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Abstract

In this work, we consider the numerical approximation of the electrome-
chanical coupling in the left ventricle with inclusion of the Purkinje net-
work. The mathematical model couples the 3D elastodynamics and bido-
main equations for the electrophysiology in the myocardium with the 1D
monodomain equation in the Purkinje network. For the numerical solution
of the coupled problem, we consider a fixed-point iterative algorithm that
enables a partitioned solution of the myocardium and Purkinje network
problems. Different levels of myocardium-network splitting are considered
and analyzed. The results are compared with those obtained using standard
strategies proposed in the literature to trigger the electrical activation. Fi-
nally, we present a physiological cardiac simulation, including the initiation
of the signal in the Purkinje network, the systolic phase and the beginning
of the filling phase.
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1 Introduction

Computational modeling of the electromechanical coupling in the heart can be
used to better understand the complex interplay between the chemical, electrical
and mechanical fields that are involved in the cardiac cycle [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. For instance, one may be interested in
studying how a pathological condition of the electrical conduction system affects
the overall contraction in the ventricles [18, 19]. The underlying motivation here
is that outputs of computer-based simulations in patient-specific geometries can
be used by the physicians to enhance diagnosis and therapy planning.

A key role in the propagation of the electric signal in the heart is played by
the Purkinje fiber system. This is a complex network of cardiac cells located at
the endocardium that is specialized in the rapid conduction of electric signals
in the ventricles. In a normal cardiac cycle, the electric signal coming from the
atrioventricular (AV) node travels along the Purkinje network and enters the
myocardium through the Purkinje-muscle junctions (PMJ). After that, the signal
is spread throughout the myocardium, thus triggering the reactions leading to
the mechanical contraction [20].

So far, computational studies that include the Purkinje network have been
mainly focused on its effects on the myocardium electrophysiology [21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], that is, without the consideration of
the mechanical contraction. Works that study the role of the Purkinje network
in the mechanical contraction of the heart are rare in the literature. On one
hand, the fast conduction of the Purkinje network was included in [35] in a
computational model of cardiac electromechanics through a surrogate spatial
modification of the myocardial conduction properties. Therein, comparisons
with experimental measurements showed the importance of the Purkinje fiber
system in determining the mechanical activation sequence. On the other hand,
a preliminary study of the effect of the Purkinje system in the electromechanical
problem was also presented in [36], where a separate one-dimensional problem
was solved for the propagation through the network. Still in [36], was observed
that the network has an influence in the contraction, introducing an asymmetry
in the ventricular depolarization.

Although these studies highlight the importance of including the Purkinje
network when performing electromechanical simulations, a complete understand-
ing of its effect in the mechanical contraction is still missing. In particular, the
following aspects need to be addressed:

• a detailed study of the coupling strategy between the Purkinje and the
myocardium solvers;

• a comprehensive comparison of the effect of the inclusion of the Purkinje
network with respect to the standard surrogate models of activation found
in the literature;
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• a strategy to include the Purkinje network in simulations of the pressure-
volume (PV) loop.

This paper aims at addressing all these points by integrating the electrome-
chanical model developed in [37] (adapted to the bidomain model) with a model
for the description of the electrophysiology in the Purkinje fibers network. It
is organized as follows. In Section 2 we introduce the model that couples the
equations modeling the signal propagation in the Purkinje network with the ones
that describe the electromechanical contraction of the myocardium developed in
[37]. In Section 3 we address the strategies for the numerical solution of such
problems and present the coupling strategy adopted. Numerical experiments are
presented in Section 4. In particular, a numerical comparison of two different
coupling strategies is carried out in Section 4.2, whereas comparisons with stan-
dard surrogate models of the network are presented in Section 4.3. In Section 5,
the strategy to embed the Purkinje electrophysiology in modeling the PV loop
is described. Special attention is given there to the events happening in the
Purkinje network throughout the cycle. Finally, a partial simulation of the PV
loop, including the Purkinje fibers, is presented in Section 6.

2 Mathematical models

2.1 Electromechanical activation in the myocardium

The electrical and mechanical response of the heart largely depends on its highly
anisotropic internal structure [14, 38]. As a matter of fact, the myocardium
is composed of fibers wrapped in laminar collagen sheets. This structure is
described, on a local frame of reference, by the vectorial fields f0 (fibers), s0
(sheets) and n0 (normals) defined over the myocardium. See Figure 1.

2.1.1 Myocardium electrophysiology.

In modeling the electrophysiology of the heart, we can distinguish between mod-
els for the cardiac cell electrophysiology, describing the bioelectric activity at the
cell level independently of the rest of the cardiac function, and cardiac tissue
models, accounting for the propagation of excitation throughout the cardiac
muscle [10, 14, 26, 40, 41].

Cardiac cell electrophysiology models build upon the pioneering work of
Hodgkin and Huxley [42]. They describe the transport of ionic species and
the opening and closing dynamics of gating mechanisms throughout the cellular
membrane. The general form of such models, written in the Hodgkin-Huxley
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Figure 1: Fibers and sheets in the myocardium. The fiber orientation f0 varies transmurally,
while the sheets direction s0 is orthogonal to the walls and is oriented from the endocardium
to the epicardium. The normal direction n0 is then such that n0 ? f0, s0 (image taken
from [16]).

obtained by reduction of the bidomain equation [10, 35, 18, 28]:
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V = V0 in ⌦0 ⇥ {0}.

Here, ⌦0 is the reference domain (i.e. the LV at the end of the diastolic phase) and T > 0
the final time. Parameters �, Cm 2 R+ are the ratio of membrane surface with respect to
the volume and the membrane capacitance, respectively. In order to take into account for
the anisotropic electrical conductance [34], we define the di↵usion tensor as

Dm = �t I + (�l � �t) f0 ⌦ f0

where �l, �t 2 R+ are the conductivities in the directions longitudinal and transversal with
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Figure 1: Structure of the cardiac myocardium. Image reproduced from [39].

formalism, consists in the following system of ODEs,

dvm
dt

+ Iionm (vm,wm) = 0,

dwm

dt
+ fm(vm,wm) = 0,

(1)

where vm is the transmembrane potential, wm represents all concentration of
ionic species and gating variables, the latter representing the percentage of open
channels per unit area of the membrane; Iionm and fm are, in general, non-linear
terms driving the dynamics of the system. A wide range of models have been
proposed in the last years, achieving different degrees of accuracy in their descrip-
tions [43, 44, 45]. In this work, we consider the phenomenological Bueno-Orovio
minimal model [46] as cellular model in the myocardium. This model is able to
capture the main features of the action potential using only three variables , i.e.,
wm = (w1, w2, w3). The first two, w1 and w2, accounts for some gating processes
whereas, the third one w3 is strictly related to the calcium ionic concentration.

Model (1), describing the electrical activity at the microscopic level, can be
incorporated into macroscopic descriptions at the tissue level. The cardiac cells
are surrounded by extracellular species and connected by end-to-end and/or
side-to-side junctions. A homogenization process of equation (1), taking into
consideration the specific intra and extra cellular structure of the muscle tissue,
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leads to the so called bidomain model (see [47, 48, 49, 50]), proposed in [51],

χm

(
Cm

∂vm
∂t

+ Iionm (vm,wm)

)
−∇ · (Di,m∇vm)−∇ · (Di,m∇ue,m) = Iext,

−∇ · (De,m∇vm)−∇ · ((Di,m + De,m)∇ue,m) = 0,

(2)

where ue,m is the extracellular potential. Here, Di,m and De,m are diffusion
tensors defined as

Di,m = σi,tI + (σi,l − σi,t) f0 ⊗ f0, De,m = σe,tI + (σe,l − σe,t) f0 ⊗ f0,

where σi,t, σi,l (respectively, σe,t, σe,l) are the conductivities in the orthogonal and
longitudinal directions of the intracellular (respectively, extracellular) mediums
with respect to the fibers direction f0. Parameters χm and Cm in (2) stand
for the surface-to-volume ratio of the cell membrane and the membrane capaci-
tance, respectively. The source term Iext represents an external current for the
myocardium which could be provided by the electrophysiology of the Purkinje
fibers and/or by an applied current.

2.1.2 Myocardium mechanics.

We denote by d the myocardium displacement defined in the reference config-
uration of the myocardium Ω0 ⊂ R3. In this paper, subindex 0 always refers
to fields or subdomains in the reference configuration. For the discussion of the
elastic constitutive model, we classically introduce the gradient of deformation
F = I+∇0d, the Jacobian J = det(F) and the right Cauchy-Green strain tensor
C := FTF. Moreover, we consider the following invariants of C,

I1 = tr C, I4,f = C : f0 ⊗ f0 = f⊗ f,

I4,s = C : s0 ⊗ s0 = s⊗ s, I8,fs = C : f0 ⊗ s0 = f⊗ s.

Several constitutive models have been proposed in the literature to account
for the orthotropic response of the heart muscle [52, 53, 39]. In this work, we
consider the strain-energy function proposed by Holzapfel and Ogden in [39].
Also, we account for the nearly-incompressible nature of the myocardium by
adding an extra convex term in J such that large volume variations are penalized
(see [37] for the details). The final strain-energy function reads as follows:

W(C, J) =
a

2b
(eb(J

− 2
3 I1−3) − 1) +

∑

i=f,s

ai
2bi

(ebi(I4,i−1)
2 − 1) +

afs
2bfs

(ebfs(I
2
8,fs−1 − 1)

+
B

2
(J + J ln J − 1),

(3)

where the parameters B (bulk modulus) and a, b, af , bf , as, bs, afs, bfs are ex-
perimentally fitted. Model (3) is used to describe the passive response of the
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heart myocardium. In order to account for the active response of the muscle, we
follow the active-strain approach [38, 54, 55]. This entails a Lee-type multiplica-
tive decomposition of F of the form F = Fe Fa(γf ), where γf is an auxiliary
dimensionless variable, which represents the local stretching (or elongation) of
the fibers and whose dynamics are discussed below.

The non-linear elastodynamics equations read as

ρ
∂2d

∂t2
−∇0 ·P(d, γf ) = 0 (4)

where ρ is myocardium density and P is the second Piola-Kirchhoff stress tensor,
that depends also on γf . We refer to [14] for a detailed description of the active-
strain approach as well as for the final structure of the second Piola-Kirchhoff
stress tensor.

2.1.3 Myocardium electromechanical coupled problem.

The active component Fa(γf ) of the deformation tensor has not been defined
yet. Following [37], the dynamics of γf , linking electrophysiology and mechanics,
are modeled by a reaction-diffusion system of the form

µAw
2
3

∂γf
∂t
− ε∆γf = Φ(w3, γf ,d), (5)

where µA is a physiological viscosity parameter and ε is a regularization parame-
ter both to be properly tuned. The function Φ(w3, γf ,d) determines the activa-
tion dynamics depending on the concentration of calcium ions (here, assimilated
to the variable w3), and the displacement, so that the sarcomere force-length
relationship is taken into account [56]. We refer to [37] for the specific structure
of this function.

We impose the following orthotropic structure to the active deformation ten-
sor

Fa = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0,

with γn = γn(γf ), γs = γs(γf , γn), representing the local shortening (or elon-
gation) in the normal and sheet directions, respectively. These functions have
to be chosen to reproduce the non-homogeneous transversal thickening of the
ventricle’s wall, while maintaining det(Fa) = 0. More specifically, we consider

γn = f(λ)

(
1√

1 + γf
− 1

)
,

where λ represents the transmural coordinate, ranging from λendo at the endo-
cardium to λepi at the epicardium, with the following expression proposed in
[57] and exploited in [37],

f(λ) = kendo
λ− λepi

λendo − λepi
+ kepi

λ− λendo
λepi − λendo

, (6)
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where kendo and kepi are suitable constants. Finally, as in [57], we set

γs =
1

(1 + γf )(1 + γn)
− 1.

Thus, the electromechanical coupled problem in the myocardium reads:
Find vm, wm, ue,m,d, γf such that

χm

(
Cm

∂vm
∂t

+ Iionm (vm,wm)

)
−∇0 · (JF−1Di,mF−T∇0vm)

−∇0 · (JF−1Di,mF−T∇0ue,m) = Iext in Ω0 × (0, T ),
(7a)

−∇0 · (JF−1De,mF−T∇0vm)−∇0 · (JF−1(Di,m + De,m)F−T∇0ue,m) = 0 in Ω0 × (0, T ),
(7b)

∂wm

∂t
+ fm(vm,wm) = 0 in Ω0 × (0, T ),

(7c)

ρ
∂2d

∂t2
−∇0 ·P(d, γf ) = 0 in Ω0 × (0, T ),

(7d)

µAw
2
3

∂γf
∂t
− ε∆0γf = Φ(w3, γf ,d) in Ω0 × (0, T ),

(7e)

together with the following boundary conditions

(JF−1Di,mF−T∇0vm) ·N + (JF−1Di,mF−T∇0ue,m) ·N = 0, on ∂Ω0 × (0, T ),

(8a)

(JF−1De,mF−T∇0ue,m) ·N = 0, on ∂Ω0 × (0, T ),
(8b)

(N⊗N)

(
Kj
⊥d + Cj

⊥
∂d

∂t

)
+ (I−N⊗N)

(
Kj
‖d + Cj

‖
∂d

∂t

)

+P(d)N = 0 on Γj
0 × (0, T ),

(8c)

P(d)N = pendo(t)N on Γendo
0 × (0, T ),

(8d)

∇0γf ·N = 0 on ∂Ω0 × (0, T ),
(8e)

where N denotes the outward-directed unit normal vector of the myocardium
boundaries. Equations (8a)-(8b) account, as usual, for the electric insulation
of the cardiac tissue. Note that the extracellular potential ue,m is defined up
to a time-dependent constant. In this work, we fix that constant by enforcing
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the value of ue,m to be zero at a selected point. In (8c), Γj
0, j ∈ {epi, base},

is the part of the boundary corresponding to the epicardium and the base of
the myocardium. See Figure 2. On these subsets of the boundaries, mixed
Robin conditions are set to mimic the effect of the pericardial sac (see [37]).
The parameters Kj

⊥,K
j
‖ , C

j
⊥, C

j
‖ ∈ R+ are set to effectively support the my-

ocardium, allowing however the physiological ventricle torsion and deformation
in the pericardial sac. In (8d), the pressure pendo(t) represents the load produced
by the blood on the endocardium. In this work, since we are not simulating the
blood flowing in the ventricle, pendo(t) is either a given function taken from the
literature (see the results in Section 5) or will be provided by the solution of
a Windkessel zero dimensional model representing the electromechanical-fluid
problem (see Section 6). Note that ∂Ω0 = Γbase

0 ∪ Γendo
0 ∪ Γepi

0 .

�base
0

�epi
0

�endo
0

Figure 2: Computational domain of the myocardium.

Remark 1 The bidomain model (2) is written in (7) in the reference configu-
ration Ω0. This entails the presence of the quantities F and J multiplying the
diffusion tensors and, thus, the implicit dependence of (2) on the myocardium
displacement d.

In what follows, problem (7) is compactly written as follows

Pm(vm, ue,m,wm,d, γf , I
ext) = 0. (9)

2.2 Electrical activation in the Purkinje network

In this paper, following [58], we assume that the Purkinje network domain lays
in the reference configuration and is given by Ωp

0 =
⋃P

i=1 Si,0, with Si,0 denoting
a straight segment. See Figure 3.

Due to the ventricle contraction, the Purkinje network deforms. In the fol-
lowing, we assume the current deformed network Ωp is such that Ωp =

⋃P
i=1 Si,

with Si = φi(Si,0) and φi an affine transformation. We denote by Li,0 and Li

the lengths of segments Si,0 and Si, respectively.
In order to model the potential propagation through the Purkinje network,

we follow the approach proposed in [58], which is briefly discussed in this section.
For further details, see also [32, 34].
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The basic idea is to solve the 1D monodomain equation in each segment Si,
for i ∈ {1, . . . , P}. The monodomain model emerges as a simplification of the
bidomain model (2), when the hypothesis of equal anisotropy ratio in the intra
and extracellular domains is made [10]. The 1D monodomain equation in each
segment reads as follows:

χp

(
Cp
∂vp
∂t

+ Iionp (vp,wp)

)
− ∂

∂l

(
σp
∂vp
∂l

)
= 0, (10)

where vp is the transmembrane potential and l denotes the spatial coordinate
along the segment. Equation (10) has to be complemented with suitable equa-
tions for the dynamics of the ionic species and gating variables wp of the form
of (1)2.

Purkinje Cell

Gap Junction

I+
pI�p
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Figure 3: Schematic representation of a Purkinje network with three segments
and one bifurcation.

The solutions are coupled through interface conditions over the branching
nodes determined by the continuity of the potential and the Kirchhoff’s current
law. In order to set this law at each of the branching nodes, we opt to explicitly
model the gap junctions between Purkinje cells, following [58]. For this purpose,
we consider a sequence of units composed by two Purkinje cells connected by
a gap junction. Each elementary unit lays in the same spatial coordinates.
For each unit the unknowns of the problem are the transmembrane potentials
vg, v

+
p , v

−
p and the currents Ig, I

+
p , I

−
p . See the sketch in Figure 3. At the

gap-junctions we have, according to Ohm’s law,

Ig = ±
vg − v±p
Rg/2

. (11)
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Also, the intracellular current I±p at the Purkinje cell can be written as

I±p = −π%2σp
∂v±p
∂l

,

where σp is the equivalent intracellular conductivity [58] and % is the radius of
the Purkinje cell. The Kirchhoff’s current law at the gap-junction implies that

Ig = −π%2σp
∂v+p
∂l

= π%2σp
∂v−p
∂l

. (12)

Finally, due once again to the Kirchhoff laws, the conditions at the branching
nodes are

q∑

j=1

Ig,j = 0, vg,1 = · · · = vg,q, (13)

where q is the number of branches issuing from the bifurcation.
In the following, an extra subindex i in a variable will be used to specify

that the corresponding variable lays in segment Si, i = 1, . . . , P . Considering
the monodomain equation (10) written in each segment of the network for v±p,i
and w±p,i, together with the gap-junctions relations (11)-(12) written in each

segment of the network for v±g,i and Ig,i, we arrive to the following problem:

Find v±p,i, w±p,i, vg,i and Ig,i, i = 1, . . . , P, such that

χp

(
Cp
∂v±p,i
∂t

+ Iionp (v±p,i,w
±
p,i)

)

−
(
Li,0

Li(d)

)
∂

∂l

(
σp
∂v±p,i
∂l

)
= 0 in Si,0 × (0, T ], i = 1, . . . , P, (14a)

∂w±p,i
∂t

+ fp(v
±
p,i,w

±
p,i) = 0 in Si,0 × (0, T ], i = 1, . . . , P, (14b)

vg,i = v+p,i +
Ig,iRg

2
= v−p,i −

Ig,iRg

2
in Si,0 × (0, T ], i = 1, . . . , P, (14c)

Ig,i = −π%2σp
∂v+p,i
∂l

= π%2σp
∂v−p,i
∂l

in Si,0 × (0, T ], i = 1, . . . , P, (14d)

together with the following interface and boundary conditions,

ikqk∑

i=ik1

Ig,i = 0 at bk, k = 1, . . . , P, t ∈ (0, T ], (15a)

vg,ik1
= . . . = vg,ikqk

at bk, k = 1, . . . , P, t ∈ (0, T ], (15b)

−πσp%2
∂v±p
∂l

(gAV ) = hAV t ∈ (0, T ], (15c)

−πσp%2
∂v±p
∂l

(gj) = hj j = 1, . . . , N, t ∈ (0, T ]. (15d)
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Here, bk, k = 1, . . . , P , are the coordinates of the bifurcation and intersection
points, gAV represents the coordinates of the AV node, gj , j = 1, . . . , N , the
coordinates of the PMJ, and hAV and hj , j = 1, . . . , P, prescribed currents.
The indices ik1, . . . , i

k
qk

are the qk indices related to the potentials and currents
involved at the bifurcation/intersection point bk.

Remark 2 The monodomain model (10) is written in (14) in the reference

configurations Si,0. This entails the presence of the ratio
Li,0

Li(d)
multiplying the

diffusion term and, thus, the implicit dependence of (10) on the myocardium
displacement d.

Note that Neumann boundary conditions are imposed at the PMJ, via equa-
tion (15d). As a matter of fact, this is where the myocardium and network
coupling takes place. The definition of the terms hj is postponed until sec-
tion 2.3.

In what follows, problem (14) is compactly written as follows

P p(v
+
p , v

−
p , vg, Ig,w

+
p ,w

−
p ,d,h) = 0,

where the unknowns are defined globally in all the network starting from their
value on each segment Si,0 and h is the vector collecting hj for j = 1, . . . , N .

2.3 Myocardium-Purkinje network coupled problem

The coupling between the myocardium and the network takes place at the PMJ.
More specifically, the coupling is performed through the exchange of the currents
ϕj , j = 1, . . . , N, computed at the PMJ. From the myocardium perspective, PMJ
currents ϕj are prescribed as external currents with support in spheres of radius
r centered at the PMJ [59, 32]. From the network side, the PMJ currents ϕj

are imposed as Neumann boundary conditions, see (15d). Moreover, following
[59, 58], we model the junction as a resistance, so that, according to Ohm’s law,
the current ϕj at the jth PMJ can be written as follows

ϕj =

v+p (gj)+v−p (gj)

2 − 1

Ar

∫

Br(gj)
vm dx

RPMJ
, j = 1, . . . , N, t ∈ (0, T ], (16)

where Br(gj) is the sphere of radius r centered at the point gj , Ar the volume
of this sphere and RPMJ the resistance of the PMJ (supposed to be the same
for all the PMJ).

Using the notation introduced in the previous sections, the coupled elec-
tromechanical/network problem reads: For each t, find v+p , v

−
p , vg, Ig,w

+
p ,w

−
p , vm, ue,m,wm,d, γf ,

and ϕj , j = 1, . . . , N , such that

Pm

(
vm, ue,m,wm,d, γf ,

∑N
j=1

1
Ar
IBr(sj)ϕj

)
= 0,

P p

(
v+p , v

−
p , vg, Ig,w

+
p ,w

−
p ,d,ϕ

)
= 0,

P PMJ

(
v+p , v

−
p , vm,ϕ

)
= 0,

(17)
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where the last equation in (17) represents the relations (16), IY is the charac-
teristic function related to the region Y ⊂ Ωm, and ϕ is the vector collecting ϕj

for j = 1, . . . , N . In this case the external current is provided by the interaction
with the PMJ.

3 Numerical solution

3.1 Fixed-point strategy for the coupled problem

In order to solve the coupled problem (17), we follow the framework proposed
in [32] for the electrophysiology problem. The idea is to solve the coupled prob-
lem in a staggered way by iterating between the myocardium and the Purkinje
network problems. The variables linking the two subproblems are the currents
ϕ at the PMJ given by (16).

In the following, given a function z, we denote by zn the approximation of
z at time tn = n∆t, where ∆t is the time step. The discretization in time of
the electromechanical problem (7) is carried out through an implicit scheme,
as described in [37], involving second order Backward Differentiation Formulae
for the approximation of the first and second time derivatives. Note that this
involves a highly non-linear system at each time-step which is solved using the
Newton method. A brief description of the resulting problem is presented in the
Section 3.2 (see [37] for a detailed description).

The time discretization of the Purkinje network problem (14) is performed
via a semi-implicit scheme, based on the operator splitting approach introduced
in [58]. Basically, the time marching of the problem is split into four sequential
stages (see [58, 32, 34]), with the reaction and diffusion terms being solved in
different steps. The reaction term and the ionic model are solved in an explicit
way, whereas the diffusion term is solved implicitly. The space discretization of
the resulting diffusion equation is briefly discussed in Section 3.3 (see [58, 32]
for further details).

The algorithm we propose for the numerical solution of the time discretiza-
tion of the coupled problem (17) is presented in Algorithm 1. In the numerical
experiments carried out in this work, we will explore the possibility of reducing
the computational cost by considering a loosely coupled approach, that is taking
Kmax = 1 in Algorithm 1. The results will be compared with a fully implicit
approach, in which Algorithm 1 is run until converge (Kmax = ∞). In what
follows, we provide a brief description of the space discretization of subproblems
(19)-(20) in Algorithm 1.

Remark 3 Note that we are using different time schemes for the myocardium
and the Purkinje network problems. As a matter of fact, the former is solved
with an implicit scheme, whereas for the latter we use a semi-implicit scheme.
We are aware that this could lead to instabilities within the fixed-point strategy,
but we did not find them in our numerical experiments. Furthermore, this shows
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in passing the intrinsic modularity of our coupling strategy: different solvers,
with different time-discretizations, may be used for the two subproblems.

3.2 Space discretization of the electromechanical problem in the
myocardium

For the numerical solution of problem (19) we follow the monolithic solution
framework proposed in [37]. The space discretization is based on the Finite
Elements method. Special treatment is given to the ionic currents, i.e., the term
Iionm in (7a). More precisely, in order to integrate that term in the resulting
weak form we consider the State Variable Interpolation (SVI) approach, i.e., we
consider the unknown fields vm and wm interpolated at the quadrature nodes
and then evaluate the function Iionm (vm,wm) at these arguments (see [60, 37]).

In the following, we will use capital letters in bold to denote vectors con-
taining the approximations of fields at the degrees of freedom coming from the
Finite Element discretization. At time step n + 1, the linear system arising at
the Newton iteration k + 1 reads as follows (the current temporal index n + 1
being understood):




AW AWV 0 0 0
AVW AV AVUe 0 AVD

0 AUeV AUe 0 AUeD

AΓfW 0 0 AΓf
AΓfD

0 0 0 ADΓf
AD







∆W(k+1)

∆V(k+1)

∆U
(k+1)
e

∆Γ
(k+1)
f

∆D(k+1)




= −G
(
W(k),V(k),U(k)

e ,Γ
(k)
f ,D(k)

)
,

(22)
where, given a vector Z, we set ∆Z(k+1) = Z(k+1)−Z(k), and G (W,V,Ue,Γf ,D) =
0 is the non-linear problem (7) arising at each time step tn+1 after discretization.
Several remarks are in order:

• The blocks AWV and AVW come from an implicit treatment of the trans-
membrane potential and the ionic currents within the ionic model (7c) and
the first equation of the bidomain model (7a);

• The blocks AVD and AUeD are due to the dependence of the quantities F
and J in (7a)-(7b) on the solid displacement d (see Remark 1);

• The blocks AΓfW and AΓfD arises from an implicit treatment of the fields
w3 and d in (7e);

• Finally, the block ADΓf
comes from the dependence of the second Piola-

Kirchhoff stress tensor P on the activation variable γf .

Preconditioning for cardiac electromechanical solvers is an active field of re-
search, see [61, 62, 63]. In this work, the block Gauss-Seidel preconditioning
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strategy proposed in [64] in the context of FSI problems (FaCSI precondition-
ing), and then extended in [37] for cardiac electromechanical problems with the
monodomain model, is further extended for the Jacobian matrix in (22), with
the modifications required by the extra blocks AVUe , AUeV and AUe , coming
from the bidomain model.

3.3 Space discretization of the electrical problem in the network

For the space discretization of the 1D problem (20) we follow the strategy pro-
posed in [58]. See also [32, 34] for further details. The first three steps in the time
marching scheme described above are explicit problems that do not involved any
space derivatives (see [58, 32]). Thus, they are solved by simply updating the
involved variables nodally. The last step, however, involves a diffusion problem
with the following structure,

χpCp
vg,i − v?g,i

∆t
−
(

Li,0

Li(d
?)

)
∂

∂l

(
σp
∂vg,i
∂l

)
= 0, i = 1, . . . , P, (23)

where v?g,i and d? are known approximations of vg,i and d at time step tn+1,
coming from the previous three steps. The key ingredient in order to enforce
the Kirchhoff laws (15a)-(15b) in the global variables vg and Ig, is to solve (23)
using cubic Hermite finite elements. This has the advantage of solving at once
the potential variable and its derivative, which is related at each node to the
current variable Ig,i through (14d). Thus, solving (23) using cubic Hermite
finite elements involves degrees of freedom related to the current Ig,i, and the
prescription of (15a)- (15b) can be performed by simply substituting 1’s or 0’s
in the rows related to bifurcation or intersection points of the resulting global
discretization matrix associated to the collection of problems (23).

4 Numerical experiments I

4.1 Generalities

In this section, we show the reliability of Algorithm 1 to numerically solve prob-
lem (17). The purpose of the presented numerical experiments is twofold. First,
we aim at investigating different levels of network-myocardium coupling. In par-
ticular, we compare the results obtained with an explicit coupling strategy, i.e.,
solving the network and the myocardium only once per time step (Kmax = 1
in Algorithm 1), with those obtained with an implicit coupling approach, i.e.,
iterating between the network and the myocardium subproblems until conver-
gence (ε = 10-7 in Algorithm 1). Second, we use Algorithm 1 to investigate the
effect of including the Purkinje network in electromechanical simulations in com-
parison with standard strategies found in the literature to trigger the electrical
activation. Special focus is given to mechanical quantities such as ventricle and
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(a) Purkinje network
and AV node

(b) Fibers field f0 (c) Sheets field s0

Figure 4: Purkinje network (a), myocardium fibers (b) and sheets (c).

myocardium volumes and nodal displacements. In summary, the numerical tests
considered here are:

• Test I : Comparisons between implicit and explicit coupling;

• Test II : Comparisons between Purkinje and other activation strategies;

The numerical results presented in this work have been obtained with the Fi-
nite Element library LifeV, developed at MOX - Politecnico di Milano, REO/ESTIME
- INRIA, CMCS - EPFL in Lausanne, and E(CM)2 - Emory University. In par-
ticular, the electromechanics and Purkinje network solvers have been developed
at MOX - Politecnico di Milano and CMCS - École Polytechnique Fédérale de
Lausanne. The discretization in space of the electromechanical problem (7) is
carried out using P1 Lagrangian finite elements for all subproblems (7a)-(7e).
The discretization in space of the electrical problem in the network (14) is per-
formed via cubic Hermite finite elements. The time step for solving both prob-
lems is ∆t = 0.05 ms. Regarding the ionic models, we use the Bueno-Orovio
minimal model [46] for the myocardial cells, whereas the Di Francesco-Noble
model [65] is used for the Purkinje cells.

The physical parameters for the (Bueno-Orovio) bidomain system (7a)-(7c)
are χm = 1 (dimensionless), Cm = 1 (dimensionless), σi,t = 0.19 · 10−3 (cm2

ms−1), σe,t = 2.4 · 10−3 (cm2 ms−1), σi,l = 1.7 · 10−3 (cm2 ms−1) and σe,l =
6.2 ·10−3 (cm2 ms−1). The mechanical parameters for the strain-energy function
(3) are B = 5.0 · 10−1 (g cm−1 ms−2), a = 59 · 10−5 (g cm−1 ms−2), b = 8.023
(dimensionless), af = 18472 · 10−5 (g cm−1 ms−2), bf = 16.026 (dimensionless),
as = 2481 · 10−5 (g cm−1 ms−2), bs = 11.120 (dimensionless), afs = 216 · 10−5

(g cm−1 ms−2) and bfs = 11.436 (dimensionless). The myocardium density in
(7d) is set to ρ = 1 (g cm−3). The constants in (6) are λendo = 0.5 (cm),
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λepi = 0.8 (cm), kendo = −7.0 (dimensionless) and kepi = −5.25 (dimensionless).
The boundary parameters in (8c) are chosen as Kendo

⊥ = 1.5 · 10−2 (g cm−2

ms−2), Kendo
‖ = 1.0 · 10−9 (g cm−2 ms−2), Cendo

⊥ = 1.0 · 10−1 (g cm−2 ms−1),

Cendo
‖ = 0 (g cm−2 ms−1), Kepi

⊥ = 1.0 · 10−4 (g cm−2 ms−2), Kepi
‖ = 0 (g cm−2

ms−2), Cepi
⊥ = 5.0 · 10−1 (g cm−2 ms−1) and Cepi

‖ = 0 (g cm−2 ms−1). Finally,

the activation parameters in (7e) are µA = 2.1 · 103 (ms µM−2) and ε = 0.05
(cm2).

For the monodomain problem in the network (14a)- (14d), we have χp = 1467
(cm−1), Rg = 500 (kOhm), r = 0.5 (cm), % = 0.0017 (cm), RPMJ = 5 (kOhm)
and σp = 35.0 (kOhm−1 cm−1).

For the myocardial geometry we consider the ellipsoidal model of an idealized
left ventricle proposed in [48], where the lengths of the semi-principal axes of
the inner and outer ellipsoid were ax = ay = 1.5 cm , az = 4.4 cm and bx =
by = 2.7 cm , bz = 5 cm, respectively. See Figure 4. The endocardium surface
lays between the planes z = −4.4 and z = 2.2, whereas the epicardium surface
extends form z = −5 to z = 2.2. For the definition of the vectorial fields f0
(fibers) and s0 (sheets), we use the fibers/sheets generation algorithm proposed
in [66] and later developed in [67]. The fields obtained are shown in Figures
4 (b) and 4 (c). To generate the mesh, we used the software GMSH [68]. The
resulting mesh was composed of about 3.7 · 105 tetrahedra, with hm = 0.1 cm.

The Purkinje network used in this work was the one proposed in [32], which
was generated using the method described in [31], consisting in 959 segments and
379 PMJ. See Figure 4 (a). The network covers the endocardial surface between
planes z = −4.4 and z = 1.3. The one-dimensional mesh for the network was
composed of 1400 line segments, with hp = 0.0165 cm.

Finally, throughout this section, in which we focus on the effect of the elec-
trophysiology in the mechanics, we will consider pendo(t) ≡ 0 in (8d). Thus, the
mechanical contraction is exclusively triggered by the electrical activation.

4.2 Test I: Comparisons between implicit and explicit coupling

In this section we study the reduction of the computational cost by consider-
ing a weak coupling between the network and the myocardium subproblems.
The results are then compared with the ones obtained by strongly coupling net-
work and myocardium. More precisely, we consider the following two solution
strategies:

• Implicit coupling : Algorithm 1 with ε = 10-7 and Kmax = 5000;

• Explicit coupling : Algorithm 1 with Kmax = 1;

The experimental setting for Test I goes as follows. Initially the myocardium
and network systems are at resting conditions. At t = 0, the electric signal is
started at the AV node in the network, see Figure 4 (a). The signal travels
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through the network and enters the myocardium at the PMJ. The signal then
spreads throughout the myocardium triggering the mechanisms leading to the
mechanical contraction.

Figure 5, top, shows the evolution of the ventricle and myocardium vol-
umes obtained with the explicit and the implicit coupling strategies during 100
ms. Very good agreement is observed between both strategies. As a matter of
fact, the results are indistinguishable from one another. A zoomed window is
presented in Figure 5, bottom, showing an error of less than 0.005% in both
volumes.
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Figure 5: Top: Comparison of ventricle and myocardium volume evolution ob-
tained with the explicit and the implicit coupling strategies. Bottom: Detailed
vision of the ventricle and myocardium volume evolution. Test I.

In Figure 6, right, we plot the displacement magnitude at several points of
the endocardium and epicardium (see Figure 6, left). Once again, a perfect
match of these quantities can be appreciated between the explicit and implicit
coupling strategies.
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Figure 6: Left: Selected points at the myocardium. Right: Comparison of
displacement magnitude ‖d‖ at different points with the explicit (exp) and the
implicit (imp) coupling strategies. Test I.

From Figures 5 and 6, we conclude that the explicit coupling strategy is an
effective way to solve problem (17) without compromising stability and accuracy.
As a matter of fact, the simulation involving the implicit coupling required in
average 9 iterations per time step between the network and the myocardium
subproblems to satisfy a tolerance of ε = 10-7. Thus, the explicit scheme is
around 9 times faster than the implicit one. In view of these results, for the rest
of this paper, we will use the explicit approach to couple the Purkinje network
with the myocardium electromechanics.

4.3 Test II: Comparisons between Purkinje network and other
activation strategies

In this section we consider standard activation strategies found in the literature
and compare them with the results obtained by including the Purkinje network
as the source of activation. We will thus compare the solution of the coupled
problem (17) with the one of problem (9), in which the external current Iext is
properly defined.

A common way to start the depolarization wave in electromechanical sim-
ulations is to consider an external initial stimulus at certain points of the my-
ocardium. The stimulus may be triggered simultaneously at all points or with
a prescribed delay between them. In [69, 9], for instance, an initial stimulus is
applied simultaneously at some nodes located at the upper part of the septum,
whereas in [7] the activation is started at the bottom part of the apex. In [70],
an external stimulus is applied at different points and time instants in order to
initiate a 3-D scroll wave.

For comparison purposes, in this work we consider a time-dependent three-
point external stimulus designed according to the synthetic data obtained in
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A

B
C

Figure 7: Points (A,B,C) for the 3-points activation (left). Endocardial region
for the surface activation (in purple, right).

Section 4.2. To this aim, we selected three points along the network, indicated
by A,B and C in Figure 7, left, activated according to the results of Test I. In
particular, A is the first PMJ activated (at 5.8 ms), whereas B and C are located
downstream (activated at 12.8 ms and 19.4 ms, respectively). Notice that the
last PMJ (located at the basal region) was activated at 27.16 ms. The stimuli
at these three points last for 2 ms.

Another way to initialize the electric activation is to consider a volume cur-
rent acting on a thin region of the endocardium surface. This may involve the
whole endocardial region [70] or only a central region [11, 67]. In any case, the
points of the selected region are activated simultaneously. In this work, we con-
sider the second approach by considering an initial volume current acting for
2 ms on an endocardial region located between the planes z = 0.5 and z = −2.5,
Figure 7, right. It is worth mentioning, that a more sophisticated surface acti-
vation strategy accounting for the dynamics of the activation has been used, for
instance, in [6], where a space and time dependent volume current is designed,
with a propagation speed that has to be properly tuned.

In summary, we consider in this section the following three activation strate-
gies:

• Purkinje activation: Coupled problem (17);

• 3-points activation: Problem (9) with a time-dependent three-point sup-
ported Iext (see Figure 7, left);

• Surface activation: Problem (9) with a surface supported Iext on the en-
docardium (see Figure 7, right).

In Figure 8, left, we display the evolution of the ventricle volume (the cav-
ity) obtained with the Purkinje, 3-points, and surface activation strategies. We
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see that the three strategies give curves with similar shapes but a discrepancy is
observed in the velocity of contraction: the surface activation yields a faster con-
traction than the Purkinje one, whereas the 3-points activation yields a slightly
slower one. This produces a relative difference of about 7% for the 3-points strat-
egy and of about 14% for the surface activation. These discrepancies are also
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Figure 8: Comparison of the evolution of ventricle volume (left) and ond of
displacement magnitude ‖d‖ at selected points (right) obtained by Purkinje,
3-points and surface activation. Test II.

highlighted in Figure 8, right, where we compare the displacement magnitude at
selected points among those reported in Figure 6, left. We observe again a bet-
ter approximation with the 3-points activation strategy, in particular in points
located close to the apex. However, for points far from the apex, the accuracy
of the 3-points activation strategy seems to deteriorate, being comparable with
that of the surface activation.

According to these results, we conclude that the mechanical behavior is de-
pendent on the activation strategy adopted. In particular, the surface acti-
vation strategy seems to be the less accurate in terms of similarity with the
Purkinje network activation strategy. Instead, the 3-points activation strategy
is more accurate (again in terms of similarity with the Purkinje network activa-
tion strategy). Of course, this strategy could be applied only when activation
measurements are available.

5 The Purkinje activation within the Pressure-Volume
loop

5.1 A brief introduction to physiology

In view of performing realistic numerical simulations, in this section we provide
an overview of the interaction between electrical and mechanical propagations
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in the presence of the Purkinje network. In particular, we aim at highlighting
the role of the Purkinje network within the Pressure-Volume (PV) loop.

Figure 14: Characteristic action potential of cardiomyocites (left) and anatomy of the
cardiac conduction system (http://medical-dictionary.thefreedictionary.com, right)

of the neighbor cells, and thus of the whole myocardium. This is allowed by the gap
junctions, intercellular channels characterized by a low resistance and located between
cardiomyocites that permit the electric potential to travel on the cellular membranes from
cell to cell.

In normal conditions, the signal spontaneously originates at the sinoatrial node, lo-
cated in the right atrium at the junction with the superior vena cava. It represents the
natural pacemaker of the heart and imposes its rhythm to all the myocardium (sinusal
rhythm, ∼ 60 − 90 heartbeats per minute). The impulse generated by the sinoatrial node
propagates through all the cardiomyocites of the atria, activating all their regions and
allowing their contraction. The propagation is faster in the direction of the ventricles
(∼ 200 cm/s) allowing to reach the atrioventricular node, located between the atria and
the ventricles. When the signal arrives at this node, it is subjected to a delay (∼ 0.12 s)
that allows the complete contraction of the atria before the propagation in the ventricles
starts. Moreover, this node provides a filter to possible high frequencies of the atrial signal,
induced e.g. by atrial fibrillation, protecting the ventricles. This node, when the sinoatrial
node looses its automatism, becomes the leading pacemaker and takes on the role of giving
the pace to all the ventricle stimulation. Then, the electric signal enters the bundle of His,
propagating in the ventricles through the two (left and right) bundle branches and then
through the Purkinje fibers (see Figure 14, right). The bundle of His, bundle branches and
Purkinje fibers form the cardiac conduction system (CCS), a subendocardic specialized
network responsible for the fast and coordinated propagation of the electric impulse in
the ventricle. The propagation in the CCS is very fast (∼ 350 cm/s) and its role is to
reach the entire endocardium through the dense network of Purkinje fibers, activating it
almost simultaneously. Notice that the cells of the CCS are specialized in the electric
propagation so that they are not involved in the muscular contraction. Then, the electric
signal enters the myocardium through the Purkinje muscle junctions (PMJ) which are the
terminal points of the Purkinje network. At the PMJ, the signal is subjected to a delay
(∼ 0.01 s) and then propagates into the ventricular muscle towards the epicardium with a
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Figure 9: Anatomy of the cardiac conduction system (http://medical-
dictionary.thefreedictionary.com)

The electrical activation of the heart is initiated at the sinoatrial (SA) node,
which is located in the right atria, near the orifice of the superior vena cava,
see Figure 9. The SA node acts as the natural pacemaker of the heart, sponta-
neously initializing the electrical signal that triggers the Purkinje network and
the myocardium activation.

The impulse travels through the atria, via specialized internodal pathways
and the atrial myocardial contractile cells themselves, and, after approximately
50 milliseconds (ms), it reaches the AV node, located at the cardiac septum, see
Figure 9. The AV node is the unique electrical connection between atria and
ventricles, since the connective tissue of the cardiac skeleton acts as an isolator
elsewhere. During this lapse of time, the contraction of the atria has already
started. The contraction begins in the superior parts and travels downwards,
in such a way that the blood is efficiently pumped into the ventricles. Atrial
depolarization is associated with the P wave in the electrocardiogram (see, for
instance, [71, 10]).

At the AV node, the signal encounters a critical delay of about 75-100 ms.
From the mechanical point of view, this delay is extremely important as it allows
for the atria to conclude their contraction and pump the blood into the ventricles,
before the activation of the ventricles themselves starts. From the AV node, the
signal continues to travel through the bundle of His, which is located in the
interventricular (IV) septum, and then it splits into the left and right bundle
branches. After that, the signal further ramifies and enters the Purkinje network,
see Figure 9. The passage from the AV node to the whole Purkinje network takes
approximately 25 ms (see, for instance, [71, 72]).

The activation in the left ventricle myocardium starts at the endocardium,
where the many activation sites, located at the PMJ, create a propagation wave-
front traveling towards the outer wall. The IV septum and the apex are activated
25 ms after the activation of the Purkinje network, and this event corresponds
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to the R wave in the electrocardiogram (see, for instance, [71, 10]). The peak of
the R wave is associated with the beginning of the isovolumetric contraction of
the ventricle (see, for instance, [72]).

During the isovolumetric contraction, the mitral and aortic valves are closed
and the intraventricular volume remains unchanged (i.e., there is no ejection).
This phase is characterized by the increasing of the pressure inside the ventricle,
from the value registered at the end of the diastole (End Diastolic Pressure)
to the one within the aorta. When the latter is exceed, the aortic valve opens
and the ejection begins. The electrical signal continues to travel during the
isovolumetric contraction from the apex to the base and from the endocardium
to the epicardium. The S wave in the electrocardiogram corresponds to the
activation of the ventricular free walls and the basal region (see, for instance,
[10])

Starting from the AV node, the electrical impulse reaches all of the left
ventricular muscle cells in about 100 ms. Approximately after that time, the
isovolumetric contraction ends and the ejection phase follows, which involves a
decrease in the ventricular volume. When the pressure inside the ventricle falls
sufficiently, the aortic valve abruptly closes and the isovolumetric relaxation
begins, followed by a drastic decrease in the pressure. Finally, the mitral valve
opens and the filling phase starts, involving a volume growth in the ventricle
until the latter reaches the initial value.

A table showing the relevant correlations between electrical and mechanical
events is depicted in Figure 10.

5.2 Efficient detachment of Purkinje network during cardiac cy-
cle simulations

According to these observations, we introduce in what follows an inexact ver-
sion of Algorithm 1 which is effective for the PV loop computation. Indeed,
as observed, the Purkinje network ends its activation after about 25 ms (see
Figure 10), whereas the myocardium about 75 ms after the whole network depo-
larization. Thus, we could think to interrupt the network simulation, and thus
the coupling process, after a time T̃ large enough so that the influence of the
Purkinje network could be considered negligible. Accounting for the PMJ delay
(about 5 ms) and for the inertia needed by the system to start the front entering
in the myocardium, we propose here to set T̃ = 80 ms.

Details on this strategy are presented in Algorithm 2 below. Of course,
this algorithm is in principle inexact, being an approximation of Algorithm 1.
However, we believe that this could be an effective solution when the whole PV
loop is considered, allowing for an accurate solution with reduced computational
times.
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Location in the heartLocation in the heartLocation in the heart Event Time (ms) ECG Mechanics

SA nodeSA nodeSA node impulse generated 0

atriaatria

right end 
depolarization 5 P start of atrial 

contraction

atriaatria

left end 
depolarization 85 P

AV nodeAV nodeAV node

arrival of impulse 50

AV nodeAV nodeAV node
departure of impulse 125 full atrial contraction 

Purkinje fibersPurkinje fibersPurkinje fibers activation 125 - 150

endocardium

septumseptum end
depolarization 175 peak of the R wave start of isovolumetric 

contraction

endocardium

left ventricleleft ventricle end
depolarization 190

epicardium left ventricleleft ventricle end
depolarization 225 S end of isovolumetric 

contraction

Figure 10: Schematic representation of the relevant correlations between electri-
cal and mechanical events in the left ventricle. Table inspired from [71].

6 Numerical experiments II

In this section, we use Algorithm 2 with T̃ = 80 ms to simulate half heartbeat
in the left ventricle. The ventricle and network geometries, as well as the dis-
cretization and model parameters, are chosen as in Section 4.1. This simulation
is referred in the following as Test III.

6.1 Test III: Pressure-Volume loop with inclusion of the Purk-
inje network

The simulation begins with the departure of the signal from the AV node, see
Figure 4 (a). Thus, time t = 0 in the simulation corresponds to time-instant 125
ms in Figure 10. The whole simulation lasts 350 ms and comprises the cardiac
systole and the beginning of the filling phase. We consider an initial pressure
load, pendo(0) in (8d), equal to 10 mmHg. We follow the pressure prestress
strategy described in [37] to compute the initial internal stress distribution in
the myocardium such that the reference geometry is in equilibrium with the
initial pressure.

In view of the discussion of Section 5, we divide the cardiac cycle in five
phases. We consider an initial phase in which the signal travels through the
Purkinje network and enters the myocardium. The second phase corresponds to
the isovolumetric contraction and it is initialized at t = 50 ms (see Figure 10).
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The third phase accounts for the blood ejection and it starts when the pressure
inside the ventricle reaches a given threshold Pmax. The fourth phase corre-
sponds to the isovolumetric relaxation and it begins when the ventricle volume
starts to increase due to the relaxation of the muscle. Finally, when the pressure
inside the ventricle falls down to a given value Pmin, the fifth phase starts, which
corresponds to the filling of the ventricle. To summarize, we split the simulation
in the following five phases:

• Phase 1 : Electric activation phase;

• Phase 2 : Isovolumetric contraction;

• Phase 3 : Ejection;

• Phase 4 : Isovolumetric relaxation;

• Phase 5 : Filling.

During Phase 1, the endocardial pressure pendo(t) in (8d) is kept equal to
10 mmHg. During Phases 2-4, the dynamics of pendo(t) are dictated by the
mechanical interaction of the blood and the endocardium. In order to reproduce
such dynamics we use, following [37, 67], zero dimensional models to relate
pressure and volume inside the ventricle. During Phases 2 and 4, we enforce a
constant ventricle volume to account for the isovolumetric phases using the fixed
point strategy proposed in [35, 73], which involves the following pressure-volume
elastance models,

p
(k+1)
endo = p

(k)
endo − ζi(V (k) − V ref

i ), i = 2, 4,

where the superscript refers to the isovolumetric fixed point iteration, V is the
ventricular volume, V ref

i , i = 2, 4 the ventricular volume at the beginning of
Phases 2 and 4, respectively, and ζi > 0, i = 2, 4, are penalization parameters.
Note that during Phase 2, the volume tends to decrease and thus the pressure
increases, whereas in Phase 4, the volume tends to increase and therefore the
pressure decreases. For Phase 3, we consider the following two-element Wind-
kessel model (see [73]),

C
dpendo
dt

+
1

R
pendo = −dV

dt
,

where C and R represents the arterial compliance and resistance.
The additional parameters that have to be fixed for Test III are chosen

as Pmax = 80.3 mmHg, Pmin = 4.9 mmHg, ζ2 = 1.5 · 10 g−1 cm 4 ms 2,
ζ4 = 9.0 g−1 cm 4 ms 2, R = 1.1 g cm −4 ms −1 and C = 1.0 ·102 g−1 cm 4 ms 2.

In Figure 11 we display the time evolution of the ventricular cavity volume
and of the endocardial pressure, and the trajectory in the pressure-volume phase
plane. Several comments are in order.
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In view of the evolution of the volume and pressure we conclude that Phase 2
corresponds (approximately) to the time interval [50, 90] ms, Phase 3 to [90, 250]
ms and Phase 4 to [250, 310] ms. We observe that these values of time intervals
perfectly agree with the physiological ones [74, 75].

As expected, the ventricular cavity volume remains approximately constant
during Phases 1 and 2, it undergoes a rapid reduction during Phase 3, and during
Phase 4 it remains constant at its minimum.

For the endocardium pressure, we found the classical “parabolic” profile
during Phase 3, with the rapid upstroke and downstroke during Phases 2 and
4, respectively. The interplay between ventricular cavity volume and endocar-
dial pressure is also shown: we found the classical “rectangular” shape in the
pressure-volume phase plane. The overall behavior of the simulation is in good
agreement with the expected evolution of physiological pressure-volume trajec-
tories (see [74, 75]).

0 50 100 150 200 250 300 350

16

18

20

22

24

26

28

30

32

34

36

 time (ms)

 v
ol

um
e 

(c
m

3 )

(a) Ventricle cavity volume

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

 time (ms)

 p
re

ss
ur

e 
(m

m
H

g)
 

(b) Endocardial pressure

15 20 25 30 35 40

0

20

40

60

80

100

120

 volume (cm3)

 p
re

ss
ur

e 
(m

m
H

g)
 

(c) Pressure-Volume trejec-
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Figure 11: Left: Ventricular cavity volume evolution. Middle: Endocardial
pressure evolution. Right: Pressure-Volume trajectory. Test III.

7 Conclusions

A coupling strategy between a 1D electrical model of the Purkinje network and
a full 3D electromechanical model of the left ventricle has been proposed. Both
these core models represent the state-of-the-art in computational cardiology in
their respective domains. The main results found are reviewed in what follows:

1. Implicit and explicit alternatives for the myocardium-network coupling
have been investigated. The latter, which provides stable and accurate
solutions, has proved to be an efficient and advisable alternative to implicit
coupling;

2. A comparison study has shown that the mechanical response of the my-
ocardium obtained by including the electrophysiology of the Purkinje net-
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work cannot be completely reproduced by other surrogate standard acti-
vation strategies found in the literature;

3. A detailed description of the role of the Purkinje network in a physiological
cardiac simulation has been presented and simulated. Physiological results
have been obtained, which highlight the suitability of the proposed strategy
to include the Purkinje activation in the ventricle electrophysiology.

Further investigations of the present work in view of an application to real
geometries, possibly in unhealthy conditions, are currrently under study.
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Algorithm 1 Solution of the discretized-in-time Myocardium-Network coupled
problem

Let k be the iteration index within each time step. Set k = 0 and

ϕ
(0)
j = ϕ0,j :=

(v+p )
n
(gj)+(v−p )

n
(gj)

2 − 1

Ar

∫

Br(gj)
vnm dx

RPMJ
, j = 1, . . . , N, (18)

with
(
v+p
)n
,
(
v−p
)n
, vnm the converged solution at the previous time step, and

choose a tolerance ε > 0;

while
(
‖ϕ(k) −ϕ(k−1)‖ > ε and k < Kmax

)

1. Solve the discretized-in-time electromechanics problem (7) in the my-
ocardium with applied currents given by ϕ(k), that is

Pm


v(k+1)

m , u(k+1)
e,m ,w(k+1)

m ,d(k+1), γ
(k+1)
f ,

N∑

j=1

1

Ar
IBr(sj)ϕ

(k)
j


 = 0; (19)

2. Solve the discretized-in-time monodomain problem (10) in the Purkinje
network with Neumann boundary conditions at the PMJ given by ϕ(k),
that is

P p

(
(v+p )(k+1), (v−p )(k+1), v(k+1)

g , I(k+1)
g , (w+

p )(k+1), (w−p )(k+1),d(k+1),ϕ(k)
)

= 0;

(20)

3. Compute

ϕ
(k+1)
j =

(v+p )
(k+1)

(gj)+(v−p )
(k+1)

(gj)

2 − 1

Ar

∫

Br(gj)
v(k+1)
m dx

RPMJ
, j = 1, . . . , N ;

(21)

4. Set k = k + 1.

end
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Algorithm 2 Efficient solution of the discretized-in-time Myocardium-Network
coupled problem

Given T̃ ,

if t ≤ T̃ then

set k be the iteration index within each time step. Set k = 0, ϕ
(0)
j given

by (18) and choose a tolerance ε > 0;

while
(
‖ϕ(k) −ϕ(k−1)‖ > ε and k < Kmax

)

1. Solve the discretized-in-time electromechanics problem (7) in the my-
ocardium with applied currents given by ϕ(k), that is

Pm


v(k+1)

m , u(k+1)
e,m ,w(k+1)

m ,d(k+1), γ
(k+1)
f ,

N∑

j=1

1

Ar
IBr(sj)ϕ

(k)
j


 = 0;

2. Solve the discretized-in-time monodomain problem (10) in the Purkinje
network with Neumann boundary conditions at the PMJ given by ϕ(k),
that is

P p

(
(v+p )(k+1), (v−p )(k+1), v(k+1)

g , I(k+1)
g , (w+

p )(k+1), (w−p )(k+1),d(k+1),ϕ(k)
)

= 0;

3. Compute

ϕ
(k+1)
j =

(v+p )
(k+1)

(gj)+(v−p )
(k+1)

(gj)

2 − 1

Ar

∫

Br(gj)
v(k+1)
m dx

RPMJ
, j = 1, . . . , N ;

4. Set k = k + 1.

end while

else

Solve the discretized-in-time electromechanics problem (7) in the my-
ocardium with applied currents given by ϕ = 0, that is

Pm (vm, ue,m,wm,d, γf , 0) = 0.

end if
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