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Abstract

Algebraic Multigrid (AMG) methods are state-of-the-art algebraic solvers for partial dif-
ferential equations. Still, their efficiency depends heavily on the choice of suitable param-
eters and/or ingredients. Paradigmatic examples include the so-called strong threshold
parameter 6, which controls the algebraic coarse-grid hierarchy, as well as the smoother,
i.e., the relaxation methods used on the fine grid to damp out high-frequency errors. In
AMG, since the coarse grids are constructed algebraically (without geometric intuition),
the smoother’s performance is even more critical. For the linear systems stemming from
polytopal discretizations, such as Polytopal Discontinuous Galerkin (PolyDG) and Virtual
Element Methods (VEM), AMG sensitivity to such choices is even more critical due to the
significant variability of the underlying meshes, which results in algebraic systems with
different sparsity patterns. We propose a novel deep learning approach that automatically
tunes the strong threshold parameter, as well as the smoother choice in AMG solvers,
for linear systems of equations arising from polytopal discretizations, thereby maximizing
AMG performance. We interpret the sparse matrix resulting from polytopal discretization
as a grayscale image, and by applying pooling, our neural network extracts compact fea-
tures that preserve the necessary information at a low computational cost. We test various
differential problems in both two- and three-dimensional settings, with heterogeneous co-
efficients and polygonal/polyhedral meshes, and demonstrate that the proposed approach
generalizes well. In practice, we demonstrate that we can reduce AMG solver time by up
to 27% with minimal changes to existing PolyDG and VEM codes.

Key words: algebraic multigrid methods, polytopal grids, discontinuous Galerkin, virtual ele-
ments, deep learning, convolutional neural networks.
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1 Introduction

Multigrid methods are state-of-the-art iterative solvers for large, sparse, linear systems stemming
from Finite Element discretizations of Partial Differential Equations (PDEs) [1]. A hierarchy of



“coarser” problems forms the key ingredient of Multigrid methods, which enables fast error re-
duction across multiple levels within iterative Krylov-based algorithms [2].

Within the framework of multigrid methods, Geometric Multigrid methods [3, 4] take advan-
tage of the explicit geometry of the underlying PDEs and computational domain: a sequence of
“coarser” problems is built based on employing coarser grids by directly coarsening the original
mesh, which allows the method to use geometric information to define interpolation and restric-
tion operators between levels. In contrast, Algebraic Multigrid (AMG) methods [5, 6, 7] do not
require knowledge of the underlying geometry; they operate solely on the system of linear equa-
tions, analyzing (interpreting it as a weighted graph) the matrix structure to generate coarse
levels and the corresponding transfer operators automatically. Therefore, AMG methods are
more flexible for use as a “black box” or for problems posed on complicated geometries and/or
with highly heterogeneous materials, where computing the sequence of coarser meshes can be
challenging.

Over the past ten years, there has been significant progress in developing new discretiza-
tion methods for PDEs, commonly referred to as polytopal methods, that extend the Finite
Element approach to support computational domains partitioned into general polygons (in two
dimensions) or polyhedra (in three dimensions) and that offer greater flexibility in handling
complex geometries. Examples of polytopal methods include Virtual Element Methods (VEM),
see e.g., [8, 9], and the review paper [10]; polytopal Discontinuous Galerkin (PolyDG), see e.g.,
[11, 12, 13, 14], the monograph [15] and the review paper [16]; Hybrid High-Order Methods,
see e.g., [17, 18, 19], the monograph [20] and the review paper [21]; Mimetic Finite Difference
Methods, see e.g., [22, 23, 24] and the monograph [25]; Hybridizable Discontinuous Galerkin,
see e.g., [26, 27, 28], and weak Galerkin methods, see e.g., [29, 30]. While the development of
polytopal discretizations has undergone a very rapid growth in the last ten years, the develop-
ment of efficient solvers for the resulting large, sparse (and often ill-conditioned) linear systems
of equations is still in its infancy.

A key advantage of polytopal methods is that they naturally support agglomeration, i.e.,
a coarser mesh of arbitrarily shaped elements is obtained by merging an underlying finer grid.
Agglomeration significantly reduces computational cost by lowering the number of degrees of free-
dom required to achieve a given accuracy, while enabling the use of higher polynomial degrees.
Mesh agglomeration, which lacks a direct equivalent in traditional finite elements, is crucial for
reducing computational complexity in domains with “small” inclusions or complex embedded
layers and structures. It also forms the basis of constructing efficient geometric multigrid solvers
and adaptive algorithms. Indeed, in the context of multilevel solvers, agglomeration techniques
form the basis for automatically generating the sequence of nested/non-nested coarser levels.
Recent work [31] has demonstrated that employing Graph Neural Networks (GNNs) for auto-
matic mesh agglomeration can improve the quality and efficiency of the agglomeration steps, with
promising results and novel avenues in multigrid solvers. Polytopal mesh agglomeration via geo-
metrical deep learning for two- and three-dimensional heterogeneous domains has been proposed
in [31, 32]. Geometric and physical features are incorporated into the GNN model to preserve
mesh quality better when aggregating elements in complex domains. Such a distinguishing and
essential feature can be implemented at a much greater cost in classical graph-partitioning meth-
ods like METIS. R-tree-based agglomeration algorithms of polytopal grids with applications to
multilevel methods has also been proposed recently in [33].

For PolyDG discretizations of second-order elliptic problems, geometric agglomeration-based



multigrid solvers have been developed and analysed in [34], where multigrid algorithms for hp-
version PolyDG methods on agglomerated polygonal/polyhedral meshes, proving scalability in-
dependent of the discretization parameters. In [35], the authors proved uniform convergence
of a non-nested agglomeration-driven geometric multigrid scheme, provided sufficient smoothing
steps are applied. A massively parallel (agglomeration-based) two-level solver for PolyDG meth-
ods is proposed and analyzed in [36]. More recently, a geometric multigrid solver for compact DG
discretizations was proposed in [37]. For Virtual Element discretizations of the diffusion prob-
lem, [38] proved that a p-multigrid algorithm, where the sequence of coarse levels is obtained
by progressively reducing the polynomial degree, leads to a scalable solver. In [39], the authors
presented a uniformly convergent geometric multigrid scheme for the lowest-order Virtual El-
ement Method. In [40], the authors provide a numerical study of algebraic multigrid applied
to VEM, demonstrating numerically that AMG can be effective for VEM discretizations over
general meshes and heterogeneous diffusion. For Hybrid High-Order discretizations, a geometric
multigrid method was proposed and analyzed in [41]. A comprehensive comparative study of
h-, p-, and hp-coarsening strategies, considering both nested and non-nested mesh hierarchies,
was presented in [42]. In the context of mixed or incompressible flow problems, p-multilevel
preconditioners for the Stokes equations were investigated in [43].

While the flexibility of polytopal methods offers improved advantages in the context of geo-
metric multigrid solvers, through the use of agglomeration, this generality also complicates things
for AMG. Indeed, the sparsity pattern of the matrix may be more irregular; local element shape
quality, face/edge connectivity, etc., may vary more, and interpolation/prolongation operators,
and algebraic aggregation strategies have to handle more “variability”.

Since its introduction in [44], AMG methods have been widely studied from both algorithmic
and theoretical perspectives. Developments such as smoothed aggregation [45, 46] and adap-
tive variants [47] have broadened its applicability to many finite element discretizations and
physical models, including Ritz-type methods [48, 49, 50], discontinuous Galerkin [51, 52, 53],
hybrid schemes [43, 54], and problems in fluid dynamics [55, 56], electromagnetism [57, 58], elas-
ticity [59, 60, 61], and poromechanics [62, 63]. The theoretical foundations of AMG methods
can be found in [7, 44, 64, 65, 66] for the two-level method; we also refer to the recent review
paper [67]. It is well known that AMG performance depends on parameter tuning, including
options for coarsening strategies, interpolation operators, and the choice of the smoother. AMG
faces further challenges when applied to solve the linear system stemming from polytopal dis-
cretizations. The greater variability of the meshes, and consequently of the resulting algebraic
systems, makes such a tuning both more difficult and more critical. For example, a poor choice of
the strong threshold—governing the coarsening step—can severely degrade solver performance,
whereas optimal tuning can dramatically accelerate convergence. Analogously, because AMG
relies heavily on smoothers to damp high-frequency errors, the choice of the smoother is even
more critical. In this paper, we propose a novel ANN-AMG method, where a deep learning
algorithm predicts “on the fly” the optimal AMG strong threshold parameter driving the al-
gebraic coarsening as well as the optimal choice of the smoother. Conceptually, our method,
the ANN-AMG method, combines the advantages of adaptive AMG [47], which automatically
refines interpolation patterns at additional cost, and calibrated AMG, which can achieve good
performance but requires extensive manual tuning. More specifically, we propose using Artificial
Neural Networks to automatically tune the strong threshold parameter and the best smoother
(from a set of given relaxation methods), thereby minimizing the time-to-solution of the resulting
iterative scheme. To achieve our goal, we first interpret the matrix of the algebraic system as a
grayscale image. Next, a convolutional and pooling layer generates a compact, multi-channel rep-



resentation that preserves key structural features while simultaneously reducing computational
cost. The proposed ANN-AMG method is entirely non-intrusive, requiring no modifications to
existing PolyDG or VEM implementations, nor to AMG solvers, thereby guaranteeing compat-
ibility with existing libraries and preserving parallel AMG implementations [68]. Our approach
builds upon earlier work that integrated deep learning with multigrid to accelerate iterative
solvers, see e.g., [69, 70] for classical Conforming Finite Element Discretizations. However, it
extends these ideas in several crucial directions necessary for handling polytopal discretizations.
More specifically, in the present work, we propose optimizing the AMG performance with re-
spect to both the choice of the threshold parameter that drives the algebraic coarsening and
the choice of the smoother. We introduce a novel pre-processing step to ensure robustness of
training data. We also propose a novel ANN architecture with an additional output measuring
the model’s prediction confidence. Finally, we propose an improved pooling strategy to capture
better variability in the matrix structure and a new training acceleration strategy based on layer
freezing. We validate our approach through extensive numerical experiments conducted on both
two-dimensional and three-dimensional diffusion and elasticity differential problems, discretized
using PolyDG and VEM on complex polygonal and polyhedral meshes. Results demonstrate
that our ANN-AMG consistently lowers the computational costs by up to 30% compared to
classical AMG with default or manually tuned parameters. We note that VEM and PolyDG
discretizations are paradigmatic examples of polytopal methods. In VEM, the degrees of free-
dom are associated with “geometric” entities such as vertices, edges, faces, or internal moments.
In contrast, in PolyDG methods, the local approximation space is “geometry-agnostic,” since
a local modal polynomial expansion is used. Consequently, our results demonstrate that the
proposed ANN-AMG algorithm can achieve acceleration regardless of whether the discretization
space is “virtual and skeleton-based” or “plain polynomial and modal”. Furthermore, consid-
ering both diffusion and elasticity problems serves to show that ANN-AMG is robust for both
scalar and vector-valued equations, the latter being particularly challenging within the AMG
framework due to the need for suitable aggregation strategies. Finally, we emphasize that the
computational overhead of the ANN forward pass is negligible compared to the acceleration it
provides to the solver. Since the training phase is performed offline, the ANN-AMG algorithm
can be generalized to a wide range of differential problems, resulting in symmetric and positive
definite algebraic systems.

The remainder of this work is organized as follows. In Section 2, we review the basic principles
of AMG methods, with a focus on the role of the strong threshold parameter. In Section 3, we
discuss the PolyDG and VEM discretization for both diffusion and linear elasticity problems.
Section 4 introduces our deep ANN-AMG algorithm, detailing its architecture and the matrix-
to-image pooling representation. In Section 5.1 and Section 5.2, we test our ANN-AMG algorithm
on a wide set of numerical benchmarks carried out with either PolyDG and VEM on both two-
and three-dimensional diffusion and linear elasticity problems, respectively. Finally, Section 6
concludes with a discussion on the obtained results and outlines directions for future research.

2 Algebraic Multigrid Methods

This section introduces the key steps required to construct the AMG method’s hierarchy of grids
and operators. We first describe the coarse—fine partitioning strategy that determines the grid
structure, and then define the interpolation operator that transfers information between levels.

AMG [7, 44, 67] is an iterative method for solving large, sparse symmetric positive definite



Algorithm 1 One Iteration of the V-cycle of the AMG method
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(SPD) linear systems of the form
Au="f, (1)

where A € R™*" and f € R™. The method constructs a hierarchy of smaller systems to reduce
error across different frequency modes efficiently. Its main components are a smoother, grid
transfer operators, and a sequence of coarse-grid operators.

The smoother is a simple iterative solver applied for v steps, ugp+1 = ur +S(f — Aug), k >0,
starting from an initial guess ug. The matrix S € R™*™ defines the method (smoother) that
is designed to damp high-frequency components of the error. This operation is denoted as
smooth” (A, S, ug, f).

To address low-frequency error, the problem is transferred to a coarser grid. This is achieved
using interpolation operators I,’:fl € R™—1%" and restriction operators I}j_l € R"*"k-1_ For
the SPD case, these operators are defined recursively for levels £k = 1,..., M — 1 alongside the

coarse-grid system matrices A*+1):
= (p )T, AED Ak e =1, M -1, AW = A, (2)
The system sizes decrease at each level, n = ny > no > --- > nj;. These components are

assembled in a recursive procedure, such as the V-cycle shown in Algorithm 1. The V-cycle
projects the residual equation onto a coarse space (Ae =r = f — Au,, ), solves the problem there,

and interpolates the correction back to the fine space (u, + €). It uses pre-smoothers Sik) for 14
steps and post-smoothers Sék) for v steps at each level (k).

2.1 Coarse-Fine Partitioning

The core of AMG is the automated construction of the interpolation operator based on the entries
of the matrix A. For clarity, we will describe the construction for a two-level system, omitting
the level-identifying superscripts and subscripts k. First, the set of variables N' = {1,...,n} is
partitioned into a set of coarse-grid variables C and a set of fine-grid variables F. Variables in
C will exist on the next coarser grid, while variables in F will be interpolated from them. To
perform the C/F splitting, one must first quantify the coupling between variables based on the
matrix entries. Namely, it is crucial to know when a variable 7 can be interpolated from a variable
j, or formally, when the variable i strongly depends on the variable j.



Definition 2.1 Given a threshold parameter 0 < 6 < 1, the set of variables on which variable i
strongly depends, denoted S;, is

Si={j#i:—ay; >0 Hll;éilx{—au},j =1,...,n4}.

Conversely, we define the set of variables that are strongly influenced by the variable i. This
“transpose” set, S;, is given by S;" = {j : i € S;,j = 1,...,nx}. Both sets are fundamental for
constructing the coarsening and interpolation operators.

We use the CLJP (Cleary-Luby-Jones-Plagsman) algorithm to partition the grid. This algo-
rithm models the strong dependencies as a graph G = (N, £), where an edge (i,7) € & exists if
j € S;. Tt then iteratively selects an independent set of nodes to form C. A weight (i) = |S;"|+7
is assigned to each node i, where 7 is a small random number to break ties. The algorithm pro-
ceeds until all nodes are classified as either C or F. This process is repeated to build the operator
hierarchy until the grid size ny is below a threshold, here set to two.

2.2 Interpolation Operator

With the C/F partition established, the interpolation operator I ,’j 41 is defined as follows. For
any vector x € R”*+1 on the coarse grid, its interpolated counterpart on the fine grid is given by:

e (x); if i € CF,
Uax): = {Zjecf wiy(x); ifie Fr @

where CF = {j € C* : a;j # 0} is the set of coarse neighbors of a fine point ¢, and wfj are the
interpolation weights.

The weights are derived from the assumption that the error e is smooth, meaning (Ae); ~ 0
for all ¢. This condition can be written as:

Z aij(e); + Z aij(e); + Z a;;(€); =0, Vi=1,..,n,
J€Cs JED; jEDY

where Df = FNS; are the strongly connected fine-grid neighbors and D’ = {j € N : a;; #0,j ¢
S;} are the weakly connected neighbors. This leads to the following formula for the weights:

1 a;Qy;
Wij = —————— a--—{—ZiA 4
N aij + ZleD;v ag \ " leDs Y mec, Gim W

where a;; is defined as a;; if a;5a;; < 0 and zero otherwise. The complete AMG setup procedure
is summarized in Algorithm 2.

3 Model Problems their Polytopal Discretizations

In this section, we introduce the model problems under consideration, the basic notation for
PolyDG and VEM discretizations, and discuss the corresponding discrete formulations for diffu-
sion and linear elasticity differential problems that lead to linear systems of the form (1).

Let Q € R% d = 2,3 be an open, bounded polygonal/polyhedral domain. The first model
problem that we consider is the diffusion equation
-V (kVu)=f inQ,

5
u=0 on 0L, (5)



Algorithm 2 AMG algorithm
u = AMG(u, A, £, 0, {( D sGyym

=k V1, V2, NmaxvtOZ)

1: build {C*, FF}IM | using 6 by means of CLJP

2: build the operators {I +1}g . employmg Eq. (3) and Eq. (4)

3: build the operators {IJH}M Y and {(A( }M by means of Eq. (2)
4: while k£ < Np,q, and ||Au - fH / If]| < tol do

5: u « veycle!(u, f, {(AW) S(]) SJ)) Mk {(IJH,I;H) p kl,m,m)
6: k+—k+1

7: end while

where the datum f € L?(2) and the function x : @ — R is bounded and uniformly positive. For
the sake of simplicity, in the following we will assume that x is piecewise constant over €2 with
discontinuities aligned with the mesh.
The second model problem under investigation is the following: find the displacement field
u: Q — R? such that
—V-aogu)=rf in Q,

6
u=0 on 0f), (6)

where f : Q — R? is the body force, and o (u) is the Cauchy stress tensor. For isotropic elastic
materials, o(u) = C : g(u) = 2ue(u) + A tr(e(u))I, where g(u) is the strain tensor, A, u > 0
are the Lamé parameters, and I is the identity matrix. The Lamé parameters A and p can be
expressed in terms of the Young’s modulus F and Poisson’s ratio v as follows:

E FEv

Wy T TEa0-) "

M =
respectively.

We next introduce the basic notation, which is instrumental to our discretizations. Let Tj
be a polytopal mesh made of general polygons (for d = 2) or polyhedra (for d = 3). We denote
such polytopal elements by K, define by hx their diameter, and set h = max,.c7, hx. To deal
with polygonal and polyhedral elements, we define an interface of T, as the intersection of the
(d — 1)-dimensional faces of any two neighboring elements of 7. If d = 2, an interface/face is a
line segment and the set of all interfaces/faces is denoted by F5. When d = 3, an interface can
be a general polygon that we assume could be further decomposed into a set of planar triangles
collected in the set F},. Let F be an interior face shared by two neighboring elements K+ € Tj,,
iie., F = OKT NOK~. For regular enough scalar-, vector-, and tensor—valued functions v, w,
and 7, we define the average and jump operators as

[v] =vtnt 4o n", [w]l=wreont+w on~,
vt + o~ wt +w™ T+ 7 (8)

o} = —5— fwh=—35—, fr} =

The notation (-)* is used to denote the trace on F taken within the interior of K=, n* is the
outer unit normal vector to Ox*, and w ® n = wn’. On boundary faces, the definition extends
as in [71], i.e

[v] =vn, {v}=v, [W=wen, {w}=w, {}=r7.



3.1 PolyDG Discretization of Diffusion and Linear Elasticity

We first introduce the scalar broken (discontinuous) polynomial space that serves as the dis-
cretization space for PolyDG methods, as

VPe = {v e L*(Q):v|g € PP(K) VK €T}, (9)

where PP(K) denotes the space of polynomials of total degree at most p > 1. We also need its
vector-valued counterpart defined as VP¢ = [V,PC]d d =2, 3.

The PolyDG approximation to the model problem (5) reads as follow: find uj, € V,P¢ such
that

ABG(uh,vh) = Z / f’l}h Vvh S VhDG (10)
K

KeTy,

where

ARC (un,vn) = Y /Kfivhuh-vhvh— > /F{{thuh}}'[[”h]]

KeTh FeFy

Here, V}, denotes the element-wise gradient operator, and the penalty function is defined as

2
7{5%} , FeF
olr = Ph ! B
'ynﬁ, FeF),

with v > 0 denoting a penalty coefficient to be properly chosen (large enough) and {-}y denoting
the harmonic average.

As for the model problem (6), following [72], we introduce

A (o) = Y [ otw)ew) — X [ otw)): o]

wen FeFy
_ FEZPL/F[[uh]] fo(vn)} + FEZH/Fn[[uh]]  [wn],

with 1 as in [16, eq. (9)]. Hence, the PolyDG approximation to the elasticity problem (6) reads
as follows: find uy, € V) such that

AEG(U;L,’U;L) = Z / f L Up V'Uh S V%G (11)
K

KeTh

Remark 1 (PolyDG algebraic form) We observe that each of the discrete problems (10)-(11)
yields a linear system of the form (1), where A and f denote the PolyDG stiffness matriz and
the right-hand side corresponding to the chosen bilinear form and functional, respectively, and u
is the corresponding vector of expansion coefficients in the selected basis for the discrete spaces
VhDG and V%G, respectively.



3.2 VEM Discretization of Diffusion and Linear Elasticity

Following [8, 73, 74], in this section, we present the VEM for the diffusion (5) and linear elasticity
(6) problems, focusing for the sake of simplicity to the two-dimensional case; we refer to [75] and
[76] for the details on the three-dimensional extension.

For any K € T, we first introduce the following scalar- and vector-valued local virtual element
spaces on K is given by

VVEM(K) = {v € HY(K) : v|p € P,(F) VF C 0K, Av e P, o(K)}, VYIEW(K) = [VyEM(K)?,

with the convention that for p = 1, P_; = {0}. From the above definitions, we introduce the
global spaces V,YEM as V/EM as

VVEM — [y € H}(Q) : v|x € VVEM(K) VK € Ty}, VYEM — [V VEM2,
A common choice of degrees of freedom for V,:/ EM  see, e.g., [77], is:

1. values of v at the vertices of K,

2. on each F' C 0K the moments of v up to order p — 2, for p > 2,

3. the internal moments of v up to order p — 2, for p > 2.
This choice of degrees of freedom is unisolvent for the space V,:/ EM and allows the computation
of the following projection operator

ILY : VYRM(K) — Py (K) / VIIYv —v)-Vg=0 Vg € P,(K),
K

with an additional constraint fixing the constant mode (e.g., element mean). For VYEM(K), we
can define the degrees of freedom analogously (componentwise) and the elastic energy projector
as

LY : VYEM(K) — [, (K))? /K (cmyv-v)):el@) =0  Vae [P, (K)

together with the orthogonality/rigid-motion constraint to fix rigid body modes (so that the
projector is unique).

The Virtual Element discretization of (5) reads: Find u; € V,YEM such that

ASM (wpyvn) = Y / frvn Yop € VYEM,
K

KeTy,

where f}, is a suitable polynomial projection of f, which is computable using the available degrees
of freedom, and where

ASEM (wp,, vp) = Z / KKV(Hpr) . V(Hpvv) + Z SE((I - Hpv)w, (I - Hpv)v) w,v € VM,
KeTy 7K KETh

¢

where SE (+,-) is a computable symmetric positive definite stabilization form acting on the “non-
polynomial” part of (I prV ) (typical choices for Sé{ include scaled inner products on the degrees
of freedom, the so-called ”dofi-dofi” stabilization).



As for the Virtual Element discretization of the linear elasticity problem (6). Find uj, € V)
such that

A}E/EM<uh,’Uh)= Z / fh-vh|K VU}LEV\;{EM
KeT, 7K

where f}, is a suitable polynomial projection of f, which is computable using the available degrees
of freedom. The computable bilinear form AYEM(,-) is defined as

AYEM (), vp,) = Z / g(l'[pvw) :§(Hpv'v) + Z Sg((I — Hpv)w, I- Hpv)v)
KeT;, VK KEeT

for all wy,, vy, € V)L/EM where SE (-, ) is a symmetric positive definite stabilization acting on the
kernel of the projector (i.e., the non-polynomial part).

Remark 2 (VEM algebraic form) As before, the Virtual Element discretization of both the diffu-
sion and linear elasticity problem yields a linear system of the form (1), where A and f denote the
VEM stiffness matriz and the right-hand side corresponding to the chosen bilinear form and right
hand side, respectively, and u is the corresponding expansion coefficient vectors for the discrete

Virtual Element spaces V,:/EM or VXEM, depending on the discretized differential problem.

4 The Neural Network Architecture

In this section, we provide a detailed description of the neural network architecture and the
algorithm used to tune the AMG method automatically. First, we provide an overview of the
pipeline, introducing the high-level components and procedures that enable the automatic choice
of parameters. Then, in each subsection, we will go into the details and precisely define all the
components of our method.

The first choice concerns the parameters to be tuned and the employed metric (that is, a
scalar index that establishes when a certain combination of parameters is better than another).
In Section 2, we have shown that the strong threshold parameter 6 critically influences the
construction of the interpolation operator and thus the whole hierarchy of levels that stand at
the basis of each AMG application. Another key choice that heavily influences the behavior
of the AMG methods is the smoother. The importance of these parameters is confirmed by
empirical evidence when tested for our applications. For these reasons, we aim to tune 6 and the
smoother to minimize the computational cost of the AMG method. We remark that the tuning
process can be done by optimizing the choice of other parameters, such as the number of pre-
and post-smoothing iterations applied at each level, or the choice of C/F splitting algorithm.

Concerning the performance metric, we ideally want to minimize the total elapsed time
needed to solve the linear system. However, this metric has at least two significant drawbacks:
it is machine-dependent and it suffers from measurement error. Techniques to tackle these
problems are detailed in Section 4.1. However, in some instances, statistical analysis shows a
strong correlation between the elapsed time and the approximate convergence factor

N.
IIr(’“)I2> "
p= 12
(o -
which measures how quickly the iterative solution contracts towards the exact one. Hence, when

possible, we prefer to use p as the index of the performance. For each test case, we also considered
multivariate polynomial models that take into account the size and number of non-zero elements

10



of A®) at each level k. Unfortunately, none of them showed statistical significance in predicting
the elapsed time t.

The optimization step is performed at each application of the AMG method, that is, every
time we solve the system Au = f. In view of this, it seems quite natural that only the matrix A
is employed in the tuning procedure. However, the matrix A is a large, sparse matrix of variable
size. Neural networks are not well-equipped to handle this kind of data. For this reason, we
use a special kind of pooling, first introduced in [69], to prune and compress A into a small
multi-channel image V € R™*™>/_ This procedure is outlined, together with the meaning of
the hyperparameters m and f, in Section 4.2.

Hence, our goal is to use a neural network % to predict the computational cost of solving
a system Au = f, where the input of .# is the matrix A and the parameters that we want
to tune (the scalar # and the categorical variable for the kind of smoother encoded as a one-
hot). Although including f (or a pooled form of f) as ANN input might improve per-problem
performance, we omit it because AMG constructs its multilevel hierarchy and interpolation
operators from A alone. By limiting the network’s input to information derived from A, we
aim to learn features that generalize across problems rather than overfit to particular right-hand
sides; we therefore hypothesize improved generalization. The optimal choice of parameters is
then found by solving two optimization problems. The first one is the offline training of the
ANN, which enables us to learn an approximate map of the computational cost depending on
the problem we are solving (A) and the choice of the AMG’s parameters. This step is expensive
but it is done only once. The second one is an online optimization step that allows us to find
the optimal choice of parameters, namely:

min F(A,-). (13)
AMG parameters

This optimization step takes place in the online phase and must be solved each time we apply
the algorithm.

While this choice might seem strange at first, we would like to highlight a few advantages.
This approach is more data-efficient. Specifically, if the ANN were trained to directly predict
the optimal combination of AMG parameters, we would need to solve a more expensive offline
optimization problem, which in turn would require solving many more linear systems Au = f.
This procedure would be prohibitively expensive. By contrast, if the ANN is trained to predict
the computational cost, then every computational cost measurement taken by solving Au = f
— for any choice of AMG’s parameters — can be used as a training sample. In this way, we can
build a large dataset by solving many inexpensive, small-scale problems, and then supplement it
with only a few samples from larger, more costly problems, relying on the ANN’s generalization
capability. In other words, by predicting the computational cost instead of the optimal AMG
parameters, we build a surrogate model (A, AMG parameters) — ¢ which enables a more efficient
solution of Eq. 13 than directly measuring ¢ by solving Au = f. This feature is incredibly useful
when the solution of even one linear system may be costly. Moreover, we have empirically found
this approach to be more stable with respect to directly learning the optimal value of parameters.
Finally, the search space is practically one-dimensional (since the smoother choice is discrete),
thus the cost of performing the optimization is small.

4.1 Handling Measurement Uncertainty

In this section, we describe the procedure used to collect the data for training the neural network
when the execution time is taken as performance metric. Since measurements of the elapsed time
t are subject to noise, we repeat each measurement multiple times.
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To reduce data collection costs while mitigating measurement errors, we adopt the following
strategy: the measurement is repeated r times, where r ranges from 2 to 100 and is chosen
inversely proportional to the mean elapsed time of the first two measurements. The rationale is
that measurement variability arises primarily from operating-system tasks running concurrently
with the AMG solver, perturbing CPU load. For larger values of ¢, these fluctuations tend to
average out, resulting in lower variance. Empirical evidence supports this assumption, as we
observed that the sample variance of repeated measurements decreases inversely proportionally
to the elapsed time (for fixed 7). The reported elapsed time ¢ is then taken as the mean of the r
repetitions.

To further improve data quality, we apply a Savitzky-Golay filter [78]. We employ a window
size of 21 and a polynomial of degree 7 for uniformly sampled values of 8. These parameters
were determined through manual tuning, by testing multiple combinations and assessing their
performance on representative subsets of the dataset. Selection was guided by visual inspection,
balancing smoothness and fidelity to the raw data. Importantly, we verified that the filter
preserves the positivity of the data and performed manual checks whenever the difference between
the minima of the raw and smoothed signals exceeded a prescribed threshold. In such cases, we
adjusted the polynomial degree or window size as appropriate. We note that smoothing can alter
the position of minima in sharp valleys, as it tends to attenuate high-frequency features. Improper
tuning of the filter may significantly degrade predictive accuracy, whereas carefully calibrated
smoothing provides accuracy improvements of several percentage points. Nevertheless, in the
absence of proper tuning, we observed that omitting smoothing remains preferable to applying
it blindly.

All experiments reported here were carried out in a serial manner in a controlled environ-
ment, ensuring that no other processes contributed significant CPU load. To enhance training
robustness, we normalize execution times to the interval [0, 1].

Finally, we remark that parallel execution introduces another external factor — the number
of CPU cores — which can be treated as an additional AMG parameter. However, this extension
is left for future work.

4.2 The Pooling Operator

One of the key steps of our algorithm is passing the information contained in A to the neural
network. Even if the structure of a sparse matrix is more akin to a graph than a dense matrix,
we prefer to use a neural network with structured input (CNN) due to the size of A. Namely,
to make this process scalable to cases where A has millions of entries, we prefer not to directly
apply GNNs to A, but instead, we would rather employ a process that can prune and extract
information from A much more quickly. In particular, we use a variation of the pooling technique
used in CNNs, first introduced in [69].

We denote by V = pooling(A4,m) € R™*™*f the pooled representation of A, where m € N
is a hyperparameter that controls the tensor size and f is the number of features extracted, in
our case f = 4. Letting ¢ = [n1/m], the pooled features are defined as

vijr = max  max {0, digti jg+j'} vijp = max  max {0, —digyir joti }
i,j'=1,....q i,3'=1,....q
q q q q
Vijs = > lighit jatss Vija = D Y X(0t00) (ig i jati)s
i'=1j5'=1 i'=1j'=1

where x is the indicator function and a;; = a4 Xi<n,,,j<n, -
A reference implementation is reported in Algorithm 3. While the pseudocode assumes that
A is stored in coordinate (COO) format, the procedure extends to other sparse storage formats.
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Algorithm 3 Pooling algorithm V = pooling(A,m)

1: Access A in COO format and extract: nq, val, row, col

2: Initialize V as an m x m x 4 dense tensor with zero entries
3: g« ni/m, p<nymodm, t<+ (¢g+1)p

4: for k=0 to val.size() — 1 do

5: i < rowlk]/(q¢ + 1) if row[k] < t, else (row[k] —t)/q+p
6:  j < collk]/(qg+1) if collk] < t, else (collk] —t)/q+p
7 v;j1 < maxmax(0, vallk]), vi;1

8: v;j2 < max max(0, —val[k]), vi;o

9: Vi3 < Vij3 + Val[k]

10: Vij4 < Vij4 +1

11: end for

Unlike conventional CNN pooling, which typically extracts a single maximum, here we compute
four complementary features within each neighborhood: maximum of positive entries, maximum
of negative entries, sum of all entries, and the number of nonzeros. This choice is motivated by
the role of positive, negative, and aggregate values in defining the interpolation weights (Eq. 4),
while the nonzero count provides a measure of local sparsity. Although additional features could
be incorporated, this selection offers a favorable balance between expressiveness and efficiency.
Notably, the features preserve the sparsity structure: pooling a block of zeros yields zero.

The algorithm scales linearly with the number of nonzero entries, i.e., O(nnz), which for
finite element discretizations translates to O(p - n). Empirical tests confirm that its runtime is
negligible compared to that of solving the linear system, a prerequisite for its practical relevance.
Furthermore, Algorithm 3 can be parallelized with minimal effort.

4.2.1 Normalization

To ensure stable and fast convergence, the tensor V is normalized following a logarithmic nor-
malization scheme [69]. It has been shown that this normalization outperforms standard linear
scaling in this context. Namley, for each feature f, the transformation reads

log(|vijf| +1) Vij
max; ; | log(|vijr| + 1)] |vijg]

Vijp = (14)
A key property of this normalization is that zeros map to zero, thereby preserving the sparsity
pattern of V.

4.3 The AMG-ANN Algorithm

The core of the algorithm is the neural network .% that predicts the computational cost of the
AMG method. As mentioned before, the computational cost for us can either be the approximate
convergence factor p or the normalized and smoothed wall clock time .

The architecture of .% is made up of two main components in series. The first is a CNN that
analyzes and encodes a flat latent representation for the pooling tensor V. The hyperparameters
that we consider for this component are the size m of V, the number of convolution blocks
(ending with a max-pooling layer), the number of convolutions in each block, and the number
and size of filters of each convolution. The activation function we use is the ReLU.

The latent representation of V is concatenated with the parameters of the AMG method
we want to tune (the scalar 6 and the kind of smoother encoded as a one-hot of size four), the
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Figure 1: Architecture of the proposed ANN used to predict the optimal value of the AMG parameters.

logarithm of the size of A (log(n)) — since during the pooling this information is lost — and, the
polynomial degree p of the basis function used in the FE discretization. This information is not
strictly needed; indeed, our experiments show that even omitting the parameter p, we can obtain
a neural network with a similar loss. However, when adding the polynomial degree to the inputs,
the training is usually less expensive and requires a shorter phase of hyperparameters’ tuning.
Hence, our algorithm is not limited to problems stemming from FE discretizations.

The second component of .% is a dense feed-forward neural network that takes as input the
aforementioned concatenation layer and outputs a prediction of the computational cost. On the
last layer, we add a clipping activation function to ensure that the output lies in [0,1]. The
hyperparameters of this component are the depth and the width of the network. To sum up, we
have

ﬁ(v,logn,p,&b;a) =c (15)
where
4
be Os=qe €{0,1}*: Z(ei)j =1
j=1

is the one-hot representation of the kind of smoother. Namely, it is a vector of four components
where only one is not zero. Thus, if the non-zero component is in the i-th position, we choose as
smoother the i-th in the following list: Jacobi with successive over-relaxation (SOR), ¢!-Jacobi
[79], ¢1-Jacobi with SOR and Jacobi with FCF relaxation [80]. Moreover, we denote by a the
parameters of the neural network, while ¢ denotes the approximation of the computational cost
c. The architecture of the ANN is shown in Figure 1.

Like most deep learning algorithms, our algorithm works in two phases.

Offline phase We collect, smooth, and normalize the data following the procedure outlined in
Section 4.1. Then we train the neural network with the collected samples. Namely, the input-
target training pairs for the supervised training are the couples ((V(i), logn®, p( 9@ b(i))7 c(i)),
where the superscript () indicates that it is the é-th sample of the dataset. In other words, the
ANN receives as input the matrix of the system, the threshold parameters, and the choice of
the smoothers, and it has as its target the computational cost. As usual, The optimization step
minimizes the MSE error between the predicted cost and the target cost c.

The hyperparameters of the neural network are chosen via a Bayesian optimization algorithm
[81]. The procedure uses a standard 60-20-20 split into train, validation, and test datasets. The
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data are partitioned at the problem level, meaning that each matrix A appears in exactly one
of the three datasets. Consequently, when the algorithm is evaluated on the validation or test
set, it is required to make predictions on entirely unseen problems. Training has been performed
using the AdamW [82] optimizer. The initial learning rate and the minibatch size are also tuned
hyperparameters. The learning rate is managed via a suitable learning rate schedule to improve
convergence speed and stability. Namely, we employ a reduced on-plateau learning rate schedule
that halves the learning rate with a manually tuned patience. More details on how data is
practically generated are given in Sections 5.1, 5.2 since it depends on the physics and the FE
discretization of the problem.

Online phase Given as input the matrix A of the linear system to be solved and, optionally,
the polynomial degree p of the discretization.

1 Compress A by applying the pooling to obtain V (Section 4.2).

2 Normalize V to obtain V (Section 4.2.1)

3 Obtain (6*,b*) solving the continuous optimization problem

(0*,b*) = argmin ﬁ(v,logn,p,ﬁ,b) (16)
(6,b)€[0,1]x O4

by doing a complete search of the space using the discretization

(07,0%) = argmin 5?(\7, logn,p,0,b)
(6,b)Elinespace(0,1,101) x Oy

4 Use (0*,b*) as parameters of the AMG method.

4.4 Evaluating the Model

While obtaining a small MSE test loss between the predicted and target computational cost
¢ during the offline phase is a good indicator that the neural network is learning, it does not
measure the actual reduction of cost that our algorithm has on the AMG method. We remark
that the choice of parameters (6, b) employed in the AMG to solve the system is subordinate to
the map A — (6*,b*) defined by the “Online phase” algorithm of Section 4.3 and, in particular,
to Eq. (16). Hence, we introduce the following quantities of interest. Let A be fixed, and let:

e tanN be the computational time of the AMG-ANN algorithm, that is by using 6 = 6* and
i-th smoother among SOR-Jacobi, £'-Jacobi, SOR-¢!-Jacobi and FCF-Jacobi, where i is
the position of the only non-zero bit of b*;

e ty be the computational time of the AMG method with the default parameter (6 = 0.25 in
2D, 6 = 0.5 in 3D, and SOR-Jacobi smoother);

e {\n be the computational time of the AMG method with
(6%,0%) = argmin t(6,b; A);
(0,b)edataset for A

e P=1-— t’*t% be the performance index of the AMG-ANN algorithm;

o Pyax=1-— tl‘;% be the best performance of the AMG-ANN algorithm.
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Moreover, we can compound the quantities over different A and define Ppg as the percentage of
cases where P > 0, P, as the average of P, and P) as the median of P. The ratio P, = P/Pyax
gives the accuracy of the neural network, namely a measure of how close the ANN is to performing
to the theoretical maximum.

Naturally, all the metrics defined above can be computed also if we employ as a measure of
the computational cost the approximate convergence factor p. Indeed, we can compute (0*,b*)
as explained in the previous section and then compute all the performances indexes (P, Pyrax,
etc.) by taking measurements of the wall clock time needed to solve the linear system for each
choice of (0, b) present in the dataset. Finally, let us remark that it can happen that, when the
matrix A is ill-conditioned, the quantity ¢y is not well defined since the default values of the
parameters of the AMG do not allow the solver to converge. In these cases we set ty = oo and
thus P = 1. In a few of the following test cases, this is not a rare event. Thus, for the sake of
completeness, we also introduce the following additional performance indexes.

e P, as the percentage of cases where tg = oc;

e {p; as computational time of the AMG method with the default value of § and the i-th
smoother;

o Pi=1-— tﬁoﬂ the performance with respect to the i-th smoother.

5 Numerical Results

This section presents the numerical experiments designed to evaluate the performance of the pro-
posed AMG-ANN algorithm across a variety of discretizations, problem settings, and dimensions.
We first describe the computational framework and solver configuration adopted in our study.
This provides the necessary context for interpreting the numerical results presented later. The
experiments are then organized into two main categories: the diffusion problem and the linear
elasticity problem. Within each category, we report several test cases of increasing complexity,
spanning 2D and 3D domains, multiple mesh families, and different discretization schemes (VEM
and PolyDG).

A key advantage of our algorithm is its ability to integrate seamlessly with existing code bases.
In particular, we assemble the linear systems using the VEM++ [83] and Vulpes [84] libraries, while
employing BoomerAMG [68] from the HYPRE library [85] as the algebraic multigrid (AMG)
solver. BoomerAMG is used strictly as a black-box solver; no modifications are introduced
except for adjusting the strong threshold parameter § and the smoother. All other parameters
remain at their default values. The stopping criterion is defined by enforcing a relative residual
tolerance of 10~® when AMG is used as a preconditioner for the conjugate gradient (CG) Krylov
solver of PETSc [86].

Finally, we describe the method used to choose or sample the threshold parameter 6, which is
common across all test cases. For small problems (n < 20,000), we use a uniform discretization
of the interval [0.05,0.95] with a step size of 0.025. For moderate problems (up to n = 100,000),
we employ a coarser discretization with a step size of 0.05. For larger problems, we uniformly
randomly sample the interval at 10 or fewer points, depending on the problem size.

5.1 Numerical Results: Diffusion Problem
5.1.1 Test Case 1: VEM Discretization of the Diffusion Problem in 2D

This first test case involves a VEM discretization of problem (5) with discontinuous diffusion
coefficients, representing a moderately challenging scenario where the default AMG solver is
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Figure 2: Patterns used to partition the domain €2 into Qpite and Qgray-

(a) Triangular Mesh (b) Quadrilateral Mesh (c) Voronoi Mesh (d) Hexagonal Mesh

(e) Triangular Sparsity (f) Quadrilateral Sparsity (g) Voronoi Sparsity (h) Hexagonal Sparsity

Figure 3: The four mesh types considered in 2D work (top row) and their corresponding system matrix
sparsity patterns (bottom row) for the diffusion problem discretized with VEM of polynomial degree p = 1.

generally effective. To define the diffusion coefficient x, we partition the domain €2 into two
subdomains Qupite and Qgrqy according to 4 different patterns (see Figure 2) and we assign a
constant value to x in each subdomain in the following way:

I{(x y) _ 1 if (x7y) S Qwhite (17)
’ 10¢if (2,y) € Qgray

This diffusion coefficient is discontinuous across subdomains, and the magnitude of the jump is
controlled by the parameter € € R, which will be varied in the dataset generation. The domain
Q) is discretized as shown in Figure 3. Namely, we employ 24 distinct meshes, comprising six
different refinement levels for each of the four mesh types. The mesh was refined such that the
number of elements increases geometrically with each refinement level.

In this case, we observe that p and wall clock time are linearly correlated, cf. Figure 4. Thus,
we employ p as a measure of the computational cost.

In Figure 5, we show the gain in performance and the scaling obtained by using our AMG-
ANN algorithm. The histogram shows that the gains are evenly distributed, with no peaks,
proving that the algorithm is consistent across different scenarios. The scaling of the computa-
tional cost further supports the fact that our algorithm works well as the size of the problem
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Figure 4: Correlation between the average convergence factor p and wall-clock solve time for triangular
grid for different smoothers. A clear positive correlation is observed, validating p as a reliable proxy for
computational cost. Similar results hold for the other mesh families.

increases, which is of utmost importance for large-scale solvers. The results in Table 1 show
that the default solver (SOR-Jacobi) always converges (P, = 0%). Nevertheless, our AMG-
ANN algorithm yields substantial improvements. The median performance gain Py = 23.7%
indicates a significant reduction in computational time. The algorithm is effective in the vast
majority of instances, as shown by Pg = 87.5%. The performance ratio P, = 70.1% reveals
that the ANN successfully captures over two-thirds of the maximum achievable performance
improvement identified in our dataset. This confirms the efficacy of the network’s predictions.
Finally, these gains in wall-clock time were achieved even though the network was trained using
the approximate convergence factor p, validating our choice of p as an effective and cheaper proxy
for computational cost.

5.1.2 Test Case 2: PolyDG Discretization of the Diffusion Problem in 2D

We consider the diffusion problem (5), discretized by means of PolyDG with polynomial degree
p=1,2,3,4. The domain Q = (0, 1)? is a unit square discretized in four different ways, as shown
in the top row of Figure 3b. Different degrees of refinement are employed when building the
dataset, namely, each refinement level contains a number of elements that grows geometrically
relative to the previous level up to 200,000. The diffusion coefficient & is a strongly heterogeneous
piecewise constant that is conforming to the mesh. Namely,  takes the form of x = 10 on the
i-th cell of the mesh. The values of ¢; are chosen by extracting values for a uniform distribution
in [0,eprax], where eprax € {1,2,4}. The penalty v is chosen uniformly at random in [5,20],
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Figure 5: Test Case 1: (Left) Performance gain P of the AMG-ANN algorithm and maximum theoretical
performance Pyrax. (Right) Scaling of the AMG-ANN computational cost t4nn and the theoretical
minimum ¢p;7 x5 with respect to the default one tg.

Ps P, P, Py Puyax P. P} P} P4
Test Case 1 | 87.5 0  21.1 23.7 338  70.1 17.8 22.6 19.1
Test Case 2 | 100 100 100 100 100 100 21.9 99.6 99.7
Test Case 3 | 100 100 100 100 100 100 269 97.1 96.5
Test Case 4 | 100 100 100 100 100 100 242 100 100
Test Case 5 | 100 100 100 100 100 100 248 97.2 95.5

Table 1: Evaluation of the performance of the AMG-ANN algorithm for each test case.

making sure that the chosen value keeps the matrix A is positive definite.

Details about the performance are shown in Figure 6 and Table 1. This test case signifi-
cantly increases the difficulty by employing a PolyDG discretization with highly heterogeneous
coefficients, which typically produces ill-conditioned matrices. Indeed, the presence of “dupli-
cate” degrees of freedom makes the application of the AMG method challenging. The results
underscore a critical strength of our approach: its ability to render intractable problems solvable.
As shown in Table 1, the default AMG configuration fails to converge in every single instance
(Py = 100%). Consequently, any convergent parameter set represents an infinite improvement,
leading to perfect scores in Pg, Py, Prr, Prrax, and P,.. The primary contribution of the ANN
here is identifying a suitable smoother, as the default Jacobi method is inadequate. The met-
rics P, allow us to dissect the algorithm’s performance further. The near-perfect scores for
P3, = 99.6% and Pj; = 99.7% confirm that smoothers 3 and 4 are poor choices. The much
lower value of PZ;, = 21.9% reveals two things: first, that the second smoother is the most robust
choice for this problem class, and second, that even after making this correct choice, the ANN’s
fine-tuning of the threshold € provides an additional median time reduction of 21.9%. This
highlights the dual benefit of our approach: robust smoother selection and effective parameter
optimization.

5.1.3 Test Case 3: PolyDG Discretization of the Diffusion Problem in 3D

We extend the previous test case by considering the 3D version. Namely, we consider 2 =
(0,1)3, discretized with four different types of grids, as shown in Figure 7. We consider various
refinements of the grids until we reach 100 thousand degrees of freedom. The diffusion coefficient
k takes the same form as the previous test case.
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(c) Test Case 4 (d) Test Case 5

Figure 6: Test Cases 2-5: Performance gain P* of the AMG-ANN algorithm with respect to the choice
of the smoother: (2) ¢!-Jacobi, (3) £*-SOR Jacobi and (4) FCF-Jacobi. The ¢!-SOR Jacobi is usually
the best, while the other most often do not reach convergence. Results for (1) SOR-Jacobi are omitted
because P! = 1 for all test samples. Indeed, when SOR-Jacobi is employed as a smoother, the AMG
method fails to converge (see Table 1).

Extending the previous scenario to three dimensions further increases the conditioning chal-
lenges. We show the performance of our algorithm in Figure 6 and Table 1.

As in the 2D case, the default AMG solver consistently fails to converge (P, = 100%), making
the AMG-ANN’s ability to find a convergent configuration essential. The results in Table 1 show
that the landscape of optimal smoothers is more complex in 3D. While the performance gains
relative to smoothers 3 and 4 remain very high (P3; = 97.1% and Py, = 96.5%), they are slightly
lower than in the 2D case. This indicates that while smoother 2 is still generally the best, the
other smoothers are not as uniformly suboptimal, and the best choice may be more dependent
on the specific matrix properties. The ANN successfully navigates this more complex decision
space. However, the benefit of fine-tuning the threshold parameter 8 for the best smoother family
is even more pronounced in 3D, yielding a median performance gain of PZ;, = 26.9%.

5.2 Numerical Results: Linear Elasticity Problem

We now shift to the discretization of the linear elasticity problem, which introduces further
complexities due to its block-structured nature.

5.2.1 Test Case 4: PolyDG Discretization of the Linear Elasticity Problem in 2D

We consider the PolyDG discretization of the linear elasticity problem 5. The domain = (0, 1)?
is a unit square discretized with the grids outlined in the first row of Figure 3b. For each kind of
grid, we employ different refinements until the total number of degrees of freedom exceeds one
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Figure 7: The four mesh types considered in 3D test cases.

hundred thousand.

We can rewrite the Lamé parameters in terms of the Young’s modulus E > 0 and the diffusion
ratio v € (0, %) (see Eq. 7). The problem has been discretized with order p = 1,2,3,4. We fix
the diffusion ratio v = 0.29 and choose a strongly heterogeneous Young modulus F. Namely, for
each cell, we set E = 10°, where € is chosen at random in [0, ep74x], where eprax € {1,2,4}. The
penalty coefficient «y is chosen so that the matrix A is symmetric and positive definite. Various
values in the interval [4,20] are picked to enhance the dataset.

Similar to the diffusion PolyDG cases, the default AMG parameters frequently fail to yield
a convergent solver, making the AMG-ANN indispensable. The numerical results reveal a clear
trend: the ¢'-scaled SOR Jacobi smoother consistently emerges as the most effective choice
across different mesh types and polynomial orders. Our algorithm reliably identifies this optimal
smoother in all instances. The primary benefit is therefore transforming a non-convergent method
into a robust and efficient one. The median performance gain attributed solely to the optimization
of the threshold 6 after selecting the right smoother family is P3;, = 24.2%, demonstrating that
even when a single smoother is dominant, careful parameter tuning remains crucial for achieving
optimal performance.

5.2.2 Test Case 5: PolyDG Discretization of the Linear Elasticity Problem in 3D

This final test case represents the most complex scenario, combining the challenges of 3D ge-
ometry, PolyDG discretization, and the block structure of linear elasticity. The computational
domain is © = (0,1)3, discretized with the four mesh families shown in Figure 7. The meshes
are progressively refined until the total number of degrees of freedom exceeds 10°. The govern-
ing equations are the 3D linear elasticity equations in displacement form, see Eq. (6). We fix
v = 0.29, while the Young’s modulus FE is chosen to be strongly heterogeneous across elements:
for each cell, we set

EIIOE, ENU(O,EMA)(), EMAX 6{1,2,4}. (18)

The stabilization parameter v is randomly drawn from the interval [5, 20], ensuring that the global
stiffness matrix A remains symmetric positive definite. Discretization is performed with PolyDG
of order p = 1,2, 3,4, yielding block-structured stiffness matrices with significant heterogeneity
and conditioning challenges.

The numerical results for this case are summarized in Figure 6 and Table 1. As in the 2D
elasticity case, the ¢'-scaled SOR Jacobi smoother is consistently selected by the AMG-ANN
algorithm as the most effective option, confirming its robustness across discretization orders and
mesh types. The baseline AMG setup frequently fails to converge within the prescribed tolerance,
especially for high-order discretizations (p > 3) and agglomerated meshes. Our algorithm always
selects a convergent configuration. Performance improvements remain substantial. Optimizing
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the threshold parameter 6 alone yields a reduction of 24.8% in computational cost. In contrast
to the 2D case, the interplay between smoother choice and parameter tuning is more delicate in
3D: certain smoothers are optimal only for specific mesh families, which explains the observed
degradation in Pj;, and Pj; relative to Pi;. This reflects the higher complexity of the 3D
operator spectrum. Overall, these results show that our AMG-ANN framework scales robustly
to heterogeneous 3D linear elasticity.

6 Conclusions

In this work, we addressed the challenge of employing Deep Learning to accelerate algebraic
multigrid iterative solvers for linear systems of equations stemming from polytopal discretiza-
tions of Partial Differential Equations, where the increased flexibility of polygonal and polyhedral
meshes comes at the cost of more complex algebraic structures. Algebraic multigrid methods
are among the state-of-the-art iterative solvers thanks to their robustness and black-box na-
ture. However, AMG performance is highly sensitive to the smoother and parameter choices,
particularly the strong threshold parameter that drives the coarsening strategy. To improve the
performance of AMG solvers, we introduced ANN-AMG: a framework that automatically tunes
the smoother as well as the strong threshold parameter in AMG solvers using a novel neural
network-driven approach. By interpreting the linear system matrix as an image and designing a
tailored convolutional architecture and a novel pooling strategy, our ANN-AMG achieves robust
and efficient parameter selection on the fly, eliminating the need for manual fine-tuning. The
proposed approach is entirely non-intrusive, and it is compatible with existing implementations of
the PDE solver and parallel AMG implementations. Numerical experiments on both PolyDG and
VEM discretizations of diffusion and elasticity problems in two- and three-dimensions demon-
strated that we can reduce up to 27% the computational cost compared to AMG approaches
with “manual” tuning. Our results demonstrate the advantages of enhancing algebraic iterative
solvers via deep learning to improve the efficient numerical solution of differential problems posed
on complex and heterogeneous domains via polytopal discretizations. Further research aims to
integrate data-driven adaptivity in multilevel solvers, ranging from coarsening strategies to the
design of intergrid operators, as well as to extend ANN-AMG to non-symmetric or indefinite
systems and explore transferability across broader classes of PDE models and discretizations.
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