estimation w.r.t. reference 608 groups. Estimated CpG islands effects profiles. Each sheet in the file contains the 609 results for one reference group (respectively: (1) BC controls, (2) Matching Controls, (3) 610 All controls, (4) All controls with cases). The first column reports the CpG Island name, 611 the second reports the Feature they are agglomerated into. Third column reports the 612 effect weight (w), while last column reports the ranking of the feature in terms of 613 importance (i.e. ordered by descending magnitude of effect weight associated to the 614 feature). 615

S1 File. Kaplan-Meyer Plots of F_{120} CpG Islands.

S3 Table. Deep Survival EWAS Gene Set Enrichment Analyses Results. Deep Survival EWAS GSEA results for all four reference groups. Each sheet in the file contains the results for one reference group (respectively: (a) BC controls, (b) Matching Controls, (c) All controls, (d) All controls with cases). The first column reports the KEGG pathway, followed by pathway code and empirical p-value (last column).

S4 Table. Standard EWAS association results. Results of independent modeling of CpG Islands w.r.t. TTD. The table reports p-values and test statistics obtained by modeling one univariate CoxPH for each island.

S5 Table. Standard EWAS Gene Set Enrichment Analysis results. Results of wighted GSEA for Standard EWAS approach, where weights were determined by the test statistics in the univariate CoxPH performed independently for each CpG Island. The first column reports the KEGG pathway, followed by pathway code and empirical p-value (last column). 629

597

598

599

S1 Fig. Standard EWAS weights profile. Weights profile for Standard EWAS ⁶³⁰ approach, where each CpG Island is associated with the p-value of the test statistic in ⁶³¹ an independent CoxPH model. Panel A reports the p-values without Bonferroni ⁶³² adjustment, panel B reports the same p-values after Bonferroni adjustment. The red ⁶³³ line denotes the p-value threshold of 0.05. ⁶³⁴

S6 Table. Multivariate Cox Proportional Hazards results. Performance in terms of Kendall-Tau Stability (robustness) and Harrell C-Index (survival prediction performance) for all Multivariate CoxPH models with different input dimensions. Performance is averaged across K splits; 95% confidence intervals are reported in parentheses. In the first column (Input) the input shape (J), referring to the granularity of the CpG Island agglomeration.

S2 Fig. Predictive Performance comparison. Predictive Performance (Harrel CI) 641 of all the tested Deep Survival NN architectures (blue) and all multivariate CoxPH 642 models fitted. The values in parenthesis for Deep Survival NNs represent the number of 643 input nodes (i.e. the granularity of features' clusters) and the number of nodes in the 644 last layer before the output. Whereas the parenthesis for CoxPH models report the 645 granularity of the input features' clusters. Dots represent the average performance 646 value, while bands report the confidence intervals around the mean computed on the 647 K=10 splits. 648

Weights stability comparison. Importance weights stability performance S3 Fig. 649 (KT-stability) of all the tested Deep Survival NN architectures (blue) and all 650 multivariate CoxPH models fitted. The values in parenthesis for Deep Survival NNs 651 represent the number of input nodes (i.e. the granularity of features' clusters) and the 652 number of nodes in the last layer before the output. Whereas the parenthesis for 653 CoxPH models report the granularity of the input features' clusters. Dots represent the 654 average performance value, while bands report the confidence intervals around the mean 655 computed on the K=10 splits. 656

S4 Fig. Features' dimension distributions for varying J. Distribution of dimensions of the features for each input granularity J (i.e. 128, 256, 512, 1024), in terms of number of CpG Island they group.

Acknowledgments

We thank the EPIC Italy research group (Carlotta Sacerdote, Vittorio Krogh, Domenico Palli, Salvatore Panico, Rosario Tumino, Paolo Vineis and their collaborators) for giving us access to the data of the BC study nested in the cohort.

Funding

664

667

Giovanni Fiorito is funded by the Programma Operativo Nazionale (PON), Ricerca e Innovazione 2014-2020, Attrazione e Mobilità Internazionale (AIM) code AIM1874325-2

Data Availability

DNAm data used in this study are available at the GEO repository under the accession number GSE51032.

References

- Yang X, Yan L, Davidson NE. DNA methylation in breast cancer. Endocrine-related cancer. 2001;8(2):115–127.
- Das PM, Singal R. DNA methylation and cancer. Journal of clinical oncology. 2004;22(22):4632–4642.
- Bodelon C, Ambatipudi S, Dugué PA, Johansson A, Sampson JN, Hicks B, et al. Blood DNA methylation and breast cancer risk: a meta-analysis of four prospective cohort studies. Breast Cancer Research. 2019;21(1):1–9.
- Hüls A, Czamara D. Methodological challenges in constructing DNA methylation risk scores. Epigenetics. 2020;15(1-2):1–11.
- Gagliardi A, Dugué PA, Nøst TH, Southey MC, Buchanan DD, Schmidt DF, et al. Stochastic epigenetic mutations are associated with risk of breast cancer, lung cancer, and mature b-cell neoplasms. Cancer Epidemiology and Prevention Biomarkers. 2020;29(10):2026–2037.
- Levy JJ, Titus AJ, Petersen CL, Chen Y, Salas LA, Christensen BC. MethylNet: an automated and modular deep learning approach for DNA methylation analysis. BMC bioinformatics. 2020;21(1):1–15.
- 7. Zheng C, Xu R. Predicting cancer origins with a DNA methylation-based deep neural network model. PloS one. 2020;15(5):e0226461.
- Macías-García L, Martínez-Ballesteros M, Luna-Romera JM, García-Heredia JM, García-Gutiérrez J, Riquelme-Santos JC. Autoencoded DNA methylation data to predict breast cancer recurrence: Machine learning models and gene-weight significance. Artificial Intelligence in Medicine. 2020;110:101976.
- Liu B, Liu Y, Pan X, Li M, Yang S, Li SC. DNA methylation markers for pan-cancer prediction by deep learning. Genes. 2019;10(10):778.

- Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems; 2017. p. 4768–4777.
- Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local explanations to global understanding with explainable AI for trees. Nature machine intelligence. 2020;2(1):56–67.
- Liu H, Wu X, Zhang S. Feature selection using hierarchical feature clustering. In: Proceedings of the 20th ACM international conference on Information and knowledge management; 2011. p. 979–984.
- Yousefi-Azar M, Varadharajan V, Hamey L, Tupakula U. Autoencoder-based feature learning for cyber security applications. In: 2017 International joint conference on neural networks (IJCNN). IEEE; 2017. p. 3854–3861.
- Levy JJ, Chen Y, Azizgolshani N, Petersen CL, Titus AJ, Moen EL, et al. MethylSPWNet and MethylCapsNet: Biologically Motivated Organization of DNAm Neural Network, Inspired by Capsule Networks. bioRxiv. 2021; p. 2020–08.
- 15. Mallik S, Seth S, Bhadra T, Zhao Z. A linear regression and deep learning approach for detecting reliable genetic alterations in cancer using dna methylation and gene expression data. Genes. 2020;11(8):931.
- Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome research. 2002;12(6):996–1006.
- 17. Liu B, Udell M. Impact of Accuracy on Model Interpretations. arXiv preprint arXiv:201109903. 2020;.
- Charmpi K, Ycart B. Weighted Kolmogorov Smirnov testing: an alternative for gene set enrichment analysis. Statistical applications in genetics and molecular biology. 2015;14(3):279–293.
- Khodabandehlou N, Mostafaei S, Etemadi A, Ghasemi A, Payandeh M, Hadifar S, et al. Human papilloma virus and breast cancer: the role of inflammation and viral expressed proteins. BMC cancer. 2019;19(1):1–11.
- Su J, Yan D, Wu S, et al. Epstein-Barr virus infection and increased sporadic breast carcinoma risk: a meta-analysis. Medical Principles and Practice. 2020;29(2):195–200.
- Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, García-Honduvilla N, Coca S. Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR. Journal of oncology. 2020;2020.

- Azimi I, Roberts-Thomson S, Monteith G. Calcium influx pathways in breast cancer: opportunities for pharmacological intervention. British journal of pharmacology. 2014;171(4):945–960.
- Xu Z, Sandler DP, Taylor JA. Blood DNA methylation and breast cancer: a prospective case-cohort analysis in the sister study. JNCI: Journal of the National Cancer Institute. 2020;112(1):87–94.
- 24. Liu Y, Li X, Aryee MJ, Ekström TJ, Padyukov L, Klareskog L, et al. GeMes, Clusters of DNA Methylation under Genetic Control, Can Inform Genetic and Epigenetic Analysis of Disease. The American Journal of Human Genetics. 2014;94(4):485–495. doi:https://doi.org/10.1016/j.ajhg.2014.02.011.
- 25. Gonzalez CA. The European prospective investigation into cancer and nutrition (EPIC). Public health nutrition. 2006;9(1a):124–126.
- 26. Palli D, Berrino F, Vineis P, Tumino R, Panico S, Masala G, et al. A molecular epidemiology project on diet and cancer: the EPIC-Italy Prospective Study. Design and baseline characteristics of participants. Tumori Journal. 2003;89(6):586–593.
- 27. Fiorito G, McCrory C, Robinson O, Carmeli C, Rosales CO, Zhang Y, et al. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging (Albany NY). 2019;11(7):2045.
- Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC medical research methodology. 2018;18(1):1–12.
- 29. Shapley LS. A value for *n*-person games. In: Contributions to the Theory of Games. vol. 2. Princeton University Press; 1953. p. 307–317.
- Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. Jama. 1982;247(18):2543–2546.
- Kumar R, Vassilvitskii S. Generalized distances between rankings. In: Proceedings of the 19th international conference on World wide web; 2010. p. 571–580.

MOX Technical Reports, last issues

Dipartimento di Matematica Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

- 63/2022 Corti, M.; Antonietti, P.F.; Dede', L.; Quarteroni, A. Numerical Modelling of the Brain Poromechanics by High-Order Discontinuous Galerkin Methods
- 61/2022 Gregorio, C.; Cappelletto, C.; Romani, S.; Stolfo, D.; Merlo, M.; Barbati, G. Using marginal structural joint models to estimate the effect of a time-varying treatment on recurrent events and survival: An application on arrhythmogenic cardiomyopathy
- 62/2022 Ciaramella, G.; Halpern, L.; Mechelli, L. Convergence analysis and optimization of a Robin Schwarz waveform relaxation method for periodic parabolic optimal control problems
- **59/2022** Boon, W. M.; Fumagalli, A. *A multipoint vorticity mixed finite element method for incompressible Stokes flow*
- 60/2022 Cortellessa, D.; Ferro, N.; Perotto, S.; Micheletti, S. Enhancing level set-based topology optimization with anisotropic graded meshes
- **58/2022** Zingaro, A.; Bucelli, M.; Fumagalli, I.; Dede', L; Quarteroni, A. Modeling isovolumetric phases in cardiac flows by an Augmented Resistive Immersed Implicit Surface Method
- **57/2022** Ruffino, L.; Santoro, A.; Sparvieri, S.; Regazzoni, F.; Adebo, D.A.; Quarteroni, A.; Vergara, C *Computational analysis of cardiovascular effects of COVID- 19 infection in children*
- **55/2022** Cavinato, L.; Pegoraro, M.; Ragni, A.; Ieva, F. *Imaging-based representation and stratification of intra-tumor Heterogeneity via tree-edit distance*
- **54/2022** Bucelli, M.; Zingaro, A.; Africa, P. C.; Fumagalli, I.; Dede', L.; Quarteroni, A. *A mathematical model that integrates cardiac electrophysiology, mechanics and fluid dynamics: application to the human left heart*

56/2022 Africa, P.C.

lifex: a flexible, high performance library for the numerical solution of complex finite element problems