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Abstract

Vascular stents are scaffolding structures implanted in the vessels of pa-
tients with obstructive disease. Stents are typically designed as cylin-
drical lattice structures characterized by the periodic repetition of unit
cells. Their design, including geometry and material characteristics, in-
fluences their mechanical performance and, consequently, the clinical
outcomes. Computational optimization frameworks have proven to be
effective in assisting the design phase of vascular stents, facilitating the
achievement of enhanced mechanical performances. However, the re-
liance on time-consuming simulations and the challenge of automating
the design process limit the number of design evaluations and reduce
optimization efficiency. In this context, a rapid and automated method
for the mechanical characterization of vascular stents is presented, tak-
ing the stent geometry, conceived as the periodic repetition of a unit
cell, and material as input and providing the mechanical response of
the stent as output.
Vascular stents were assumed to be thin-walled hollow cylinders shar-
ing the same macroscopic geometrical characteristics as the cylindrical
lattice structure but composed of an anisotropic homogenized mate-
rial. Homogenization theory was applied to average the microscopic
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inhomogeneities at the stent unit cell level into a homogenized material
at the macroscale, enabling the calculation of the associated homoge-
nized material tensor. Analytical formulations were derived to relate
the stent mechanical behavior to the homogenized stiffness tensor, con-
sidering linear elastic theory for thin-walled hollow cylinders and three
loading scenarios of relevance for vascular stents: radial crimping; axial
traction; torsion. Validation was conducted by comparing the derived
analytical formulations with results obtained from finite element anal-
yses on typical stent designs.
Homogenized stiffness tensors were computed for the unit cells of three
stent designs, revealing insights into their mechanical performance, in-
cluding whether they exhibit auxetic behavior. The derived analytical
formulations were successfully validated with finite element analyses,
yielding low relative differences in the computed values of foreshorten-
ing, radial, axial and torsional stiffnesses for all three stents.
The proposed method offers a rapid, fully automated procedure that
facilitates the assessment of the mechanical behavior of vascular stents
and is suitable for effective integration into computational optimiza-
tion frameworks.

Keywords: Medical device design; auxetic stent; lattice structure;
computational structural mechanics; finite element method; shape op-
timization; topology optimization.
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1) Introduction 

Vascular stents are minimally invasive medical devices commonly used in the treatment of 

obstructive diseases [1]. Initially, stents undergo a crimping procedure (radial compression) for insertion 

into a catheter. They are then deployed at the obstruction site in the vessel, with or without balloon 

expansion [2], to provide structural support to the vessel wall and prevent post-interventional vessel 

blockage [1]. Technically, vascular stents are designed as cylindrical lattice structures, typically 

characterized by the periodic repetition of a unit cell [1]. They come in various shapes, sizes, and 

materials depending on the target implantation site, whether it be the coronary, carotid, femoral arteries, 

or other locations [3–5]. 

The design of vascular stents, including cell geometry and material characteristics, directly 

influences the mechanical response of the devices and, consequently, the clinical outcomes [4–7]. 

Specifically, vascular stents require adequate radial stiffness to prevent vessel recoil while avoiding tissue 

damage [8]. Moreover, once implanted, they undergo mechanical loads such as radial loading, axial 

compression and tension, torsion, and bending, which vary according to the implantation site and tissue 

composition of the target vessel [9–11]. The mechanical response of a stent to this multifaceted loading 

condition determines the device-vessel interaction, which is a key design target for enhancing both the 

effectiveness and safety of the treatment, as well as for improving short- and long-term outcomes. 

Computational modeling has proven effective in assisting the design and development of vascular 

stents, facilitating the achievement of designs with enhanced mechanical performances while reducing 

the need for prototyping and experimental testing [12]. Several computational design optimization 

frameworks have been developed for this purpose, employing either shape or topology optimization 

approaches to assess and balance competing design objectives, with the ultimate goal of enhancing 

clinical outcomes [6,13–29]. These optimization approaches involve iteratively evaluating the 
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mechanical response of numerous stent designs. However, this iterative process is challenging to 

automate and typically relies on time-consuming structural mechanics analysis, thereby limiting the 

number of designs that can be evaluated and reducing the efficiency of the optimization frameworks. 

In this context, this study introduces a method for the mechanical characterization of vascular stents 

through the analysis of periodic unit cell geometries. The proposed method exploits the homogenization 

theory combined with the linear elastic theory for thin-walled hollow cylinders to derive simple analytical 

formulations that relate specific stiffness tensor components to the mechanical behavior of the device. 

This method can be adopted to compare the mechanical responses expected from different stent cell unit 

designs and can be easily integrated into automated optimization frameworks to assist the design of new 

stents with improved mechanical performance. 

 

2) Methods 

 The workflow of the proposed method for the evaluation of the mechanical performance of 

vascular stents with different unit cell geometry is outlined in Fig. 1. In brief, the method takes the stent 

geometry, conceived as a periodic repetition of a unit cell, as input and provides a robust estimate of the 

foreshortening, radial, axial, and torsional stiffness values of the device as output. To achieve this, 

analytical formulations describing vascular stents mechanical behaviour are derived under three distinct 

loading conditions (i.e., radial compression, axial traction and torsion) using stiffness matrix components 

obtained combining the homogenization theory applied to the stent unit cell with the linear elastic theory 

for thin-walled hollow cylinders. Section 2.1 describes the general characteristics of the stent geometry 

and material. Section 2.2 details the evaluation of the homogenized stiffness tensor associated with the 

stent unit cell. Section 2.3 describes the assessment of the stent’s mechanical properties based on the 
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homogenized stiffness tensor and on the macroscopic geometric features of the device. Finally, Section 

2.4 outlines the validation of the proposed framework through comparisons with finite element (FE) 

simulations, where the loading conditions of interest are applied to vascular stents featuring different unit 

cell geometries. 

 

Fig. 1. Workflow of the method for the mechanical characterization of vascular stents. (i) Input: stent geometry conceived as 

the repetition of a unit cell (micro-scale geometric features) with specific values of radius R0, length l0, and thickness t (macro-

scale geometric features), and material, as detailed in Section 2.1; (ii) Method for the mechanical characterization: evaluation 

of the homogenized material tensor corresponding to the investigated unit cell geometry, as detailed in Section 2.2, and 

application of linear elastic theory for thin-walled hollow cylinders under three distinct loading conditions, namely radial 

compression, axial traction and torsion, as detailed in Section 2.3; (iii) Output: evaluation of the mechanical response, 

including foreshortening f, radial stiffness KR, axial stiffness KA, and torsional stiffness KT, as detailed in Section 2.3.  

 

2.1) Vascular stent: geometry and mechanical response 

 Considering a cylindrical coordinate system, the typical geometry of a vascular stent can be 

conceptualized as comprising a 2D stent unit cell of constant thickness t, which is repeated periodically 

Nz times along the z-axis (i.e., the axial direction) and Nθ times along the θ-axis (i.e., the circumferential 
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direction) to form the whole axisymmetric lattice structure (Fig. 2). Given the stent radius R0 and the 

aspect ratio α = w/h of the unit cell (Fig. 2(a)), where w represents the width and h denotes the height of 

the unit cell, respectively, the length of the stent l0 can be determined according to the formula 

𝑙0 = 𝑁𝑧𝑤 = 𝑁𝑧𝛼ℎ = 2𝜋𝑅0𝛼
𝑁𝑧

𝑁𝜃
 .                                                                                                                                (1) 

 The mechanical response of vascular stents is determined by the associated design features, which 

include what we define (i) macroscopic quantities (i.e., R0, l0, and t), (ii) microscopic quantities (i.e., α, 

and the unit cell topology), and (iii) the mechanical properties of the material employed for the device 

manufacturing. To account for all these design features within stent performance analysis in a 

computationally affordable way, the homogenization theory is applied to a 2D unit cell of the stent.  To 

do that, vascular stents are assumed to be thin-walled hollow cylinders, macroscopically defined by R0, 

l0, and t, and composed of an anisotropic homogenized material. This material is obtained by 

appropriately merging the microscopic quantities α and unit cell topology of the 2D unit cell (Fig. 2(c)) 

with the mechanical properties of the manufacturing material. 
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Fig. 2. (a) Stent unit cell, with indication of the local coordinate system 1 and 2; w and h: width and height of the unit cell, 

respectively. (b) Vascular stent, with indication of the global cylindrical coordinate system. Nz and Nθ: number of periodic 

repetitions of the unit cell in z and θ direction, respectively; t: thickness of the stent; l0: length of the stent; R0, radius of the 

stent, considering the radius of the inner and outer surfaces be equal to R0 - t/2 and R0 + t/2, respectively. (c) Homogeneous 

thin-walled hollow cylinder with homogenized anisotropic material, with the same R0, l0 and t. 

 

2.2) Evaluation of the homogenized material tensor 

Homogenization theory allows to rigorously map a complex multiscale description of the device 

into a simplified one where the microscopic inhomogeneities at the unit cell scale are homogenized into 

a new material at the macroscale (Fig. 2). To describe the homogenization technique in mathematical 

terms, it is assumed that the macroscopic medium under analysis, Ω ⊂ ℝ2, is the assembly of periodic 

repetitions of a microscopic unit cell, Y ⊂ ℝ2, whose area |𝑌| is considerably lower than the area |Ω| of 

the whole medium. Unit cells are not homogeneous, and this reflects in the microscopic variations in the 
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physical behavior characterizing the macroscopic medium. The homogenization procedure removes such 

variations at the microscale, although inheriting the associated effect at the homogenized scale. With a 

view to the characterization of the mechanical properties of the stent, the reference physical model is the 

equilibrium elasticity equation at the macroscale 

− ∇ ⋅ 𝜎(𝒖) = 𝟎    in Ω,                                                                                                                               (2) 

where 𝒖 ∈ ℝ2 is the displacement vector and 𝜎 is the stress tensor.  

In a linear regime, the stress tensor is related to the strain tensor 𝜀(𝒖) = (∇𝒖 + ∇𝒖𝑇)/2 through the 

relation 

𝜎(𝒖) = 𝐸𝜀(𝒖) =  [
𝐸1111 𝐸1122 𝐸1112
𝐸2211 𝐸2222 𝐸2212
𝐸1211 𝐸1222 𝐸1212

] 𝜀(𝒖),                                                                                       (3) 

where the so-called stiffness tensor 𝐸 = [𝐸𝑖𝑗𝑘𝑙], with 𝑖𝑗, 𝑘𝑙 ∈ {11, 22, 12}, is a symmetric fourth-order 

tensor depending on the considered material constituting the medium (i.e., Young’s modulus and 

Poisson’s ratio). Notice that Eq. (2) must be completed with appropriate boundary conditions on 𝜕Ω, and 

that Eq. (3) is valid at both the macroscale (in Ω) and the microscale (in 𝑌). Homogenization converts 

Eq. (3) to the homogenized counterpart 

𝜎(𝒖) = 𝐸𝐻𝜀(𝒖),                                                                                                                                     (4) 

where the homogenized stiffness tensors 𝐸𝐻 links the mechanical response at the microscale 𝑌 to the 

macroscale Ω. In more detail, the  stiffness tensor 𝐸𝐻 can be obtained through an asymptotic expansion 

of the displacement field 𝒖 in Eq. (2) [30]. In practice, this leads to solve the following differential 

problem in the periodic unit cell 𝑌: being 𝑈𝑃 = [𝐻𝑃
1(𝑌)]2 the vector space of periodic variations 

belonging to the Sobolev space 𝐻1(𝑌), and 𝒖0,𝑖𝑗 denoting three independent test displacements, with 
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𝒖0,11 = [𝑥, 0]𝑇, 𝒖0,22 = [0, 𝑦]𝑇, 𝒖0,12 = [𝑦, 0]𝑇, find the microscopic variations 𝒖∗,𝑖𝑗 ∈ 𝑈𝑃, with 𝑖𝑗 =

{11,22,12} such that ∀𝒗 ∈ 𝑈𝑃 

∫ 𝜎(𝒖∗,𝑖𝑗): 𝜀(𝒗)𝑑𝑌 =  ∫ 𝜎(𝒖0,𝑖𝑗): 𝜀(𝒗)𝑑𝑌 
𝑌𝑌

.                                                                                              (5) 

The solutions to Eq. (5) allow for the explicit expression of the homogenized stiffness tensor 𝐸𝐻 =

[𝐸𝑖𝑗𝑘𝑙
𝐻 ], where 

 𝐸𝑖𝑗𝑘𝑙
𝐻 =

1

|𝑌|
∫ [𝜎(𝒖0,𝑖𝑗) − 𝜎(𝒖∗,𝒊𝒋)]: [𝜀(𝒖0,𝑖𝑗) − 𝜀(𝒖∗,𝑖𝑗)]𝑑𝑌
𝑌

.                                                                   (6) 

Eqs. (5) and (6) are commonly solved numerically. To this aim, a FE scheme based on adapted simplicial 

meshes and linear polynomials is adopted in this study to approximate variations 𝒖∗,𝑖𝑗 (namely to 

compute the stiffness tensor 𝐸𝐻) in an accurate and efficient manner. We refer to [31] for the 

homogenization theory basics, and to recent literature for applications of adapted meshes to the 

computation of 𝐸𝐻 [32–34].  

 

2.3) Assessment of stent mechanical response 

The mechanical response of vascular stents is here characterized considering three distinct loading 

scenarios (Fig. 3), namely (i) radial compression, (ii) axial tension, and (iii) torsion, enabling the 

evaluation of the device foreshortening f, radial stiffness KR, axial stiffness KA, and torsional stiffness KT. 

The quantities KR and f are evaluated by emulating radial compression (Fig. 3(a)) to replicate the radial 

crimping test, a standard procedure which mimics the loading conditions experienced by vascular stents 

when inserted into a catheter prior to deployment in the vessel [35,36]. The quantities KA and KT are 

evaluated by emulating axial traction and torsion tests, respectively (Fig. 3(b) and (c)).  
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Fig. 3. Investigated loading scenarios with indication of the assigned boundary conditions. (a) Radial compression: a 

displacement ur
* is assigned in the radial (r) direction; accordingly, f and KR are evaluated; (b) Axial traction: a displacement 

uz
* is assigned in the axial (z) direction at one extremity of the cylinder, while the other extremity (black line) is fixed in the z 

direction; accordingly, KA is evaluated; (c) Torsion: a rotation φ* is imposed on one extremity of the cylinder, while the other 

extremity (black line) is fixed in the circumferential (θ) direction; accordingly, KT is evaluated. 

 

The derivation of the analytical formulations expressing the mechanical response of the stents is 

performed by introducing some simplifying assumption. In detail, due to the small thickness t of the unit 

cells compared to R0 and l0, the axisymmetric nature of vascular stents, and the boundary conditions 

characterizing the three loading scenarios, a state of plane stress is assumed with reference to the 

cylindrical coordinate system (Fig. 4). Moreover, since the radial crimping test aims to uniformly 

compress the vascular stent in the radial direction, the homogenized material tensor is assumed to be 

orthotropic, with negligible values for its components 𝐸1112
𝐻  and 𝐸2212

𝐻 , which couple normal strains 𝜀𝜃𝜃 

and 𝜀𝑧𝑧 with the shear angle 𝛾𝑧𝜃: a not null value for the shear angle 𝛾𝑧𝜃 implies the presence of out-of-

plane strains and consequently, a non-uniform stent radial compression which may impact on the 
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crimping and deployment phases. Accordingly, in the cylindrical coordinate system of Fig. 4 the material 

constitutive relation of Eq. (4) in the plane 1-2 simplifies to  

[

𝜎𝑧𝑧
𝜎𝜃𝜃
𝜏𝑧𝜃

] = [

𝐸1111
𝐻 𝐸1122

𝐻 0

𝐸2211
𝐻 𝐸2222

𝐻 0

0 0 𝐸1212
𝐻

] [

𝜀𝑧𝑧
𝜀𝜃𝜃
𝛾𝑧𝜃

].                                                                                                                     (7)  

Under an infinitesimal strain assumption, compatibility equations in the cylindrical coordinate system 

define the normal strains and the shear angle [37] 

{
 
 

 
 𝜀𝜃𝜃 =

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+
𝑢𝑟

𝑟
      

𝜀𝑧𝑧 =
𝜕𝑢𝑧

𝜕𝑧
                   

𝛾𝑧𝜃 =
𝜕𝑢𝑧

𝜕𝜃
+
𝜕𝑢𝜃

𝜕𝑧
,     

                                                                                                                                                       (8) 

with ur, uθ, uz the displacement components. Assuming that the axial symmetry of the stent is maintained 

in the examined loading scenarios (i.e., the cross-sections remain circular and normal to the z-axis), Eq. 

(8) simplifies to 

{
 
 

 
 𝜀𝜃𝜃 =

𝑢𝑟

𝑟
     

𝜀𝑧𝑧 =
𝜕𝑢𝑧

𝜕𝑧
   

𝛾𝜃𝑧 =
𝜕𝑢𝜃

𝜕𝑧
.

                                                                                                                                                                        (9) 

 The derivation of the analytical formulation for the estimate of the mechanical response of the 

stent is presented in the following subsections. 
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Fig. 4. Plane stress state in circumferential (θ) and axial (z) directions for the investigated loading scenarios.  

 

2.3.1) Radial stiffness and foreshortening 

In the crimping test, the total force exerted by the device in the radial direction (i.e., the radial 

force) is quantified and used to determine the radial stiffness KR, expressed as the ratio between the radial 

force and radial displacement. Radial stiffness is a fundamental mechanical requirement for vascular 

stents, as they must provide adequate scaffolding for the diseased vessel while minimizing the risk of  

damaging the arterial tissue [4,6]. Additionally, crimping a vascular stent might involve the elongation 

of device, which can be evaluated in terms of foreshortening 

𝑓 =
𝑙−𝑙0

𝑙0
,                                                                                                                                                   (10) 

where l is the stent length when radially compressed and 𝑙0 the device original length (Fig. 2(b)). The 

foreshortening f of the stent should be as small as possible to ensure precise placement during 

implantation [4,6]. Fig. 3(a) illustrates the boundary conditions prescribed for the radial compression. 

Specifically, a radial displacement ur
* is prescribed on the entire cylindrical surface representing the stent. 

Consequently, the stress along the z-direction is identically null and the cylinder elongates at both ends 

in z-direction, reaching a length equal to l, with 
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{
𝑢𝑟 = 𝑢𝑟

∗                       

𝑢𝑧 =
𝑙−𝑙0

𝑙0
(𝑧 −

𝑙0

2
),    

                                                                                                                                (11)  

for 𝑧 ∈ [0, 𝑙0]. Hence, from Eq. (9), it turns out that 

{
𝜀𝜃𝜃 =

𝑢𝑟
∗  

𝑅0
              

𝜀𝑧𝑧 =
𝑙−𝑙0

𝑙0
,            

                                                                                                                                            (12) 

and substituting the expressions for circumferential and axial strains (Eq. 12) into Eq. (7) leads to the 

expression of the circumferential and axial stresses in terms of components of the homogenized stiffness 

matrix 

{ 
𝜎𝜃𝜃 = 𝐸1122

𝐻 𝜀𝑧𝑧 + 𝐸2222
𝐻 𝜀𝜃𝜃           

𝜎𝑧𝑧 = 𝐸1111
𝐻 𝜀𝑧𝑧 + 𝐸1122

𝐻 𝜀𝜃𝜃 = 0   
                                                                                                      (13) 

Finally, substituting Eq. (7) in Eq. (12) also allows the expression of foreshortening f in terms of the 

components of the homogenized stiffness matrix 

𝑓 =
𝑙−𝑙0

𝑙0
= −

𝐸1122
𝐻

𝐸1111
𝐻

𝑢𝑟
∗  

𝑅0
.                                                                                                                                    (14) 

According to [38,39], the forces Fθ (also known as hoop force) and Fr exerted by the vascular stent along 

the circumferential and the radial direction, respectively, can be expressed  

𝐹𝜃 = 𝜎𝜃𝜃𝑙0𝑡,                                                                                                                                                    (15) 

𝐹𝑟 = 2𝜋𝐹𝜃 = 2𝜋𝜎𝜃𝜃𝑙0𝑡.                                                                                                                                         (16) 

Therefore, by definition, KR can be also expressed in terms of components of the homogenized stiffness 

matrix  

𝐾𝑅 =
𝐹𝑟

𝑢𝑟
∗ =

2𝜋𝑙0𝑡

𝑅0
(𝐸2222

𝐻 −
(𝐸1122

𝐻 )
2

𝐸1111
𝐻 ) ∶= 𝐾𝑅

𝑀𝐾𝑅
𝑚,                                                                                                             (17) 
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where 

{

     

𝐾𝑅
𝑀 =

2𝜋𝑙0𝑡

𝑅0
                                  

𝐾𝑅
𝑚 = 𝐸2222

𝐻 −
(𝐸1122

𝐻 )
2

𝐸1111
𝐻 ,            

                                                                                                                                               (18) 

represent the radial stiffness related to the macroscopic (𝐾𝑅
𝑀) and microscopic (𝐾𝑅

𝑚) scales of the stent. 

 

2.3.2) Axial stiffness 

The axial stiffness KA can be evaluated as the ratio between the force exerted by the device in the 

axial direction (i.e., the axial force) and the imposed axial displacement. Fig. 3(b) illustrates the boundary 

conditions applied when axial displacement is prescribed to evaluate KA. Specifically, an axial 

displacement uz
* is imposed on one extremity of the cylinder, while the other extremity is fixed in the z-

direction, namely  

𝑢𝑧 =
𝑢𝑧
∗

𝑙0
𝑧,                                                                                                                                                         (19) 

with 𝑧 ∈ [0, 𝑙0]. From Eq. (9), it follows that 

𝜀𝑧𝑧 =
𝑢𝑧
∗

𝑙0
.                                                                                                                                                 (20)  

Substituting Eq. (20) into Eq. (7) yields the expression of the axial and circumferential stresses in terms 

of components of the homogenized stiffness matrix 

{
𝜎𝑧𝑧 = 𝐸1111

𝐻 𝜀𝑧𝑧 + 𝐸1122
𝐻 𝜀𝜃𝜃                             

𝜎𝜃𝜃 = 𝐸1122
𝐻 𝜀𝑧𝑧 + 𝐸2222

𝐻 𝜀𝜃𝜃 = 0,                   
 

where the stress 𝜎𝜃𝜃 is identically null because the cylinder is kept traction-free in the radial direction. 

Following [38], it turns out that the total axial force Fz can be expressed  
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𝐹𝑍 = 𝜎𝑧𝑧 𝜋 [(𝑅0 +
𝑡

2
)
2

− (𝑅0 −
𝑡

2
)
2

] = 𝜎𝑧𝑧2𝜋𝑅0𝑡 .                                                                              (21) 

Therefore, by definition, KA can be expressed in terms of the components of the homogenized stiffness 

matrix 

𝐾𝐴 =
𝐹𝑧

𝑢𝑧
∗ =

2𝜋𝑅0𝑡

𝑙0
(𝐸1111

𝐻 −
(𝐸1122

𝐻 )
2

𝐸2222
𝐻 ) ∶= 𝐾𝐴

𝑀𝐾𝐴
𝑚,                                                                                                             (22) 

where 

{

     

𝐾𝐴
𝑀 =

2𝜋𝑅0𝑡

𝑙0
                                  

𝐾𝐴
𝑚 = 𝐸1111

𝐻 −
(𝐸1122

𝐻 )
2

𝐸2222
𝐻 ,              

                                                                                                                     (23)                                                                                                                                             

represent the axial stiffness related to the macroscopic (𝐾𝐴
𝑀) and microscopic (𝐾𝐴

𝑚) scales of the stent. 

 

2.3.3) Torsional stiffness  

The torsional stiffness KT can be evaluated as the ratio between the total torque moment exerted by 

the device around the axial direction and the imposed rotation around the same direction. Fig. 3(c) 

illustrates the boundary conditions applied when a rotation around the axial direction is prescribed to 

evaluate KT. Specifically, a rotation φ* is imposed on one extremity of the cylinder, while the other 

extremity is fixed along the θ-direction, yielding to a circumferential displacement  

𝑢𝜃
∗ = 𝑅0𝜑

∗ 𝑧

𝑙0
,                                                                                                                                           (24) 

with 𝑧 ∈ [0, 𝑙0]. From Eq. (7) and Eq. (9), it follows that 

𝛾𝜃𝑧
∗ =

𝑅0

𝑙0
𝜑∗,                                                                                                                                            (25) 
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𝜏𝜃𝑧 = 𝐸1212
𝐻  𝛾𝜃𝑧

∗  .                                                                                                                                    (26) 

As in  [38], the torque moment Mz can be expressed  in the following terms  

𝑀𝑧 =
𝜋

2𝑅0
[(𝑅0 +

𝑡

2
)
4

− (𝑅0 −
𝑡

2
)
4

] 𝜏𝜃𝑧.                                                                                                (27) 

Therefore, using Eq. (27), the torsional stiffness KT can be expressed in terms of the components of the 

homogenized stiffness matrix 

𝐾𝑇 =
𝑀𝑧

𝜑∗
=

𝜋(4𝑅0
3𝑡+𝑅0𝑡

3)

2𝑙0
 𝐸1212
𝐻 ∶= 𝐾𝑇

𝑀𝐾𝑇
𝑚                                                                                                                (28) 

where 

{

     

𝐾𝑇
𝑀 =

𝜋(4𝑅0
3𝑡+𝑅0𝑡

3)

2𝑙0
                         

𝐾𝑇
𝑚 = 𝐸1212

𝐻 ,                                   

                                                                                                         (29)                                                                                                                                             

represent the torsional stiffness related to the macroscopic (𝐾𝑇
𝑀) and microscopic (𝐾𝑇

𝑚) scales of the stent. 

 

2.4) Numerical experiments 

The analytical formulations derived to express f, KR, KA and KT in terms of the components of the 

homogenized stiffness matrix are tested against FE simulations where the three loading scenarios are 

applied to vascular stent designs modelled as cylindrical lattice structures. For this purpose, three stent 

unit cell types resembling commercially available self-expandable femoral stent designs are considered 

(Fig. 5(a)). Subsequently, the homogenized stiffness tensor is determined for each one of the three 

analyzed unit cell designs, and f, KR, KA and KT are evaluated using the derived analytical formulations 

(Eqs. (14), (17), (22) and (28)). In parallel, FE models of the three vascular stent designs are generated 

by periodically repeating the unit cells in the axial and circumferential directions (Fig. 5(b)), and f, KR, 
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KA and KT are computed based on the FE analysis. Finally, the results from analytical formulations and 

from FE simulations are compared. The analysis was performed assuming that vascular stents are 

fabricated from Nickel-Titanium (Young’s modulus equal to 60 GPa and Poisson's ratio equal to 0.33 

[23]) with the following macroscopic geometrical characteristics: R0 = 3.5 mm, t = 0.1 mm, Nθ = Nz = 

20. Furthermore, a sensitivity analysis of the derived analytical formulations with respect to the design 

parameters Nθ and Nz is performed. To address this task, FE models are developed for unit cell type 1 

(Fig. 5(a)), covering nine combinations of Nθ and Nz, with Nθ , Nz ∈ [10, 20, 40]. 

 

2.4.1) Stent unit cell geometries 

Fig. 5 displays the three stent designs with different unit cell types selected for the analysis, each 

resembling commercially available self-expandable femoral stents. Unit cell 1 is inspired by the EverFlex 

stent (Medtronic, Dublin, Ireland), unit cell 2 by the Zilver PTX stent (Cook Medical, Bloomington, IN, 

USA), and unit cell 3 by the S.M.A.R.T. Vascular System (S.M.A.R.T., Santa Clara, CA, USA). The unit 

cells 1, 2 and 3 are assumed to have a unitary height h (Fig. 2(a)) and an aspect ratio α equal to 1.62, 

1.28, and 0.73, respectively. For each unit cell, the homogenized stiffness tensor is reconstructed as 

detailed in Section 2.1.  
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Fig. 5. (a) Stents unit cells; (b) FE models of stents corresponding to the unit cells in (a), when considering Nz = Nθ = 20, t = 

0.1 mm, R0 = 3.5 mm.  

 

2.4.2) FE analysis 

FE models for stent mechanical characterization are created starting from the unit cell geometries 

by using Hypermesh (Altair Engineering, Troy, MI, USA) and Abaqus/Standard (Dassault Systemes 

Simulia Corp., Johnston, RI, USA). The unit cells (Fig. 5(a)) are meshed with four-nodes shell elements 

S4R, considering eight elements along the strut width. Grid element size is the result of a mesh grid 

independence study, detailed in the Supplementary material. Linear structural mechanics FE analysis is 

carried out adopting the implicit solver Abaqus/Standard, running on 6 computing cores of a workstation 

equipped with Intel® Core™ i7-8700 and 32 GB RAM. Boundary conditions for the three distinct 

loading scenarios (i.e., radial, axial traction, and torsion loading) are applied as described in Fig. 3. 
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Reaction forces and moments are computed to determine KR, KA and KT. Specifically, under the 

assumption of infinitesimal strains, a value of ur
* = 0.25 mm (Eq. (11)) is assigned for the radial 

compression scenario, uz
* = 0.1 mm (Eq. (19)) is set for the axial traction scenario, while φ*= 10° (Eq. 

(24)) is prescribed for the torsion scenario. Additional details regarding the FE analysis are provided in 

the Supplementary material. 

 

3) Results 

3.1) Homogenized stiffness tensor 

As the first result, we present the homogenized stiffness tensors for the three stent designs with 

unit cell types of Fig. 5(a), obtained using the method proposed here: 

 𝑬𝑯 = [
428.425 38.608 0.072 
38.608 8.723 0.007 
0.072 0.007 12.472

] (MPa), for unit cell 1; 

 𝑬𝑯 = [
3615.720 −0.054 0.102
−0.054 3.317 −0.006
0.102 −0.006 4.734

] (MPa), for unit cell 2; 

 𝑬𝑯 = [
15.590 1.845 0.349
1.845 5.367 −1.090
0.349 −1.090 3.609

] (MPa), for unit cell 3. 

Based on the obtained homogenized stiffness tensors, Table 1 summarizes the values of the mechanical 

response of the stents corresponding to the investigated unit cells, evaluated adopting the analytical 

formulations derived in Section 2.3. From the analysis it emerges that while the values of the radial and 

the torsional stiffness at the micro-scale are of the same order of magnitude for the three cell unit types, 

the axial stiffness varies considerably, from 15.0 MPa (unit cell type 3) to 3615.7 MPa (unit cell type 2). 
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Additionally, the stent made by unit cells type 2 demonstrates auxetic properties, with a negative, near 

zero value of 𝑓, markedly lower compared to the other stents. 

 

Table 1. Mechanical response of the stents associated with the three stent designs with different unit cell types in Fig. 5(a), 

evaluated using the derived analytical formulations considering Nθ = Nz = 20, R0 = 3.5 mm, and t = 0.1 mm. 

    Radial crimping Axial traction Torsion 

 α 
l0 

(mm) 

f 

(%) 

𝐾𝑅
𝑚 

(MPa) 

𝐾𝑅
𝑀 

(mm) 

KR 

(N/mm) 

𝐾𝐴
𝑚 

(MPa) 

𝐾𝐴
𝑀 

(mm) 

KA 

(N/mm) 

𝐾𝑇
𝑚 

(MPa) 

𝐾𝑇
𝑀 

(mm2) 

KT 

(N mm) 

Stent 1 1.62 35.6 6.1  5.2 6.39 33.5 257.5 0.06 15.7 12.5 0.77 9.4 

Stent 2 1.28 28.1 -10-4 3.3 5.04 16.8 3615.7 0.08 278.4 4.7 0.98 4.5 

Stent 3 0.73 16.1 0.85  5.2 2.89 14.8 15.0 0.14 2.0 3.6 1.71 6.1 

α: aspect ratio of the unit cell; 𝐾𝑅
𝑚: radial stiffness of the stent at the micro-scale; 𝐾𝑅

𝑀: radial stiffness of the stent at 

the macro-scale; KR: radial stiffness of the stent; 𝐾𝐴
𝑚: axial stiffness of the stent at the micro-scale; 𝐾𝐴

𝑀: axial stiffness 

of the stent at the micro-scale; KA: axial stiffness of the stent; 𝐾𝑇
𝑚: torsional stiffness of the stent at the micro-scale; 

𝐾𝑇
𝑀: torsional stiffness of the stent at the macro-scale; KT: torsional stiffness of the stent. 

 

3.2) Derived analytical formulations vs. FE analysis 

The paired comparison between the values of f, KR, KA and KT, as evaluated using the derived 

analytical formulations and the FE analysis, is summarized in Fig. 6 for the three different unit cell types-

based devices. A satisfactory agreement emerges between the two sets of values. Specifically, the relative 

differences between the analytical formulation and the FE analysis are up to 6 % for KR ([3 % - 6 %]) 

and up to 4 % for KA ([2 % - 4 %]). As for KT, differences up to 18 % emerge ([2 % - 18 %]). The largest 

deviation is observed for the foreshortening f, with differences less than 6 % for stents with unit cell types 

1 and 3, but up to 49 % for the device relative to unit cell type 2, which is attributed to the very small 

value obtained for f, which is close to zero (f = -10-4 %). 
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Fig. 6. Values of (a) f, (b) KR, (c) KA and (b) KT computed using the derived analytical formulations as well as by FE analysis 

for the investigated stents, made of three different unit cell types. f: foreshortening; KR: radial stiffness; KA: axial stiffness; KT: 

torsional stiffness; Nz and Nθ: number of repetitions of the unit cell in z and θ directions, respectively. For the sake of 

comparison, vascular stents were considered with the following macroscopic geometrical characteristics: R0 = 3.5 mm, t = 0.1 

mm, Nθ = Nz = 20. 

 

The results of the sensitivity analysis for f, KR, KA, and KT, evaluated using the derived analytical 

formulations, with respect to the geometric parameters Nz and Nθ are presented in Fig. 7 for the stent 

design based on the unit cell type 1, accompanied by the paired values from the FE analysis. Overall, a 

close agreement emerges across the considered ranges of variations for Nz and Nθ, between values 

obtained from the analytical formulations and those derived from the 3D FE models. Specifically, relative 

differences are approximately 6 % and 3 % for f and KA, respectively (Fig. 7(a) and (c)). Regarding the 

calculation of KR, the relative difference is reduced from approximately 6 % to 2 % when increasing Nθ 
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from 10 to 40, for all the Nz values (Fig. 7(b)). Finally, regarding the calculation of KT, the relative 

difference decreases from approximately 19 % to 5 %, from 17 % to 5 %, and from 16 % to 4 %, by 

varying Nz from 10 to 40, for Nθ = 10, Nθ = 20, and Nθ = 40, respectively (Fig. 7(d)). 

 

Fig. 7. Values of (a) f, (b) KR, (c) KA and (d) KT evaluated using the derived analytical formulations along with the 

corresponding values provided by the FE analysis for the stent design corresponding to unit cell type 1, when considering 

different values of Nz and Nθ. f: foreshortening; KR: radial stiffness; KA: axial stiffness; KT: torsional stiffness. Nz and Nθ: 

number of repetitions of the unit cell in z and θ direction, respectively. For the sake of comparison, vascular stents were 

assumed to have the following macroscopic geometrical characteristics: R0 = 3.5 mm and t = 0.1 mm. 

 

 

 

4) Discussion  
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Computational models have proven to be efficient tools for assisting the design phase of vascular 

stents, enabling the optimization of the mechanical response, with the ultimate goal of enhancing 

treatment safety and efficiency [6,13–29]. In this context, the present study contributes to the 

advancement of vascular stent design and performance analysis by exploring the relationship between 

stent unit cell attributes and stent mechanical response, thereby facilitating the optimization of the 

mechanical performance. The analytical formulations derived here effectively describe the mechanical 

behavior of the stent through a combination of stiffness matrix components obtained using a through-

scales homogenization strategy. The proposed method promises to become an easy-to-use, automated 

tool supporting stents design and optimization, reducing the need for expensive 3D structural mechanics 

simulations. This is achieved by performing homogenization analysis on the 2D unit cell, which has 

already been proven to be fully automatable. In this regard, starting from an imported unit cell geometry, 

the overall procedure takes less than 5 minutes to evaluate the mechanical behavior of the stent on a 

standard laptop (Intel(R) CoreTM i7-1165G7 and 8 GB RAM). Thus, the procedure is well-suited for 

integration into computational optimization frameworks. In particular, shape optimization frameworks 

for vascular stents typically consider an initial geometry with a set of parameterized geometric features, 

which are explored within the design space to enhance the device's mechanical performance [6]: the 

proposed procedure can be adopted to automatically evaluate a set of unit cells, or it can be incorporated 

in the optimization iterative routine to link the geometrical attributes of the unit cell to optimization 

objectives (Fig. 8). Additionally, topology optimization frameworks for vascular stents generally aim to 

iteratively determine the optimal material distribution to meet specific design requirements without 

relying on an initial predefined stent geometry, resulting in a more general approach with the potential to 

generate innovative geometries [6]. Specifically, a recent study [23] has exploited topology optimization 

for designing innovative stent unit cells that match specific values of homogenized stiffness tensor 

components. The capability of this framework can be extended to link f, KR, KA, and KT of the stent with 
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the homogenized material tensor, enabling the generation of optimal unit cell geometries that meet 

specific mechanical requirements (Fig. 8). 

The derived analytical formulations for f, KR, KA and KT have been successfully tested against FE 

simulations considering three different stent unit cell designs resembling commercial devices. The major 

observed discrepancies can be ascribed to approximations related to the homogenization of the lattice 

structure, as shown in Fig. 7, where relative differences are reduced as the number of repetitions of the 

unit cell along the radial and the axial directions increases.  

 The analysis of the homogenized stiffness tensors in Eqs. (14), (17), (22) and (28) reveals 

important insights into the mechanical performance of the corresponding stents. For unit cell types 1 and 

2, the components 𝐸1112
𝐻  and 𝐸2212

𝐻  are close to zero and markedly lower than 𝐸1111
𝐻 , 𝐸2222

𝐻  and 𝐸1212
𝐻 . 

This suggests that cells 1 and 2 exhibit approximately orthotropic material behavior, where normal and 

shear stress/strain coupling is negligible. Moreover, for unit cell type 2, the value of the component 𝐸1122
𝐻  

is close to zero, indicating a negligible coupling between normal stress/strain in circumferential and axial 

directions. Furthermore, since stiffness matrix components 𝐸1122
𝐻  and 𝐸1111

𝐻  have opposite sign, the 

foreshortening f  is negative during radial compression, with the stent exhibiting an auxetic behavior (Eq. 

(14)). This feature is consistent with the study in [40] where a similar geometry is examined and classified 

as auxetic. Concerning unit cell type 3, component 𝐸1112
𝐻  is negligible, whereas 𝐸2212

𝐻  is of comparable 

magnitude with respect to 𝐸1111
𝐻 , 𝐸2222

𝐻 , and 𝐸1212
𝐻 . This suggests a potential coupling between normal 

and shear stress/strains, which may lead to irregular closure of the stent during radial compression. 

This study presents some limitations. The equations used to characterize the mechanical behavior 

of the stents are formulated under the assumption of linear elasticity. While this assumption has enabled 

the development of a rapid and automated method that can be easily integrated into different 

computational frameworks, it does not account for the large deformations experienced by the devices 
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during crimping and subsequent expansion, and thus for geometric and material nonlinearity effects. 

Although, once the optimal configuration for the unit cell is identified, a posteriori nonlinear FE 

simulations can be conducted to provide a complete mechanical characterization of the devices [23]. 

Furthermore, the method is developed by assuming the periodic repetition of the unit cell along the axial 

and circumferential direction of the stent, but vascular stents may feature a different periodic arrangement 

of links for axial connections of the unit cells, where not all unit cells are axially connected. While the 

specific periodic arrangement of the axial links may have a negligible impact on the stent radial stiffness 

[41], it could affect foreshortening, axial and torsional stiffness [42,43]. Lastly, only three loading 

scenarios were investigated. Other loading scenarios, such as bending or more complex loading 

conditions, could be considered. However, it is not guaranteed that under these loading conditions, the 

assumption of axial symmetry for the definition of the analytical relationships is applicable. 

 

Fig. 8. Implementation of the proposed approach within stent optimization frameworks.  

5) Conclusions 
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This study introduces a rapid and automated method based on homogenization theory for the 

derivation of analytical formulations for the assessment of the mechanical response of vascular stents 

starting from the associated unit cell topology. The method, successfully tested against FE simulations 

conducted on three stent designs with different unit cell types inspired to commercial vascular stents, 

proved to be accurate. The derived analytical formulations enable easy comparisons of the mechanical 

response of diverse stent designs under specific loading conditions (i.e., radial, axial traction and torsion 

loadings), and is well-suited for integration into several computational frameworks, including 

optimization frameworks. Overall, the presented approach has the potential to facilitate and refine the 

stent development process, reducing the time and costs associated with the iterative development and 

prototyping phases. 
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