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Abstract

In computational hemodynamics we typically need to solve incompress-
ible fluids in domains given by curved pipes or network of pipes. To reduce
the computational costs, or conversely to improve models based on a pure
1D (axial) modeling, an approach called “Hierarchical Model reduction”
(HiMod) was recently proposed. It consists of a diverse numerical approxi-
mation of the axial and of the transverse components of the dynamics. The
latter are properly approximated by spectral methods with a few degrees of
freedom, while classical finite elements were used for the main dynamics to
easily fit any morphology. However affine elements for curved geometries
are generally inaccurate. In this paper we conduct a preliminary explo-
ration of IsoGeometric Analysis (IGA) applied to the axial discretization.
With this approach, the centerline is approximated by Non Uniform Ra-
tional B-Splines (NURBS). The same functions are used to represent the
axial component of the solution. In this way we obtain an accurate rep-
resentation of the centerline as well as an accurate representation of the
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solution with few axial degrees of freedom. This paper provides prelimi-
nary promising results of the combination of HiMod with IGA - referred to
as HIGAMod approach - to be applied in any field involving computational
fluid dynamics in generic pipe-like domains.

1 Introduction

Progressive application of computational mechanics to real life problems chal-
lenges both hardware architectures and numerical methodologies to fit the time-
lines requested by the applications. As a reference application, we mention com-
putational hemodynamics in arteries of real patients to support medical research
and most importantly clinical practice [17]. In order to accelerate the numerical
simulation of incompressible fluids, we can customize standard methods to take
advantage of particular features of the problem to solve, like the shape of the
region of interest and the consequent peculiarities of the fluid dynamics. Specif-
ically, for pipe-like domains like arteries we proposed a combination of finite
elements and spectral methods, following the natural decomposition of a main-
stream dynamics (solved with FEM) and the transverse components (solved with
a modal approximation) [16, 29]. As the transverse components are expected
to have a minor impact on the global dynamics, a few spectral degrees of free-
dom (DOF) are usually enough, resulting in smaller discrete problems to solve
with respect to standard methods, with an evident computational advantage.
We called this approach Hierarchical Model Reduction (HiMod) since it yields a
“psychologically 1D” approximation where the accuracy for transverse dynamics
can be hierarchically tuned by a proper (even automatic) selection of the num-
ber of spectral DOF. The method merges the versatility of finite elements and
the accuracy of spectral approximations to attain a reduction of computational
costs - an introduction can be found in [27]. We recall the basic properties in
Sect. 2.

One of the limitations of this method - in its original form - relies on the
rectilinear nature of the centerline defining the axis of the pipe. As a matter
of fact, for curved pipes the method can be applied by rectifying the centerline
with a piecewise affine map. In a more sophisticated setting, we may consider
classical (one dimensional) isoparametric finite elements. Although these strate-
gies are viable and work as expected [28], in the search of more sophisticated
and performing methods, in this paper we propose to use isogeometric elements
as an alternative for the mainstream dynamics on curved pipes. IsoGeometric
Analysis (IGA) is a relatively recent idea proposed by T.J.R. Hughes and co-
workers [21] that replaces piecewise polynomial functions of the standard FEM
with Non Uniform Rational B-Splines (NURBS) popular in Computer Aided
Design applications - often used for the preliminary processing of the geometry
of interest for a simulation. There are many advantages of this approach in
practice, ranging from the contiguity of the treatment of the geometry of inter-
est and the solution of the problem solved there, to the accuracy obtained with
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relatively few degrees of freedom. We recall basic properties of IGA in Sect. 3.1.
In this respect, the pairing of HiMod and IGA (called hereafter HIGAMod)

seems a natural approach for the acceleration of fluid dynamics solution in curved
pipes. This paper intends to introduce this idea (Sect. 3.2) and to provide pre-
liminary results corroborating the expectations. In fact, on tests covering both
academic test cases with an analytical solution and nontrivial geometries - re-
ported in Sect. 4 - the effectiveness of HIGAMod is confirmed in comparison with
standard finite element approaches. This is the first work on HIGAMod, that
motivates its extension to more realistic, challenging - and hopefully performing
- applications.

2 The HiMod setting

Let us introduce the geometrical prerequisites we postulate for the HiMod for-
mulation of a generic differential problem in the weak form

find u ∈ V : a(u, v) = F (v) ∀v ∈ V, (1)

where V is a Hilbert space with norm ‖·‖V , a(·, ·) : V ×V → R and F (·) : V → R

are a bilinear and a linear form, respectively. We assume (1) to be well posed
after suitable hypotheses. The independent variables are assumed to belong
to the domain Ω ⊂ R

d (d = 2, 3) that we conceptualize as a fiber bundle,
where we distinguish a supporting one-dimensional curved domain Ω1D aligned
with the centerline (corresponding to the mainstream dynamics), and a set of
(d− 1)-dimensional sections or fibers γ ⊂ R

d−1 orthogonal to the centerline and
associated with the transverse secondary dynamics. We denote by Ψ : Ω → Ω̂
the map between the physical domain Ω and a reference domain Ω̂ = Ω̂1D×γ̂d−1,
where Ω̂1D is a rectilinear fiber and γ̂d−1 is the reference (d − 1) dimensional
transverse reference fiber. More precisely, we denote by z = (x,y) and by
ẑ = (x̂, ŷ) a generic point in Ω and the corresponding point in Ω̂, respectively
such that ẑ = Ψ(z) = (Ψ1(z),Ψ2(z)), with x̂ = Ψ1(z) and ŷ = Ψ2(z). As Ω1D

coincides with the centerline of the domain Ω, likewise Ω̂1D is the centerline
of the reference domain. The inverse map to Ψ, Φ : Ω̂ → Ω, is defined by
z = Φ(ẑ) = (Φ1(ẑ),Φ2(ẑ)), with x = Φ1(ẑ) and y = Φ2(ẑ). We assume both
the maps Ψ and Φ to be differentiable with respect to z and ẑ respectively. The
splitting in main and transverse components - and consequently the maps Ψ and
Φ - play a crucial role in the HiMod construction. In this respect, let VbΩ1D

be
a one-dimensional space of functions compatible with the boundary conditions
assigned along the extremal faces of Ω. We introduce the finite dimensional
space

Vm =

{
vm(z) =

m∑

k=1

vk(Ψ1(z))ϕk(Ψ2(z)), with vk ∈ VbΩ1D

}

for a given modal index m ∈ N
+, where {ϕk}k∈N

+ represents a modal basis

of functions orthonormal with respect to the L2-scalar product on γ̂d−1 and
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taking into account the boundary conditions imposed on the lateral surfaces of
Ω. Space Vm states a hierarchy of reduced models marked by the modal index
m, where all the functions involved are defined on the reference domain via the
map Ψ. To guarantee the well-posedness and the convergence to u of the HiMod
approximation um ∈ Vm such that

a(um, vm) = F (vm) ∀vm ∈ Vm, (2)

we postulate conformity of Vm (Vm ⊂ V,∀m ∈ N
+) as well as spectral approx-

imability (limm→+∞(infvm∈Vm
‖v − vm‖V ) = 0,∀v ∈ V ).

Through the HiMod reduction we rewrite (2) as a system of m coupled
1D problems. This implies a significant reduction of the number of degrees of
freedom with respect to a traditional finite element discretization (in particular
in 3D) whenever transverse dynamics can be captured by a relatively low number
m of modes - as it is often the case in real applications. To this aim, let us
set in (2) um(z) =

∑m
j=1

uj(Ψ1(z))ϕj(Ψ2(z)) and identify vm with the product
ϑ(Ψ1(z))ϕk(Ψ2(z)), where ϑ and uj , j = 1, . . . ,m, belong to VbΩ1D

. Here, the
modal coefficients uj are the unknowns. For the sake of exemplification, let us
assume that (1) refers to linear advection diffusion reaction (ADR) problem,

−µ∆u + b · ∇u + σu = f in Ω, (3)

where f is the source term corresponding to the linear form F in (1), µ,b
and σ are given coefficients, completed by homogeneous Dirichlet conditions
on the boundary ΓD, Neumann conditions on ΓN , Robin conditions on ΓR so
that ∂Ω = ΓD ∪ ΓN ∪ ΓR and each portion of the boundary has null measure
intersection with the others. In fact, in the last section of the present work
we will consider this problem as well as more complicated ones, like the Stokes
equations for incompressible fluids. In particular, the lateral surfaces of the
pipe will be assumed to be part of ΓD, the extension of HiMod to more general
cases being considered in [3]. The discretized HiMod problem then reads: find
uj ∈ VbΩ1D

with j = 1, . . . ,m, such that, for any ϑ ∈ VbΩ1D

and k = 1, . . . ,m,

m∑

j=1

{ ∫

bΩ1D

[
r̂ 1,1
kj (x̂)u′

j(x̂)ϑ′(x̂) + r̂ 1,0
kj (x̂)u′

j(x̂)ϑ(x̂)

+ r̂ 0,1
kj (x̂)uj(x̂)ϑ′(x̂) + r̂ 0,0

kj (x̂)uj(x̂)ϑ(x̂)
]
dx̂

}

=

∫

bΩ1D

[ ∫

bγd−1

f(Φ(ẑ))ϕk(ŷ)|J−1(Φ(ẑ))| dŷ
]
ϑ(x̂) dx̂,

(4)

J = ∂Ψ/∂z ∈ R
d×d denotes the Jacobian associated with the map Ψ. The

HiMod coefficients r̂ s,t
kj , with s, t = 0, 1 and k, j = 1, . . . ,m, are computed on

the reference fiber via map Ψ, as

r̂ s,t
kj (x̂) =

∫

bγd−1

r s,t
kj (x̂, ŷ) |J−1(Φ(ẑ))| dŷ,
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whereas the full coefficients r s,t
kj involve the problem data, the modal functions

ϕj and ϕk, and the components ∂Ψi/∂x, ∇yΨi (i = 1, 2) of the Jacobian J, with
∇y the gradient with respect to y. An explicit computation of these coefficients
can be found in [16] for a rectilinear Ω1D and in [28] for a generically curved
fiber Ω1D. As expected, the latter case is much more complicated. It may be
worth noting that the HiMod reduced problem does not necessarily reflects the
nature of the full problem, for instance a purely diffusive full problem reduces
to a set of ”psychologically 1D” advection-reaction problems (see [29, 3] for the
details).

For particular choices of the discretization methods and of the storing of
the algebraic coefficients, the system we obtain features a pattern that reflects
blockwise the 1D discretization along the axis, with clear computational advan-
tages in the linear algebra. In addition, a judicious selection of m can introduce
several computational improvements (see [27] for a survey). As a matter of fact,
the basic method considers a uniform constant selection of m along Ω1D; how-
ever, different values may be considered in different subdomains of Ω (piecewise

HiMod reduction [30]); alternatively, each degree of freedom of the axial problem
can be associated with a different number of modes as done in [31, 32] (pointwise

HiMod reduction ). In any case, the specific number of modes can be selected
a priori, driven by a partial physical knowledge of the phenomenon at hand
[16, 29], or automatically via an adaptive model reduction procedure based on
an a posteriori modeling error analysis [30, 32]. This adaptivity conveniently
combines with mesh adaptive procedures along the centerline.

As pointed out above, the rationale of the HiMod formulation relies on using
different discretization techniques for the two directions. Originally, we consid-
ered the axial components approximated by classical finite elements while the
transverse ones on γd−1 by a spectral approximation. This choice was motivated
by the simplicity of 1D finite elements as well as by their versatility in repre-
senting pipes with a generic centerline. From a different standpoint, we can
regard HiMod as a way for improving 1D network models of the circulatory sys-
tem [9, 17] (as well as oil pipelines, internal combustion engines, river systems,
etc.) with a local enhancement introduced by low cost spectrally approximated
transverse components [2, 10]. In particular in [28] a piecewise linearization of
a curved pipe was explored. While this guarantees easiness of implementation,
piecewise affine approximation of the curved centerline may introduce some ac-
curacy degradation and using fine meshes along the axis to balance this does
not seem the best approach. IGA is the alternative we explore here.

3 HIGAMod

The basic step of HiMOD consists of taking advantage of the particular shape
of pipe domains by selecting different discretization procedures along axial and
transverse directions. Any discretization technique can be in principle adopted.
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In particular, the performance of the original HiMOD version may benefit from
an approach able to achieve a higher accuracy with a low number of degrees
of freedom. Moreover, since we aim at solving problems on potentially com-
plex, curved domains (see Figure 3 below), it is desirable that the selected axial
discretization scheme is based on functions characterized by high geometrical
efficiency and flexibility. IGA is the ideal candidate.

We give hereafter a brief introduction to IGA and we present its fundamen-
tal ingredients. The Hierarchical IsoGeometric Approach for Model reduction
(HIGAMod) follows straightforwardly from the standard HiMOD scheme replac-
ing the finite element discretization along the axial fiber with an isogeometric
one.

3.1 A brief introduction to Isogeometric Analysis

Isogeometric analysis was introduced by [21] in 2005 with the main aim of bridg-
ing the gap between Computer Aided Design (CAD) and Finite Element Anal-
ysis (FEA). The IGA paradigm is based on the adoption of the basis functions
used for geometry representations in CAD systems - such as, e.g., B-Splines or
Non-Uniform Rational B-Splines (NURBS) - also for the approximation of field
variables, in an isoparametric fashion. This allows high geometric efficiency,
accuracy, and flexibility, to go along with a cost-saving simplification of the typ-
ically expensive mesh generation and refinement processes required by standard
FEA. Moreover, thanks to the high-regularity properties of its basis functions,
IGA has shown better accuracy per-degree-of-freedom and enhanced robustness
with respect to standard FEA in a number of applications ranging from solids
and structures [11, 12, 15, 22, 24, 26] to fluids [1, 6, 25, 36] and fluid-structure
interaction problems [7, 8, 20], opening also the door to geometrically flexi-
ble discretizations of higher-order partial differential equations in primal form
[18, 23].

An IGA formulation basically relies on the use of spline shape functions
within the main structure of a standard isoparametric finite element code; im-
plementation details can be found in [13, 14]. As stated above, we aim at using
IGA for the discretization of the HiMOD problem along the axial fiber, as an im-
provement relatively simple to implement but immediately leading to significant
advantages in terms of reduced number of degrees of freedom and geometrical
flexibility. Accordingly, in this manuscript we limit our description of IGA to the
simple univariate, Galerkin case, and leave other possible extensions as future
developments, as discussed in the final section.

3.1.1 Univariate B-Splines and NURBS

B-Splines are smooth approximating functions constructed by piecewise polyno-
mials, and are the basic ingredient of most CAD systems. A B-Spline curve in
R

d is obtained as the linear combination of B-Spline basis functions and some
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coefficients (Bi). These coefficients are points in R
d, referred to as control points.

For the sake of generality, in the remainder of this section we consider curves
in R

3 (d = 3), even if in our numerical tests we only consider plane problems
(d = 2).

To define B-Spline functions we introduce a knot vector, i.e., a set of non-
decreasing real numbers representing coordinates in the parametric space of the
curve

{ξ1 = 0, ..., ξn+p+1 = 1}, (5)

where p is the order of the B-Spline curve and n is the number of basis functions
(and control points) necessary to describe it. The interval [ξ1, ξn+p+1] is called a
patch. A knot vector is said to be uniform if its knots are uniformly-spaced and
non-uniform otherwise. Moreover it is said to be open if its first and last knots
have multiplicity p + 1. In what follows, we always employ open knot vectors.
Basis functions formed from open knot vectors are interpolatory at the ends of
the parametric interval [0, 1] and are not, in general, interpolatory at interior
knots.

Given a knot vector, univariate B-Spline basis functions are defined recur-
sively as follows. For p = 0 (piecewise constants),

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise,
(6)

for p ≥ 1 :

Ni,p(ξ) =






ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ)

if ξi ≤ ξ < ξi+p+1,

0 otherwise,

(7)

where, in (7), we set 0/0 = 0. In Figure 1, we present the set of n = 11 B-Spline
cubic basis functions generated from a particular open knot vector (specified in
the caption).

If internal knots are not repeated, B-Spline basis functions are Cp−1-continuous.
If a knot has multiplicity m the basis is Ck-continuous at that knot, where
k = p − m. In particular, when a knot has multiplicity p, the basis is C0 and
interpolates the control point at that location (cf. Figure 1). Finally, B-Spline
basis functions form a partition of unity, i.e.,

∑n
i=1

Ni,p(ξ) = 1.
The generic B-Spline curve S is then defined by

S(ξ) =
n∑

i=1

Ni,p(ξ)Bi. (8)

NURBS are defined starting from B-Splines with the additional property of
representing exactly also conic sections. In R

3, a NURBS curve is obtained start-
ing from a set of “projective” control points denoted by Bw

i ∈ R
4 (i = 1, ..., n)
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Figure 1: Cubic basis functions generated from the open knot vector
{0, 0, 0, 0, 1/5, 1/5, 1/5, 2/5, 2/5, 3/5, 4/5, 1, 1, 1, 1}.

for a B-Spline curve in R4, and the corresponding shape functions Ni,p(ξ). Then
the control points for the NURBS curve in R

3 are obtained by the following
projection operation

[Bi]k =
[Bw

i ]k

wi
, k = 1, 2, 3, (9)

where [Bi]k is the kth component of the vector Bi and wi = [Bw
i ]4 is referred to

as the ith weight. The NURBS basis functions of order p are then defined as

Ri,p(ξ) =
Ni,p(ξ)wi∑n

j=1
Nj,p(ξ)wj

. (10)

Due to the B-Spline partition of unity property, NURBS basis functions
simply collapse to B-Spline basis functions if the weights are constant.

Analogously to the case of B-Splines, the corresponding NURBS curve C is
finally obtained as

C(ξ) =
n∑

i=1

Ri,p(ξ)Bi. (11)

As an example, in Figure 2, we present the quartic NURBS model of an helicoidal
curve in R

3, along with its control polygon (i.e., the piecewise linear interpolation
of its control points).

We denote the support of the curve C by Γ(C), hence Γ(C) ⊂ R
3. In

addition, we suppose that the map C : [0, 1] → Γ(C) is smooth and invertible,
with smooth inverse denoted by C−1 : Γ(C) → [0, 1].

Following the isoparametric approach, the space of NURBS functions on
Γ(C) is defined as the span of the push-forward of the basis functions of (10),
i.e., as

Vn = span{Ri,p ◦ C−1, i = 1, . . . , n}. (12)
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Figure 2: Quartic NURBS helicoidal curve, along with its control polygon (dot-
ted).

Finally, note that the images of the knots through the function C naturally
define a partition of the curve support Γ(C) ⊂ R

3. This partition identifies the
mesh Mh associated with the discretization and is characterized by the mesh-size
h. The latter is defined as the largest size of the elements in the mesh.

Figure 3: Reconstruction of a portion of a patient-specific cerebral vasculature.
The centerline is highlighted. Image taken from the Aneuriskweb site [34].

3.2 HIGAMod in action

In practical applications of computational hemodynamics (as well in other fields
of computational engineering) the domain of interest is often represented by a
curved pipe with a nontrivial centerline. For the sake of exemplification, in Fig-
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ure 3 we illustrate the reconstruction of a portion of cerebral vessels obtained by
rotational angiographies and performed by the open source code Vascular Mod-
eling ToolKit (VMTK) [4] within the Aneurisk Project. The data are available
at the AneuriskWeb site [34]. VMTK performs first a pointwise description of
the centerline and successively a spline approximation [33]. Alternative approx-
imations are possible [35].

Referring to the picture, the white centerline can be split into segments Γk(C)
connected at the bifurcations. Each Γk(C) represents the domain Ω1D that we
equip with the NURBS functional representation (11). The map C coincides
therefore with the HiMod map Ψ for each segment and the reference 1D domain
Ω̂1D is locally given by the interval [0, 1]. The HIGAMod formulation of a linear
advection diffusion reaction problem is therefore promptly retrieved from (4)
where we replace the 1D functions ϑ(x̂) with the NURBS (10).

In practice, assembly and solution of the problem can proceed as for the
original finite-element based HiMod discretization, with the only attention to be
paid to the judicious selection of the degree of exactness of the Gauss-Legendre
quadrature formulas to guarantee an appropriate control of the integration er-
ror.

4 Numerical results

We illustrate preliminary results obtained for HIGAMod applied to both linear
ADR problems (3) as well as to the classical Stokes problem in the classical
velocity-pressure formulation

{
−µ∆u + ∇P = 0
∇ · u = 0

in Ω (13)

where u denotes the velocity and P the pressure of an incompressible fluid.
We consider both rectilinear and curved pipes. When an analytical solution
is available, we also assess the beneficial effect of the continuity, comparing
in particular maximum continuity IGA results with those obtained when the
continuity is reduced to C0 (when considering isoparametric p-FEA).

We finally highlight that in all the results we present we use Legendre poly-
nomials to model the transverse components, even if it is clearly possible to
choose different modal basis, such as, e.g., sinusoidal functions.

We will use the classical abridged notation L2 and H1 to denote the Sobolev
spaces L2(Ω) and H1(Ω) respectively.

4.1 Test 1: ADR problems

Referring to equation (3) for several possible domains Ω, we compare the L2-
and the H1-norm of the approximation errors of HIGAMod using C1 quadratic
basis functions with the results of HiMod (using C0 quadratic basis functions
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instead of classical linear finite elements). Transverse components are modeled
with m = 3 Legendre polynomial modes.

More specifically, the second and the third cases refer to curvilinear domains,
where (s, t) denote the curvilinear and the transverse coordinates of the center-
line, respectively.

All the cases are solved with homogeneous Dirichlet conditions on the sides
of the pipe as well as at the inflow boundary, while a homogeneous Neumann
condition holds at the outflow. More general boundary conditions can be consid-
ered as well, following the guidelines of [3]. The ADR parameters are assumed
to be µ = 1, b = [1; 0] and σ = 0.

4.1.1 Rectangular domain

In this first case, the domain is Ω = (0, 1) × (−0.5, 0.5). The forcing term is set
such that the solution is uex(x, y) = (−0.2x5 − 0.5x2) sin[2π(y + 0.5)].

L2- and H1-norm of the relative errors are reported in Figure 4. It is possible
to observe that the expected optimal convergence rates are attained by both
quadratic HIGAMod and HiMOD formulations; however a superior accuracy
is obtained on a per-degree-of-freedom basis thanks to the higher continuity
guaranteed by HIGAMod.

Figure 4: ADR on a rectangular domain. Relative L2-norm (left) and H1-
norm (right) errors for HIGAMod (blu) and HiMOD (red). The black solid line
indicates the optimal convergence rates.
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4.1.2 Curvilinear domains

We considered two cases where we still solve the ADR problem (3) in curvilinear
domains. We consider the cases of a centerline described by both a parabolic
and a cubic polynomial. The analytical solutions are assumed to be uex(s, t) =
(0.25s4 − L3s) sin[2π(t + 0.5)], with L =

∫
1

0

√
1 + 4x2dx, for the parabolic case

and uex(s, t) = (0.2s5 − L4s) sin[2π(t + 0.5)], with L =
∫

1

0

√
1 + 9x4dx, for the

cubic case. The corresponding forcing terms have been built accordingly. For
the sake of brevity, we report here only the case of cubic centerline, since we
found similar results of the parabolic case - see Fig. 5.

Figure 5: ADR on a curvilinear domain with a cubic centerline. Relative L2-
norm (left) and H1-norm (right) errors for HIGAMod (blue) and HiMOD (red).
The black solid line indicates the optimal convergence rates.

Similarly to the rectangular case, the approximations exhibit the expected
convergence orders, however HIGAMod outperforms the original HiMod for the
reduction of degrees of freedom when the accuracy is comparable. This prospects
a sensible advantage of the computational costs for 3D nontrivial problems.

4.2 Stokes results

Let us consider the Stokes problem (13). Again, we focus on three test cases,
characterized by different shapes of the domain. The first two tests have been
designed such that an analytical solution is available, while for the third one we
use as a reference the full 2D finite element solution obtained with a P

2
P

1 mixed
formulation. In all tests, we assume µ = 1.
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4.2.1 Rectangular domain

The first case is defined on Ω = (0, 10) × (−1, 1). On the inflow boundary a
Dirichlet condition imposes the classical parabolic profile of ux, while on the
upper and the lower parts of the boundary, homogeneous Dirichlet conditions
are imposed on both components of the velocity field. Finally, a homogeneous
Neumann condition si imposed at the outflow. The volumic forcing term is
assumed to have components fx(x, y) = 2 − π/2 sin(πx/20) and fy(x, y) = 0.
The solution corresponding to the described setting is reported in Figure 6.

Along the axial direction, we consider a mixed velocity-pressure formula-
tion with quadratic (p = 2) and cubic (p = 3) approximation for the pressure,
with continuity varying between C0 and Cp−1, and an approximation one degree
higher (but with the same continuity) for the velocity. The transverse compo-
nents are modeled with m = 5 Legendre polynomial modes. In Figure 7 we
show the obtained convergence plots in terms of relative L2-norm error for the
pressure (we do not show the analogue plots for the velocity since for this prob-
lem it is exactly represented by our approximation space). From the plots, it
is possible to clearly observe the beneficial effect of continuity. As a matter of
fact, the same considerations done for the ADR case are valid also for the steady
Stokes problem. Notice that, for the setting adopted to solve this problem, the
accuracy limit for the relative L2-norm error for the pressure results to be in the
order of 10−7.

Figure 6: Stokes on a rectangular domain. Contour plots of the analytical
solution for the velocity magnitude (left) and the pressure (right).

4.2.2 Curvilinear domain

The second case is obtained from the previous one mapping the load, the bound-
ary conditions, and, as a consequence, the solution to reproduce the same prob-
lem on a curvilinear domain characterized by a quartic profile of the centerline.
The solution corresponding to the described setting is reported in Figure 8.

Also here, along the axial direction, we consider a mixed velocity-pressure
formulation with quadratic (p = 2) and cubic (p = 3) approximation for the
pressure. Consequently continuity ranges between C0 and Cp−1 for the pressure
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Figure 7: Stokes on a rectangular domain. Relative L2-norm for the pressure
using quadratic (left) and cubic (right) approximations for different continuity
choices.

and C1 and Cp for the velocity. The transverse components are modeled with
m = 5 Legendre polynomial modes. In Figure 9 we show the obtained conver-
gence plots in terms of relative L2-norm error for the pressure (we do not show
the analogue plots for the velocity since for this problem it is exactly represented
by our approximation space). From the plots it is possible to clearly observe the
beneficial effect of continuity also in a curvilinear case, and considerations very
similar to those regarding the previous case can be stated here.

4.3 Complex curvilinear domain

We conclude our numerical campaign with a steady Stokes problem characterized
by a complex geometry with a sinusoidal profile and a decreasing thickness.
Homogeneous Dirichlet conditions are imposed on both upper and lower sides
of the domain, while on both inflow and outflow sides homogeneous Neumann
conditions are applied. Finally, a pressure drop ∆p = 5 is imposed (as it typically
happens in many fluid-dynamics applications).

The problem has been solved using the same HIGAMod formulation adopted
in the previous tests (quadratic pressure and cubic velocity, with C1 continuity
for both fields), considering an increasing DOF number in the axial direction
and an increasing number of transverse modes. Convergence is obtained as ex-
pected and the finest obtained solution (corresponding to 1,002 velocity DOF,
502 pressure DOF, and 17 transverse modes) is reported on the left of Figures
10 and 11. Since an analytical solution is not available, a reference solution has
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Figure 8: Stokes on a curvilinear domain with a quartic centerline. Contour
plots of the analytical solution for the displacement magnitude (left) and the
pressure (right).

Figure 9: Stokes on a curvilinear domain with a quartic centerline. Relative L2-
norm for the pressure using quadratic (left) and cubic (right) approximations
for different continuity choices.
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been computed using the P
2
P

1 mixed FEM formulation available in the software
FreeFem++[19]. Such a solution is reported on the right of Figures 10 and 11 and
has been obtained using a mesh of 165,803 triangles, corresponding to 334,846
velocity DOF and 84,522 pressure DOF. In spite of the difference of the size
of the discretized problems, an excellent agreement between the proposed HIG-
AMod and full FEM results is promptly observed. This confirms the HIGAMod
capability of accurately reproducing even very complex solutions, at a fraction
of the cost.

Figure 10: Stokes on a curvilinear domain with a sinusoidal profile and a de-
creasing thickness. Contour plots of the numerical solution for the displacement
magnitude obtained with HIGAMod (left) and full finite elements (right).

Figure 11: Stokes on a curvilinear domain with a sinusoidal profile and a decreas-
ing thickness. Contour plots of the numerical solution for the pressure obtained
with HIGAMod (left) and full finite elements (right).

16



5 Conclusions

Stimulated by emerging applications of computational fluid dynamics, in partic-
ular for coronary and aortic diseases, we need to improve simplified 1D network
models as well as to reduce computational costs of 3D solutions [17]. The Hi-
Mod reduction was intended to address this problem, by enhancing a 1D finite
element solution and reducing the number of degrees of freedom of a 3D solver.
The approach suffers from some limitations in treating curved pipes that can be
removed by switching to isogeometric approximations for the axial components.
This paper proposes the first steps in this direction, which are corroborated by
very promising preliminary results.

As this opens new perspectives for the set up of efficient solvers in compu-
tational hemodynamics, several questions need to be answered and will be the
subject of forthcoming papers. At the theoretical level, we need to address the
inf-sup condition for the approximation of the Stokes problem and in partic-
ular to analyze the combination of discrete schemes for velocity and pressure
that guarantee the non singularity of the discretization. In addition, we need
to explore possible evolution of the scheme such as the combination of diverse
IGA approximations within the directional splitting of HiMod for both axial
and transverse dynamics. Another research direction to be explored consists of
the use of efficient IGA collocation schemes (see, e.g., [5]) for the discretization
along the centerline. Finally, the results presented here need to be extended to
the 3D settings for academic as well as real patient-specific test cases, toward a
strong integration between image processing tools and numerical solvers.
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