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Abstract

This paper proposes an EM algorithm for non-parametric mixed-e�ects models (NPEM algorithm)
and applies it to the National Institute for the Educational Evaluation of Instruction and Training
(INVALSI) data of 2013/2014 as a tool for unsupervised clustering of Italian schools. The main
novelties introduced by NPEM algorithm, when applied to hierarchical data, are twofold: �rst NPEM
allows the covariates to be group speci�c; second, it assumes the random e�ects to be distributed
according to a discrete distribution P ∗ with an (a priori) unknown number of support points. In doing
so, it induces an automatic clustering of the grouping factor at higher level of hierarchy, enabling
the identi�cation of latent groups of schools that di�er in their e�ect on student achievements. The
clustering may then be exploited through the use of school level features.

Keywords: EM algorithm; Non-parametric mixed-e�ects models; Student achievements; School
value-added.
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1 Introduction

The analysis of education systems is a subject receiving particular attention in the last decades. During
their learning process, students are in�uenced by multiple aspects coming from both their personal
and school life. Personal motivation, family, friends and geographical context play a fundamental
role in education student performance and the choice of the school is also particularly relevant. The
literature provides numerous studies aimed at measuring and explaining the �school e�ect�, intended
as the impact that the school the student is attending has on his/her achievements, [6], [8], [9] and [18].
In [6], the authors state the importance of considering the �unit-of-analysis� (students, classes, schools),
when speaking about educational research, and they argue that hierarchical models should constitute
the basic paradigm for quantitative research on student learning. Also, in [18], the authors, given
the hierarchical structure of education data, underlie the importance of measuring school e�ects and
present di�erent approaches to analyze nested data. In the Coleman report [8], the author views
the education as a process in which students' performance (output) is produced from inputs including
school resources, teacher quality, family attributes, and peer quality. In his perspective, policy attention
should be focused on inputs that are both directly controlled by policymakers (characteristics of schools,
teachers, curricula, etc.) and those that are �uncontrolled� (family, friends, the learning capacities of
the student, etc.). Also Hanushek, in [9] shows that schools' characteristics are of importance in
determining student outcomes.

The nature and the magnitude of the school impact on students attainments strongly depend on
the type of school system and related regulations. There are countries where the education system
is totally centralized and, therefore, school programs and practices are very homogeneous across the
territory. On the other hand, in the last years the dynamics of education systems are changing and more
and more countries are decentralizing the power on decision about education, giving more autonomy
to schools [20]. This phenomenum leads to di�erences across schools that are re�ected on di�erences
across student achievements. The Programme for International Student Assessment (OECD-PISA,
www.pisa.oecd.org) tests 15 year-old students in mathematics, reading and science in more than 70
countries all over the world, every three years since 2000. Studies on PISA data show that Italy is a
country where the percentage of variability in student achievements given to the grouping factor within
schools is quite high with respect to other countries [10]. This means that in Italy the added-value that
schools give to their students is relevant: in other words, attending a certain school instead of another
produces an e�ect on student's skills. Schools di�er under many aspects: size, location, school body
composition, teachers, school principal management style and much more. All these aspects contribute
to the students' learning process, creating heterogeneity within their achievements.

Focusing on the Italian context, the National Institute for the Educational Evaluation of Instruction
and Training (INVALSI) tests students all over the country since 2004, both in their mathematics and
literature skills, following a procedure similar to OECD-PISA. These tests are done at several grades,
starting from primary schools up to the end of secondary schools, producing longitudinal data that
collect multiple observations for each student. Also at national level, many studies con�rm that the
magnitude of the school e�ect on student attainments is substantial. In [1], [13] and [14] the authors
observe that the percentage of variability in student attainments in INVALSI tests explained by the
school (PVRE) depends on the geographical macro-area and di�ers between mathematics and reading
performances. In particular, this percentage is higher in mathematics and especially in Southern Italy,
reaching peaks of 20%. Moreover, results of PISA data in Italy report that, in mathematics, the PVRE
exceeds the 40% [10].

An important characteristic of educational administrative data is their hierarchical structure: stu-
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dents are naturally nested within schools. In the perspective of the learning process investigation, it
is important to disentangle the e�ects given by each level of hierarchy and, to the best of our knowl-
edge, multilevel models are one of the best tools to �t the nature of nested data, [5], [22]. Indeed,
multilevel models take into account the hierarchical nature of data and are able to quantify the part
of variability in the response variable that is given to each level of grouping, [16]. In particular, in
the case of students nested within schools, they are able to estimate the �school e�ect�, that is the
value-added of the school to its student achievements. In the context of education research, the use of
�xed (FE) and random e�ects (RE) in hierarchical regression is frequently discussed and, in the last
decades, their e�ectiveness in terms of policy-relevant inference has been carefully analyzed. In [7], the
authors compare the robustness of FE models with the modelling �exibility and potential e�ciency of
RE models, in a two-level hierarchical linear regression. The common issue concerning both the two
approaches is linked to what economics literature calls �exogeneity� assumption (i.e. assuming that
the individual-level residuals are independent of the covariates), that in a policy-relevant perspective
is crucial in order to interpret the estimated coe�cients as causal e�ects, while, when the assumption
does not hold, they can be considered as estimates of associations. Moreover, RE models add the so
called �RE assumption�, i.e., that random e�ects are uncorrelated with any of the covariates used in
the model. Again, this assumption is crucial when the intention is to use RE models for policy causal
inference. This is why, in the education economic context, it is important to adjust the model for
unobserved characteristics, at student, family and school levels. Also, in [15] the authors state that
the unobserved characteristics at both student and school levels are one of the main issues that bias
the estimates of value-added education production models, when the aim is to explain the e�ect of
school inputs and past skills on student test scores. In this perspective, it is worth to notice that the
aim of this work is to identify latent clusters of schools that di�er in the association of their student
attainments across di�erent years. Therefore, we model these clusters by choosing as random e�ects a
discrete distribution P ∗ with an unknown �nite number of mass points, that is able to detect a latent
structure among the Italian schools.

From a practical point of view, in Italy students must attend �ve years of primary school, three
years of junior secondary school and �ve years of upper secondary school. If we focus on junior
secondary schools, the �school e�ect� can be seen as the ability of these schools in receiving students
from the primary schools with certain skills and give them new and increased skills at the end of the
three years. Our analysis aims then at identifying clusters of schools, standing on the relationship
between their students test scores at the beginning and at the end of the three years (grades 6 and 8
respectively). Supposing that we can model the relationship between students test scores at di�erent
grades by means of linear models, which means that students scores at di�erent grades are assumed to
be linearly correlated, the regression line between the two grades test scores might be characterized by
di�erent parameters across schools. The scope is to identify clusters of schools within which schools
perform in a similar way (in the sense that the linear relation between their students scores at grades
6 and 8 is similar) and across which they perform di�erently.

In the literature, multilevel linear models have already been applied to INVALSI data, with a view
to estimating schools value-added, modeled by means of parametric distributions, after adjusting for
students characteristics, [1], [13], [14] and [19]. The method that we present in this article is new and
has a di�erent scope with respect to the previous literature. Our aim is to develop and apply an EM
algorithm for non-parametric mixed-e�ects models (NPEM algorithm) for hierarchical data (students
nested within schools), in order to perform an in-built classi�er of the grouping factor (schools). The
idea is that we perform a linear two-level model, in which we consider students nested within schools,
where the random e�ect (school e�ect) is non-parametric and it follows a discrete distribution with an
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unknown number of masses. The algorithm itself identi�es the number of masses, not �xed a priori,
that represent clusters in which schools are grouped, standing on the achievements trend of their
students. Both the algorithm and its application to the educational context are new to the literature.

The consequence of the identi�cation of clusters of schools is that we can recognize how many
and which di�erent behaviors characterize Italian schools and, therefore, identify a latent structure
within them. In a second stage, this enables the pro�ling of clusters by means of school level variables.
The idea is that there could be variables at school level that in�uence the school e�ect on student
achievements. Therefore, in the second part of the analysis we explore the presence of patterns of
school characteristics among clusters of schools.

The paper is organized as follows: in Section 2 we describe the model and methods - NPEM
algorithm - together with a simulation study; in Section 3 we present the INVALSI dataset and report
the application of NPEM algorithm to INVALSI data, shows the results and explores the relation
between clusters and school characteristics; in Section 4 we draw our conclusions.

All the analysis are made using R software [17]. The code for NPEM algorithm is available upon
request to the authors.

2 Model, methods and simulation study

In this section, we present the non-parametric mixed-e�ects model (Section 2.1), the EM algorithm
for the estimation of its parameters (Section 2.2) and a simulation study (Section 2.3).

2.1 Non-parametric mixed-e�ects model

We start considering a general mixed-e�ects (two-level) linear model, where each observation j, for
j = 1, . . . , ni, is nested within a group i, for i = 1, . . . , N . The model takes the following form:

yi = Xiβ + Zibi + εi i = 1, . . . , N

εi ∼ N (0, σ2
1ni

) ind.
(1)

where i is the group index, N is the total number of groups, ni is the number of observations within
the i-th group and

∑N
i=1 ni = J . yi = (y1i, . . . , ynii) is the ni-dimensional vector of response variable

within the i−th group, Xi is the ni× (p+ 1) matrix of �xed e�ects, β is the (p+1)-dimensional vector
of their coe�cients, Zi is the ni × (r + 1) matrix of random e�ects, b is the (r+1)-dimensional vector
of their coe�cients and εi is the vector of errors. Fixed e�ects are identi�ed by parameters associated
to the entire population, while random ones are identi�ed by group-speci�c parameters.

In the parametric framework of mixed-e�ects linear models, coe�cients of random e�ects are as-
sumed to be distributed according to a Normal distribution with unknown parameters that, together
with the coe�cients of �xed e�ects and σ2, can be estimated through methods based on the maxi-
mization of the likelihood or the restricted likelihood functions [16].

The main novelty introduced here is that we move to a non-parametric framework, assuming the
coe�cients bi to be distributed according to a discrete distribution P ∗, assuming M sets of values
(c0l, . . . , crl) for l = 1, . . . ,M , where M ≤ N . This means that each group i, for i = 1, . . . , N , is
assigned to a cluster l, that is characterized by random parameters (c0l, . . . , crl). This non-parametric
modelling enables to identify a latent structure among the groups, that are clustered by the model
into an unknown number of discrete masses. Therefore, the two main advantages are that, �rst of all,
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we can identify how many latent clusters exist within the groups of data and, second, we can estimate
the parameters associated to each cluster, pointing out their di�erences.

Under these assumptions, the non-parametric mixed-e�ects model takes the following form:

yi = Xiβ + Zicl + εi i = 1, . . . , N l = 1, . . . ,M

εi ∼ N (0, σ2
1ni

) ind.
(2)

In particular, from now on, without loss of generality, we consider the case with one random intercept,
one random e�ect and one �xed e�ect1:

yi = xiβ + 1c0l + zic1l + εi i = 1, . . . , N l = 1, . . . ,M

εi ∼ N (0, σ2
1ni

) ind.
(3)

where 1 is the ni-dimensional vector of 1, M ≤ N is the number of clusters (mass points) unknown
a priori. Coe�cients cl, for l = 1, . . . ,M , are distributed according to a probability measure P∗ that
belongs to the class of all probability measures on R2. P∗ is a discrete measure with M support points
that can then be interpreted as the mixing distribution that generates the density of the stochastic
model in (3). The ML estimator P̂∗ of P∗ can be obtained following the theory of mixture likelihoods in
[11] and [12], where the author proves the existence, discreteness and uniqueness of the non-parametric
maximum likelihood estimator of a mixing distribution, in the case of exponential family densities. In
particular, the author faces statistical problems (existence, discreteness, support size characterization
and uniqueness) transforming them in geometrical problems, concerning support hyperplanes of the
convex hull of the likelihood curve. So, the ML estimator of the random e�ects distribution can be
expressed as a set of points (c1, . . . , cM ), where M ≤ N and cl ∈ R2 for l = 1, . . . ,M , and a set of

weights (w1, . . . , wM ), where
∑M
l=1 wl = 1 and wl ≥ 0 for each l = 1, . . . ,M . Given this, we propose an

algorithm for the joint estimation of σ2, β, (c1, . . . , cM ) and (w1, . . . , wM ), that is performed through
the maximization of the likelihood, mixture by the discrete distribution of the random e�ects,

L(β, σ2|y) = p(y|β, σ2) =

M∑
l=1

wl

(2πσ2)
J
2

exp

− 1

2σ2

N∑
i=1

ni∑
j=1

(yij − βxij − c0l − c1lzij)2
 ,

(4)

with respect to the �xed coe�cient β, the error variance σ2 and the random e�ects distribution
(cl, wl), for l = 1, . . . ,M . For each l = 1, . . . ,M , cl represents the group-speci�c parameters and wl
the corresponding weight in the mixture equation (3).

The algorithm that we propose is inspired by the one proposed in [4], but it considers the linear
functional dependence between response and predictors and it makes three main improvements: (i)
the optimization of the Maximization step is computed in closed form, (ii) the covariates can be
group speci�c and (iii) the initialization of the parameters' range is computed in a more robust and
generalizable way. The �rst point directly derives from the linearity assumption, while the second
one means that, di�erently from [4], we allow the group covariate to be di�erent both in number
of observations and in the values they assume across groups. Regarding the initialization of the
parameters' range, we de�ne it computing a single regression for each one of the N groups and assuming
a uniform distribution of N mass points among the estimated parameters. The idea at the base of the

1This choice is due to the case considered in the application to INVALSI dataset, in Setion 3.2
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algorithm is also similar to the one proposed in [3], but while in [3] the authors need to �x a priori
the number of discrete points of the mixing distribution, our algorithm identi�es itself the number of
support points M, standing on given tolerance values that we �x depending on the problem.

2.2 The NPEM algorithm

The proposed EM algorithm is an iterative algorithm that alternates two steps: the expectation step
(E step) in which we compute the conditional expectation of the likelihood function with respect to
the random e�ects, given the observations and the parameters computed in the previous iteration; and
the maximization step (M step) in which we maximize the conditional expectation of the likelihood
function. At each iteration, the EM algorithm updates the parameters in order to increase the likelihood
in (4) and it continues until a �xed number of iterations (IT) is reached. In particular, the update is
given by:

w
(up)
l =

1

N

N∑
i=1

Wil for l = 1, . . . ,M (5)

(β(up), c
(up)
1 , . . . , c

(up)
M , σ2(up)) = arg max

β,cl,σ2

M∑
l=1

N∑
i=1

Wil ln p(yi|β, σ2, cl) (6)

where

Wil =
wl p(yi|β, σ2, cl)∑M
k=1 wk p(yi|β, σ2, ck)

(7)

and

p(yi|β, σ2, c) =
1

(2πσ2)
ni
2

exp

− 1

2σ2

ni∑
j=1

(yij − βxij − c0l − c1lzij)2
 . (8)

Coe�cients Wil represent the probability of bi being equal to cl conditionally to observations yi
and given the �xed coe�cient β and the variance σ2.

The maximization in equation (6) involves two steps and it is done iteratively. In the �rst step,
we compute the arg-max with respect to the support points cl, keeping β and σ2 �xed to the last
computed values. In this way, we can maximize the expected log-likelihood with respect to all support
points cl separately, that means

c
(up)
l = arg max

c

N∑
i=1

Wil ln p(yi|β, σ2, c) l = 1, . . . ,M. (9)

Since we are considering the linear case, it is possible to perform this maximization step in closed-
form. With regard to model (3), the estimates of the coe�cients of random e�ects are:

ĉ0l =

∑N
i=1 wil

∑ni

j=1(yij − β̂xij − ĉ1lzij)
ni

∑N
i=1 wil

(10)

and
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ĉ1l =

∑N
i=1 wil

∑ni

j=1 yijzij −
(
∑N

i=1 wil

∑ni
j=1 yij)(

∑N
i=1 wil

∑ni
j=1 zij)

ni
∑N

i=1 wil∑N
i=1 wil

∑ni

j=1 z
2
ij −

(
∑N

i=1 wil

∑ni
j=1 zij)

2

ni
∑N

i=1 wil

+

β̂(
∑N

i=1 wil

∑ni
j=1 zij)(

∑N
i=1 wil

∑ni
j=1 xij)

ni
∑N

i=1 wil
− β̂

∑N
i=1 wil

∑ni

j=1 xijzij∑N
i=1 wil

∑ni

j=1 z
2
ij −

(
∑N

i=1 wil

∑ni
j=1 zij)

2

ni
∑N

i=1 wil

.

(11)

In the second step, we �x the support points of the random e�ects distribution computed in the
previous step and we compute the arg-max in equation (6) with respect to β and σ2. Again, this step
can be done in closed-form and the estimates of the parameters, with regard to model (3), are given
by:

β̂ =

∑M
l=1

∑N
i=1 wil

∑ni

j=1(yijxij − ĉ0lxij − ĉ1lzijxij)∑M
l=1

∑N
i=1 wil

∑ni

j=1 x
2
ij

(12)

and

σ̂2 =

∑M
l=1

∑N
i=1 wil

∑ni

j=1(yij − β̂xij − ĉ0l − ĉ1lzij)2

ni
∑M
l=1

∑N
i=1 wil

. (13)

Notice that, since wl = p(bi = cl), then

Wil =
wl p(yi|β, σ2, cl)∑M
k=1 wk p(yi|β, σ2, ck)

=
p(bi = cl) p(yi|β, σ2, cl)

p(yi|β, σ2)
=

=
p(yi,bi = cl|β, σ2)

p(yi|β, σ2)
= p(bi = cl|yi, β, σ2).

(14)

Therefore, in order to compute the point cl for each group i, for i = 1, . . . , N , we maximize the
conditional probability of bi given the observations yi, the coe�cient β and the error variance σ2. So
that, the estimation of the coe�cients bi of the random e�ects for each group is obtained maximizing
Wil over l, that is

b̂i = cl̃ where l̃ = arg max
l

Wil i = 1, . . . , N. (15)

The algorithm starts considering a given distribution with N support points for the coe�cients of
random e�ects and a starting estimate for the coe�cients of �xed e�ects. In particular, the starting N
support points are obtained �tting a simple regression within each group and estimating the couple of
parameters (both the intercept and the slope) for each one of the N groups. The weights are uniformly
distributed on these N support points (each weight is equal to 1/N). Regarding the starting values of
β and σ2, they are estimated �tting a unique linear regression on the entire population.

During the iterations, the EM algorithm performs the support reduction of the discrete distribution,
in order to identify M < N mass points in which the N groups are clustered. The support reduction is
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made standing on two criteria. The former is that we �x a threshold D and if two points cl and ck are
closer than D, in terms of euclidean distance, they collapse to a unique point cl,k, where cl,k = cl+ck

2
with weight wl,k = wl + wk. The latter is that, starting from a given iteration up to to end, we �x a
threshold w̃ and we remove mass points with weight wl ≤ w̃ or that are not associated to any group.
When one or more mass points are deleted, the remaining weights are reparameterized in such a way
that they sum up to 1:

Sw =

Mnew∑
l=1

woldl

wnewl =
woldl
Sw

∀l = 1, . . . ,Mnew

(16)

where Mnew is the total number of masses after deleting the ones associated to weight wl ≤ w̃ or not
associated to any group, wold are the old remaining weights and wnew are the new reparameterized
weights.

The sketch of the algorithm is shown in Algorithm 1. Regarding the estimates of the parameters
of Eq. (3), the algorithm updates them until convergence or until it reaches the maximum number
of iterations �xed a priori for this stage (itmax). The convergence is reached when all the di�erences
between the estimates of the parameters at two consecutive iterations are smaller than �xed tolerance
values. In particular, we �x the tolerance values for the estimates of both the parameters of �xed and
random e�ects (tollF and tollR respectively).

The choice of the maximum numbers of iterations at di�erent steps (it, it1, itmax) depends on
the complexity of the data and on the consequent velocity of their clustering. The thresholds D and
w̃ are two complexity parameters that a�ect the estimation of the non-parametric distribution: D
governs the minimum di�erence (in terms of distance) between clusters - the higher is D, the lower is
the number of clusters; w̃ re�ects the minimum percentage of groups that we allow within each cluster.
The values of tollF and tollR depend on the scale of the parameters.

It is worth noting that since the optimization steps are done in closed-form, the algorithm is not
particularly time-consuming and, in both the simulation study and in the application, it converges in
less than 30 iterations.
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Algorithm 1: EM algorithm for non-parametric mixed-e�ects models

input : Initial estimates for (c
(0)
1 , . . . , c

(0)
M ) and (w

(0)
1 , . . . , w

(0)
M ), with M = N ;

Initial estimates for β(0) and σ2(0);
Tolerance parameters D, w̃, tollR, tollF, it, it1, itmax.

output: Final estimates of c
(it)
l , w

(it)
l , for l = 1, . . . ,M , β(it) and σ2(it).

for k ∈ 1, . . . , it do

compute the distance matrix DIST (where DISTst =
√

(c0s − c0t)2 + (c1s − c1t)2 is the
euclidean distance between each couple of mass points s, t ∀s, t = 1, . . . ,M, s 6= t);
if DISTst < D (∀s, t = 1, . . . ,M, s 6= t) then

collapse masses s and t to a unique mass point;
compute the new distance matrix DIST;

if k ≥ it1 then

if w
(k)
l ≤ w̃ (∀l = 1, . . . ,M) then
delete mass point l;
reparameterize the weights according to Eq. (16);

given c
(k−1)
l , w

(k−1)
l for l = 1, . . . ,M , β(k−1) and σ2(k−1), compute the matrix W according

to Eq. (7);

update the weights w
(k)
1 , . . . , w

(k)
M according to Eq. (5);

β(k,0) = β(k−1);
σ2(k,0) = σ2(k−1);

c
(k,0)
l = c

(k−1)
l ;

w
(k,0)
l = w

(k−1)
l ;

keeping β(k,0) and σ2(k,0) �xed, update the M support points c
(k,1)
1 , . . . , c

(k,1)
M according to

Eq. (10) and (11);

keeping c
(k,1)
l , w

(k,0)
l for l = 1, . . . ,M �xed, update β(k,1) and σ2(k,1) according to Eq. (12)

and (13);
j=1;
while (|β(k,j−1) − β(k,j)| ≥ tollF or |σ2(k,j−1) − σ2(k,j)| ≥
tollF or |c(k,j−1)

l − c
(k,j)
l | ≥ tollR) & j ≤ itmax do

j=j+1;

keeping β(k,j−1) and σ2(k,j−1) �xed, update the M support points c
(k,j)
1 , . . . , c

(k,j)
M

according to Eq. (10) and (11);

keeping c
(k,j)
l , w

(k,j−1)
l for l = 1, . . . ,M �xed, update β(k,j) and σ2(k,j) according to Eq.

(12) and (13);

set c
(k)
l = c

(k,j)
l for l = 1, . . . ,M , β(k) = β(k,j), σ2(k) = σ2(k,j);

estimate cluster l for each group i according to Eq. (15);

In the presentation of the algorithm, as well as in the simulation study that will be presented in
the next subsection, we focus on the case of a linear model with two covariates, where both one slope
and the intercept are considered as random e�ects. This is due to the upcoming application of the
algorithm to the case study of INVALSI dataset, in which we make this choice of �xed and random
parameters. Nonetheless, the NPEM algorithm allows to consider as random e�ects both the intercept
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and one slope, as well as only one of them. Moreover, its extension to the case with p covariates among
the random e�ects, i.e. c ∈ Rp+1, is analytically straightforward and it implies only a computational
issue.

2.3 Simulation study

In order to validate the proposed estimation algorithm, we perform a simulation study, considering a
linear model with two covariates. In particular, we test the algorithm on a simulated dataset containing
9 groups of variables, where each group is composed by an answer variable and two covariates. We
sample the variables in order to have 3 di�erent clusters within the 9 groups, that is, in order to create
nine cohorts of data characterized by three di�erent linear correlations. For this purpose, we generate
9 response variables as the result of 3 distinct linear combinations of 3 couples of covariates, plus some
errors: 

yi = βx1 + c01 + c11z1 + εi i = 1, . . . , 3.

yi = βx2 + c02 + c12z2 + εi i = 4, . . . , 6.

yi = βx3 + c03 + c13z3 + εi i = 7, . . . , 9.

(17)

where εi ∼ N (0, 0.01) and the covariates are sampled by Normal distributions with di�erent pa-
rameters. In particular,

x1 ∼ N (0.30, 0.16), z1 ∼ N (0.10, 0.16),

x2 ∼ N (0.28, 0.16), z2 ∼ N (0.12, 0.16),

x3 ∼ N (0.27, 0.16), z3 ∼ N (0.08, 0.16),

(18)

where z1 and x1 have 100 observations, z2 and x2 have 90 observations and z3 and x3 have 95
observations. The choice of the size, of the parameters and of the distribution is arbitrary. We choose
values of x and z that are in the same range and sizes that are between 90 and 100 in order to ease the
visualization of the data. Other choices are possible and do not a�ect the validity of results. Lastly,
coe�cients in Eq. (17) are reported in Table 1.

c0 c1 β
l=1 5 10 3
l=2 2 5 3
l=3 0 2 3

Table 1: Coe�cients used for data simulation in Eq. (17). Each row corresponds to a cluster l. The
intercept and the coe�cient of z di�er across groups (c0 and c1 respectively), while the coe�cient of
x (β) is �xed.

Again, the choice of the coe�cients is arbitrary. For coherence with the upcoming INVALSI case
study, that considers both the slope and the intercept as random, we choose di�erent values for both
the intercept and the coe�cient of variable z across the three clusters, while we maintain the coe�cient
of x �xed2. In particular, we assign groups i = {1,2,3} to cluster l = 1, groups i = {4,5,6} to cluster

2Again, we choose values of the parameters cl, for l = 1, . . . , 3, and β in the range between 1 and 10, in order to ease
the visualization of the results.
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l = 2 and groups i = {7,8,9} to cluster l = 3 and therefore response y is generated according to this
choice. Figure 1 shows the 3d image of the simulated data.

Figure 1: Plot of the simulated data obtained by Equations (18) and (17). Each one of the nine
groups has a di�erent color. Data with similar behaviors are automatically assigned to similar colors
by software R.

Looking at the �gure, it is possible to recognize three di�erent linear correlations among the data,
identi�ed by the three distinct �clouds� of points. Groups of points characterized by similar linear
correlations are automatically associated to similar colors by the software R and this helps in the
visual inspection of the 3 clusters. Remember that variable y is obtained as linear combination of
the covariates z and x (random and �xed e�ects respectively). This means that the linear correlation
coe�cient between y and z di�ers across clusters, while the one between y and x is constant. Therefore,
we apply the algorithm allowing both the intercept and one covariate (z) to be random3. The non-
parametric two-level model takes the form:

yi = βxi + c0l + c1lzi + εi, (19)

where i = 1, . . . , 9 and l = 1, . . . ,M where M is unknown a priori to the algorithm.
Starting from nine distinct groups, the NPEM algorithm identi�es three clusters (M = 3) that are

represented by the estimates (ĉl, ŵl), for each l = 1, . . . ,M , and β̂ shown in Table 2.

3The algorithm is run considering the following choice of parameters: D = 0.5, w̃ = 0.05, it=30, it1=20, itmax =
20 and toolF=tollR= 10−4.
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ĉ0 ĉ1 β̂ ŵ
l=1 5.057 9.942 2.957 1/3
l=2 1.983 4.795 2.957 1/3
l=3 0.261 1.747 2.957 1/3

Table 2: Coe�cients of Eq. (19) estimated by the NPEM algorithm. Each row corresponds to a
cluster l. The intercept and the coe�cient of z di�er across groups (c0 and c1 respectively), while the
coe�cient of x (β) is �xed. ŵ represents the weight assigned to each cluster.

The estimates of the parameters of random and �xed e�ects are relatively precise: (ĉ0, ĉ1) are very

close to (c0, c1) that we use to generate the data, as well as β̂ and β (|ĉpl − cpl| < 0.3 for l = 1, 2, 3

and p = 1, 2 and |β̂ − β| < 0.1) . Moreover, masses' volumes are proportional to the percentage of
data that belongs to each mass. In this case, the algorithm correctly assigns the nine groups to the
three clusters, so that, the three volumes are the same since each mass contains 1

3 of the total number
of observations (ŵl = 1/3, l = 1, . . . , 3). Data with the three identi�ed regression planes are shown in
Figure 2.

Figure 2: Result of the NPEM algorithm applied to the simulated data according to Equations (18)
and (17). Colors represent the three clusters that the algorithm identi�es and planes are the estimated
linear regression planes within each cluster. Each group is painted with the color of the cluster to
which it belongs.

In Figure 2, observations that belong to the same cluster are associated to the same color and, in
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this simulation, the algorithm associates each observation to the correct cluster. The three identi�ed
regression planes are able to �t the three distinct clouds of data in the most precise way possible. We
can conclude that, in this simulation study, the NPEM algorithm is able to identify the latent structure
that elapses within the nine groups of data. In particular, it can identify which is the e�ective number
of clusters in which the data are nested and it can characterize each one of these clusters by means of
the estimates of the associated parameters.

3 Case study: application of NPEM algorithm to education

INVALSI data

In this section, we describe the INVALSI dataset (Section 3.1) and we apply the NPEM algorithm to
these data, in order to identify clusters of Italian schools (Section 3.2).

3.1 The INVALSI dataset

INVALSI is an Institute that tests Italian students at di�erent grades and at di�erent years. The
data that we analyze in this paper are taken from the INVALSI survey of 2013/2014. Among others,
the survey provides several information both at student and at school level. Students, in addition to
solve tests in di�erent school subjects, have to �ll out a questionnaire about theirselves, their family
situations and their habits. Moreover, also school principals have to �ll out a questionnaire about
himself/herself, his/her school practices and management, school body composition and school size,
school structures, infrastructures and school climate. The dataset collects information about 8, 946
students nested within 586 schools. The aim of applying the NPEM algorithm to INVALSI data is
that we are interested in exploring the di�erent relations between students performances at grade 6
and 8, across Italian junior secondary schools, adjusting for the student socio-economical index. For
this reason, we select only three variables at student level to employ in the analysis:

• MATH8 : student mathematics test score at grade 8 (students attending the last year of junior
secondary school in the year 2013/2014);

• MATH6 : student mathematics test score at grade 6 (students attending the �rst year of junior
secondary school in the year 2011/2012);

• ESCS : student socio-economical index.

Student test scores range between 0 and 100, while the ESCS is an indicator built by INVALSI
as a continuous variable with mean = 0 and variance = 1. This indicator considers (i) parents'
occupation and educational quali�cations, and (ii) whether the student owns certain items at home
(for instance, the number of books). In general, pupils with an ESCS greater than or equal to 2
are socially and culturally highly advantaged. Figure 3 and Table 3 show variables distributions and
descriptive statistics respectively.

13



Figure 3: Histograms of students' INVALSI test scores at grade 8, at grade 6 and socio-economical
index (ESCS). Red lines refer to the means, green ones to the medians.

Mean sd Median IQR
MATH8 59.73 16.49 60.98 23.29
MATH6 48.69 16.83 48.26 24.55
ESCS 0.30 1.02 0.38 1.40

Table 3: Descriptive statistics of student level variables employed in the analysis.

Moreover, we have information about the macro-area of localization of schools. About 59% of
schools is in Northern Italy, 18% is in Central Italy and 23% is in Southern Italy. Geographical
information is a very relevant aspect since many studies in Italy con�rm that there are signi�cant
discrepancies between students and schools performances across the three geographical macro-areas,
[1], [2], [13] and [14].

Since, in a second stage of the analysis, we will look for a characterization of the identi�ed school
clusters, Table 4 reports the school level variables that we are interested in, with their descriptive
statistics. In particular, variables concern two areas of schools. The former is the school body com-
position: school mean socio-economical index, percentage of females, immigrants, late/early-enrolled
students4, school size and the dummy for private/public school. The latter is related to the school
principal's features: gender, age, education, years of experience and school practices.

4Late/early-enrolled students are those students who started the school grade later or earlier respect to their peers.
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Variable Name Mean sd Median IQR

Mean ESCS 0.26 0.54 0.27 0.58
Female percentage 50.11 10.83 50.00 14.28
Immigrant percentage 10.52 11.15 8.01 16.66
Early-enrolled student percent 1.21 4.13 0.00 0.00
Late-enrolled student percent 8.52 8.02 6.66 13.04
Number of classes 20.15 3.77 21.00 5.01
Number of school complexes 5.37 2.81 6.01 5.00
Private 8.21% − − −
Principal features:

Gender(Female=1) 70.01% − − −
Age 55.13 7.49 56.00 11.00
Master after degree(yes=1) 22% − − −
Scienti�c education(yes=1) 14.62% − − −
Year of experience 9.23 7.79 7.00 10.00
Year of experience in the 5.08 5.18 3.00 5.00
actual school
Experience in an other district 25.37% − − −
Experience with INVALSI 51.34% − − −
Satisfaction of principal about 7.24 1.81 7.55 1.58
his/her autonomy [1,10]

Table 4: School level variables of the database used in the analysis, with their descriptive statistics.

3.2 NPEM algorithm applied to INVALSI data

The aim of this subsection is to apply the EM algorithm for non-parametric mixed-e�ects models
to INVALSI database of 2013/2014 as a tool for clustering Italian schools standing on their student
attainments. The correlation between previous student scores (grade 6) and current student scores
(grade 8) changes across schools, in the sense that the e�ects (or values-added) that schools give
to student attainments are heterogeneous and depend on di�erent school characteristics. From this
perspective, student scores at grade 8 can be seen as the result of student scores two years before
(grade 6) combined with the e�ect of having attended a particular school for two years. The idea is to
�nd out how student test scores at grade 6 and grade 8 are related to each other in di�erent schools
and in which schools these relationships are similar. In other words, we look for how many and which
di�erent trends exist in the scores of students attending Italian schools and, standing on the results,
we group schools into di�erent clusters. In this perspective, the NPEM algorithm works as an in-built
classi�er, since it performs the grouping of schools into clusters, without knowing a priori the number
of clusters.

Standing on previous literature, it is reasonable to think that there is a linear correlation between
student scores at grade 6 and at grade 8, [1], [13] and [14]. We therefore consider a non-parametric
two-level model (where students represent the �rst level and schools the second one), with student test
scores at grade 6 and student socio-economical index as randon and �xed e�ects respectively, allowing
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both the intercept and the coe�cient of student test scores at grade 6 to be random/school-speci�c.
For each student j, j = 1, . . . , ni, and each school i, i = 1, . . . , N , given that N is the total number of
schools, J is the total number of students and

∑N
i=1 ni = J , the model takes the following form:

yi = xiβ + 1b0i + zib1i + εi i = 1, . . . , N

εi ∼ N (0, σ2
1ni

) ind.
(20)

where the answer variable yi = (y1i, . . . , ynii) is the mathematics test score at grade 8 (MATH8)
of the ni students within school i, while the covariate zi = (z1i, . . . , znii) and the covariate xi =
(x1i, . . . , xnii) are respectively the mathematics test score at grade 6 (MATH6) and the socio-economical
index (ESCS) of the ni students within the i-th school. The choice of considering ESCS as �xed e�ect
and MATH6 as random one is due to the fact that we are interested in exploring how the correlation
between MATH6 and MATH8, seen as the re�ex of schools ability in training students to achieve
certain results, given their students starting potential, varies among schools.

In order to have robust estimates, we select, from the dataset presented in Section 3.1, only the
schools that have at least ten students. The resulting dataset consists of 6, 188 students nested within
363 schools.

The NPEM algorithm is applied, considering w̃ = 0.015, D = 0.5, it=30, itmax=it1=20 and
tollR=tollF=10−4. Given these parameters, the algorithm identi�es M = 5 distinct clusters, whose
estimates of parameters are shown in Table 5.

Cluster β̂ ĉ0 ĉ1 ŵ

Cluster 1 1.417 46.028 0.454 12.2%
Cluster 2 1.417 22.579 0.707 39.6%
Cluster 3 1.417 30.293 0.648 37.5%
Cluster 4 1.417 31.207 0.393 8.8%
Cluster 5 1.417 25.359 0.027 1.9%

Table 5: ML estimates of coe�cients of model (20) obtained applying the NPEM algorithm to a
selection of INVALSI data of 2013/2014.

The coe�cient β in Table 5 is the coe�cient related to ESCS (�xed e�ect). Its positive value
(1.417) suggests that, on average, students with high socio-economical index are associated to high
performances, in line with previous literature [21]. The estimated ŵl, for l = 1, . . . ,M , express the
percentage of Italian schools belonging to each cluster l, for l = 1, . . . ,M . We identify two main
clusters (Cluster 2 and Cluster 3 in Table 5), that contain about the 77% of the total population,
while the remaining 23% is distributed across the three other clusters. Regarding the analysis of the
coe�cients of random e�ects, Figure 4 helps us in their visualization.

Looking at the �gure, it is immediately evident that there is a quite anomalous cluster, identi�ed
by lilac color, characterized by a very low slope (Cluster 5 in Table 5). From an interpretative point
of view, this cluster contains the �worse� set of Italian schools. Indeed, it is characterized by both low
intercept and slope and this means that students in these kind of schools have on average low results
at grade 8, even if they had good results at grade 6. In other words, students have on average low
scores, without variability depending on their previous performances: students that had good results
at grade 6, after attending two years in a secondary school belonging to Cluster 5, have on average low
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Figure 4: Plot of INVALSI data with the �ve regression planes identi�ed by the NPEM algorithm ,
for model (3). Parameters are shown in Table 5. Colors represent the �ve clusters.

performances, similar to the ones of those students that performed worse than them two years before.
On the other side, the best scenario is represented by the cluster on the top of the �gure, identi�ed
by red color (Cluster 1 in Table 5), that is characterized by a very high intercept (46.028) and a still
high slope (0.454). These values suggest that even students that had very low scores at grade 6, obtain
high scores at grade 8 with respect to their counterparts attending schools belonging to other clusters.
Moreover, the value of the slope suggests that, even if students had on average an improvement on
their performances, there is still heterogeneity across students that performed di�erently two years
before, in the sense that best students continue to perform the best with respect to the average.

Thanks to the multilevel structure, we can also compute the Percentage of Variability explained
by Random E�ects (PVRE), that, in our case, is the percentage of variability in student test scores
explained at school level:

PV RESchool =
σ2
School

σ2
School + σ2

Residuals

.

Given the two-level non-parametric model:

yi = βxi + c0l + c1lzi + εi,

the variance of random e�ects is given by

σ2
School = σ2

c0 + 2Cov(c0, c1)z̄ + σ2
c1 z̄

2.
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Computing the empirical values of σ2
c0 , Cov(c0, c1) and σ2

c1 from the estimated parameters, we obtain
a PVRE equal to 70.48%. This quantity con�rms the signi�cance of the random e�ects in explaining
the answer, since about the 70% of the explained variability at student level is explained by di�erences
across schools.

In order to provide an index for the goodness of �t of the model, we provide a leave-one-out cross-
validation, we compute the Mean Square Error (MSE) and we compare it with the ones obtained
considering (i) the same model but with all the parameters as �xed e�ects and (ii) the parametric
mixed-e�ects models with the same choice of random and �xed e�ects. Table 6 reports the three MSE
computed on the student test scores.

Parametric Parametric NPEM random
FE model RE model intercept/slope

MSE 155.91 111.55 118.69

Table 6: Mean Square Error (MSE) computed in three models: (i) parametric �xed-e�ects model
(Parametric FE model); (ii) parametric mixed-e�ects models with both intercept and covariate as
random e�ects (Parametric RE model); (iii) Non-parametric mixed-e�ects model with both intercept
and slope as random e�ects (NPEM random intercept/slope).

The MSE obtained with the �xed-e�ects model is the highest one (155.91) and it departs from the
ones obtained by both the parametric and non-parametric mixed-e�ects models (111.55 and 118.69
respectively). Standing on the nature of the problem, we expect the parametric mixed-e�ects model to
perform the best, since it �ts the trend of the data within each school. Nonetheless, the non-parametric
mixed-e�ects model produces a slightly bigger MSE, but it extrapolates a new kind of information from
the data. Indeed, while the parametric approach is able to estimate the parameters of a model, that is
based on an already known structure of the data, the non-parametric approach makes a further step,
since it is able to identify a new structure within the data, that is the existence of a new, latent, level of
grouping. Moreover, the relatively small di�erence between the MSEs of the two approaches suggests
that the clusters structure identi�ed by the NPEM algorithm catches almost all the heterogeneity
across the e�ects of Italian schools.

The further consequence of the identi�cation of a latent structure within the data is that clusters
likely derive from some unknown characteristics of schools, that lead to these di�erences. In a general
perspective, the interpretation a posteriori of clusters of data is important per se, especially when
speaking about Big Data, where the identi�cation of patterns within a big amount of data, marked
by a complex and unknown structure, is particularly relevant. For this reason, in the next subsection,
we try to �nd out whether there are patterns of school level variables that characterize the estimated
clusters.

3.2.1 Association between school characteristics and school clusters

Applying the NPEM algorithm to INVALSI data, we discover a structure of clusters that clearly
re�ects heterogeneities among the e�ects of Italian schools. In particular, we identify �ve di�erent
clusters, that emerge from �ve di�erent behaviors of schools in a�ecting the evolution of their student
achievements. We are interested in exploring a posteriori these clusters, in order to investigate whether
there are school characteristics that are associated to them. To this end, we analyze the association
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of each school level variable presented in Table 4 to the �ve school clusters.
The �rst interesting aspect regards geographical di�erences. Figure 5 reports the proportion of

schools belonging to the �ve clusters, in the three geographical Italian macro-areas: Northern, Central
and Southern Italy.

Figure 5: Proportion of schools belonging to the �ve clusters, within the three geographical Italian
macro-areas: North, Centre and South of Italy.

Comparing Northern and Southern Italy, we can notice that the distribution of schools among
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clusters is di�erent. In Northern Italy, we do not have any school belonging to Cluster 5 and we have
very few schools belonging to Clusters 1 and 4: almost all schools belong to Clusters 2 and 3. In
Southern Italy, the distribution of schools among clusters is more homogeneous and it is possible to
count a good quantity of schools belonging to each cluster.

Another variable that results to be associated to the distribution of schools among the �ve clusters is
the percentage of immigrant students in school (Immigrant percentage). Figure 6 reports the boxplots
of school immigrants percentage within the �ve distinct clusters.

Figure 6: Boxplots of school immigrants percentage within the �ve clusters. P-value of Kruskall-Wallis
test < 0.001.

The two mode clusters (Clusters 2 and 3) contain the higher percentage of immigrant students,
while all the other clusters have lower ones. In particular, Cluster 5, that contains schools with the
�worse� e�ect on their student achievements, is characterized by schools with a very low percentage
of immigrants. This is in line with previous studies [14], where it emerges that most of immigrant
students in Italy are in the North and very few are in the South: being Cluster 5 composed by only
schools in Central and Southern Italy, it is reasonable to expect it to have schools with a low percentage
of immigrants.

Regarding the entire set of school level variables at our disposal, these two are the only ones that
result to be associated to the partition of schools within the estimated �ve clusters, so that, there is no
evidence of signi�cant associations between the other observed school level variables and the clusters.
This result does not imply that there is no explanation for the presence of clusters of schools, but,
most likely, these clusters derive from other dynamics, that we are not able to observe or to measure.
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4 Conclusions

This paper proposes an EM algorithm for non-parametric mixed-e�ects models (NPEM algorithm),
shows a simulation study and applies the NPEM algorithm to INVALSI data of 2013/2014 as a tool for
clustering Italian schools. The NPEM algorithm places itself in the literature branch concerning the
algorithms proposed in [3] and [4]. In particular, our algorithm is inspired by the one proposed in [4]
but it introduces the major improvement, among the others, that the covariates are group speci�c,
meaning that they can vary both in number of observations and range of assumed values across groups.
Moreover, with respect to the algorithm proposed in [3], the advantage of NPEM algorithm is that
it does not need to �x a priori the number of discrete masses (clusters), but, standing on certain
parameters, the algorithm itself identi�es the number of discrete support points. This aspect has a
great value in the applications where the number of clusters is not known a priori and the aim is
therefore to �nd out how many and which di�erent trends exist within the data. This concept is
particularly relevant in the hera of Big Data, where there is the need of identifying latent structures
within big and complex databases.

The application to INVALSI data allows us to identify �ve school clusters that represent di�erent
school e�ects on their student achievements, seen as the ability of junior secondary schools in training
students to obtain certain skills at the end of the three years, given their skills at the beginning of
the school, adjusting for their socio-economical index (ESCS). In the INVALSI framework, schools are
associated to positive or negative value-added, standing on the �nal performances of their students and
given their students initial skills. Among these �ve clusters, the presence of a cluster containing schools
with a negative value-added is immediately evident. This cluster contains schools that have students
which tend to underperform, with respect to their performance two years before, since they have on
average very low scores, even if two years before, when they started to attend these schools, they
obtained higher scores. Regarding positives value-added, we interpret the cluster with the highest
intercept and positive slope (Cluster 1) as the best one, in terms of school e�ect, since it contains
schools able to train students to obtain high performances, even if they had low performances at the
beginning of the school. It is worth to say that, from a policy perspective, the de�nition of the best
school e�ect is currently debated. Indeed, it is reasonable to consider a school in which all students
obtain very high scores, without heterogeneity, as a school with a good e�ect, but, on the other hand,
a di�erent point of view emphasizes the advantages of having heterogeneity within the school. In this
perspective, the role of the school is to continuously increase the student goals in order to stress the
pupils to perform even better, using competition and variation to motivate them.

After the identi�cation of school clusters, the paper focuses on an other actual and interesting
topic, that is their interpretation a posteriori. In particular, we explore the associations between
school clusters and school level characteristics, showing that only geographical areas and percentage of
immigrants result to be signi�cantly associated. This evidence suggests that the school level variables
at our disposal do not explain the di�erences in schools value-added. Standing on the fact that the
school clusters are clearly di�erent in their e�ect on student attainments, the lack of a strati�cation
of school level variables across clusters might means that the observed school level variables do not
re�ect the real school characteristics (i.e. they are not measured in the right way) or there are other
latent aspects, that we are not able to measure, that might explain the di�erent e�ects of schools on
their students.

In a future perspective, our aim is to deepen the analysis on the characterization of the estimated
school clusters, considering other information about the school environment, that we have not been
able to measure until now. Moreover, from a methodological point of view, our scope is to develop the
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multivariate version of the EM algorithm for non-parametric mixed-e�ects models, in order to consider
two (or more) response variables and to relax the linearity assumptions, considering also the case of
other functional forms. In the framework of INVALSI, since the dataset contains both the student
scores in reading and mathematics, it would be possible to apply the multivariate version, in which the
response variable would be the bivariate vector of reading and mathematics scores, and, consequently,
to cluster schools standing on both their e�ects on reading and mathematics student attainments,
analyzing the interactions between these two �elds.
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