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Abstract

In this work, we derive a novel thermomechanical theory for growth and remodeling of

biological materials in morphogenetic processes. This second gradient hyperelastic theory

is the first attempt to describe both volumetric growth and mass transport phenomena in

a single-phase continuum model, where both stress- and shape-dependent growth regula-

tions can be investigated. The diffusion of biochemical species (e.g. morphogens, growth

factors, migration signals) inside the material is driven by configurational forces, enforced

in the balance equations and in the set of constitutive relations. Mass transport is found

to depend both on first- and on second-order material connections, possibly withstanding a

chemotactic behavior with respect to diffusing molecules. We find that the driving forces of

mass diffusion can be written in terms of covariant material derivatives reflecting, in a purely

geometrical manner, the presence of a (first-order) torsion and a (second-order) curvature.

Thermodynamical arguments show that the Eshelby stress and hyperstress tensors drive the
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rearrangement of the first- and second-order material inhomogeneities, respectively. In par-

ticular, an evolution law is proposed for the first-order transplant, extending a well-known

result for inelastic materials. Moreover, we define the first stress-driven evolution law of the

second-order transplant in function of the completely material Eshelby hyperstress.

The theory is applied to two biomechanical examples, showing how an Eshelbian coupling

can coordinate volumetric growth, mass transport and internal stress state, both in physio-

logical and pathological conditions. Finally, possible applications of the proposed model are

discussed for studying the unknown regulation mechanisms in morphogenetic processes, as

well as for an optimizing scaffold architecture in regenerative medicine and tissue engineering.

Keywords: Volumetric growth, Remodeling, Mass transport, Morphogenesis, Configura-

tional forces, Mechanobiology

1 Introduction

Morphogenesis in contemporary sciences is commonly intended as the study of all developmental

processes which intervene in the creation of the shape of living objects. This statement has in

se an implicit definition, referring to the etymological meaning of the word itself1 in Aristotle’s

Physics books. The Greek philosopher considered the essence (oύσια- ouśıa) of a living being

as an indissoluble combination of matter (ύλη-hylé 2) and shape (µoρφή-morphé), which is its

manifestation in the sensible universe. In this connotation, the morphogenetic science has a

much wider sense than that of pattern (corresponding to the greek concept of σχήµα-schéma)

generation. If the latter is oriented to the quest of the mechanisms regulating the physical

appearance of biological matter, morphogenesis considers the emergence of shape as an intrin-

sic characteristic of a living being, dynamically revealed during evolution. In biomechanical

terms, morphogenetic events do not only include pattern and template formation, but may also

actively interact with other dynamic processes (see the extensive reviews of Taber (1995) and

1The word morphé was earlier employed by Homer in the Odyssey, books II and VIII, with a meaning of

”outward appearance”
2the mass unit of 1 hyle=1 s3V A/cm2 was proposed in 1910 by Gustav Mie in the definition of his VACS

system of units
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Cowin (2004)). For example, morphogenesis can involve simultaneous changes in mass and ma-

terial properties, here referred as growth and remodeling, respectively.

In this respect, a considerable amount of modeling research has been performed to accommodate

the evolution law of mass variation inside a material, written as a volumetric change of bulk

material or an accretion/resorption at a surface (see Ambrosi et al. (2011) and Ganghoffer (2010)

and references therein). Volumetric growth in continuum theories can occur at the expense of

the material porosity (Cowin and Hegedus, 1976), or as a smooth change in a single-phase ma-

terial. A seminal idea has been to assume a separability principle between growth and elastic

deformation (Skalak et al., 1982; Rodriguez et al., 1994). Modeling approaches based on such a

decomposition hypothesis have shown how complex biological patterns can arise from the loss

of elastic stability due to geometrical incompatibilities of the growth processes (Dervaux and

Ben Amar, 2008; Dervaux et al., 2009; Ben Amar and Ciarletta, 2010). As discussed by Ep-

stein and Maugin (2000), continuum theories of growth and remodeling often exclude ab-initio

the possibility to include a diffusive mass flow inside the body, as their driving forces would

involve the second gradient of the elastic deformation. In order to avoid this difficulty, theories

of mixtures are often employed to couple growth and mass transport phenomena of the fluid

and solid components of the material (Ateshian, 2009). Although multiphase theories of reactive

mixtures can extend the continuum models with the thermodynamic potentials of biochemical

factors diffusing inside the body, major drawbacks consist in dealing with partial stresses and

with mass exchanges between the single phases (Ambrosi et al., 2010).

In this work we propose a morphogenetic theory of a growing continuum accounting both for

volumetric growth and for mass transport inside the body. Our viewpoint reflects the definition

given by Bard (1990) of a ’middle view’: both genetic information and epigenetic processes

contribute to the creation of the final shape. In other words, we assume that genes carry

specific biochemical instructions for the creation of biological matter, while the biomechan-

ical and biochemical interactions with the environment generate the shape emergence. Our

constitutive growth model of a hyperelastic second-gradient material includes mass transport
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phenomena, and we use the theory of configurational forces (Maugin, 2011) to account for some

open problems in the continuum treatment of growth and remodeling in morphogenetic pro-

cesses. With this aim, we include the role of diffusing morphogens in the determination of

spatial patterns of cell differentiation, a very active research area of developmental biology in

the last decades (Wolpert, 1969; Kondo and Miura, 2010). Furthermore, our theory provides

a thermodynamically-based coupling for modeling the stress-driven feedback mechanisms that

regulate growth and orchestrate shape during morphogenetic events (Lecuit and Le Goff, 2007).

A second gradient morphoelastic model provides, in this sense, a rich theoretical framework,

where both mechanical and shape-dependent effects on growth can be considered.

The work is organized as follows. In Section 2, we state the kinematic theory for motion and de-

formation of a single-phase continuum. In Section 3, a thermo-mechanical theory of growth for a

second gradient continuum is introduced, deriving the balance equations and the thermodynam-

ical laws. In Section 4, the bases of a second gradient theory of growth and material remodeling

are established. In particular, we define a constitutive equation for the diffusive mass transport

inside the body, and we obtain the evolution laws for the first- and the second-order material

inhomogeneities. In Section 5, we apply the proposed theory to model two biomechanical ex-

amples of growing materials. Finally, our results are summarized in Section 6, with a discussion

about the effectiveness and the limitations of the proposed theory for modeling morphogenetic

events.

2 Theory of motion and deformation

Let us consider a mapping x = χ(X, t) that describes the deformation of a continuous body

from the reference to the actual configuration. Let F = Grad x = ∇R x = {F i
K ≡ FiK}

(the upward or downward position of the lower Latin indices is irrelevant when choosing a

Cartesian representation in the current configuration) and ∇RF = Grad Grad x = ∇R∇Rx be

the deformation gradient tensor and the second gradient of the deformation, respectively. It is

useful to remind that the gradient operators in current and reference configurations are linked
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by the relation ∇ = F−T .∇R. As a notation rule, in the following we will make use of n dots

(n=1,2,3) to indicate the contraction of n inner indices in the product between tensor fields (e.g.

(T : ∇RF)k = Tji(∇RF)ijk, assuming Einstein’s summation rule on repeated indexes).

The elastic problem can be formulated in two different space time parameterizations, using the

so-called direct and inverse kinematics (Maugin, 2003). The direct kinematics considers the

variables (X, t) belonging to the physical space. Its formulation of the elastic problem is based

on the following fields:























x = χ(X, t); F = ∇R x; ∇RF = ∇R∇Rx;

v = ∂x
∂t |X l = ∇R v = Ḟ |X L = ∇ v = Ḟ |X .F−1

K = 1
2ρ0v

2 : p = ∂K
∂v = ρ0v

(1)

where v is the spatial velocity, and l,L are the material, spatial velocity gradients, respec-

tively. Being K the kinetic energy density of the continuum body, p represents the physical

linear momentum density.

On the other hand, the inverse kinematics considers the motion χ−1(x, t), and it is an intrinsic

formulation where the domain changes over time and the range is fixed. The inverse formulation

of the elastic problem is based on the following variables:























X = χ−1(x, t); F−1 = ∇ X; ∇F−1 = ∇∇X;

V = ∂X
∂t |x = −F−1.v ∇R V = Ḟ−1 |x F = −F−1.L.F−∇RF

−1. v

K = 1
2ρ0V.C.V Pm = ∂K

∂V = ρ0F
T .F.V = ρ0C.V = −FT .p = −p.F

(2)

where V is the inverse motion velocity, i.e. the material velocity field, and C = FTF. The

material covector Pm is the true conjugate of the material velocity, and it is often referred to

as pseudomomentum density or canonical momentum density. The balance law of Pm in the

material framework accounts for the momentum associated to all the degrees of freedom of the

deformation field, while the balance of p involves only the translational momentum (Maugin and

Trimarco, 1992). This is why the balance of pseudomomentum density must be considered when
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there are inhomogeneities in the material set. Moreover, as previously discussed in Epstein and

Maugin (2000), the transformation law of the material gradient of the inverse motion velocity,

expressed in the second line of Eq.(2), involves the second gradient of the deformation and the

direct velocity gradient. A second gradient morphoelastic theory is therefore necessary to state a

constitutive equation for the mass transport, as well as to define thermodynamically compatible

evolution equations for mass remodeling during the morphogenetic processes.

3 Thermo-mechanics of growing second gradient continua

The aim of this section is to define the balance principles characterizing a thermo-mechanical

theory for coupling volumetric growth processes and mass transport phenomena inside a second

gradient continuous body.

3.1 Balance equations for mass and morphogens/nutrients concentration

Let us consider a growing body, whose density in the reference and actual configurations is

indicated with ρ0(X, t) and ρ(x, t), respectively. The following relations hold:

ρ0 = J ρ : J̇ = J trL (3)

where J(X, t) is the determinant of F, and the upper dot indicates time derivative. We define

the mass production rates Γ, γ and the mass flux vectors M,m in the reference and actual

configurations, respectively. The mass balance equation in material coordinates can be expressed

as:

ρ̇0 = Γρ0 + ∇R. M (4)

while its expression in spatial form reads:

ρ̇+ ρ ∇. v = γρ+ ∇. m (5)

where J γ = Γ, and M = JF−1m is the material contravector of mass flux, obtained through

a Piola transformation. The following identity relates the material and spatial divergence:
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∇R.M = J∇.m. The rates γ,Γ have the physical dimension of the inverse of a characteristic

time.

The morphogenetic processes in biological materials are characterized by the concentration of

passive scalars driving both growth (e.g. nutrients, growth factor) and mass transport phe-

nomena (e.g. migration signals, morphogens) which are dispersed in the extracellular matter.

Indicating with ci(x, t) the concentration of the generic i−th species per unit volume, its balance

equation can be written in the material form as:

ċi −∇R. Jci = ξi(F,∇RF) (6)

where ξi is the absorption rate of the i − th species. In the following, its value is assumed

to depend both on the first and on the second gradient of the deformation field, reproducing,

for example, curvature-dependent effects in the absorption of angiogenetic factors (Levine et

al., 2001). The diffusion of a morphogen from the source through the extracellular matter,

with a sink function possibly regulated by receptor endocytosis, has been proved to describe

the morphogens gradient in multicellular embryonic tissues (Yu et al., 2009). In Ambrosi and

Mollica (2002), a simple expression for the material flux of nutrients Jc has been proposed for a

reaction-diffusion evolution equation as:

Jci = D(ci)JC
−1.∇Rci (7)

where D(ci) represents a diffusion coefficient, whose positiveness and monotonicity on ci ensure

the stability of the solution (e.g. shocks for nonlinear diffusive problems). The thermodynamical

admissibility of the constitutive laws for both mass and biochemical transport processes is one

of the issues to be addressed in this work.

3.2 Balance of mechanical energy

Let Ω0 be the volume occupied by the continuous body in the reference configuration and let ∂Ω0

be its boundary. For the sake of simplicity we assume ∂Ω0 to be twice continuously differentiable
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almost everywhere, with outward normal N and local curvature (possibly having jumps on the e-

th edge curve ∂∂Ωe). The equilibrium state of the body is provided by the balance of mechanical

energy (the kinetic energy theorem):

d

dt

∫

Ω0
K(t)dV = Pext(t) + Pint(t) (8)

where Pint(t), Pext(t) are the internal and the external rates of mechanical work, respectively.

Following Germain (1973), we postulate an expression for the internal mechanical power to

deduce the boundary actions on the body. The mechanical powers read as follows:

Pint =

∫

Ω0
pint(t)dV = −

∫

Ω0
(Tf : Ḟ + Ts

...∇RḞ)dV (9)

Pext =

∫

Ω0
f0.v +

ρ0Γv
2

2
dV +

∫

∂Ω0
(t.v + τ f .Ḟ.N + N.M

v2

2
)dS +

∑

e

∫

∂∂Ωe
fe.vdl (10)

where f0 are volume forces, and t, τ f are surface traction and surface double forces, respectively,

and fe are forces acting on the e− th edge of the boundary. In Eq.(9), Tf is the Piola-Kirchhoff

stress tensor and Ts is the Piola-Kirchhoff hyperstress, the energy conjugates of the first and the

second deformation gradients, respectively. Applying the Gauss divergence theorem in Eq.(9),

the following expression can be derived:

Pint =
∫

Ω0(∇R.(Tf −∇R. Ts)vdV

−
∫

∂Ω0([N.(Tf −∇R. Ts) + (∇t
RN : IR)N⊗N : Ts −∇t

R(N.Ts) : IR].v

−N.[(N⊗N) : Ts].∇Rv)dS

(11)

where ∇t
R(·) = ∇R(·)(IR−N⊗N) is the material tangential gradient, and IR is the unit dyadic in

reference configuration. From Eqs.(1,4), the time variation of the kinetic energy can be written

as:

dK(t)

dt
=
ρ̇0
2
v2 + ρ0v̇.v =

ρ0Γ + ∇R.M

2
v2 + ρ0v̇.v (12)

Substituting Eqs.(10,11,12) in the mechanical balance of Eq.(8), considering arbitrary velocity

fields and exploiting the principle of virtual power, we derive the following balance equation in

material form:

d

dt
(ρ0v) =

dp

dt
= f0 + Γρ0v + ∇R. (Tf −∇R. Ts + M⊗ v) (13)
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with the following boundary conditions at the loaded surface:

N.(Tf −∇R. Ts) + (∇t
RN : IR)N⊗N : Ts −∇t

R(N.Ts) : IR = t on ∂Ω0 (14)

[(N⊗N) : Ts] = τ f on ∂Ω0 (15)

Finally, the following jump conditions must be imposed at the e-th edge:

ϵ : J(N⊗N) : TsK ⊗ eTe = fe on ∂∂Ωe (16)

where ϵ is the Levi-Civita permutation tensor, eTe is the unit tangential vector at the e − th

edge, and J·K indicates the jump across the faces of the edge. As discussed by dell’Isola and

Seppecher (1995), only the edges of a gradient material are can account for the effect of the

hyperstress in an independent way. A weaker formulation of the principle of virtual power has

been proposed to avoid this problem (Lazar and Maugin, 2005).

The spatial form of the motion equation in Eq.(13) can be written using Eq.(5) and the Piola

transformations on second and third order tensors:

ρ
dv

dt
= J−1f0 + ∇.

(

J−1(F.Tf + ∇RF : Ts) + ∇. (J−1TT
s : [FT ,FT ])

)

+ (m · ∇) v (17)

where all the divergence operators are taken on the left of the tensorial objects, and the product

rule for third-order tensors has been defined by (C : [A,B])ijk = CiαβAαjBβk.

3.3 Balance of internal energy and entropy inequality

Indicating with ε the internal energy per unit mass and with µi a scalar function representing

the source of internal energy associated with the i− th solute ci, the first law of thermodynamics

can be expressed as follows:

d

dt

∫

Ω0

(ρ0ε+K)dV = Pext(t) +

∫

Ω0

[Γρ0ε+ ξiciµi + r0]dV +

∫

∂Ω0

N.(Mε+ µiJci −Q)dS (18)

Here r0 is the external heat supply per unit of volume, Q is the heat flux, µi is minus the chemical

potential of the i-th species and represents the increase of internal energy of the continuum by
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physical absorption of the diffusing chemicals. Irreversible terms might be accounted in Eq.(18),

and a temperature gradient dependence could be included (Forest et al., 2002): nevertheless

both effects have been neglected for the sake of simplicity. Substituting Eqs.(4,6,8,9) in the

local form of Eq.(18), we obtain the following balance law in local form for the internal energy

of a growing second-gradient hyperelastic continuum:

ρ0ε̇ = Tf : Ḟ + Ts
... ∇RḞ + µiċi −∇R. Q + r0 + M.∇Rε+ Jci.∇Rµi (19)

which shows how the internal energy rate, due to mass transport and to biochemical fluxes, is

coupled with the second gradient of the deformation.

The entropy inequality in the Clausius-Duhem form can be written as:

d

dt

∫

Ω0

ρ0η dV ≥
∫

Ω0

[

Γρ0η + ηiξiċi +
r0
Θ

]

dV +

∫

∂Ω0

N.

[

Mη + Jciηi −
Q

Θ

]

dS (20)

where η, ηi are the entropy density per unit mass and per unit of solvent concentration, respec-

tively. The local form of the entropy inequality, substituting Eq.(4) in Eq.(20), reads:

ρ0η̇ ≥ ηiċi + M.∇Rη + Jci.∇Rηi +
r0
Θ

−∇R.

(

Q

Θ

)

(21)

Recalling the expression of the Helmholtz free energy per unit of mass, Ψ = ε − Θη, and per

unit of solvent concentration, Ψi = µi−Θηi, we can put together Eqs.(19, 21) in order to obtain

an equivalent form of the entropy inequality for a second gradient continuum:

ρ0(Ψ̇+Θ̇η) ≤ Tf : Ḟ+Ts

... ∇RḞ+Ψiċi+M ·(∇RΨ+η∇RΘ)+Jci ·(∇RΨi+ηi∇RΘ)−Q

Θ
·∇RΘ

(22)

The latter relation describes the thermodynamical consistency for the energy dissipation inside

a growing second gradient hyperelastic continuum, accounting both for mass transport and for

the diffusion of the biochemical species.
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3.4 Balance of pseudomomentum

We postulate a functional form of the Helmholtz free energy Ψ for a second gradient material

as follows:

Ψ = Ψ(F,∇RF, ci,Θ;X, t) (23)

We apply the chain rule on Ψ in the Clausius-Duhem inequality in Eq.(22), following the method-

ology of Coleman and Noll (1963), and we obtain the following set of constitutive equations for

a thermo-elastic continuum:

Tf = ρ0
∂Ψ

∂F
(24)

Ts = ρ0
∂Ψ

∂(∇RF)
(25)

Ψi = ρ0
∂Ψ

∂ci
(26)

η = −∂Ψ

∂Θ
(27)

Note that the third order tensor Ts inherits the symmetry properties of ∇RF, expressed in

index terms as (Ts)
IJ
k ≡ (Ts)

JI
k . With such constitutive identifications, the Clausius-Duhem

inequality reduces to:

M · (∇RΨ + η∇RΘ) + Jci · (∇RΨi + ηi∇RΘ) − ρ0
∂Ψ

∂t
|expl −

Q

Θ
· ∇RΘ ≥ 0 (28)

where the explicit derivative over time accounts for possible dissipation due to ageing phenomena

(Maugin, 2009). The canonical projection of the linear momentum in the material setting yields

the balance of the pseudomomentum. Let us perform a right-multiplication of Eq.(13) times .F,

as follows:

d

dt
(ρ0v).F = −dPm

dt
− ρ0v.Ḟ = f0.F− ΓPm + ∇R.(T + M⊗ v) .F (29)

where T = Tf −∇R.Ts. Recalling the following identities:

∇R. (M⊗ v) = ∇Rv .M + v(∇R.M) (30)

(∇R. T) .F = ∇R. (T.F) −T : (∇RF) (31)
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we can substitute Eqs.(30, 31) in Eq.(29), and the following relation holds:

dPm

dt
= −f0.F + ΓPm −∇R. (T.F) + T : (∇RF) −∇Rv M.F +

Pm

ρ0
∇R.M− ρ0v.Ḟ (32)

Substituting Eq.(4) in the latter, we find the equivalent form:

dPm

dt
= −f0.F +

ρ̇0
ρ0

Pm −∇R. (T.F) + T : (∇RF) − (∇Rv.M).F− ρ0v.Ḟ (33)

Eq.(33) represents the canonical balance of pseudomomentum density in the material framework.

Using the constitutive assumptions in Eqs.(23-27), the following identities hold:

Tf : (∇RF) = ∇R. (ρ0ΨIR) −Ts

... (∇R∇RF) − ∂(ρΨ)

∂X
|expl − µi∇Rci + η∇RΘ (34)

ρ0v.Ḟ = ∇R. (KIR) − ∂K

∂X
|expl = ∇R.K − 1

2
v2(∇R.ρ0) (35)

−(∇R. Ts) : (∇RF) −Ts

... (∇R∇RF) = −∇R. (Ts : (∇RF)) (36)

Substituting Eqs.(34, 35, 36) in Eq.(33), we obtain the canonical balance of pseudomomentum

for a growing material in gradient hyperelasticity:

dPm

dt
= f ext + fg + f inh + f c + fΘ + ∇R. b (37)

The conservation of the pseudo-momentum in eq.(37) states that there are five sources of material

inhomogeneities: the convection of the body forces in f ext, the volumetric growth and the mass

transport in fg, the true material inhomogeneities in f inh, the internal variables in f c, and the

temperature in fΘ. They are defined as:















































f ext = −f0.F

fg = ρ̇0
ρ0
Pm − (∇Rv.M) .F

f inh = ∂(K−ρ0Ψ)
∂X |expl

f c = −µi∇Rci

fΘ = ρ0η∇RΘ

(38)

Accordingly, the Eshelby tensor in a second gradient material reads:

b = −[(K − ρ0Ψ)IR + T.F + Ts : ∇RF] (39)
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Eq.(37) states that the Eshelby stress tensor b, defined in Eq.(39), is the stress measure that

drives the evolution of material inhomogeneities. Two components can be devised in b as:

b = −(K − ρ0Ψ)IR −Tf .F− 2Ts : (∇RF) + ∇R.(Ts.F) = bf + ∇R.bs (40)

where it has been used the relation ∇R.(TsF) = (∇R.Ts) + Ts : (∇RF). Such an expression of

the Eshelby stress can be found in Epstein (1999): the decomposition into a first gradient com-

ponent bf and an Eshelby hyperstress bs will be useful in the description of material evolution

laws.

Finally, frame indifference of the Helmholtz free energy in Eqs.(24, 25) must hold for arbitrary

rotations of the actual configuration (Kirchner and Steinmann, 2007). This condition can be

written as:

F.Tf + ∇R F : Ts = (F.Tf + ∇R F : Ts)
T (41)

stating that the generalized first gradient Cauchy stress in Eq.(17) must be a symmetric tensor.

4 A second gradient theory for volumetric growth and material

remodeling

The aim of this section is to define the constitutive aspects of a morphoelastic theory of volu-

metric growth and material remodeling for second gradient continua, accounting for the effects

of mass transport inside the body.

4.1 Definition of a second order material isomorphism

As discussed in the previous sections, the extension of the growth theory to second order continua

is necessary to include the driving force in the theory of internal mass transport. In a second

gradient theory, it is necessary to consider second-order equivalence classes, also known as 2-jets,

at each material point. In practice, each point of the body in the reference configuration is linked
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to an intermediate grown state by means of a first order transplant (linear map of the tangent

spaces) of second-order tensorial components Fg, and a second order transplant of third-order

tensorial components Qg, as schematically shown in Figure 1.

We generalize the form of the strain energy function introduced in Eq.(23), introducing a second

Qg

Fe Δ

Δ

Fg

F ,    RF 

   x Fe  

X

(x,t)

t

t
x

Ω
0

Ω

Figure 1: Illustration of the material isomorphism involving the first-order transplant Fg and
the second-order transplant Qg in the intermediate grown state.

order material isomorphism for Ψ. This is a natural extension to growing gradient continua of

the first-order multiplicative decomposition of the deformation gradient:

Ψ(F,∇RF,Fg(X),Qg(X), ci,Θ) = (detFg) · Ψ0(Fe,Qe, ci,Θ) (42)

where no explicit dependence of the free energy on time is included. The proposed material

isomorphism can be seen as a symmetry group of the strain energy Ψ, so that the terms Fe,Qe

in Eq.(42) transform according to the following composition laws for first and second derivatives:










Fe = F.F−1
g

Qe = ∇RF : [F−1
g ,F−1

g ] − Fe.Qg : [F−1
g ,F−1

g ]
(43)

Note that, for the symmetry properties of ∇RF, the material isomorphism requires that (Qg)iJK =

(Qg)iKJ , representing the local deformation gradient imposed by growth.
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We remark that Qg is a measure of the differential deformation of the local grown state, and it

is independent on the material gradient of Fg, because the intermediate state is not a configu-

ration, and a growth map cannot be defined.

It is useful to compare the proposed material isomorphism to the transformation law reported in

Epstein and Maugin (2000). They consider an implant (K,Qk) from the archetype in the inter-

mediate state to the material point X, so that their corresponding transformation law (indicated

with ◦) reads:

(F,∇RF) ◦ (K,Qk) := (FK,FQk + ∇RF : [K,K]) (44)

Such a composition law has a unit element, it is associative and it has a unique inverse operator

defined as:

(K,Qk)−1 := (K−1,−K−1.Qk : [K−1,K−1]) (45)

Recalling that we have defined an implant from the material point to the intermediate grown

configuration, we can check that setting (Fg,Qg) := (K,Qk)−1 we find that the proposed

material isomorphism corresponds to the same transformation law.

Finally, it might be useful to note that if Qg = ∇RFg (i.e. growth can be described by a smooth

differentiable mapping), the transformation law for second derivatives is Qe = ∇RFe.F
−1
g , which

represents in this case the gradient of Fe with respect to the intermediate configuration. In

mechanical terms, a second gradient growth theory considers both the effects of volumetric

growth, through Fg, and of density gradients generated by elastic deformation, through the

dependence on Qg. In fact, we can consider that the material in the intermediate grown state has

a constant density ρg, so that the material density can be expressed as ρ0 = ρg (detFg) = ρg J .

A isochoric elastic deformation, expressed by Fe, will not change the spatial density, given

by ρ = ρg (detFe)
−1 = ρg, but will determine a spatial density gradient in the second order

transplant, as follows:

∇X̄ρ = −F−1
e : Qe (46)

Giving a simple geometrical interpretation, a first-gradient growth theory only includes the

torsional effects of the material connection, while a second order transplant allows to account
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for the curvature-dependent evolution of the material inhomogeneities, which are involved in

mass diffusion processes.

Finally, a second-order material isomorphism can be used to define a constitutive equation for

the mass transport:

M(F,∇RF, ci,Θ;X) = (detFg) F−1
g .M0(Fe,Qe, ci,Θ) (47)

Eqs.(42, 47) represent the two material isomorphisms for the second gradient free energy of the

continuum and the mass transport phenomena, respectively.

4.2 Thermodynamical compatibility in isothermal conditions

Let us consider the Clausius-Duhem inequality for a second gradient material, as expressed in

Eq.(21), in the case of isothermal processes:

ρ0Ψ̇ ≤ Tf : Ḟ + Ts

... ∇RḞ + Ψiċi + M.∇RΨ + Jci.∇RΨci (48)

Using the constitutive relation in Eq.(42) and the tensorial transformation rules in Eq.(43), we

can develop the terms involved in Eq.(48) as follows:

Ψ̇ = JΨ0F
−1
g : Ḟg + J

∂Ψ0

∂Fe
: Ḟe + J

∂Ψ0

∂Qe

... Q̇e + J
∂Ψ0

∂ci
· ċi (49)

Tf : Ḟ = Tf : (ḞeFg + FeḞg) = Fg.Tf : Ḟe + Tf .Fe : Ḟg (50)

∇RḞ = Q̇e : [Fg,Fg] + Qe : [Ḟg,Fg] + Qe : [Fg, Ḟg] + Ḟe.Qg + Fe.Q̇g (51)

Ts

...∇RḞ =
(

Ts
T : [FT

g ,F
T
g ]
)T ... Q̇e + 2

(

Ts
T : [FT

g ,F
T
g ]
)T

: (Qe) : (Ḟg.F
−1
g )+

+Ts.Fe

... Q̇g + [Qg : Ts] : Ḟe

(52)
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Substituting the terms in Eqs.(49,50,52) inside the inequality expressed by Eq.(48), we obtain

the following simplified form:

(

Ψi − Jρ0
∂Ψ0

∂ci

)

ċi +
(

Qg : Ts + Fg.Tf − Jρ0
∂Ψ0

∂Fe

)

: Ḟe+

+
(

(

Ts
T : [FT

g ,F
T
g ]
)T − Jρ0

∂Ψ0

∂Qe

) ... Q̇e+

+
(

Fg.Tf .Fe + 2
(

Ts
T : [FT

g ,F
T
g ]
)T

: Qe − Jρ0Ψ0IR̄

)

: (ḞgF
−1
g ))+

+M.∇RΨ + Jci.∇XΨi + Ts.Fe

... Q̇g ≥ 0

(53)

As the inequality in Eq.(53) must be satisfied by any motion, the following set of constitutive

equations for the second gradient material is given:

Ψi = Jρ0
∂Ψ0

∂ci
(54)

(

Ts
T : [FT

g ,F
T
g ]
)T

= Jρ0
∂Ψ0

∂Q e

(55)

Qg : Ts + Fg.Tf = Jρ0
∂Ψ0

∂Fe
(56)

while Eq.(53) reduces to the following dissipation inequality:

(

Fg.Tf .Fe + 2
(

Ts
T : [FT

g ,F
T
g ]
)T

: Qe − Jρ0Ψ0IR̄

)

: (ḞgF
−1
g )

+M.∇RΨ + Jci.∇XΨi + Ts.Fe

... Q̇g ≥ 0
(57)

Eq.(57) describes the conditions for the thermodynamical compatibility of the growth and the

remodeling processes for a second-gradient continuum.

At this point, it is useful to derive the explicit gradient of the free energy for a second gradient

body, which is part of the driving force of true material inhomogeneities in finh defined in

Eq.(38):

∂Ψ

∂X
|expl =

∂Ψ

∂Fg
: ∇RFg +

∂Ψ

∂Qg

...∇RQg (58)

Recalling the constitutive equations in Eqs.(54, 55, 56), the following relations hold:

ρ0
∂Ψ

∂Fg
= −F−1

g

[

−Jρ0Ψ0IR̄ + Jρ0
∂Ψ0

∂Fe
.Fe + 2Jρ0

∂Ψ0

∂Qe
: Qe −Qg : Ts.Fe

]

(59)

ρ0
∂Ψ

∂Qg
= −Ts.Fe (60)
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Using the previous relations to build a geometrical meaningful expression, Eq.(58) can be rewrit-

ten in a new simplified form as a function of the material Eshelby tensors, as follows:

−ρ0
∂Ψ

∂X
|expl = [bf + Λ : bs] : Γ + bs.F

−1
g

...∇RQg = bf : Γ + bs

...∇R Λ (61)

In Eq.(61) we introduced the symbols of the first-order (generally not symmetric) material

connection Γ, and of the symmetric second-order linear connection Λ, defined as:

(Γ)IJK = (Fg)αJ .(F
−1
g )Iα,K ; (Λ)IJK = (F−1

g )Iα.(Qg)αJK (62)

In this novel form, the expression of the driving force in Eq.(61) reflects the decomposition of

the effects due to the torsion and the curvature of the material connections in the evolution

of true material inhomogeneities. The difference between the two geometrical connections in

Eq.(62) is also known as the second-gradient inhomogeneity tensor, as proposed by deLeon and

Epstein (1993), giving a local measure of the material homogeneity.

4.3 Admissible constitutive models for mass transport and chemical diffusion

Let us consider the problem to define a suitable constitutive definition of the mass flux M in

a second gradient continuum. The thermodynamical compatibility would suggest to restrict to

dissipative models for mass transport and chemical diffusion that satisfy the following inequality:

M.∇RΨ + Jci.∇RΨci ≥ 0 (63)

where the material gradient ∇RΨ can be expressed in isothermal conditions as follows:

∇RΨ =
∂Ψ

∂X
|expl +

∂Ψ

∂ci
.∇Rci + ρ−1

0

(

Tf : (∇RF) + Ts

...∇R∇RF

)

(64)

In Eq.(64) the explicit material gradient must be expressed through the second order connection

based on Fg and Qg, following the same procedure used in Eq.(61).

A dissipative constitutive equation for M can be expressed in function of the inverse velocity V

in the following form:

M = K+(ci,Θ)(V.∇RΨ)V (65)
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where K+(ci,Θ) is a positive definite scalar function, which, in a general chemotactic model, may

depend both on the temperature and on the concentration ci of the chemical species, directly

driving the diffusive mass transfer. It is useful to notice that:

v ⊗m = (−F.V) ⊗ J−1K+(c)(V · ∇RΨ)F.V = m⊗ v (66)

implying the equilibrium of the angular momentum generated by the mass transport defined in

Eq.(65) with a symmetric of first order Cauchy stress. In this sense, the proposed dissipative

evolution law for M can be seen as a single phase extension of the continuum treatment of a

multiphase growing material proposed by Garikipati et al. (2004).

If we consider a mass transport driven by the diffusion of a specific chemical species cM , a more

suitable formulation can be proposed. Recalling the expression for the chemical potential in

Eq.(54), a proper constitutive equation for the mass flux can be defined as:

M = −
[

(V.∇RΨ)−1 ∂Ψ0

∂cM
JcM .∇R(Jρ0)

]

V (67)

where the energy dissipation due to the mass transport is modeled only by the internal variable

cM . From the inequality in Eq.(63), a thermodynamically admissible form of the chemical flux

is:

JcM =
∂2Ψ0

∂c2M
∇RcM .K

+
c (F,∇RF) (68)

where K
+
c (F,∇RF) is a positive definite chemical mobility tensor, which may depend on the

thermodynamical state of the continuum. Eq.(68) is a well known constitutive model for solvent

migration in polymers (Hong et al., 2008), and can include curvature effects in a second order

continuum model.

Finally, in the limit of quasi-static elastic deformations (v ∼ 0), a static version of Eq.(67) is

obtained, imposing the following constitutive equation for the mass transport:

M = −
[

(JcM .∇RΨ)−1 ∂Ψ0

∂cM
JcM .∇R(Jρ0)

]

JcM (69)

Recalling the dissipative behavior for the diffusing internal variable cM in Eq.(68), the static

constitutive relation in Eq.(69) represents a purely chemotactic behavior for a given chemical
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diffusivity inside the body.

4.4 Remodeling theory: first and second gradient material evolution laws

The remodeling theory for a gradient continuum deals with the definition of the evolution laws

for both Fg and Qg, describing the first and the second gradient inhomogeneities, respectively.

Substituting the constitutive relation for the stress, Eqs.(55, 56), into the dissipation inequality

expressed in Eq.(57), we obtain the following simplified expression:

(

Jρ0
∂Ψ0

∂Fe
.Fe + 2Jρ0

∂Ψ0

∂Qe
: Qe − Jρ0Ψ0IR̄ −Qg : Ts.Fe

)

: Lg+

+Q̇g

...Ts.Fe ≥ 0
(70)

where Lg = Ḟg.F
−1
g represents the velocity gradient of the first-order inhomogeneities in the

growing continuum, and we omit for notation compactness the transport terms. In analogy

with Eq.(40), we can define the following first-order Eshelbian operator:

bf (ψ) = ψ(Fe,∇RFe)IR̄ − ∂ψ

∂Fe
.Fe −

(

2
∂ψ

∂Qe
: Qe

)

(71)

so that the dissipation inequality can be written as:

−bf (Ψ) : Lg + (Q̇g − Lg.Qg)
...Ts.Fe ≥ 0 (72)

Similarly to Eqs.(41), the frame indifference for the material isomorphism in Eq.(42) imposes

that bf (Ψ) is a symmetric tensor (Svendsen et al., 2009). For a growing isotropic continuum,

material frame indifference suggest the following admissible form of first-order evolution law:

Lg = −f+(ci,Θ)ρ0bf (Ψ) (73)

where f+(ci,Θ) is a positive definite scalar function, whose expression represents a specific

temperature-dependent (e.g. Arrhenius-based relations) chemical kinetics driving first-order

mass remodeling. The first-order evolution law in Eq.(73) is a second order generalization of the

results obtained for inelastic continua, as the first order Eshelby tensor in the intermediate state
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is the symmetric stress conjugate of the growth velocity gradient (Maugin, 1994; Svendsen, 2001).

Moreover, the symmetry of the driving force expressed by bf (Ψ) is a necessary requirement, as

pointed out by Skalak et al. (1982), as the symmetric part of Fg is the only shape-changing

deformation in growth. The proposed first-order evolution equation contains a second-order

correction to the remodeling laws proposed in biomechanical literature (Di Carlo and Quiligotti,

2002; Ambrosi and Guana, 2007; Taber, 2009).

Recalling the definition of the second-order material connection Λ in Eq.(62), the following

identity holds:

Λ̇(Fg,Qg, Ḟg) = F−1
g .Q̇g − F−1

g .Lg.Qg (74)

From Eq.(72), a suggestive form for the evolution of second-order inhomogeneities can be written

as follows:

Λ̇(Fg,Qg,bf ) = g+(ci,Θ)(Ts.F)T = g+(ci,Θ)(bs)
T (75)

where g+(ci,Θ) is a positive definite scalar function, and bs is the material second-order Eshelby

tensor, which is found to be the thermodynamical driving of second-order mass inhomogeneities.

In order to investigate whether such a second-order constitutive law fulfils the principle of ma-

terial covariance (Elzanowski and Epstein, 1992; Epstein and Elzanowski, 2007), let us consider

the tensorial transformation law of the couple {Fg,Qg} upon a change of reference configuration

defined by the mapping λ:

F∗

g = Fg .(∇Rλ) (76)

Q∗

g = Fg .(∇R∇Rλ) + Qg : [(∇Rλ), (∇Rλ)] (77)

The time derivation of Eq.(77) gives the temporal change of the second gradient, as follows:

Q̇∗

g = Q̇g : [(∇Rλ), (∇Rλ)] + Ḟg.(∇R∇Rλ) (78)

From Eq.(78), the most general evolution law for the second gradient inhomogeneities for an

isotropic continuum is of the following kind:

Q̇∗

g = Q(Fg,Qg, Ḟg) = Q(Fg,Qg,bf ,bs) (79)
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where we have considered an evolution of the first gradient inhomogeneities as described by

Eq.(73). A suitable evolution law for the second gradient requires that the third order tensor Q

be independent on the choice of the reference configuration. If we make a change in the reference

frame so that ∇Rλ = F−1
g (the reference configuration corresponds to the grown intermediate

state), Eq.(78) takes on the following expression:

Q̇∗

g = Q(I,O,b) = Q̇g : [Fg
−1,Fg

−1] − Ḟg.Fg
−1.Qg : [Fg

−1,Fg
−1] (80)

where O is the zero third order tensor, and we used the tensorial transformation for the inverse

of a second order tensor (i.e. Q−1
g = −F−1

g .(Qg) : [F−1
g ,F−1

g ]). The most general law for the

time evolution of Qg, from Eq.(75,80), takes the following form:

Q̇g − Lg.Qg = Q(I,O,b) : [Fg,Fg] = Fg.Λ̇ = g+(ci,Θ)Fg.(bs)
T (81)

which states that the second-order evolution law is invariant with respect to arbitrary changes

of the reference configuration.

Summarizing, our findings demonstrate that the first- and second-order Eshelby tensors are

the driving stresses for first- and second-order material inhomogeneity, respectively. Material

remodeling can evolve according to the two separate evolution laws in Eqs.(73, 75), that can be

rewritten as:

Ḟg = −f+(ci,Θ)ρ0 · bf (Ψ).(Fg)−1 (82)

Q̇g = −f+(ci,Θ)ρ0 · bf (Ψ).Qg + g+(ci,Θ)Fg.(bs)
T (83)

If we choose a non-evolving second-order gradient (i.e. Q(I,O,b) = g+(ci,Θ) = 0), the second-

order transplant passively follows the time evolution of the first-order transplant, and we find

the classical evolution law for a material with a Toupin type symmetry (Epstein, 1999).
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5 Application of the proposed theory to biomechanical prob-

lems

In this section we apply the proposed constitutive theory to model the effects of an Eshel-

bian coupling on volumetric growth and mass transport in two biomechanical examples. First,

we consider the avascular development of a ductal carcinoma, illustrating how both mechano-

transduction and spatial limitation of nutrient diffusion can inhibit growth. Secondly, we apply

the proposed evolution equations for material inhomogeneities to analyze the remodeling laws

driving homeostasis in blood vessels, both in healthy and in pathological conditions.

5.1 Early development of ductal carcinoma: an example of stress-inhibited

growth in confined geometry

The ductal carcinoma in situ represents the initial growth phase of breast cancer. Originated

from a malignant transformation of epithelial cells, the growing tumor at this stage is non-

invasive, thanks to the spatial confinement due to the basement membrane of the duct glands.

In fact, the carcinoma expands inside the lumen of the breast duct, having a diameter in the range

of 0.2-0.5 mm, which is filled with extracellular liquid. On the outer surface, the growing mass

is surrounded by the basement membrane of the duct wall, which is permeable to biochemical

factors but forms a protective mechanical barrier between the tumor and the outer healthy

stroma. Compared to previous modeling efforts (Franks et al., 2003, 2005), here the aim is to

model the early development using the proposed Eshelbian coupling between volumetric growth

and nutrient diffusion, which is considered the growth source for the avascular tumor. For

matters of simplicity, we make the hypothesis that the duct walls are rigid and no adhesion

mechanism exists between the tumor cells and the basement membrane, so that the carcinoma

can be modeled as a cylindric mass, which can freely expand along the longitudinal axis of the

duct. Considering that the nutrients are supplied through the lateral boundaries, by diffusion

mechanisms from the surrounding stroma through the basement membrane, we can assume the
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following expression for the growth tensor:

Fg =
∂g(R, t)

∂R
eri ⊗ eR +

g(R, t)

R
eθi ⊗ eΘ + ezi ⊗ eZ (84)

where the subscript i denote vectors in the intermediate grown configuration, which is generally

incompatible with the geometrical confinement of the duct wall. By means of Eq.(84), we

describe a time-dependent radial growth function g(R, t), leading to a local volume variation

expressed by J(R, t) = detFg. The elastic tensor Fe represents the isochoric deformation which

restores compatibility at the outer radius Ro of the tumor; in particular, it keeps in contact

the tumor with the duct wall, and avoids singularity in the deformation along the axis of the

cylinder:

Fe =

(

g(Ro, t)

Ro

)

−1

er ⊗ eri +

(

g(Ro, t)

Ro

)

−1

eθ ⊗ eθi +

(

g(Ro, t)

Ro

)2

ez ⊗ ezi (85)

where g(Ro,t)2

2 =
∫

0
Ro
J(R, t)R · dR for overall compatibility. Eq.(85) represents a homogeneous

tensor, so that ∇RFe = Fe.∇RFg. For matters of simplicity we assume Qg = 0 and indepen-

dent on time, and we deal only with first gradient components in the definition of the stress

measures. In terms of constitutive behavior, we assume a simple neo-Hookean strain energy

function associated with the incompressible elastic deformation. The free energy of the tumor

mass can be decomposed into the sum of the elastic contribution and the free chemical energy

Ψn(n) due to the nutrient absorption:

Ψ(Fg,Fe, n) = J(R, t) · Ψ0(Fe, n) = J(R, t) · {c1(Fe : I− 3) + p(detFe − 1) − Ψn(n)} (86)

The quantity p is the Lagrange multiplier which takes into account the local incompressibility

of Fe, and it can be evaluated by imposing stress-free condition in the z direction. Using the

constitutive relations in Eq.(56), the Cauchy stress is given by:

σ = 2c1ρ0(R, t)FeF
T
e − pI = 2c1ρ0(R, t)

[

FeF
T
e −

(

g(Ro, t)

Ro

)4

I

]

(87)

where σrr = σθθ = 2c1ρ0(R, t) ·
[

(

g(Ro,t)
Ro

)

−2
−
(

g(Ro,t)
Ro

)4
]

. When considering the equilibrium

condition ∇.(σ + v⊗m) = 0, we obtain that

[

(

g(Ro,t)
Ro

)

−2
−
(

g(Ro,t)
Ro

)4
]

∇R(ρ0(R, t)) + ∇.(v⊗
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m) = 0. Making the hypothesis that the growth process occurs in a quasi-static manner (v ∼ 0),

and recalling that ρ0(R, t) = ρgJ(R, t), an equilibrated configuration can be achieved if:

∇Rρ0(R, t) = ρ0(R, t)Fg : ∇RFg = 0 (88)

In biomechanical terms, a slow growth process is forced to evolve in order to make the strain

energy function homogeneous: a condition that we take as a definition of homeostasis. As a

matter of fact, the mass diffusivity of tumor cells is about 10−10m2s−1 (Byrne and Chaplain,

1995), which, for a characteristic lengthscale of order 10−1mm, gives a diffusive time-scale of

minutes, much smaller than the characteristic growth time (days-weeks). An inhomogeneous

volumetric growth therefore generate a diffusive mass flow inside the material, that rapidly

restores a homogeneous distribution of the material density in the growth time-scale.

In order to describe the stress-driven regulations in the growth characteristics of the ductal

carcinoma, we propose an Eshelbian coupling between the volumetric growth rate within tumor

and the diffusion of the supplying nutrients, as discussed in Eq.(73). In particular, we choose in

Eq.(6) the following form for the nutrient consumption:

ξ(F,∇RF) = −Σ0(J̇/J)I : Lg =











−n(R, t)γnI : Lg I : Lg > 0

0 I : Lg ≤ 0
(89)

According to Eq.(89), nutrients are continuously supplied at duct wall (n(Ro, t) = next), and

they are absorbed within the tumor, giving rise to volumetric growth (ξ < 0 if I : Lg = J̇/J > 0)

with a rate proportional to their local concentration. From Eq.(71), the Eshelbian stress measure

which drives local inhomogeneities can be expressed as:

bf = J(R, t) ·
[

ψIR̄ − 2c1

(

FT
e Fe −

(

g(Ro, t)

Ro

)4

IR̄

)]

(90)

so that (bf )RR = (bf )ΘΘ = 3c1J(R, t) ·
[

(

g(Ro,t)
Ro

)4
− 1

]

. Recalling the compatibility of nutrient

diffusion in Eq.(7, 68), the remodeling law in Eq.(73), and the constitutive law in Eq.(54), the

coupling of growth rate and internal stress within the tumor is given by the following equations:

J̇(R, t)

J(R, t)
= ρ0Kp ·

{

Ψn(R, t) − 3c1 ·
[

(

g(Ro, t)

Ro

)4

− 1

]}

(91)
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ṅ(R, t) = Dn

(

g(Ro, t)

Ro

)2

∇R ·
(

g2(R, t)

J ·R2
∇Rn(R, t)

)

− Σ0(J̇/J, n(R, t)) (92)

where Kp,Dn are positive definite material constants, that define the rate of volumetric

growth (in general we can assume different rates for tumor cell mitosis and apoptosis, represented

by Kp and Kd) and the diffusion coefficient of the nutrients, respectively. Taking glucose as the

main nutrient in the avascular phase, a simple expression for the chemical free energy is given

by Ψn = Ψg · n(R, t)/ρg, where Ψg represents the free energy resulting from the glycolysis

reaction converting a molecule of glucose to pyruvate and two ATPs (Garrett and Grisham

(2005) measured physiological values of Ψg/ρg=4 · 105 J Kg−1).

If the characteristic time of nutrient diffusion is much smaller than the characteristic time

of growth (approximation of very small tumor, with γn << 1), the level of nutrient is next

everywhere, and the tumor grows homogeneously, with g(R, t) = g0(t) · R. The growth rate is

simply given by the expression in Eq.(91), simplified as:

ġ0(t) =
g0(t)ρgKp

2
·
{

Ψgnext
ρg

− 3c1 ·
[

g0(t)
4 − 1

]

}

(93)

which, taking the initial condition g0(0) = 1, can be integrated:

g0(t) =

(

1 +
Ψg ·next

3c1ρg

) 1

4 · Exp
[

3
2c1ρgKp

(

1 +
Ψg ·next

3c1ρg

)

· t
]

(

Ψg ·next

3c1ρg
+ Exp

[

6c1ρgKp

(

1 +
Ψg ·next

3c1ρg

)

· t
]) 1

4

(94)

Eq.(94) points out stress inhibition on growth, through the existence of a limiting value gmax =

4

√

1 +
Ψg ·next

3c1ρg
. This effect is more evident approximating the Eq.(94) with its Taylor expansion

on
Ψg ·next

3c1ρg
, which at first order gives:

g0(t) = 1 +
Ψg · next
12c1ρg

{1 − Exp [−2c1ρgKp · t]} (95)

The evolution law of the stress-inhibited growth function, predicted by Eq.(94), is shown in

Figure 2 for different values of the elastic modulus. Compared to the experimental data reported

by Helmlinger et al. (1997)(Fig.1 therein), our theoretical predictions give a remarkably faithful

description of the stress-inhibition in the growth kinetics of multicellular spheroids. In particular,
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we find that an increase of the elasticity modulus implies a decrease both of the maximum volume

increase and of the characteristic growth time, all curves having the same initial kinetics.

In the case of bigger tumors, the duct diameter is large enough that the characteristic time-
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Figure 2: Plot of the homogeneous growth function g0(t) over time t,from Eq.(94), shown for
several values of elastic coefficient c1 (all the other material coefficients are set equal to one).

scales of growth and diffusion are of the same order. According to Eqs.(91,92), an inhibition

effect of growth arises from spatially limited nutrient diffusion inside tumor from the boundary.

Let us rewrite the two equations in dimensionless form:

˜̇J/J = Ãñ(R̃, t̃) −
[

(

g(Ro, t)

Ro

)4

− 1

]

(96)

˙̃n(R̃, t̃) =

(

g(Ro, t)

Ro

)2

∇̃R ·
(

g2(R, t)

J ·R2
∇̃Rñ(R̃, t̃)

)

− γnñ(R̃, t̃) · ˜̇J/J (97)

where t̃ = t/τc, R̃ = R/Rc, ñ = n/next are dimensionless variables, and:

τc =
1

3c1ρ0Kp
; Rc =

√

Dnτc; Ã =
Ψg · next

3c1ρ0
(98)

From experimental measurements, the elastic modulus for a tumor aggregate is c1ρg= 6 KPa

(Suresh, 2007), the diffusion coefficient of glucose is Dg= 4.22 10−11 m2 s−1, and the cell doubling
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time τc ranges between (in vitro) 14-28 hours and (in-situ) 20 days (Narayanan et al., 2010).

From the reported data, we derive that a characteristic length is given by
√
τc ·Dn= 1.4 mm

(in vitro) - 8 mm (in situ), to be compared versus the radius of the carcinoma, which is in

the the range of 0.2 (healthy)-5 (pathological) mm. A stationary solution (corresponding to

no volumetric growth rate in Eq.(96), i.e. g40 = 1 + Ã) occurs when a steady state where the

maximum amount of chemical free energy has been transformed into volumetric growth under

thermodynamical consistency. The transient time depends both on the nutrient uptake rate γn

and on the tumor size; the material parameter γn given by the ratio between the uptake rate

of the glucose (which in the general case is linked to oxygen concentration, cellular density and

the pH of the matter, as measured by Casciari et al. (2005)) and the volumetric growth rate.

Finally, as nutrients decay from the border to the core of the carcinoma, from Eq.(96) we expect

that in bigger tumors the growth rate localizes at the external annulus, while a mass transport

of interstitial fluid from the borders will act to restore a homogeneous mass density inside the

necrotic core. Such a consideration is in accordance with the histological observations in clinical

studies, where the increase in the size of the growing carcinoma determines the presence of a

large necrotic core surrounded by an annulus of very proliferative cells in contact with the duct

wall. The different evolution of the solid and liquid components inside the carcinoma is out of

reach for the proposed model, and can be treated considering a multiphase body in a mixture

theory (Ciarletta et al., 2011).

5.2 Remodeling laws in blood vessels: formation and dissipation of material

inhomogeneities

5.2.1 Second gradient solution of the nonlinear hyperelastic problem

In this section we consider the classical problems of the stress-driven growth and the genesis

of residual strains in blood vessels. In terms of continuum mechanics this problem concerns

the determination of thermodynamically-consistent remodeling laws for an incompatible grown

state. We focus on long vessels with negligible axial pre-stretch, so that we can assume a
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plane state of deformation. Because of the symmetry of the problem, the growth and elastic

deformation tensors can be expressed in the most general form as follows:

Fg =
∂g(R, t)

∂R
er̄ ⊗ eR + gθ(t)

g(R, t)

R
eθ̄ ⊗ eΘ (99)

Fe =
√

gθ(t)

√

r2(R, t) −A(t)

r(R, t)
er ⊗ er̄ +

1
√

gθ(t)

r(R, t)
√

r2(R, t) −A(t)
eθ ⊗ eθ̄ (100)

where the upper-barred unit vectors apply in the intermediate state (incompatible when gθ ̸= 1),

and A(t) represents the purely elastic part of the deformation which allows to fulfill the boundary

conditions with the given growth state. The dependence in time of gθ and A is characterized

by quite different time scales: while growth occurs with long characteristic time tg, the elastic

response related to A is related both on tg (implicitly, by gθ) and on the characteristic fast

time tl of the external load (i.e. the blood pulse), and tl << tg. Considering that the typical

viscoelastic relaxation time for soft tissues is about 100 s, the elastic variable A can be considered

as made of a fast oscillation on tl, and of a slow-varying average value < A >, calculated on the

characteristic time tg.

Defining the elastic Cauchy-Green tensor Ee = 1/2(FT
e Fe−I), arguments of material objectivity

suggest the following constitutive assumption for the blood vessel:

Ψ(F,∇RF) = detFg · Ψ0(Ee,∇R̄Ee) (101)

where:

Ψ0(Ee,∇R̄Ee) = c1 ·Ee : I + (∇R̄Ee)
T
...H
...∇R̄Ee − p · (detFe − 1) (102)

where c1 is the neo-Hookean elastic modulus, p is the incompressibility constraint, and H is the

sixth-order second-gradient elasticity tensor. Defining the second Piola-Kirchhoff hyperstress Ss

as follows:

Ss =
∂Ψ0

∂∇R̄Ee
=
∂Ψ0

∂Qe
.F−T

e (103)
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and recalling that (Ss)KIj = (Ss)KJi, from Eq.(101) the second gradient constitutive equation

can be written as:












(Ss)r̄r̄r

(Ss)r̄θ̄θ

(Ss)θ̄θ̄r













=













4k1 + k2 + 4k3 + 2k4 + 4k5 2k1 + 4k3 2k1 + k2
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2k1 + k2 2k1 + 4k5 k2 + 2k4
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(∇R̄Ee)rr̄r̄

(∇R̄Ee)θθ̄r̄

(∇R̄Ee)rθ̄θ̄













(104)

where kn(n = 1, .., 5) are the five material parameters needed to model the second gradient

dependence of the non-linear isotropic mechanical response of the tissue (dell’Isola et al., 2009).

Recalling the constitutive relations defined in Eqs.(55, 56), the Cauchy stress tensor σf and

hyperstress tensor σs can be written as:

σs = J−1(Ts)
T : [FT ,FT ] (105)

σf = J−1(F.Tf + ∇RF : Ts) (106)

Neglecting the body forces and the inertial terms in Eq.(17), the equilibrium equation is given

as follows:

∇r · σ∗ = ∇r · (σf −∇r · σs) = −v · ∇rm ≃ 0 (107)

where σf is a symmetric tensor from Eq.(41). The boundary conditions for the stress and

hyperstress at the outer (r = ro) and inner (r = ri) surface read:

(σf −∇r · σs) · er +  L(σser) =











0 at r = ro

−pi at r = ri

(108)

(er ⊗ er) : σs = (∇t
rer : IL)−1 · ∇t

r(er.σs) : IL = 0 at r = ro, ri (109)

where ∇t
r(·) = ∇r(·)(IL−er⊗er) is the spatial tangential gradient, IL is the spatial unit dyadic,

and we introduced the spatial operator  L(·) = (∇t
rer : IL)(er ⊗ er) : (·) − ∇t

r(er.(·)) : IL. The

meaning of the boundary condition in Eq.(109) stems by the observation that, using the surface

divergence theorem, over a closed surface
∮

 L(σser)rdθ = 0. Therefore, a vanishing hyperstress

term on the r.h.s. of Eq.(109) means a zero energy release due to variations of the reference
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material position for a fixed spatial configuration. Finally, the plane strain assumption allows

us to simplify the governing equilibrium equation as follows:

∂σ∗rr
∂r

+
σ∗rr − σ∗θθ

r
= 0 (110)

Considering the boundary conditions in Eqs.(108, 109), the solution is formally given by:

σ∗rr(r) = −
∫ ro

r

σ∗θθ − σ∗rr
r

dr (111)

pi =

∫ ro

ri

σ∗θθ − σ∗rr
r

dr (112)

In general, the boundary condition at the inner surface doesn’t involve the Lagrange multiplier

p, so it can be used to derive the elastic deformation A(t) as a function of the growth parameters

gθ, g(R, t) and of the initial dimensions Ri and Ro.

Starting from the solution given by Eqs.(111, 112), we will consider in the following two pos-

sible remodeling laws for the formation and the dissipation of residual strains in healthy and

pathological conditions, respectively.

5.2.2 Remodeling towards homeostasis: formation laws of residual strains in ar-

teries

The formation of residual strains in arteries is a process occurring at the early stages of their

development. In this section, we introduce a simple evolution law of material inhomogeneities

that takes into account the coupling between growth and pressure inside the vessel. As empha-

sized by Humphrey and Wilson (2003), the local production of growth factors inside the vessel

is driven by the local response of smooth cells receptors, which are circumferentially oriented

within the tissue wall. While it is still physiologically unclear if the feedback mechanism is

stress- or strain-driven, the homeostatic state in physiological arteries seems to correspond to a

homogeneous deformation inside the tissue (Ogden, 2003). As discussed in the previous example,

the equilibrium condition given by Eq.(107) imposes that a generally inhomogeneous volumetric

growth process must be regulated by some internal regulatory mechanisms in order to achieve
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a homogeneous deformation inside the vessel. In terms of our continuum treatment, on the

basis of the relations in Eqs.(34, 58), we can consider that the remodeling processes rearrange

the material inhomogeneities in order to create a physical state where ∇RΨ = 0 everywhere.

From Eqs.(99,100) this situation corresponds to a steady state solution at time-scale tr given

by: g(R, t) = gr(tr) ·R, < A > (tr) = 0.

For matters of simplicity, we assume slow and homogeneous remodeling and growth processes

(detFg = J = gθ(t) · g2r (t), with [ġθ(t), ġr(t)] << ṗi ), and we set the initial conditions

gθ(0) = gr(0) = 1. In this case, the non-zero components of the second gradient tensor of

the deformation are the following:

(∇RF)rRR =
AJ

(A+ JR2)3/2
(113)

(∇RF)rΘΘ = (∇RF)θRΘ = (∇RF)θΘR = − A

R2(A+ JR2)1/2
(114)

In order to evaluate the contribution of the second order terms to the elastic response, let us

recall that the material coefficients ki in Eq.(104) contain an internal length-scale l, that can be

expressed as l =
√

ki/c1 according to Mindlin (1965). In terms of strain energy contributions,

if l << Ro the second gradient terms from Eq.(114) can be neglected compared to the first

order elastic deformation. In this case, using the constitutive assumptions in Eq.(101, 102), the

boundary condition in Eq.(112) can be rewritten as:

pi
2c1

=
gθJ

2
· R2

o −R2
i

(JR2
o +A)(JR2

i +A)
·A− gθ

2
· ln

(

JR2
o +A

JR2
i +A

)

+
1

gθ
ln

(

Ro

Ri

)

+O(σs) (115)

where pi can be considered as the physiological average value inside the blood vessel, and we

neglige the direct dependence of the Cauchy hyperstress in O(σs). Under these assumptions, a

remodeling law for the material growth velocity is therefore independent on the second gradient

transplant, whose evolution, in turn, will only drive changes on mass diffusivity properties.

Keeping this separation in mind, and knowing that volumetric growth (given by J̇/J = ḞgF
−1
g :

I) happens at the very early development, we can consider that the remodeling processes have a

longer characteristic time, imposing at the time scale tr that J̇/J = 2ġr/gr + ġθ/gθ ∼ 0. Making
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the time derivative of the slow variables in Eq.(115) at this characteristic time-scale tr, we obtain

that:

[

pi
2c1

− 2

gθ
ln

(

Ro

Ri

)]

· ġθ
gθ

= −Ȧ ·
(

gθ · (R2
o −R2

i ) · (2R2
oR

2
i +A(R2

o +R2
i ))

2(JR2
o +A)2(JR2

i +A)2

)

(116)

The term in square bracket in Eq.(116) is negative at the initial time, and we look for a steady

homeostatic solution (∇RF) = 0 in Eqs.(113, 114), so that a system of coupled evolution laws

for the remodeling processes can be imposed as follows:

ġθ
gθ

= −K+ ·A = −2
ġr
gr

(117)

which, from Eq.(116), drives the evolution of the deformation inside the blood vessel as:

Ȧ

A
= K+

2(JR2
o +A)2(JR2

i +A)2
[

pi
2c1

− 2
gθ
ln
(

Ro

Ri

)]

gθ · (R2
o −R2

i ) · (2R2
oR

2
i +A(R2

o +R2
i ))

≤ 0 (118)

The remodeling process described in Eqs.(117) forces the evolution of the material inhomo-

geneities towards a homeostatic steady state configuration where A(tr) = 0, and gθ(tr) can be

determined from Eq.(115) as:

pi
2c1

=

(

1

gθ(tr)
− gθ(tr)

)

ln

(

Ro

Ri

)

(119)

The remodeling process creates an incompatible grown state (gθ(tr) < 1), that originates the

formation of residual strain within the blood vessel (residual compression at the inner surface

and residual tension at the outer), so that the tissue has a non-zero strain energy function for

Fe = I. Moreover, it has been shown that a bifurcation of the elastic equilibrium can occur for

a threshold value of gθ(tr) in thick vessels (Destrade et al., 2010).

During the creation of a residually-stressed configuration, the remodeling processes consume

energy inside the tissue, so they must be driven by a local strain energy source Ψs in order to

evolve. The dissipation inequality in Eq.(72) provides an estimate of the minimum value of local

strain energy source Ψs compatible with thermodynamical requirements:

−
(

ġθ
gθ

+
ġr
gr

)

· (bf )Θ̄Θ̄ − ġr
gr

· (bf )R̄R̄ + Ψs ≥ 0 (120)
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Putting together the evolution laws for remodeling in Eq.(117) with the constitutive assumptions

in Eqs.(71,101,102), the previous inequality can be transformed into the following:

Ψs ≥
K+A

2
· [(bf )R̄R̄ − (bf )Θ̄Θ̄] =

c1K
+A · ((JR2 +A)2 − g2θJ

2R4)

gθR2(JR2 +A)
≥ 0 (121)

The previous dissipation inequality states that the remodeling processes can evolve if and only if

the local driving forces of the material inhomogeneities are above a minimum threshold intensity

dictated by the local Eshelbian coupling.

5.2.3 Dissipation of residual strains: evolution laws for aneurysms

While in the previous paragraph we studied the thermodynamical evolution of an healthy artery

towards an homeostatic condition, in this section we focus on the remodeling laws in patho-

logical conditions, such as the typical case of aneurysm formation in arteries. The loss of the

homeostatic state can be linked both to the degradation of elastin or collagen fibers, and to an

abnormal regulation of the feedback mechanisms controlling tissue remodeling. In the following

we will consider the two hypothesis separately, formulating simple constitutive models for energy

dissipation.

As discussed in the previous paragraph, at the beginning of the remodeling processes, which

possibly may lead to aneurysm formation, the artery undergoes a homogenous deformation

expressed as:

Fe =
√

gθ(0)er ⊗ er̄ +
1

√

gθ(0)
eθ ⊗ eθ̄ (122)

The only non-zero components of the second gradient of the deformation are:

(∇r̄Fe)rθ̄θ̄ = (∇r̄Fe)θr̄θ̄ =
gθ(0) − 1
√

J(0)R
(123)

from which we recall how second gradient effects in stress become more relevant for small vessels

(i.e. capillaries). The Eshelby stress given by Eq.(71) can be rewritten, using the constitutive

assumptions in Eqs.(102, 103), as follows:

bf (ψ) = J ·
(

ψ0(Fe,Qe)IR̄ − 2c1F
T
e .Fe + pIR̄ − 2Ss.F

T
e : Qe

)

(124)
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If we deal with large arteries, e.g. the abdominal ascending aorta (internal diameter about 36

mm), we can neglect second order terms in Eq.(124), so that the dissipation inequality in Eq.(72)

can be rewritten as:

−ρ0J ·
(

ψ0IR̄ − 2c1F
T
e .Fe + pIR̄

)

: Lg + bs

... Λ̇ ≥ 0 (125)

In the previous equation, further developments can be written as follows:

(

ψ0IR̄ − 2c1F
T
e .Fe + pIR̄

)

: Lg = −
(

ġθ
gθ

+
ġr
gr

)

· (Ψ0 − (σf )θθ) −
ġr
gr

· (Ψ0 − (σf )rr) (126)

bs = ρ0J(Ss.F
T
e : [F−T

g ,F−T
g ]).F (127)

Recalling the elastic solution in Eq.(111), the term (σf )rr in Eq.(126) is always negative, so a

possible remodeling law for arterial aneurysms is given by:

ġθ
gθ

= − ġr
gr

= 1/tc (128)

where tc is a positive definite material constant, representing the characteristic time of volume

absorption (note that J̇/J = −1/tc). A numerical solution of the remodeling law expressed

by Eq.(128) is depicted in Figure 3, where the initial homogeneous solution evolves with an

exponential increase of the outer and inner radii under a constant internal pressure.

If we focus on the possibility that material remodeling is governed by an abnormal regula-

tion of the homeostatic mechanisms (driven, for example, by a long-term persistence of blood

hypertension), we can impose that the inhomogeneities evolve at constant volume, so that:

ġθ
gθ

+ 2
ġr
gr

= 0 (129)

In this scenario, the first term of the dissipation inequality in Eq.(125) can be written as:

(

ġr
gr

)

· [(σf )rr − (σf )θθ] = −
(

ġr
gr

)

·
[

2c1 · ((JR2 +A)2 − g2θJ
2R4)

gθR2(JR2 +A)

]

≥ 0 (130)

Considering that the term between square bracket is always positive for A > 0 and gθ < 1, a

simple remodeling law in this range of values can be written as ġθ/gθ = −2ġr/gr = 1/trm. The

numerical solution for this evolution law is depicted in Figure 4; in this case trm is a characteristic
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Figure 3: Evolution of the outer an inner radii (left) and thickness ratio (right) according to
the evolution equation in Eq.(128) for an ascending aorta (length-scales given in mm). The
numerical solution has been calculated setting pi=160mmHg, c1=150KPa and J(0)=1, with an
initial homogeneous deformation (gθ=0.777). The depicted curves have been obtained solving
Eq.(115) using Newton’s method.

time of the remodeling process, which happens this time without volume variations. In energetic

terms, such an evolution of material inhomogeneities correspond to a progressive dissipation of

the residual strain that had been formed during early arterial development.

Finally, we proposed a simplified analysis, where the material has been considered isotropic and
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Figure 4: Evolution of the outer an inner radii (left) and thickness ratio (right) according to
the evolution equation ġθ/gθ = −2ġr/gr = 1/trm for an ascending aorta (length-scales given in
mm). The numerical solution has been calculate setting pi=160mmHg, c1=150KPa and J(0)=1,
from an initial homogeneous deformation (gθ=0.777). The depicted curves have been obtained
solving Eq.(115) using Newton’s method.

the volumetric growth is homogeneous. The proposed evolution laws for aneurysms formation are
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compatible with the experimental data on human aorta, reporting an increase of the opening

angle (i.e. a decrease of residual stresses) as a function of age (Okamoto et al., 2002). In a

more realistic approach, one should take into account that the tissue is strongly directionally

reinforced and growth can be inhomogeneous in pathological conditions, including the formation

of arterial plaques. Even if adding these characteristics in the hyperelastic model would change

the expression of the deformation field over time, the remodeling laws would be still valid,

because the sign of (σf )rr and (σf )rr − (σf )θθ wouldn’t change, being uniquely driven by the

transmural pressure.

6 Discussion and Conclusion

In this manuscript we have derived the kinematic description and the main balance equations

of a novel thermomechanical growth theory for a second-gradient continuum. Mass changes are

defined by a material isomorphism where growth processes act as local rearrangements of the

material inhomogeneities: a first-order uniformity transplant determines the extent of volumet-

ric growth, while a second-order transplant takes into account the curvature effects induced by

a local differential deformation. In the framework of a second gradient hyperelastic theory, we

have stated the first single-phase continuum theory accounting both for volumetric growth and

for mass transport phenomena. The diffusion of biochemical species (e.g. morphogens, nutri-

ents, migration signals) inside a biological matter are considered in the theory of configurations

forces with internal variable to describe the constitutive equations of the model. Mass trans-

port phenomena have been found to depend both on the first- and on the second-order material

connections, possibly withstanding a chemotactic behavior with respect to diffusing biochemical

agents. Interestingly, we have demonstrated that the driving forces of mass diffusion can be

written in terms of covariant material derivatives based on the two connections, reflecting in a

purely geometrical manner the presence of a (first-order) torsion and a (second-order) curvature.

This result of our study has important implications in other fields, e.g. modeling local struc-

tural rearrangements of translational and rotational dislocations. Thermodynamical arguments
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have also shown that the first- and second-order Eshelby tensors are the stress measures driving

the rearrangement of the first and the second-order material inhomogeneities, respectively. In

particular, an evolution law for the velocity gradient of the first-order transplant can be built as

a function of the symmetric first-order Eshelby stress in the grown state (see Eq.73), extending

a well-known result for inelastic materials. Another major result is the definition of the first

stress-driven evolution law for the second-order transplant, expressed in Eq.(81) as a function

of the completely material Eshelby hyperstress. The expression of remodeling evolution laws

for first- and second-order material inhomogeneities is of great importance for a correct ther-

modynamical description of morphogenetic events. The illustrated theory has been applied to

two examples of biomechanical interest. In the first example, we show how a simple Eshelbian

coupling in the first-order evolution law can describe the stress-driven inhibition for the growth

of a ductal carcinoma, regardless of the spatial availability of growth factors. The depicted

behavior represents a well-known experimental result on the growth of multicellular spheroids

(Helmlinger et al., 1997), supporting the idea that the distribution of mechanical stresses can be

actively implicated in the initiation and the development of morphogenetic movements (Bischofs

and Schwarz, 2003). In the second biomechanical example, we apply the second-gradient theory

to explain the generation of residual strains in healthy arteries and the material rearrange-

ment during aneurysms formation. In particular, we have formulated a growth evolution law

with a stress-driven feedback, based on thermodynamical compatibility, for the regulation of

homeostatic conditions of a healthy artery. Our results are consistent with the experimental

observations that cell organization in soft media are strongly influenced by mechano-sensing

(Nelson et al., 2005), suggesting that homeostasis is the equilibrium thermodynamical state (if

any) where the internal energy of the continuum is homogeneously distributed. We conclude that

diffusive mass fluxes might play a fundamental role in the active regulations of homeostatic con-

ditions, possibly being involved in the integral feedback mechanisms driving local growth rates

(Shraiman, 2005). On the other hand, we have demonstrated how the formation of aneurysms

can result from the disruption of these regulation mechanisms, through simple evolution laws
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where the Eshelbian coupling drives a spontaneous dissipation of the residual energy.

Although the complexity of the governing equations makes difficult to handle them analytically

when mass transport, growth and material remodeling occur on characteristic times of the same

order, the proposed continuum theory is suitable for computational applications. Notably, it

avoids the typical drawbacks of multiphase models in the definition of boundary conditions and

partial stresses. The coupled treatment of mass transport phenomena with the evolution of

material inhomogeneities can bring insights into the dynamics of cellular migrations. Cellu-

lar movements are, in fact, crucial not only for normal embryonic development or in healing

processes (Jacinto et al., 2001), but also in some pathological conditions, abnormal mobility

and adhesiveness in adult cells being involved in the initiation of tumor metastasis (Aman and

Piotrowski, 2010). Accounting for simultaneous growth and remodeling processes which may de-

pend on local concentration of diffusing morphogens, the proposed constitutive theory can help

deciphering the control mechanisms regulating the orchestration of cellular dynamics during

embryogenesis (Lecuit and Lenne, 2007; Ciarletta et al., 2009). In particular, a second-gradient

model is necessary when dealing with geometrical feedbacks in growth control depending on local

curvature. The determination of the local geometrical control on cell growth is one of the main

challenges in developmental biology, as it has been observed that cell shape alone may govern

whether individual cells grow or die (Chen et al., 1997). Finally, the biomechanical quantifica-

tion of curvature-dependent effects on growth can help not only in understanding the growth

patterns of cellular aggregates, but also has important applications for optimizing scaffolds in

regenerative medicine and tissue engineering (Rumpler et al., 2008).
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