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Abstract

We address the problem of stochastic simulation of soil particle-size
curves (PSCs) in heterogeneous aquifer systems. Unlike traditional ap-
proaches that focus solely on a few selected features of PSCs (e.g., se-
lected quantiles), our approach is conducive to stochastic realizations of
the spatial distribution of the entire particle-size distribution which can
optionally be conditioned on available measured data. We model PSCs as
cumulative distribution functions, and their densities as functional compo-
sitions in a Bayes Hilbert space. This enables us to employ an appropriate
geometry to deal with the data dimensionality and constraints, and to de-
velop a simulation method for particle-size densities (PSDs) based upon
a suitable and well defined projection procedure. The new theoretical
framework enables us to represent and reproduce the complete informa-
tion content embedded in PSC data. As a first field application, we test
the quality of unconditional and conditional simulations obtained with
our methodology by considering as a test bed a set of particle-size curved
collected within a shallow alluvial aquifer in the Neckar river valley, Ger-
many.
Keywords: Geostatistics; Functional Compositions; Particle-size distri-
bution; Groundwater; Hydrogeology

1 Introduction
Characterization of natural heterogeneity of aquifer bodies relies on diverse sets
of observations. These include, for example, direct measurements/estimates
of hydraulic parameters such as hydraulic conductivity and porosity and data
which enables to infer a classification of soil types. Merging all available infor-
mation within a unique theoretical and operational framework would form the
basis for a robust system characterization. A stochastic approach is nowadays
recognized as a viable tool to quantify the way uncertainty propagates from
incomplete knowledge of the properties of the host porous medium (in terms of
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spatial distribution of geomaterials and associated parameters) to state variables
of interest (including, e.g, groundwater fluxes and chemical concentrations).

Here, we focus on the way the information content embedded in particle-size
curves (PSCs) can be effectively employed to assist the stochastic characteri-
zation of a natural aquifer. These types of data are routinely available in field
studies performed in diverse settings. They are usually obtained through rela-
tively simple and inexpensive methods, such as those relying on traditional grain
sieve analysis or other techniques, based on, e.g., sedigraph or laser diffraction
methods. Information content which can be extracted by PSCs include a set of
representative particle diameters that are defined as average soil particle sizes
corresponding to given quantiles of the PSC. Representative diameters can then
be employed within existing empirical formulations relating them to aquifer pa-
rameters such as porosity and/or saturated hydraulic conductivity [e.g., Rosas
et al., 2014, Vienken and Dietrich, 2011, Vukovic and Soro, 1992]. In a few
other cases [e.g., Rogiers et al., 2012] a site-specific model is proposed to assess
the possibility of estimating saturated hydraulic conductivity from the complete
dataset characterizing the PSCs. These can also be employed for the purpose
of soil textural classification, according to a variety of approaches [e.g., Riva
et al., 2006, Martìn et al., 2005, and references therein]. In this sense, texture
data consisting in percentage values of sand, silt and clay (which can be in-
ferred from PSCs) can be employed together with other quantities, including
e.g., bulk density of soil, as input to pedotransfer functions to estimate soil
hydraulic properties [e.g., Rawls et al., 1982, Pachepsky et al., 2006, Schaap
et al., 2001, Schaap, 2013, and references therein]. An alternative approach is
grounded on concepts of similar media scaling [e.g., Miller and Miller, 1956,
Vogel et al., 1991] to exploit the dependence of hydraulic properties on pore size
and key geometrical descriptors of the pore space. The latter approach enables
one to scale hydraulic properties of multiple soils to unique reference water re-
tention curves and partially saturated relative hydraulic conductivity functions
[e.g.,amongst others, Tuli et al., 2001, Das et al., 2005, Nasta et al., 2013]

In this broad framework, hydrogeological investigations commonly employ
a number of discrete quantiles of an available PSC which are then subject to
geostatistical analysis and then (a) projected onto a grid through kriging or (b)
employed in a numerical Monte Carlo setting to generate multiple realizations of
the spatial distribution of aquifer properties and/or textural composition [e.g.,
Riva et al., 2006, 2008, 2010, Hu et al., 2009, Bianchi et al., 2011]. As recently
pointed out by Menafoglio et al. [2014, 2015], these standard approaches suffer
from two major drawbacks: (a) they require the joint geostatistical analysis
of multiple characteristic particle diameters with an ordering constraint, thus
entailing, e.g., calibration of multiple variogram and cross-variogram models,
and (b) they are not conducive to exploiting fully the richness of the information
content associated with available PSCs.

Having at our disposal advanced techniques for the geostatistical simulation
of an entire particle-size distribution instead of, e.g., selected quantiles, would
dramatically improve our ability to represent and reproduce the complete in-
formation content embedded in PSC data. The development and establishment
of the theoretical basis underpinning these concepts and their translation into
operational simulation algorithms and tools has therefore the clear potential to
provide a remarkably improved characterization of the variability of the system
to be embedded within Monte Carlo based stochastic simulation procedures of
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groundwater flow and chemical transport. To the best of our knowledge, the
challenging problem of performing geostatistical simulations of soil particle-size
distributions has not yet been explored in the literature.

Here, we focus on this problem and present theoretical developments and
associated computational algorithms and operational procedures to generate
multiple replicates of spatial distributions of PSCs. These can optionally be
conditional on available observed PSCs at a set of discrete locations in the sys-
tem. In the latter case, the simulations interpolate the data observed at the
sampled locations. We demonstrate our approach by way of a field-scale anal-
ysis grounded on observed PSCs and obtain (conditional and unconditional)
realizations of PSCs which are amenable to be included in a Monte Carlo based
approach aimed at the statistical characterization of groundwater flow and trans-
port in randomly heterogeneous aquifer systems.

We ground our approach on a non-parametric framework, which combines
the point of view of geostatistics [Chilès and Delfiner, 1999], Functional Data
Analysis [FDA, Ramsay and Silverman, 2005] and Compositional Data Analysis
[CoDa, Pawlowsky-Glahn et al., 2015]. We do so by following the concepts first
introduced by Menafoglio et al. [2014, 2015]: we model PSCs as cumulative
distribution functions and interpret their densities, termed particle-size densities
(PSDs), as functional compositional data.

We employ an appropriate geometry to deal with the compositional nature
of the data, and develop a simulation method for PSDs based upon a suit-
able and well defined projection strategy. The latter enables us to (a) reduce
the dimensionality of the problem by guaranteeing a high degree of precision,
and (b) geostatistically characterize and simulate PSDs via an approximated
multivariate problem.

The work is organized as follows. Section 2 describes the field data that are
employed as a test bed to illustrate our methodology, while Section 3 introduces
the basic notions on Bayes space theory that are here employed. Section 4
illustrates our simulation strategy in the unconditional and conditional settings.
Section 5 presents our simulation results obtained at the target field site. Section
6 concludes the work.

2 Experimental site and available data
We consider here a dataset obtained at the Lauswiesen site, located in the
Neckar river valley near the city of Tübingen, Germany. The subsurface system
in the area has been characterized through extensive information obtained at a
number of boreholes, which are employed to perform sedimentological as well as
hydraulic analyses. A relatively regular upper clay layer with a thickness of 1 -
2 m overlies a conductive Quaternary sand and gravel deposit. The latter rests
on a layer of Keuper marl which is considered to define an impervious bedrock
boundary of the aquifer hosted in the Quaternary sand and gravel system. The
saturated thickness of the aquifer we are considering is approximately 5 m. All
boreholes penetrate the aquifer down to bedrock. Details of site hydrogeology
are given by Riva et al. [2006] and references therein. Available pumping test
data have been employed by Neuman et al. [2007] for the stochastic analysis
of late-time drawdowns and by Panzeri et al. [2015] for the application of data
assimilation techniques based on the concept of Moment Equation Ensemble
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Kalman Filter.
Of specific relevance to our study are the available 406 PSCs sampled along

12 fully penetrating vertical boreholes. The dataset was employed by Riva et al.
[2006, 2008, 2010], Barahona-Palomo et al. [2011] and Riva et al. [2014] in the
context of stochastic modeling studies aimed at (a) providing a probabilistic
analysis of solute residence times within well capture zones, (b) interpreting
an observed tracer test in a numerical Monte Carlo framework, (c) assessing
the link between the spatial covariance functions of the (natural) logarithm of
hydraulic conductivity (K) and of soil particle representative diameters, and (d)
characterizing the correlation between hydraulic conductivity values estimated
through impeller flowmeter downhole measurements and by way of empirical
formulations based on PSC representative diameters.

The available PSCs were measured on soil samples of characteristic length
ranging from 5 to 26.5 cm. A number of 12 sieve diameters (i.e., 0.063, 0.125,
0.25, 0.50, 1.0, 2.0, 4.0, 8.0, 16.0, 31.5, 63.0 and 100.0 mm) were employed in
the sieve analysis procedure. Figure 1c depicts a sketch of the borehole network
and sampling locations at the site. Applying traditional empirical relationships
between characteristic soil diameters and permeability indicates that the site is
mainly constituted by heterogeneous and conducive deposits of alluvial origin.

Particle size curves associated with one of the available boreholes (borehole
B5 in Figure 1) have been employed by Menafoglio et al. [2014] to perform
a geostatistical analysis of PSCs through the corresponding densities, inter-
preted as Functional Compositions (FCs). These authors embed this latter
concept within the geostatistical framework of Menafoglio et al. [2013] through
which they project (Kriging) estimates of the full PSC on a computational
grid, together with the associated Kriging variance. The geostatistical setting
of Menafoglio et al. [2014] has been extended by Menafoglio et al. [2015] to
characterize the complete set of PSCs at the site and to properly account for
the information content related to the local occurrence of diverse soil types (or
textural classes). The key result of the authors is the formulation of an orig-
inal theoretical framework according to which one can take full advantage of
the complete set of information embedded in measured PSCs to (a) classify
PSCs into clusters which represent the occurrence at a site of diverse soil types
(b) characterize the spatial distribution of each identified textural class, and
(c) predict the heterogeneous distribution of PSCs within each region which
contributes to form the internal architecture of the geological system.

Menafoglio et al. [2014] and Menafoglio et al. [2015] analyze available PSDs
by resorting to a smoothing procedure for PSCs based on Bernstein polynomi-
als. This enabled them to obtain the smooth estimates of PSDs from raw data
(Figure 1a and b), and to embed these in their geostatistical analyses. These
data refer to the particle-size distribution within the domain of available obser-
vation, i.e., associated to the grain dimensions between the minimum and the
maximum sieve diameters. For the purpose of illustration, we here consider a
subset of the smoothed data of Menafoglio et al. [2015], as detailed in Section
5; the reader is referred to Menafoglio et al. [2015] for further details on data
preprocessing.
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Figure 1: From field data to a sample of PSDs: (a) raw (symbols) and smoothed
(solid lines) conditional PSCs; (b) smoothed conditional PSDs; (c) smoothed
conditional PSDs along boreholes B5, F3, F4 and F6. Colors indicate the depth
of the sampling locations
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3 Density functions as elements of a Bayes space
A proper (geo)statistical analysis and simulation of PSDs should account for the
peculiar nature of this kind of constrained (compositional) data. The log-ratio
approach for the statistical analysis of multivariate compositions was pioneered
by Aitchison [1986], Pawlowsky-Glahn and Egozcue [2001] and is well established
in the statistical literature. It is based on the key observation that constant-
sum objects convey only relative information. Indeed, one can readily see that
a component (or part) of a compositional vector does not provide information
per se, but relative to the measure of the whole – i.e., the constant they sum up
to – and to the remaining parts of the composition. Note that the measure of
the whole (e.g., unity, 100) is in general a convention rather than an informative
element for the analysis. The Aitchison geometry then yields a proper setting
to perform the statistical analysis, by accounting for the data constraints via
the log-ratio approach.

In this setting, density functions, such as PSDs, can be viewed as Functional
Compositions (FCs), i.e., compositional vectors with infinitely-many parts, that
are constrained to be positive and to integrate to a constant. As such, they in-
herit the key properties of multivariate compositions. Recent works of Egozcue
et al. [2006, 2013], van den Boogaart et al. [2010] and van den Boogaart et al.
[2014] extend the Aitchison geometry to the infinite-dimensional setting through
the theory of Bayes spaces, with the aim of providing the space of FCs with a
geometrical structure consistent with the key properties of compositions and al-
lowing for their statistical analysis. As in Menafoglio et al. [2014, 2015], we here
focus on continuous FCs with compact support T = [tmin, tmax]. We say that
two FCs f, g are equivalent if they are proportional, i.e., f = c·g, for c > 0. Note
that this equivalence relation reflects the so-called scale invariance property of
FCs upon which the log-ratio approach is grounded. Indeed, proportional FCs
convey the same set of relative information; in other words, the measure of the
whole is of no interest in a compositional analysis. Hereinafter, we will always
consider as representative of an equivalence class of FCs its element integrating
to 1.

We term A2(T ) (or A2 for short) the space of (equivalence classes of) FCs
on T , whose logarithms are squared integrable, i.e.,

A2 =

{
f : T → (0,+∞),

ˆ
T

log2(f) < +∞
}
. (1)

Following Egozcue et al. [2006] and van den Boogaart et al. [2014], we define on
A2 the operation of perturbation ⊕ and powering �

f ⊕ g = C(fg); α� f = C(fα), f, g ∈ A2, α ∈ R, (2)

where C(f) =
´
T f is the closure operation, which maps a FC in the representa-

tive of its equivalence class that integrates to 1. Note that the neutral elements
of perturbation and powering are 0⊕ ≡ 1/|T |, with |T | the length of T , and
1, respectively. Egozcue et al. [2006] prove that (A2,⊕,�) is a vector space,
perturbation and powering playing the role of sum and product by a constant,
respectively. In this setting, we denote by f 	 g the difference, in the geometry
of A2, between f and g, namely the perturbation of f with the reciprocal of g,
i.e., f 	 g = C[f ⊕ 1/g], for f, g in A2.
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To endow A2 with a Hilbert space structure, Egozcue et al. [2006] equip the
vector space (A2,⊕,�) with the inner product

〈f, g〉A2 =

ˆ
T

[log(f) log(g)]− 1

|T |

ˆ
T

log(f)

ˆ
T

log(g), f, g ∈ A2. (3)

Egozcue et al. [2006] prove that (A2,⊕,�, 〈·, ·〉A2) is a Hilbert space.
An isometric isomorphism exists between the space A2(T ) and the space

L2(T ) of (equivalence classes of) square-integrable functions on T . An example
of such an isometric isomorphism is the centred log-ratio (clr) transformation
clr : A2 → L2, that acts on a FC f ∈ A2 as

clr(f) = log(f)− 1

|T |

ˆ
T

log(f). (4)

From the computational viewpoint, the use of clr-transforms is convenient, as it
allows mapping the problem in L2, where most methods of FDA can be applied.
Since clr is an isometric isomorphism, one has

clr(f⊕g) = clr(f)+clr(g), clr(α�f) = α·clr(f), 〈f, g〉A2 = 〈clr(f), clr(g)〉L2 ,
(5)

with 〈x, y〉L2 =
´
T xy.

We make extensive use of the Hilbert space geometry of the space (A2,⊕,�,
〈·, ·〉A2) in the following Sections and show how resorting to a clr-transform
simplifies the computations.

4 A projection strategy for the simulation of Particle-
Size Densities

We consider the probability space (Ω,F,P), Ω being a non-empty set (i.e., a
space of events), F a σ−algebra of subsets of Ω, and P a probability measure
defined on F. We denote by D ⊂ R3 a three-dimensional domain, and by
{Xs, s ∈ D} the random field, defined on (Ω,F,P) whose generic element Xs :
T → [0, 1], indexed by the location s in D, is a random particle-size curve
defined on the (same) compact domain T . For any t ∈ T and s ∈ D, Xs(t)
denotes the random proportion of particles having size smaller than or equal to t.
Following [Menafoglio et al., 2014], we interpret Xs as an absolutely continuous
cumulative distribution function and focus on the derivative field {Ys, s ∈ D},
whose elements are probability density functions. We call Ys the particle-size
density (PSD) of the particle-size curve Xs. Hereafter, we consider each Ys as
an element of the Hilbert space of functional compositions, A2, introduced in
Section 3.

For any s in D, we denote by ms the Fréchet mean of Ys, i.e. [Fréchet, 1948]

ms = E[Ys] = arginf
Y∈A2(T )

E[‖Ys 	 Y‖2A2 ].

We indicate with C the covariance function of the field {Ys, s ∈ D}. Function
C maps any pair of locations s1, s2 in D into the cross-covariance operator
C(s1, s2) between the elements of the field at such locations, i.e.,

C(s1, s2)x = E[〈Ys1 	ms1 , x〉A2 � (Ys2 	ms2)], x ∈ A2. (6)
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In the following, we assume {Ys, s ∈ D} to be a stationary Gaussian random
field in A2 [Bogachev, 1998, Bosq, 2000]. This implies that the mean func-
tion ms = m is spatially constant, and there exists a function C̃ such that
C(s1, s2) = C̃(s1 − s2) for any s1, s2 in D. For ease of notation, hereafter we
denote C̃ by C.

Let s1, ..., sn be sampling/measurement locations in D. Given the observa-
tion of Ys1

, ...,Ysn
at these locations, our goal is to provide a simulation (or

realization) of the PSD Ys0
at a given location s0 in D. The target simulations

may be either unconditional or conditional. The former are realizations from
the (estimated) distribution of the field {Ys}, whereas the latter are realizations
from the (estimated) conditional distribution of {Ys} given the observations
Ys1

, ...,Ysn
. As such, conditional simulations reproduce the actual data at the

measurement locations.
We consider for each s ∈ D the expansion

Ys(ω) = m⊕
+∞⊕
k=1

ξk(s;ω)� uk, ω ∈ Ω, (7)

where {uk, k ≥ 1} is a given orthonormal basis of A2, and ξk(s;ω) = 〈Ys(ω)	
m,uk〉A2 . The basis {uk, k ≥ 1} and the expansion (7) are well defined by virtue
of the Hilbert space structure of the space A2.

If we could jointly simulate random realizations of all the real (random)
coefficients {ξk(s0)}k≥1, we would obtain a random realization of Ys0

through
(7). However, it should be noted that this is practically unaffordable because
the effort required to simulate a multivariate random field increases with its
dimensionality. We circumvent this issue by considering, for s in D and ω in Ω,
the sequence of truncated expansions

YKs (ω) = m⊕
K⊕
k=1

ξk(s;ω)� uk, K ≥ 1. (8)

The element YKs associated with a truncation order K yields an approximation
of Ys such that

E[‖YKs 	 Ys‖2A2 ] =

+∞∑
k=K+1

E[|ξk(s)|2] =

+∞∑
k=K+1

〈C(0)uk, uk〉, (9)

which approaches 0 as K increases to infinity. Note that the term at the right
hand side of (9) does not depend on the spatial index s inD. Thus, for any given
tolerance, one can determine a truncation order K such that YKs approximates
Ys – in the mean square sense – with a desired precision, uniformly in D.

Given a truncation order K, a random field {YKs , s ∈ D} whose elements
are given by (8) can be defined on (Ω,F,P) in A2. The distributional properties
of such a field are determined by m and by those of the zero-mean multivariate
random field {ξ(s), s ∈ D}, ξ(s) indicating the K-dimensional coefficient vector
of the basis expansion (8) in s, i.e., ξ(s) = (ξ1(s), ..., ξK(s))T . Note that both
YKs and ξ(s) are Gaussian random fields (in A2 and RK , respectively) by virtue
of the Gaussian assumption on the field {Ys, s ∈ D}. Additionally, we observe
that the element YKs has mean mK

s = m by virtue of (8), and the following

8



matrix representation of the covariance function CK of the field {YKs } holds

CK(h)x =

K⊕
j=1

K⊕
k=1

(Cjkxj)� uk, (10)

where xj = 〈x, uj〉A2 and Cjk = 〈C(h)uj , uk〉A2 = E[ξj(s)ξk(s)].
In light of these observations, a natural strategy to obtain either conditional

or unconditional simulations of the field {Ys, s ∈ D} is to resort to approx-
imation (8) for an appropriate order K and then perform simulations of the
multivariate random field {ξ(s), s ∈ D}.

In principle, a large value for parameter K would be preferable, to obtain
improved approximations of Ys through YKs . Nevertheless, the value of K has
a dramatic effect on the computational cost which is required for the simulation
because it controls the dimensionality of the field {ξ(s), s ∈ D}. Thus, one
needs to consider a balance between limited computational power and accuracy.

We also note that the quality of a K-th order approximation of the kind (8)
varies according to the basis {uk, k ≥ 1} which is employed. Given K ≥ 1, the
mean square error of approximating Ys through the projection (8) over the first
K elements of the basis {uk, k ≥ 1} is bounded below by [see, e.g., Horváth and
Kokoszka, 2012, Theorem 3.2]

E[‖YKs 	 Ys‖2A2 ] ≥
+∞∑

k=K+1

λk, (11)

where (λk, ek), k ≥ 1, represent the eigenpairs of C(0), with eigenvalues ordered
in decreasing order λ1 ≥ λ2 ≥ ... . Given K, a sensible choice of the basis should
then attain a mean square error of approximation as close as possible to the
lower bound (11). It can be proved [e.g., Horváth and Kokoszka, 2012, Theorem
3.2] that the bound in Eq. (11) is reached when considering u1, ..., uK to be
precisely the set of the first K eigenvectors of C(0), e1, ..., eK . The eigenvalue
λk (k = 1, 2, ...) then represents the proportion of the total variability which
is captured by projecting the data along direction ek. One can then set the
truncation orderK as the minimum order that allows explaining a given amount
of the total variability (e.g., 90% or 95%) or, depending on the case analyzed, K
can be identified as the minimum order at which an elbow starts to be appear in
the scree plot, where the proportion of variability explained by the eigenvectors
is plotted as a function of K.

In most studies, the zero-lag covariance operator is not known a priori. In
this case, one can apply the so called Simplicial Functional Principal Component
Analysis [SFPCA Hron et al., 2015] to (a) estimate from available data the zero-
lag covariance operator C(0) through the empirical estimator

Sx =
1

n

n∑
i=1

〈Ysi
	 m̂, x〉A2(Ysi

	 m̂), x ∈ A2, (12)

m̂ = 1
n

⊕n
i=1 Ysi

denoting the sample mean, (b) compute the eigen-pairs (λ̂k, êk),
k = 1, ..., n − 1, of this estimate, and (c) project the observations on the first
K eigenvectors (or simplicial functional principal components, SFPCs) of S to
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obtain the representation

Ysi ≈ m̂⊕
K⊕
k=1

ξ̂k(si)� êk. (13)

Here ξ̂k(si) = 〈Ysi
	 m̂, êk〉A2 is called score and is the projection of (Ysi

	 m̂)
along the k-th SFPC êk. Note that SFPCA is the infinite-dimensional counter-
part of principal components analysis, which is widely employed in the multi-
variate framework to perform optimal dimensionality reduction of a multivariate
dataset. In general, most of the techniques that are commonly employed in the
multivariate framework to identify and interpret principal components can be
extended to the Bayes Hilbert space setting, as shown by Hron et al. [2015].

In this work, we ground the computation of the SFPCs and expansion (13) on
the centered log-ratio (clr) transformation, that maps the space A2 of functional
compositions into the space L2 of square-integrable functions, as recalled in
Section 3. For ω ∈ Ω, we denote by Zs(ω) the clr transform of Ys(ω), i.e.,
Zs(ω) = clr(Ys(ω)); we then define m̂c = clr(m̂). Hron et al. [2015] prove that,
for any given K, the problem of finding the first K SFPCs of Ys1

, ...,Ysn
can be

solved by back-transforming via clr−1 the first K eigenfunctions {ŵk}k=1,...,K

of the sample covariance operator Sclr of Zs1 , ...,Zsn , that is defined as

Sclrx =
1

n

n∑
i=1

〈Zi − m̂c, x〉L2(Zi − m̂c), x ∈ L2.

Therefore, for k = 1, ...,K, one can compute the k-th SFPC as êk = clr−1(ŵk),
and use (5) to obtain the expansion

ZKs (ω) = m̂+

K∑
k=1

ξ̂k(s;ω) · ŵk, ω ∈ Ω, (14)

where ξ̂k(s;ω) = 〈ZKs (ω) − m̂c, ŵk〉L2 is the projection of ZKs (ω) along the
k-th principal direction in the clr-space, identified by ŵk. Note that the basis
coefficients ξ̂k(s;ω) appearing in (14) coincide with those in (13), as 〈YKs (ω)	
m̂, êk〉A2 = 〈ZKs (ω)− m̂c, ŵk〉L2 .

Given the optimal expansion (13), one can then employ multivariate tech-
niques [e.g., Chilès and Delfiner, 1999, Mariethoz and Caers, 2015] to perform
unconditional or conditional geostatistical simulations of theK-dimensional vec-

tors of scores ξ̂(si) =
(
ξ̂1(si), ..., ξ̂K(si)

)T
. Here, we illustrate the field applica-

tion of our approach by employing the multivariate Gaussian simulator available
in the package gstat [Pebesma, 2004] of software R [R Core Team, 2013]. Con-
ditional simulations of Section 5.4 are based on the sequential Gaussian method
of Abrahamsen and Benth [2001]. It is remarked that any multivariate simu-
lation method could be employed as well, without substantial modifications to
the overall strategy here proposed.
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Figure 2: Sub-sample of conditional PSDs at the Lauswiesen field site.

5 Example of Application: Simulation of Particle-
Size Densities at the Lauswiesen test site

We illustrate here our methodology for the simulation of PSDs on the basis of
field data presented in Section 2. As a test bed, we consider the subset of the
complete dataset depicted in Figure 2, formed by 100 PSDs randomly sampled
from the set of data belonging to the second cluster singled out by Menafoglio
et al. [2015]. As a first step, we apply SFPCA to this data set in Subsection 5.1
and obtain the best empirical basis for the representation of the data. In the
following Subsections we illustrate the results of unconditional and conditional
simulation at the site.

5.1 Simplicial Functional Principal Component Analysis
of PSDs at the field site

Following the approach based on clr transform described in Section 4, we per-
form SFPCA of the dataset depicted in Figure 2. For the sake of simplicity, we
estimate the mean m via the sample estimator m̂ = 1

n

⊕n
i=1 Ysi ; more refined

estimate may be employed [e.g., via generalized least squares Menafoglio et al.,
2013, 2014]. Figure 3 depicts the key results of the analysis. Based on the scree
plot in Figure 3a and on the scores boxplots in Figure 3b, we set the truncation
order to K = 4. This choice enables us to explain 97% of the total variabil-
ity of the dataset. The first K = 4 SFPCs {ê1, ..., ê4} and their clr-transform
{ŵ1, .., ŵ4} are depicted in Figure 3c and d, respectively.

Figures 3e to h depict the mean function perturbed by plus/minus the eigen-
functions powered by twice the standard deviation along the corresponding di-

rection, i.e., m̂⊕
(
±2

√
λ̂k

)
� êk, k = 1, ..., 4. The curves in Figure 3e-h are rep-

resentative of the patterns characterizing the observations presenting high/low
scores along the corresponding SFPCs. In this sense, the first SFPC captures
the variability in the position of the mode and in the mass concentration around
it. High scores along SFPC ê1 are represented by the blue curve in Figure 3e,
which depicts a PSD with larger mode and higher mass concentration than m̂,
the opposite behavior being depicted as a red curve in Figure 3e. The second
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Figure 3: Results of SFPCA on the dataset of PSDs. Panels (d) to (g): the
solid black curve indicates the mean function, the red curve indicates the mean
	 the SFPCs, the blue curve indicates the mean ⊕ the SFPC.

SFPC is interpreted in terms of the modality of the distribution (Figure 3f):
high scores along the SFPC ê2 are registered for bimodal densities (blue curve),
whereas low scores are associated with unimodal distributions. A correspond-
ingly strong interpretation for the remaining SFPCs is not emerging as clearly
as for the first two SFPCs.

Figures 4a and b compare the original data and their approximation based
on the truncated expansion (13) with K = 4. Inspection of Figure 4 allows
recognizing that the approximated curves provide a viable reproduction of all
the main features of the original densities.

5.2 Geostatistical modeling of the scores
Once the approximation (13) has been obtained, simulation of a PSD Ys0 at a
target location s0 in D requires the geostatistical characterization of the vectors
of scores ξ̂(s1), ..., ξ̂(sn). Consistent with the assumption of Section 4, we con-
sider ξ̂(s1), ..., ξ̂(sn) to be a partial observation of a K-dimensional stationary
Gaussian random field {ξ̂(s), s ∈ D}. Following Menafoglio et al. [2015], we
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Figure 4: Original smoothed dataset and approximated PSDs obtained via (13).

consider a geometric anisotropy at the site, characterized by anisotropy ratio
of R = 0.04 between the horizontal and vertical directions. Thus, hereafter we
refer all our estimates and simulated quantities to an isotropic spatial domain
obtained by dilation of the actual vertical coordinate by a factor 1/R = 25.
Figure 5 depicts the variograms and cross-variograms estimated from the scores
ξ̂(s1), ..., ξ̂(sn). We fit a valid model to these estimates by employing a Linear
Model of Coregionalization [LMC, e.g., Chilès and Delfiner, 1999] based on an
exponential model with nugget. We note that speed up of computations could
be achieved upon employing simplifying assumptions on the vector of scores,
e.g., by modeling the fields {ξ̂k(s), s ∈ D}, k = 1, ...,K, as uncorrelated. This
simplifying assumption might be considered as a viable approximation at the
site on the basis of the results depicted in Figure 5. For the sake of completeness,
in our application described in the following Subsections we prefer to consider
the complete LMC estimated as in Figure 5.

5.3 Unconditional simulation of PSDs
We illustrate an example of unconditional simulation of PSDs by considering a
two-dimensional computational grid D0 ⊂ D which comprises 625 points, at a
fixed elevation of 300 m a.s.l. Based on the LMC estimated in Subsection 5.2,
we perform unconditional Gaussian cosimulation of the K-dimensional vectors
ξ̂(s0), s0 ∈ D0. Figure 6 depicts a selected realization simulated on the grid D0

according to the proposed methodology.
We test the quality of the simulation by generating NMC = 1000 Monte

Carlo replicates of the field on D0. The CPU time required for the computations
based on the R package gstat, within R version 3.0.2 was approximately 70’55”
(CPU time refers to an Intel® Core™ i7-3517U CPU @ 1.90 GHz). We then
compute the empirical variogram associated with each realization as well as
directional sample variograms based on the collection of the NMC generated
fields. Figure 7 depicts the generating variogram models together with the
NMC variograms associated with (i) the generated fields and (ii) the sample
variogram calculated along two mutual normal directions for a reference point
located at the center of the simulation domain. Visual inspection of the results
suggests that the generating variogram models are always fairly reproduced in
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Figure 5: Variogram and cross-variograms estimated from the scores ξ̂s1
, ..., ξ̂sn

.

−2 0 2 4

0.0

0.2

0.4

0.6

ln(particle−size diameter) [ln(mm)]

pa
rt

ic
le

−
si

ze
 d

en
si

ty

x

y

z

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●●●
●

●

●
●

●●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●●●
●

●

●
●

●●

●
●

● ●

●
●

●
●

●
●

●

● ●

●

● ●

●●●
●

●

●
● ●●

●
●

● ●

●
●

●
●

● ●

●

● ●

●

● ●

●●●
●

●

●
● ●●

●
●

● ●

●
●

●
●

● ●

●

● ●

●

● ●

●●●
●

●

●
● ●●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●●
●

●

●
●

●●

●
●

● ●

●
●

●
●

● ●

●

● ●

●

● ●

●●●
●

●

●
● ●●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●●

●

●

●
●

●●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●●

●

●

●
●

●●

●

●
● ●

●
●

●
●

●
●

●

● ●

●

● ●

●●●
●

●

●
●

●●

●

●
● ●

●
●

●
●

●
●

●

● ●

●

● ●

●●●
●

●

●
●

●●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●●●
●

●

●
●

●●

●
●

● ●

●
●

●
●

● ●

●

● ●

●

● ●

●●●
●

●

●
● ●●

●

●
● ●

●
●

●
●

●
●

●

● ●

●

● ●

●●●
●

●

●
●

●●

●

●
● ●

●
●

●
●

●
●

●

● ●

●

● ●

●●●
●

●

●
●

●●

●
●

● ●

●
●

●
●

●
●

●

● ●

●

● ●

●●●
●

●

●
●

●●

●
●

● ●

●
●

●
●

● ●

●

● ●

●

● ●

●●●
●

●

●
● ●●

●
●

● ●

●
●

●
●

● ●

●

● ●

●

● ●

●●●
●

●

●
● ●●

●

●
● ●

●
●

●
●

●
●

●

● ●

●

● ●

●●●
●

●

●
●

●●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●●

●

●

●
●

●●

●

●
● ●

●
●

●
●

●
●

●

● ●

●

● ●

●●●
●

●

●
●

●●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●●

●

●

●
●

●●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●●

●

●

●
●

●●

●
●

● ●

●
●

●
●

●
●

●

● ●

●

● ●

●●●
●

●

●
● ●●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●
●

●●

●●●●●
●●

●●

●

●

●

B1B2B3B4B5F0F1
F2F3

F4
F5

F6

Figure 6: An example of unconditional realization of spatially dependent PSDs
(left) and the simulation grid (right).

14



0 40 80 120

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15
0.20

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.10

−0.05

0.00

0.05

0.10

0.15

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.10

−0.05

0.00

0.05

0.10

se
m

iv
ar

ia
nc

e

0 40 80 120

0.00

0.05

0.10

0.15

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.3
−0.2
−0.1

0.0
0.1
0.2

distance

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15
0.20

distance

se
m

iv
ar

ia
nc

e

0 40 80 120

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

distance

se
m

iv
ar

ia
nc

e

0 40 80 120

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3

distance

se
m

iv
ar

ia
nc

e

0 40 80 120

0.0
0.1
0.2
0.3
0.4
0.5

distance

se
m

iv
ar

ia
nc

e

0 40 80 120

0.0

0.5

1.0

1.5

distance

se
m

iv
ar

ia
nc

e

Figure 7: Generating LMC (blue lines), estimated variograms and cross-
variogram in 1000 simulations (grey lines), average over 1000 simulation of the
variogram estimated at the central point in direction x (red symbols) and y
(green symbols).

an ensemble sense. Results of corresponding quality are obtained for other
reference points in the system (not shown).

As an additional test, we repeat the same analysis by considering the trace-
semivariogram of the field of PSCs, defined in this setting as

γtr(‖si − sj‖) = E[‖Ysi 	 Ysj‖2A2 ], si, sj ∈ D. (15)

The trace-variogram is a global measure of spatial dependence undertaking, in
the functional context, the same role as its finite-dimensional counterpart [see,
e.g., Menafoglio et al., 2013, 2014, and references therein].

The quality of the results of this analysis depicted in Figure 8 further cor-
roborates our conclusions, thus imbuing us with confidence about the potential
of the generation method and results.

5.4 Conditional Simulation of Particle-Size Densities at
the Lauswiesen field site

Here, we illustrate an example of conditional simulation at the field site. For
the purpose of our illustration, we consider a one-dimensional grid D1 ⊂ D of
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Figure 8: Generating model (blue lines), estimated trace-semivariograms in 1000
simulations (grey lines), ensemble average over 1000 simulation of the trace-
semivariogram estimated at the central point in direction x (red symbols) and
y (green symbols).

250 points taken along borehole B5 at the site. Simulations are here performed
conditional to the set of approximated PSDs obtained in Subsection 5.1.

Figure 9 depicts a selected realization on grid D1, obtained by conditionally
simulating the K-dimensional vectors of coefficients ξ̂(s0), for s0 in D1, accord-
ing to the LMC of Figure 5. The CPU time for the simulation based on the
R package gstat, within R version 3.0.2 took approximately 21’53” (CPU time
refers to an Intel® Core™ i7-3517U CPU @ 1.90 GHz). It can be noted that, by
construction, the simulation interpolates the approximated PSDs YKs1

, ...,YKsn
,

rather than the observed PSDs Ys1 , ...,Ysn . We refer to Appendix A for a
strategy to honor the smoothed data – i.e., those prior to SFPCA.

To assess the quality of the prediction, we perform 1000 simulations on the
grid D1. We notice that, for each s0 ∈ D1, the ensemble average of the simu-
lations at s0, i.e.,

⊕1000
j=1 Y

(j)
s0 , should approximate the conditional expectation

E[YKs0
|YKs1

, ...,YKsn
], as simulations Y(j)

s0 , j = 1, ..., 1000, are draws from the (ap-
proximated) conditional distribution of YKs0

given YKs1
, ...,YKsn

. The conditional
expectation E[YKs0

|YKs1
, ...,YKsn

] can be estimated from available smoothed data
YKs1

, ...,YKsn
as

Y∗Ks0
= m̂⊕

K⊕
k=1

ξ̂∗k(s0)� êk (16)

where ξ̂
∗
(s0) = (ξ̂∗1(s0), ..., ξ̂∗K(s0))T is the Simple Cokriging prediction of the

score vector at s0, based on ξ̂
∗
(s1), ..., ξ̂

∗
(sn) [see, e.g., Menafoglio and Petris,

2015]. Figure 10a-b displays the ensemble average of the 1000 simulated PSDs
and the Kriging prediction based on the variography previously estimated, re-
spectively. From the graphical inspection of Figure 10a-b one can appreciate
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Figure 9: Conditional realization of PSDs at borehole B5 of Lauswiesen field
site. Vertical coordinates correspond to the sample/target locations. Elevation
is given in meters above sea level (m a.s.l.). Simulated PSDs are plotted as
colored curves, data as grey curves.

the high quality of our simulations. This is also confirmed by Figure 10c, which
represents, for J = 1, ...,K, the minimum, maximum and mean, over s0 ∈ D1,
of the squared distance d(s0; J)2 = ‖

⊕J
j=1 Y

(j)
s0 	Y∗Ks0

‖2 of the partial ensemble

averages
⊕J

j=1 Y
(j)
s0 from the Simple Kriging prediction Y∗Ks0

.

6 Conclusions and further research
The theoretical and application-oriented contributions of our work lead to the
following key conclusions.

1. A novel strategy has been proposed to address the problem of stochastic
simulation of particle-size curves (PSCs) and associated densities (PSDs).
The latter constitute a set of (infinite-dimensional) functional data and
embedding them within the Bayes Hilbert space of functional composi-
tions is a key feature of the procedure. Our theoretical framework enables
us to (a) formulate a Gaussian model for the infinite-dimensional field of
PSDs; (b) project the available data onto a truncated orthonormal basis
to obtain a finite-dimensional approximation of the (otherwise infinite-
dimensional) PSDs via a set of multivariate vectors of coefficients; and (c)
perform either unconditional or conditional stochastic simulation, based
on the multivariate random field of coefficients. The latter step can be ad-
dressed through the use of any of the available techniques for multivariate
stochastic simulation (including, e.g., sequential Gaussian cosimulation).
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Figure 10: Assessment of the quality of conditional simulations at borehole B5
of Lauswiesen field site. (a) Average of 1000 conditional simulations of PSDs
(b) Simple Kriging prediction of PSDs. (c) Squared distance between partial
ensemble averages

⊕J
j=1 Y

(j)
s0 and Simple Kriging prediction Y∗Ks0

. In panels
(a) and (b), vertical coordinates correspond to the sample/target locations.
Elevation is given in m a.s.l.. Simulated PSDs are plotted as colored curves,
data as grey curves.

2. We study the way one can set the dimension of the approximating problem
and the functional basis onto which these types of functional data can be
projected. Our results suggest that an optimal solution is provided upon
relying on a simplicial functional principal component analysis (SFPCA).
In this context, one may need to set the dimensionality of the approx-
imated problem according to the available computational resources. As
such, key challenges associated with future direct implementation of the
approach to field scale settings are related to improving the computational
efficiency required for the simulation of the spatial field of coefficients, a
step which still appears to be quite costly.

3. The stochastic simulation procedure has been demonstrated through an
extensive Monte Carlo study based on a set of particle-size curves col-
lected within a shallow alluvial heterogeneous aquifer system. The quality
of our results appear to be quite satisfactory in all tested scenario. While
we employ a stationary assumption for the purpose of our demonstra-
tion, it is possible to extend the technique to nonstationary settings of
the kind arising, e.g., when an aquifer is conceptualized as a composite
medium, where diverse non-overlapping materials form its internal archi-
tecture. Work in this direction is currently under way [Menafoglio et al.,
2015]. With reference to practical applications, we note that, in contrast
to common approaches relying solely on a few selected features of PSCs
(e.g., selected quantiles), our approach yields collections of stochastic real-
izations of the spatial distribution of the entire PSC, thus contributing to a
key improvement of one’s ability to characterize the complete information
content embedded in PSC data.
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Appendix A: interpolating the observations in con-
ditional simulations
By construction, the conditional simulations obtained through the projection
strategy of Section 4 are based on the approximated PSDs YKs1

, ...,YKsn
, rather

than the observed PSDs Ys1 , ...,Ysn . Here, we illustrate a strategy to obtain
simulations that honor the actual observations at locations where these are
collected.

We call YKs0
the simulated PSD at a target location s0 ∈ D, and denote by

εKsi
= Ysi

	 YKsi
, i = 1, ..., n, the residuals of SFPCA. These residuals are ne-

glected when analyzing and simulating PSDs via approximation (13). One can
embed these in the (conditional) simulation procedure by interpolating them
through an appropriate notion of Kriging, and then sum the result to the sim-
ulated realization YKs0

.
Menafoglio et al. [2014] introduce the notion of Functional Compositional

Kriging (FCK), that allows obtaining the best linear unbiased prediction in the
sense of linear combination of the data in A2. We call ε∗Ks0

the FCK prediction
of the residual at s0. This prediction is obtained as the linear combination
ε∗Ks0

=
⊕n

i=1 λ
∗
i � εKsi

of the residuals εKsi
, i = 1, ..., n, whose weights minimize

the prediction mean square error (MSE). Note that no unbiasedness constraint
needs to be imposed, as the residuals εKsi

are zero mean by construction. Taking
advantage of the work of Menafoglio et al. [2013, 2014], it is possible to show
that minimization of the MSE is tantamount to solving the FCK system

Γελ = γε0, (A1)

where Γεi,j = E[‖εKsi
	 εKsj

‖2A2 ], i, j = 1, ..., n, λ = (λ1, ..., λn)T ∈ Rn, (γ0)i =

E[‖εKsi
	 εKs0

‖2A2 ], i = 1, ..., n. Note that (A1) is a Simple Kriging system, con-
sistent with the observation that residuals are zero-mean.

Having computed the prediction ε∗Ks0
, one can finally obtain the desired sim-

ulation as YKs0
⊕ ε∗Ks0

.
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