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Abstract

The identification of the geological structure from seismic data is for-
mulated as an inverse problem. The properties and the shape of the rock
formations in the subsoil are described by material and geometric parame-
ters, which are taken as input data for a predictive model. Here, the model
is based on the Helmholtz equation, describing the acoustic response of the
system for a given wave length. Thus, the inverse problem consists in iden-
tifying the values of these parameters such that the output of the model
agrees the best with observations. This optimization algorithm requires
multiple queries to the model with different values of the parameters. Re-
duced Order Models are especially well suited to significantly reduce the
computational overhead of the multiple evaluations of the model.

In particular, the Proper Generalized Decomposition (PGD) produces a
solution explicitly stating the parametric dependence, where the parameters
play the same role as the physical coordinates. A PGD solver is devised
to inexpensively explore the parametric space along the iterative process.
This exploration of the parametric space is in fact seen as a post-process of
the generalized solution. The approach adopted demonstrates its viability
when tested in two illustrative examples.



Introduction

Seismic inversion and parameter identification is a very important task in geo-
physics. In particular, geologists are interested in understanding subsoil struc-
tures and layers, especially their physical properties and dimensions. These
properties are usually inferred from acoustic data, originated from land or ma-
rine surveys. Different inversion techniques have been developed during the years
in order to deal with this problem [16, 17, 18].

The pressure field produced during the explorations is typically modelled
with the transient wave equation and the inversion is performed via the min-
imization of a suitable functional depending on the records of the waves on
the ground surface. We consider the Helmholtz equation in order to properly
describe the stationary pressure field during a seismic survey performed, for
example, with the vibroseis technique. The Helmholtz equation describes the
phenomenon in a steady state case as a sum of harmonic waves and it is used
in different fields in order to describe the physics of the problem, such as in
acoustics and seismology [2, 14, 15].

We deal with the identification of a limited number of parameters, that
are necessary in order to describe specific geometric or material properties of
the subsoil. We perform the parameter identification by minimizing a proper
functional that takes into account the difference between the recorded solution
and the numerical one, as usually done. The minimization of such a functional,
nevertheless, requires multiple evaluations of the solution for slightly different
values of the parameters, in order to explore the space of design parameters
(the ones to be identified). Moreover, the cost functional has usually many local
minima and various minimizations could be required (starting from different
parametric guess). Therefore, we need an efficient numerical tool that allows us
to evaluate the solution of the Helmholtz equation for different choices of the
design parameters in an efficient way.

In order to have an easily evaluable solution of the problem, the idea is
to solve the more complex parameterized Helmholtz equation via a Reduced
Order Model (ROM) method. (Examples of ROM methods are, for example,
the Proper Orthogonal Decomposition (POD) method [9] or the Reduced Basis
method [7]). With these kind of methods the parametric solution is produced
during a costly offline phase, but the solution is easily evaluated in real-time
during the online phase, namely during the minimization procedure. Moreover
it is possible to evaluate the solution in all the points of the parametric space
with relatively low computational cost. This means that we can have an idea
on the influence of the different parameters on the solution restricted to the ob-
servation boundary. Among the ROM methods, we use the Proper Generalized
Decomposition (PGD) method, described in [5, 21].

Concerning the algorithm applied in order to perform the minimization, we
use the matlab routine fmincon, suitable for constrained minimization problems.
In particular the method implemented is the Sequential Quadratic Program-



ming (SQP) algorithm, described in [13]. The constraints on the parameters
corresponds to the boundaries of the parametric space in which the parametric
solution of the Helmholtz problem is defined.

We underline that the proposed methodology is general, so it could be used
also for real-time monitoring of the electromagnetic field of electronic devices or
simply to obtain a parametric and real-time evaluable solution of the Helmholtz
equation in other contexts. In this work we apply the method to two test cases,
a toy example and a more realistic one. We compare the performance of the
PGD method and of the inversion with different options, such as the solution of
the problem with or without compression or the inverse problem with various
choices of the reference values.

This work is organized as follows.

In the first chapter the direct and the inverse problem are described. In
particular, the parameterized Helmholtz equation is introduced and the extended
weak formulation of the parameterized version of the associated boundary value
problem is given.

The second chapter is devoted to the application of the PGD technique to
the direct problem. A separable expression of the solution is assumed and the
separability of the extended weak formulation is discussed. The alternated di-
rections fixed-point algorithm, proper of the PGD method ([21]) is presented for
this specific case in both its continuous and discretized version. The definition
of the required matrices can be found in the Appendix.

In the third chapter some computational aspects are formalized. One first
big issue is how to separate input data and the choice of the sampling parametric
points (discussed also in the numerical results). This problem is faced in the first
two paragraphs of the chapter. In the third one the parallel implementation is
proposed for the separation of input data. In the remainder of the chapter the
focus is on the importance of compressing the PGD solution. Two alternative
methods are introduced here and compared in the numerical results. Finally the
choice of the solver for the inverse problem is described.

The numerical results are presented in the forth chapter. Two test cases are
considered. The first test case is a synthetic example, while the second is a more
realistic one, a simplified version of a real ground profile described in [11]. The
goal of this chapter is to show the convergence of the PGD solution of the direct
problem to the finite element one (by comparing the different options described
in the previous chapter) and to verify the convergence of the solution inverse
problem to the reference parameters.



1 Problem Statement

1.1 Direct Problem: the Helmholtz Equation

The Boundary Value Problem (BVP) under consideration consists in comple-
menting the Helmholtz equation with proper boundary conditions and reads:
find a complex-valued function p taking values in Q (see Figure 1) such that

—ow?p—V-(Vp)=0 inQ
Vp-n—iyowp=0 onI'p , (1)
Vp-n=yg on I'y

where p is the unknown complex pressure field, w is the given angular frequency,
o is the squared slowness of the medium (equal to the squared inverse of the
propagation velocity of the waves in the medium) and g represents a sound
source on the boundary. For g = 0, Iy is a reflecting boundary. The boundary
condition on I'p represents full absorption of the sound.

Ty =Ty

Q | Tr=00\Ty

Figure 1: Domain

Accordingly, the standard weak formulation of the problem reads: find p €
H'(92;C) such that
a(p,q) =U(q) Vg€ H'(QC) (2)

where the bilinear and the linear forms a(-,-) and I(-) are defined as:

a(p,q) = —/ ow?pq dx +/ Vp -Vgdx —1 Vowpgds (3)
Q Q T'r

I(q) = /F ggds (4)

being ¢ the complex conjugate of q.

1.2 Parameterization of the Problem

The field of material properties, o, is assumed to be piecewise constant. Thus, o
is characterized by 1) the shape, size and location of the different rock formations
(that is, geometric parameters describing a set of subdomains where the material



properties are uniform) and 2) the material properties of each type of rock (that
is, the material parameters).
Accordingly, we assume that, on the one hand, there are ny geometric pa-
rameters
ejéfgj forj=1,...,ng.

describing the shape of subdomains in €2 with uniform propagation velocity. On
the other hand we consider n, material parameters

os € Iy, fors=1,...,n,.

representing the squared slowness, uniform in one or more subdomains. The
intervals Iy, and I,, stand for the expected ranges of variation of the parameters.
We aim at providing the solution for all the values in these ranges.

The procedure for parameter identification requires multiple queries to the
model, each with a different set of parametric values. We aim at producing an
offline computed generalized solution, explicitly stating the parametric depen-
dence of p (both for geometric and material parameters). Once this solution is
available, exploring the parametric space does not require successive computa-
tions of the model but simple and fast evaluations as a post-process.

The compact notation 0 and o is used to denote the geometric and material
parameters, respectively. Consequently, the spaces where these parameters lie
read

Ig=1Ip x - x1Iy, and Is=1I, X xIp, (5)

The input data of the problem, o, depends on (x,0,0) and therefore the
parametric solution p(x, 8, 0) takes values on D = Q x Iy X I.

As it is standard in the PGD setup, the extended weak formulation of the
parametrized version of (1) reads: find p € H'(Q) ® L?(Ip) ® L?*(I,) such that

A(p,q) = L(q) Vqe H'(Q)® L*(Ig) ® L*(I5) , (6)

where the bilinear and linear forms are:
A(p,q) :/ / a(p,q)d@do and L(q) :/ l(q)dO do (7)
Io— Ie Io‘ IG

It is worth noting that the tensor product H'(Q) ® L%(I9) ® L*(I,) does not
assume the separability of the functions and therefore the complexity of the
described problem increases with the number of parametric dimensions.

1.3 Inverse Problem

Seismic inversion is a well-known problem in geophysics [18, 17, 3, 1], consisting
in recovering the ground velocity profile (distribution of material properties),
from a set of measures on the surface during seismic explorations (experimental
observations). Different techniques have been developed in order to deal with



this inverse problem. Despite the problem may be ill-posed because different
velocity profiles can explain the same observations, often these techniques allow
determining the main features of the geologic profile. As indicated above, the
inverse problem involves an optimization procedure requiring multiple queries
and therefore the evaluation of the solution of the problem for a large number
of slightly different subsoil configurations.

In the previous section, a simplified geological model is proposed taking into
account the main features of the geologic profile and describing the principal
unknown characteristics of the subsoil with a set of geometric and material
parameters, 8 and o. Thus, the inverse problem consists in identifying 6 and o
by minimizing a suitable cost functional, e.g. the same used in the full waveform
inversion method [18]. This cost functional accounts for the misfit between the
observations and the computed outcome of the parametric model, measured with
a properly defined norm (typically a L? norm restricted to the boundary where
the observations are taken).

Let pops denote the observed data in a portion of the surface I'yps. The cost
functional J(0,0) is introduced as

J(0.0) = /F (p(,0,0)Ir.,. — Pobs)? ds. (8)

obs

The minimization problem reads: find (€, o) such that

(0,0) = argmin J(0,0),
Oclg;o€ls
Solving the minimization problem requires multiple evaluation of the solu-
tion p of the problem (1). As described in the next section, the PGD technique
provides a solution p,.,(x,0,0) ~ p(x,0,0) with explicitly parametric depen-
dence.

2 Numerical Methodology

2.1 PGD formulation

The Proper Generalized Decomposition (PGD) method [21, 5] is particularized
to the Helmholtz equation with geometric and material parameters. The stan-
dard PGD formulation in briefly recalled before concentrating in this specific
case.

The ideas behind the PGD technique are readily summarized as follows: 1)
the solution is assumed to be separable (expressed as a sum of terms consisting in
a product of functions depending of one parameter each), 2) a greedy algorithm is
used to compute the terms sequentially and 3) each term is computed iterating in
each parametric dimension using an alternated directions fixed-point algorithm.
The two first items are discussed here while the third is illustrated in section
2.2.



The separability assumption states that the solution p(x, 8, o) of the problem
(6) is approximated by a sum of n separated terms (also denoted by modes),
namely

3

m=1

Ny No
p(x,0,0) =ph. (x,0,0) = )] Fy(0;) 11 F5 )
J=1 s=1
v o 9)
= pren(x,0,0) + Fr(x) [ 75, 0) [ [ Fir (o)
j=1 s=1

where, in the case under consideration, functions F;", Fyp. and F,, take complex
values. Note that an alternative option is accounting for the complex character
only with one function (e.g. FJ") and assuming Fg" and F77' to be real. This
would reduce the richness of the proposed approximation and would require
a larger number of modes to achieve the same accuracy. We notice that the
implementation with Matlab® does not have any additional complexity with
respect to the case in which the unknowns are real numbers.

The fundamental concepts and the notation to derive PGD for both material
and geometric parameters are briefly recalled following [21].

The essential idea is making the geometric parameters 0 to appear explicitly
in the weak formulation (6). This is a natural feature for the material parameters
o, but the effect of 8 in (6) is hidden, affecting the description of the shape of
Q and the different material subdomains (internal boundaries).

For the sake of a simpler presentation, the boundary source term g is taken
independent of @ and o and such that the geometric parameters @ do not affect
the boundary of €, only the internal boundaries (the identification of shape
and location of the rock formations). On the contrary, the material property
o(x,0,0) has a an explicit parametric dependence described in Appendix A.

The following strategy is adopted to make the geometric parameters 6 ap-
pear explicitly in the formulation. The domain 2 is partitioned into a set of
simple (triangular) macro-elements 77, - - - ,T),,., having shapes depending on 6.
The macro-elements are inside the material subdomains (no macro-element is
overlapping two material subdomains) and are located in order to properly de-
scribe the internal boundaries. A reference element 7 is introduced such that
each macro-element 7., e = 1,...,np, is assumed to be the image of T by an
1sogeometric mapping depending on 6,

U, :T — T,
X = x = U (X).
The mappings V. are explicitly dependent of @ and therefore also their Jacobian

matrices, denoted by J.(8), do.
The body integrals appearing in (6) are rewritten accounting for the map-



pings and showing the explicit dependence on the parameters

Alp.a) :/ / / (—ow?pq + Vp- V) dxdf do
IG I Q
— / / Vowpgds d6 do
19 Is FR
nr
:Z/ / [ (—UwszQe‘Je(o)‘ + Vipe - (De(g)vﬁqe)) dx dO do
e=1 19 Io' T

—z/// Vowpgdsdldo,
I JIs JTg

where D, := |J |J,TJ_!, p. is the restriction of p to T, such that

nr
p=)Y peol;l
e=1

(10)

and analogously for ge.

The input data of the problem describing the bilinear form A(-,-) has to be
expressed in a separable form in terms of the selected parameters, 8 and o. This
is natural for the material parameters (o is straightforwardly expressed as a sep-
arated function of o). For the geometric parameters, separable representations
of the determinant of the Jacobian matrix, |J.|, and matrix D, are required. In
practice, this means obtaining the expressions given in the Appendix A in (17).
The procedure is detailed in Section 3.1.

2.2 Alternated directions fixed-point iterations

The PGD greedy algorithm consists in computing sequentially p .~ for n =

1,2,... to reach a satisfactory approximation as indicated in (9). In practice,
Prop 18 computed assuming that p;‘gé is available, taking as unknown only the
last term, namely F), anj and F}, for j = 1,...,mp and s = 1,...,n,. In

the following, the dependence on n of the unknown functions is omitted in the
notation, that is the unknown modes are denoted by F,, Fy, and Fy,.

Thus, for each PGD term, the unknown is a single separated function p, the
product of the unknown modes:

ng Ne
A -1
D=1y —Phan = Fu [T Fo, T] Fo.- (11)
j=1 s=1
Consequently, the test function ¢ in (6) is selected as a variation of p, formally

ng No ng No
q=0p=0F, [ | Fo, [T oo + F2 D 0Fo, [ [ Fo, [ ¥
7j=1 s=1

=1 §# s=1

. e (12)
+F [ Fo, > 0F [ o
j=1 =1 s£5



where 0F;, 0Fp. and 0 Fy;; are the test functions corresponding to each parametric
dimension.

The alternated directions strategy consists in taking as unknown only one
of the modes (searching direction) and considering all the other modes known.
Let us denote by Fy the unknown mode, where now * stands for the searching
direction and takes any of the values x, ; and oy, for j = 1,...,m9 and s =
1,...,ns. Note that, with this notation, (12) is readily rewritten as

qg=> SFE ] Fs (13)

* *FE K

Let V, denote the natural functional space for the variable %, that is H'(Q) for
x = x and L%(I,) for other values.

Thus, one iteration requires solving for some value of x the following problem:
given all the modes but F, that is given Fj for all x # x, find F, € V, such that

A(F ] Fro00) = L(g.) — APy, as) for all 6F, € V;, being ¢, = 6F, [ Fs.
F*FEk *Ek
(14)
Note that solving (14) for some direction * is a linear problem in a 1D setup
for « = 0; and for x = o, (the geometric and material parameters). For x = z,
it has the dimension of the original problem.

Remark 2.1 The option of selecting F, € Vy is natural for x = x (Galerkin
formulation). In the case of the parametric directions, for x = 0; and for x = o,
taking 0F, € V, results in a least-squares criterion to approrimate Fy. This is
the option adopted here. However, other authors implement the PGD iteration
for the parametric dimensions using other variational setups. For instance, in
[12], a point collocation method is employed such that the pointwise values of
F, are obtained in a 1D grid of points and the function is interpolated. In this
case, the test functions 0F, are taken as Dirac delta functions centered in the
grid nodes.

2.3 Matrix formulation of the discretized problem

Let us consider the problem in terms of discrete spaces. We refer to V/* as the
finite element space associated with the dimension %, the discrete counterpart of
V.

The goal of this subsection is to define the finite element formulation and
the matrix expression of the problem.

Let d, be the dimension of V» and N, = [N},--- | N%]T a vector collecting
a basis of V/* (shape functions). The nodal vector representing each mode ™
is denoted f]* and is such that

Fm =NTgm



Algorithm 1: Alternated directions fixed-point algorithm

% Computation of p!. —given pI' !
Input: FJ*, Fé? and F)" for j=1,--- ,ng, s=1,--- ,n, and
m=1,--- ., n—1
Initialize F, Fy, and Fj,
while the convergence is not reached, i.e. some F} is not yet stationary
do
[x=a]: for w=[2 Fy, [152 Fo.
update F, such that

A(Fyw,0F,w) = L(6Fw) — A(pl ), 0F,w) . VoF, € V!

for j=1,---ng do
[x=0]: for w=F,[[;,;F, [152, Fo,
update Fp. such that

A(Fpw, 6Fgw) = L(6Fgw) — A(pp), 6Fpw) ,  VoFy, € V!

fors=1,---n, do
[x=0s]: forw=F,[}2, Fy, [,z Fo,
update Fi, such that

A(Fy,w,0F,,w) = L(6F,,w) — A(pt} 6F,,w) ¥ 6F,, € V!

| Check stationarity: |updated F, — previous F,| < tolerance

10



The matrix formulation of the alternated directions scheme is described in the
Algorithm 2. As in the previous section, the unknowns are denoted by f, instead
of by f'. All the matrices and vectors used in the algorithm are defined in the

Algorithm 2: Matrix formulation of the alternated directions scheme

’% Computation of pf =~ given p;’gé

Input: £, fg? and f]" for j =1,--- ,ng, s=1,--- ,n, and

m=1,--- n—1

Initialize f, fgj and f,,

while the convergence is not reached, i.e. some f, is not yet stationary do
[x = z]: update f, such that

M, f, =1, )
where M, = M?, and M”", r,, are defined in (15a),(16a)
for j=1,---ny do
[ = 05]: update fy, such that
My fy, = ro, ,

where My, = My , and Mg;, ry. are defined in (15b),(16b)

fors=1,---n, do
[*x = 0; ] update f,_ such that

Magfag =To;

where M, = M}, and M", r,, are defined in (15¢),(16¢)

| Check stationarity: [updated f, — previous f2!4| < tolerance

following. We refer to the Appendix A for the definition of all the local matrices
and vectors. Let us recall that the symbol A stands for the matrix assembling
operator.

Matrices definition

M7 = AT, {—oﬂ {@M@ (nz ﬁ(fﬁf)HME;lf$> ﬁ(ffZ)HMﬁsffZ]
s=1

=1 j=1

+Z (Ku XD: ﬁ (E)" Mg g5 ) H(ff)HMosf;’Z (15a)
m=1j=1 s=1
s=1

neg No
[ﬁw N H<f;2>HM3aff:] }
j=1

11
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nr
b= % W |Gt I MER > | [T Mgeg! M“H A ae £
e=1 I=1 \j#j
3 nhe Ne
+ > EmRgern Y (T vy | Mg | T &Y M £
a=1 m=1 \j#j s=1
—iw [/ () MEET [ T[E)" Mo, £ | My, H M
J#]
(15b)
i np ngje nNg B B
M7 =S —w? |G ()M S T T HMelfe [T ag £ ) Mg,
e=1 =1 j=1 s#8§
3 nDe ng
(@) REr S T @ Mg || T Mo £ | Mo,
a=1 m=1j=1 S#S
ne
—iw |G (E) I ME T T (8" Mo, £ | [T Mot | M
Jj=1 S#S
(15¢)

Vectors definition

=AlT qu. H f(, o, H Z Y S S (16a)

Ne n—1
ry, = me doe | [ a0, | a0, [] £ a0 — > M£7" (16D)
J#7 s=1 m=1
nrm neg
=> tlawe [[ a0, | [[ 0. | a0 - Z M £ (16¢)
e=1 j=1 S#£S§

3 Computational Aspects

3.1 Separation of input data

The determinant of the Jacobians |J.| and the matrices D, appearing in the
bilinear form A(-,-) (see eq. (10)) depend on 6;,---6,, in an a priori non-
separable way. Nevertheless, in order to obtain the separability of the bilinear
form with respect to all the parametric dimensions, these functions are required

12



to be separable. The idea, therefore, is to build a separable approximation of
|J.| and D..
Let us focus on a generic non-separable continuous function

f:[0_>R7 f:f(6176n9)
The goal is to find a separable function f%% ~ f.
Let us introduce the following discretization of the parametric space

7-0h:7'9}1l><...><7'£9 , withﬁ;:[e},---e?f],

where n; is the number of sampling points in the 4% direction. Teh is a tensor
of rank ngy, with H?L n; components.
In order to obtain f*¢P, first of all f is evaluated in the multidimensional grid

T2, obtaining the ng rank tensor with H;Li 1 Mj components
h
fn=[f(Tg").

Then f; is separated in a compact representation by means of an algebraic
method, such as the High Order Singular Value Decomposition (HOSVD) [6],
the Candecomp /Parafac (CP)[4, 8] or a PGD-projection [10] to obtain,

ny
= Za?@---@ag;, with a" € R"™.
m=1

This approximation is a discrete separable function and it is described by a lower
number of coefficients ny > 72, n; < [[72, ny.
The continuous separable approximation of f, f*  is defined in each point

of the continuous parametric space as the interpolation of f;%.

3.2 Selection of sampling points

The choice of the sampling points Teh has an impact on the convergence of the
PGD method as shown in [20]. We compare two different choices. The first one
considers as sampling points Teh the grid nodes defining the finite element space
VZJL_, while the second choice consists in sampling at the Gauss points of each
parametric dimension.

We recall that we perform the numerical integration with respect to the
parameters at the Gauss points. Therefore the separable approximations of |J|
and D, have to be evaluated in the these nodes. This means that in the case of
the first choice (grid nodes), an additional error is committed, due to the need
of transfer of information between the grid nodes and the Gauss points, through
the interpolation.

Once again we underline that the choice of the sampling points is necessary
when a Galerkin approximation is adopted also for the parametric dimensions.
In the case in which a collocation method is used (see Remark 2.1), this problem
is easily solved by taking the collocation points.

13



3.3 Separable approximation and parallel implementation

The separation of |J.| and D, is required for each element of the of the coarse
mesh e = 1,--- ,np. The functions to be separated, for each e, are 4: one
scalar function |J.| and one 2 x 2 symmetric tensor D, (equivalent to 3 scalar
functions). Each of these functions have to be evaluated in the grid 75 and to
be separated by means of HOSVD.

This means that the total of the scalar functions to be separated are 4np.
This could require a lot of computational time if done sequentially, especially
for an increasing number of coarse elements. Actually, the computational effort
increases linearly with np. Nevertheless, all the functions to be sepatated are
independent to each other and therefore the separable approximations can be
obtained in parallel, before starting the PGD computation.

3.4 Compressed PGD and PGD+compression

The online phase (evaluation of the PGD solution) is faster if the number of
modes of the PGD solution is lower. This is the reason why we try to reduce the
terms of the solution, by applying the method called PGD compression [5, 10]
in two different ways.

The PGD compression aims at reducing the number of terms in the PGD
expansion while keeping the accuracy of the representation. In fact, this is
possible because the standard PGD algorithm is not enforcing any orthogonality
between successive terms and often the modes are strongly correlated.

Let us consider a general function computed with PGD, say

"pep Mp
m
prD(zlv"' 7an): § HFZ (Zi)v
m=1 i=1
depending on n, parameters z1,--- ,z,,. We aim at approximating f,,, with
its compressed counterpart
Ncomp Mp
fcomp(zly"' 7znp) - E HF;m(Zz)y
m=1 i=1

With Neomp < Npgp-
This approximation is obtained via the least-squares criterion, namely by
minimizing

chomp_fPGDHL2(IZ) :/I /I (fcomp_prD)zdznp“‘ dz1.
21 Zny

This is equivalent to solve the following variational problem: find feomp € V' (V
proper variational space) s.t.

(fcompa 5f)L2(Iz) = (fPGD’éf)LZ(Iz) vofeVv.
A(feomp,0f) L(sf)

14



The compressed function feomp is built by using the PGD greedy algorithm:
given g);}p, compute f,,,, by projecting on each parametric space the difference

between f,q, and fi 1 (see [10] for further details.

We adopt two different strategies in order to obtain a final compressed PGD
solution. In the first case we compute the whole PGD solution and then we com-
press it, obtaining a solution with a lower number of modes. With the second
method, the compression is alternated with the PGD computation. This means
that it is performed each N PGD modes computed. Then the PGD computa-
tion continues, using the new compressed intermediate solution. This second
technique allows us to obtain the same accuracy (in terms of error w.r.t. the
classical finite element solution), but saving in the computational effort during
the offline phase. We will refer to the first method with “compressed PGD” and
to the second one with “PGD+compression”.

3.5 Solver for the inverse problem

Consider the reference finite element solution of the problem, e.g. the one ob-
tained with the reference velocity profile, and the PGD solution of the param-
eterized problem (6). In order to identify the parameters that minimize the
functional J defined in (8), we use the Matlab ® function fmincon, which per-
forms the minimization with constraints. In particular, the constraints in our
case are given by the extreme values of the intervals in which the parameters
are defined. The fmincon function uses the sequential quadratic programming
algorithm [13].

4 Numerical Results

In this section a parameterized Helmholtz problem is solved using the proposed
PGD methodology. T'wo test cases are presented: first, an academic example is
used to evaluate the correctness of the methodology by comparing PGD results
with standard FE solutions. The example is also used to test the different
samplings proposed in Section 3.2 to obtain the separable versions of |J.| and
D.. Moreover, the behaviour of the Compressed PGD and PGD-+compression
options described in Section 3.4 are compared.

A second test case is based on a simplified version of a real geological cross
section. This example shows the behaviour of the method in a more realistic
scenario. The geological cross section is located in NW Germany in a basin
where salt-tectonics is dominant [11]. Due the presence of salt, seismic studies
have difficulties to resolve the underground structure and it is usual to obtain
areas with high uncertainty (see for example Figures 4, 6 and 8 in [11]).
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4.1 First test case

The spatial domain €2 of the first test case is composed be three different mate-
rials (as shown in Figure 2), such that Q = Q3 UQs U Q3. The material property

L ops Lops
0 0
_ 100l Qs —100 b2 0
—200L —200
—300L —300L

—400 —400

—500 —500

—-200-100 O

100 200

(a) reference domain : §1 =6, =0 m

—200—-100 O
(b) 01210m,02:20m

100 200

Figure 2: First test case: spatial domain (a) and geometric parameterization of
the inner interface (b).

present in the Helmholtz problem (1) is the squared slowness o = 1/c¢?, where
¢ is the wave propagation velocity. When defining the parameter, one has to
decide if it represents the squares slowness o, or if it represent the propagation
velocity ¢. The two options are equivalent, but, due to numerical reasons here
o is defined as parameter. The range of values taken by o is smaller than that
of c.

Each subdomain €2; has associated a (constant within the domain) squared
slowness o;, for i = 1,2,3. The values for o1 and o9 are considered parameters
of the problem and span as follows,

o1 st vy = oy /% € (3500, 5500)

and
oy $.5. vy = 0 /% € (2000, 4000)
where the velocities v; are expressed in m/s. The squared slowness of o3 is

constant and is such that v3 = 03_1/2 = 2000 m/s.

Moreover, two geometric parameters, 61 and 6o, determine the height and
the width of 2y as follows (Figure 2),

Qg = (=50 — 09,50 + 62) x (=250 — 61, =150 + 6y) ,

where distances are in meters.
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A homogeneous Robin condition is applied on the bottom and on the two
laterals of the domain, while a Neumann condition with value g is applied on
the top boundary I';,, with

B {1 for 2 € [100, 150]

0 elsewhere

The choice is made with no loss of generality, due to the linear character of the
problem.

A fixed frequency of 15 Hz (corresponding to a minimum wavelength A, ~
133 m) is considered. Due to the simple geometry of the spatial domain, the
coarse mesh used to introduce the geometry parameters into the equation is
composed by only np = 18 macro-elements. The FE mesh, on the other hand,
is much finer and it is obtained by subdividing each coarse element into 1024
elements.

Example 1: influence of the sampling points

This first example shows the influence of the different sampling points used to
separate |J.| and D, by the CP algorithm. The two options, as described in
Section 3.2, are: i) sampling at FE grid nodes of the parametric meshes, and ii)
sampling at the integration points of all FE element of the parametric meshes.
Note that ii) prevents one interpolation (from nodes to integration points) when
solving the space subproblem of PGD scheme.

In order to test this effect in a simpler setup, only one geometric parameter,
01, is considered and the other three parameters are kept fixed with values 65 = 0,
o1 s.t. v1 = 4000 m/s and o9 s.t. vo = 2500 m/s.

Convergence curves of the PGD solution with the number of terms are shown
in Figure 3. The relative error plotted are computed as the L?(£2) norm of the
difference between the PGD solution and the corresponding FE solution for some
particular value of the parameter 6.

Curves of Figure 3 show that, as expected, the lower bound of the errors
for solutions computed with sampling at integration points is approximately one
order of magnitude smaller than those computed with nodal sampling.

The final flattening of the convergence curves (meaning that the convergence
towards the FE solution has stopped even when new terms are added) is due
to a relatively coarse discretization of the parametric dimension. If parameter
mesh is refined, the curves continue their convergence towards the FE solution.
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Figure 3: Example 1: Convergence of the PGD solution depending on 67, using
different sampling nodes, for two values of the parameter.

Example 2: PGD+compression vs. compressed PGD

The behaviour of the PGD+compression and the compressed PGD algorithms
described in Section 3.4 is studied next. Two geometric parameters, 61 and 65,
are considered while keeping the values of the two material parameters o7 and
o9 fixed with the same values as in the previous example.

Figure 4 shows the different convergence curves of the relative error with
increasing number of terms for two different values of the parameters. The PGD
solution can be largely compressed, reducing the number of terms from ~ 240 to
~ 45, by doing a projection after the complete offline phase (compressed PGD).
On the other hand, the projection can be done many times along the greedy
offline phase. Every a fixed number of computed terms (10 in this example), one
projection is performed. The computer time in the this option is reduced because
the second term of the right hand side of (14) includes a sum on all already
computed terms. This sum is present on all the sub problems of the greedy
algorithm (space and parametric dimensions). Moreover, the projection process
is extremely fast and therefore the benefits of the reduced number of terms
exceeds its overhead. As shown in Figure 4, the PGD+compression algorithm
produces almost the same convergence curve as the compressed PGD.

Example 3: solution of the 4D inverse problem

In the next example a PGD solution depending on the four parameters (two
geometric and two material properties) is used to solve an synthetic inverse
problem. The goal is to find the value of the parameters that produces the
solution that reproduce best some observations. The inverse problem is stated
as a constrained minimization of the functional defined in (8). The observed data
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Figure 4: Example 2: Convergence curves of the error of PGD solution with
different algorithms. Errors are computed by comparing the PGD solution with a
FE solution for a given value of the parameters. The PGD, compressed PGD and
PGD+compression algorithms are used until getting a relative error of ~ 1074,

is assumed to be in I' s, that corresponds to the top side of the computational
domain (Figure 2). This situation is similar to that of a seismic survey, were
the measurements are done with surface seismometers and the complete wave
trajectories in the whole domain are inferred.

The synthetic version of this problem is build as follows: i) a reference solu-
tion prg is created by solving a FE problem with some reference values of the
parameters (Oref,aref), ii) the solution pyps on I'yps is taken as observations,
that is

Pobs = pFE(erefa Uref)|FobS 5

and finally, iii) the constrained minimization problem is solved using the para-
metric PGD solution to try to recover the reference parameters from the ob-
served data. The minimization method used here is the Sequential Quadratic
Programming (SQP) [13], and its implementation is the fmincon function of
Matlab®.

Results of the parameter recovery are shown in Table 1 for six different sets
of reference values. The maximum error in the recovered parameters is below 6%
and the mean error in the tested cases is ~ 1%. The number of iterations used
by the SQP method, which is the same that evaluation of the functional J (Eq.
(8)) or the number of “forward” problems solved to recover the parameters, is
indicated in the last column of Table 1. In all cases more than 100 evaluations
where required. The fast evaluation of the PGD solution allows a very efficient
solve of the inverse problem. This is particularly important if a global minimum
is being seek, because on that case many inverse problems need to be solved
starting from different initial guesses (due to the presence of local minima).
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Reference values Recovered values Relative errors [%]

] /5] ] /5] it
Ll LQ (% V2 L1 LQ (% V2 Ll LQ (% V2
50 | 50 | 2500 | 4000 | 51.07 | 50.84 | 2492 | 4002 | 1.7 2.1 | 0.30 | 0.057 | 161
50 | 50 | 3000 | 4000 | 50.07 | 49.91 | 3020 | 4009 | 0.18 | 0.14 | 0.68 | 0.23 155
50 | 50 | 3500 | 4000 | 50.34 | 49.39 | 3564 | 3999 | 1.2 | 0.68 | 1.8 | 0.013 | 189
50 | 50 | 2500 | 5000 | 47.08 | 50.18 | 2513 | 5029 | 0.36 | 5.8 | 0.51 | 0.57 163
50 | 80 | 3000 | 4000 | 50.19 80 3024 | 4020 | 0.38 0 0.82 | 0.50 127
60 | 80 | 3000 | 4000 | 60.15 80 2988 | 4044 | 0.25 0 0.41 1.1 101

Table 1: Example 3: Results of the inverse problem for six different reference
values. Lj and Lo are the lengths of the x and y sides of subdomain 5 (con-
trolled by parameters #; and 63). v; and ve are the propagation velocities on
subdomains ©; and Qs9, respectively (controlled by parameters o1 and o2). The
last column shows the number of evaluations of the objective function required
by the SQP algorithm.

4.2 Second test case

A more realistic setup, based on a geological cross section from [11], is considered
as a second test case. The spatial domain is 10km x 5km and the boundary
conditions are the same as in previous example. Neumann boundary conditions
are now applied to x € (6500, 6550) and frequency considered is fixed to 5 Hz.

The spatial domain is divided into six material subdomains each one with
a different propagation velocity. Same as in the previous test case, the squared
slowness o; are expressed in term of the corresponding wave propagation veloc-
ities. The first subdomain, corresponding to the salt body, has a parameterized
o1 taking values in the range

o1 s.t. vy = oy /% € (4450, 4700),

corresponding to standard velocities for salt [19]. The other five subdomains
representing other rock types have constant velocities with values (in m/s) as
follows:

V2 V3 V4 Vs Ve
2000 | 4000 | 3000 | 3500 | 2500

Moreover, two geometric parameters control the location of internal inter-
faces related to the salt subdomain. Their effect on the geometry is shown at
Figure 5. The first parameter controls the smoothness of the upper part of the
subdomain (called the diapir) and the second parameter controls the thickness
of the salt layer crossing the domain. The coarse geometry mesh is composed by
np = 463 elements (shown At Figure 5), each one subdivided into 256 triangular
FE elements.

Solutions presented next are obtained by using the PGD+compression method,
with a compression step done every 20 terms added to the PGD solution.
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Figure 5: Second test case: Coarse geometry mesh for two set of values of the
geometric parameters. Parameter 1 controls the smoothness of the upper part
of the diapir and parameter 2 controls the thickness of the salt layer crossing
the domain. Element colours indicate the different subdomains.

Example 4: Parameter sensitivity

This example shows how the sensitivity of the parameters can be easily identified
from the parametric PGD solution. For this example the squared slowness of
the fist subdomain (salt) is considered fixed s.t. v; = oy 12 = 4500 m/s and,
therefore, the PGD solution depends on two geometric parameters only. Figure
6 show the real part of the solution obtained via PGD and FE for two given sets

of parameters values.

o o =
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0, =0.5,0b =05 0, = 08,0, =0.3

Figure 6: Example 4: Real part of the solution for two sets of geometric param-
eters. FE solutions (top) and PGD solutions (bottom).

An inverse problem similar to that of the previous section is solved to recover
the two parameters. The observed data is again restricted to the surface. Results
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Reference values[-] | Computed values|-] | Relative errors [%] .
0 0, 0 0, 0 5, |7
0.5 0.5 0.50149 | 0.48318 0.2983 3.3646 52
0.8 0.3 0.79893 | 0.29862 | 0.13381 | 0.45842 56

Table 2: Example 4. Results of the parameter identification problem. See
caption of Table 1 for references.

of recovered parameters are shown in Table 2. The relative error of the recovered
parameter ¢ are smaller than those of 3. Due to the extremely fast evaluation
of the PGD solution, it is possible to plot the functional J in the parameter
space, as shown in Figure 7. In that Figure, it can be seen that the functional
J is much more sensitive to the first parameter. That explains why the SQP
technique can recover 0y with smaller errors than 6. This ability of the PGD
solution to easily estimate the sensitivity on the parameters is extremely helpful
to setup efficiently the solver for the inverse problem.

0.5

0
0 92

01 =0.5,0, =05 01 =0.8,0,=0.3

Figure 7: Example 4: Plot of the functional J in two cases

Example 5: inverse problem with geophysical application

The last example consists in the recovery of the geometric and material pa-
rameters for the geologic cross section. In addition to the geometric param-
eters of the previous example, here the squared slowness of the salt (subdo-
main 1), o1, is taken as parameter with values such that the velocity range is
v = oy /% € (4450,4700).

Results of the inverse problem are shown in Table 3. Same as in last example,
the sensitivity of 0, is lower that that of ;. Errors in the recovered parameters

are < 2% for 01 and o, while up to 35% for 6>.
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Reference values Computed values

[] [m/s] ] [m/s]
0 | 0o U1 01 ) U1 th 0 V1
0.8 | 0.3 | 4650 | 0.7967 | 0.1958 | 4652.3 | 0.41 | 34.7 | 0.050 | 114
0.5 | 0.5 | 4500 | 0.5029 | 0.5637 | 4509.3 | 0.59 | 12.7 | 0.207 | 88
0.2 | 0.6 | 4550 | 0.1968 | 0.5949 | 4541.9 | 1.61 | 0.84 | 0.179 | 81

Relative errors [%]

# it

Table 3: Example 5. Results of the parameter identification problem. See
caption of Table 1 for references.

Conclusions

In this work we apply the PGD technique to a parametric formulation of the
Helmholtz problem that is relevant in the context of geological seismic studies.
Parameters are of two kinds: material parameters, namely squared slowness of
the different materials and geometric parameters, determining the location of
internal interfaces between materials.

After the offline phase, PGD allows to obtain in real time the spatial solution
for any given set of parameters. This extremely fast response is ideal for the
solution of inverse problems, in which the values of the parameters need to be
recovered to fit some observed data. The multi-query character (many evalua-
tions of the objective function) of the inverse techniques, makes PGD perfectly
suited for that. Moreover, when a global minimum is required, the importance
of having a fast forward solver is even bigger, as many inverse problems starting
from different initial guesses will be needed, due to the presence of local minima.

Several synthetic examples of the inverse problem presented here show that
both kind of parameters can be recovered in most cases with accuracy smaller
than ~ 5%. Importantly, the PGD solution allows to easily study the sensitivity
of the parameters on the objective function. In this way, it becomes clear when
a parameter can or cannot be identified with a given set of observations.

The offline phase of the PDG method requires some algorithmic decisions.
Some of them were studied in this work: first, the sampling of the parameter
dimensions used to compute the separated Jacobians (required by the geometric
parameterization) needs to be done at the integration points in order to avoid in-
terpolation errors that affect the final convergence of the PGD solution. Second,
“compressing” PGD solution to reduce its number of terms via a L? projection
allows to reduce the time of both the online and offline phases. The added com-
putational overhead of the compression step is much smaller than the benefits
of keeping the number of terms low.

23



References

[1]

[11]

[12]

U. Albertin, J. Kapoor, R. Randall, M. Smith, G. Brown, C. Soufleris,
P. Whitfield, F. Dewey, J. Farnsworth, G. Grubitz, and M. Kemme. The
time for depth imaging. Oilfield Review, 2002.

R. M. Alford, K. R. Kelly, and D. M. Boore. Accuracy of finite-differences
modeling of the acoustic wave equation. Geophysics, 39(6):834-842, 1974.

J. Attanayake. Seismic migration (sm), 13 November 2006. Presentation.

J. D. Carroll and J.-J. Chang. Analysis of individual differences in multi-
dimensional scaling via an n-way generalization of “Eckart-Young” decom-
position. Psychometrika, 35(3):283-319, 1970.

F. Chinesta, R. Keunings, and A. Leygue. The Proper Generalized Decom-
position for Advanced Numerical Simulations. A Primer. SpringerBriefs in
Applied Sciences and Technology. Springer, 2014.

L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM J. Matriz Anal. Appl., 21(4):1253-1278, 2000.

B. Haasdok, M. Ohlberger, and G. Rozza. A reduced basis method for
evolution schemes with parameter-dependent explicit operators. FElectronic
Transactions on Numerical Analysis, 32:145-161, 2008.

R. A. Harshman. Foundations of the PARAFAC procedure: Models and
conditions for an “explanatory” multimodal factor analysis. UCLA working
papers in phonetics, 16:1-84, 1970.

G. Kerschen, J.-C. Golinval, A. F. Vakasis, and L. A. Bergman. The method
of proper orthogonal decomposition for dynamical characterization and or-
der reduction of mechanical systems: An overview. Nonlinear Dynamics ,
Springer, 41:147-169, 2005.

D. Modesto, S. Zlotnik, and A. Huerta. Proper Generalized Decomposition
for parameterized helmholtz problems in heterogeneous and unbounded do-
mains: application to harbor agitation. Comput. Methods Appl. Mech. Eng.,
295:127-149, 2015.

M. Mohr, P. A. Kukla, J. L. Urai, and G. Bresser. Multiphase salt tectonic
evolution in nw germany: seismic interpretation and retro-deformation. Int.

J. Earth Sci. (Geol Rundsch), (94):917-940, 2005.

D. Neron and P. Ladeveze. Proper generalized decomposition for multi-
scale and multiphysics problems. Archives of Computational Methods in
Engineering, 17(4):351-372, 2010.

24



[13]
[14]

[15]

J. Nocedal and S. Wright. Numerical Optimization. Springer Series, 2006.

R.-E. Plessix. A helmholtz iterative solver for 3d seismic-imaging problems.
Geophysics, 72(5):SM185-SM194, 2007.

Z.-M. Song and P. R. Williamson. Frequency-domain acoustic-wave mod-
eling and inversion of crosshole data: Part 1-2.5-0 modeling method. Geo-
physics, 60(3):784-795, 1995.

W. W. Symes. The seismic reflection inverse problem. I0Pscience, 25, 2009.

A. Tarantola. Inversion of seismic reflection data in the acoustic approxi-
mation. Geophysics, 49(8):1259-1266, 1984.

J. Virieux and S. Operto. An overview of full-waveform inversion in explo-
ration geophysics. Geophysics, 74(6):WCC1-WCC26, 2009.

F. Yan, D.-H. Han, Q. Yao, and H. Li. Seismic velocities of halite salt:
anisotropy, dispersion, temperature and stress effects. SEG, 2014.

S. Zlotnik, P. Diez, D. Gonzélez, E. Cueto, and A. Huerta. Effect of the
separated approximation of input data in the accuracy of the resulting pgd
solution. Advanced Modeling and Simulation in Engineering Sciences, 2(28),
2015.

S. Zlotnik, P. Diez, D. Modesto, and A. Huerta. Proper generalized decom-
position of a geometrically parametrized heat problem with geophysical
applications. Int. J. Numer. Meth. Engng, 103(10):737-758, 2015.

25



A Separable Approximations and Matrices

For each element belonging to the coarse mesh e = 1,---  np, the following
separable approximations are introduced:

nje ng 3 Mhe nyg
s =S Tl wan = Y e,
=1 j=1 a=1m=1j=1

where
10 0 1 0 0
nelo) m=fio] B-fo ]
The scalar &, associated with the macro-element T, is defined to simplify no-
tation in the matrix formulation (Section 2.3),

O¢ —

- 1, if o in T, is described by one of the parameters
ol|r,, else (if the value ofoin T, is a fixed value)

The following definitions are used in the matrix formulation of the PGD
algorithm (Section 2.3),

M; = / N;Nldi K¢ = / VNI (I,VN;)di  ME, = Agr, / NID(NIPYT gy
T T T'rNOTe

ngfl: /1 T;jlengg;dej My ™™ = /I Gy No, Ny df; My, = /1 Ny, Ng.db;
0 0; 0;

Mss N /L75 [O-sgse +a- 886)} NUSN‘Z;dO-S M\E/U_s - L. [\/0—8586 +(1- gse)] NcrsNg;dds

M, = / N, N1 do,
Iog

qr.e = A@Te/ g(l’)NiDdlE qgj :/ Ng].d@j Ao, :/ NoSdO's
FNﬂaTe 193' Io's

where J, is defined as

< {1 the parameter o, describes the material properties of T,
se — .

0 otherwise
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