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Abstract 
This study presents Dropout-DNA, a novel data-driven tool designed to assess university dropout risk 
by profiling students through a combination of early indicators and academic progress. The approach 
emphasizes the need for context-aware and interpretable models in predicting student dropout, offering 
a significant advancement in the field of student retention analytics. Results show that while early 
indicators are valuable, incorporating academic performance significantly enhances predictive 
accuracy. The model, although generalizable across engineering courses, performs best when tailored 
to the specific degree program it was trained on. This finding underlines the importance of adapting 
predictive tools to the unique characteristics and dropout patterns of individual study programs. The 
practical implications are considerable: by identifying at-risk students early, institutions can implement 
targeted and personalized interventions, improving the effectiveness of student support services. The 
Dropout-DNA’s quantifiable representation of risk allows for more strategic policy-making at the 
institutional level. Looking ahead, future research will focus on the temporal evolution of dropout risk 
profiles, enabling dynamic, time-sensitive monitoring and intervention throughout the academic 
journey. 
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Introduction 
The dropout phenomenon is one of the most critical challenges in the university setting. Even if much 
progress was made concerning access to higher education and enrolment rates are now higher, the 
dropout rate remains a relevant issue. Eurostat’s latest statistic (2022) reports a 10% rate in the EU. In 
particular, Italy faces a concerning challenge, having one of the lowest tertiary graduation rates among 
OECD countries. According to OECD data, Italy’s tertiary graduation rate lags behind the OECD 
average, reflecting difficulties in retaining students and guiding them to completion. 

This has wide-ranging consequences: for students, it often leads to lost educational and career 
opportunities, and psychological distress (Berka and Marek, 2021; Skrbinjek et al., 2024). For 
institutions, it can compromise funding and academic quality (Zotti, 2015). For society, it results in 
inefficient use of public resources and a shortage of skilled professionals (Ghignoni, 2017; Lorenzo-
Quiles et al., 2023; Skrbinjek et al., 2024). 

The need to understand this phenomenon to intervene and reduce its numbers has led to many policies 
and interventions by universities and governments. Focusing on Italy, the Ministry of University and 
Research (MUR) is implementing initiatives to improve academic guidance and student retention. One 
is a digital platform designed to facilitate students’ understanding of the Italian academic system, 
providing comprehensive information on courses, accommodation and scholarships. To bolster the 
right to education and mitigate financial burdens, the Italian government has earmarked nearly 1 billion 
euros in the budget law: 500 million to extend PNRR scholarships until 2026 and over 400 million for 
university housing (Ministero dell’Università e della Ricerca, 2023). In addition, various solutions are 
adopted at the individual university level. The Politecnico di Milano, for instance, has incorporated 
specific policies into its 2023-2025 Sustainability Strategic Plan. These include support for students 
with disabilities and learning disorders, tutoring, welfare services such as cultural, food, travel and 
sustainable mobility agreements, and off-campus spaces for co-learning and co-creation. 

While these policies are promising, dropout is multifaceted and demands a holistic approach. 
Numerous studies highlight the interplay of individual, academic, and systemic factors. The literature 
distinguishes between theoretical and data-driven approaches. Theoretical models, such as those by 
Spady and Tinto (Spady, 1971; Tinto, 1975), draw on Durkheim’s concept of social integration and 
frame dropout as the result of inadequate academic and social integration. Pascarella and Terenzini 
(1980) reinforce this, while Bean (1980) emphasizes behavioural and institutional factors, likening 
dropout to voluntary job turnover. Data-driven research includes econometric analyses (Aina, 2013; 
Belloc et al., 2011; Contini et al., 2018; Ghignoni, 2017; Gitto et al., 2016) and predictive modelling 
(Berka and Marek, 2021; Kiss et al., 2019; Perchinunno et al., 2021; Urbina-Nájera and Méndez-
Ortega, 2022), employing statistical and machine learning methods to examine academic history, socio-
economic status, and demographics. Key findings highlight the impact of family background (Aina, 
2013; Belloc et al., 2011; Contini et al., 2018; Ghignoni, 2017; Gitto et al., 2016; Zotti, 2015), age, 
gender, and geographic origin (Perchinunno et al., 2021), as well as prior performance and first-year 
results as strong predictors (Belloc et al., 2011; Hoffait and Schyns, 2017; Kehm et al., 2019; Kiss et 
al., 2019; Perchinunno et al., 2021; Zotti, 2015). 

Given this complexity, policies should not address isolated factors but tackle the full range of 
influences through integrated strategies tailored to diverse student needs. 

In this work, we aim to develop a tool enabling a more inclusive and data-driven approach to 
addressing dropout by considering the diverse factors influencing a student’s likelihood of leaving 



university before graduation. We leverage data from engineering students at the Politecnico di Milano 
to identify the most significant predictors of dropout risk. By embedding these predictors into a 
compact tool, Dropout-DNA, we provide institutions with a practical means to design targeted policies. 
This tool allows for a nuanced understanding of the dimensions influencing dropout, ensuring 
preventive interventions are both timely and holistic. 

Previous studies at Politecnico di Milano reveal dropout is a critical issue in engineering programs. 
Nonetheless, several variables regarding students’ background and early academic performance can be 
identified early (Cannistrà et al., 2022; Masci et al., 2024; Pellagatti et al., 2021). In particular, 
multilevel classification and time-to-event models show that gender, type of previous studies, origin, 
age and family income are predictive factors, but dropout risk is mostly determined by performance at 
the beginning of the academic career. The multilevel approach also reveals heterogeneity across 
engineering courses in terms of dropout risk and timing, net of student characteristics. 

Although these studies offer tools to describe and predict dropout, none provides a clear way to profile 
students. This paper proposes Dropout-DNA, a general framework for profiling and predicting dropout 
risk. We illustrate the approach using records from engineering programmes at Politecnico di Milano, 
as a case study that exemplifies the method’s application. By means of the Dropout-DNA, we 
contribute to this literature by proposing a new predictive tool for dropout risk that, in addition, offers a 
synthetic characterization of student profiles based on the most important dimensions of the 
phenomenon. Moreover, we investigate the Dropout-DNA heterogeneity across degree programs, 
studying its course-specific characterization.  

Our primary aim is to develop an interpretable, practical tool for predicting dropout risk. This helps 
institutions gain insights into the varied reasons behind attrition. Our framework combines data 
exploration with ML algorithms to identify key dropout factors. Dropout-DNA thus contributes a novel 
way to classify and profile at-risk students. 

We validate this approach across multiple programs to demonstrate reproducibility. Considering 
different stages of the academic journey, the analysis provides a nuanced understanding of dropout risk, 
supporting targeted and timely policy decisions. 

The remainder of the paper is organized as follows: Section 2 introduces the conceptual framework and 
methodology for developing Dropout-DNA. Section 3 presents the data mining process and exploratory 
analyses. Section 4 reports the main findings on classification and prediction. Finally, Section 5 
discusses implications and offers recommendations for the use of Dropout-DNA. 

Methodology 
The methodological process follows three main phases. 

First, we conduct exploratory data analysis and preprocessing to understand the dataset and address any 
issues that could affect the subsequent analysis. 

In this initial phase, we define the different scenarios of our analysis by partitioning the dataset based 
on the dropout timing, whether it occurs within the first three semesters or later, and based on the 



available features in two different time, those accessible at the moment of student admission and those 
at the end of the third semester. 

Following this, 

to identify key factors influencing dropout, we frame the task as supervised classification. After testing 
several techniques (generalized linear models, gradient boosting, random forest), logistic regression is 
selected for its simplicity, interpretability, and strong performance in binary classification. 

Using this strategy we are able to model the probability of dropout as a function of various predictors 
and produce an output between 0 and 1 that represents a student’s likelihood of dropping out. 

To enhance model interpretability and identify key predictors, we use the computationally efficient 
Permutation Importance algorithm (Altmann et al., 2010). This algorithm measures the decrease in 
model performance when a feature’s values are shuffled, with larger drops indicating more influential 
features. This allows us to rank attributes by their contribution and highlight the most relevant factors. 

The Dropout-DNA tool can subsequently be constructed. We represent this tool as a vector of 
probabilities, where each value corresponds to the feature-specific marginal probability of student 
dropout among the significant variables. To achieve this, we analyse the set of students who share a 
particular value for each predictive feature selected by the logistic regression model. For each of these 
profiles, we calculate the dropout likelihood by examining the proportion of students within the group 
who have dropped out. This approach allows us to determine the dropout risk associated with each 
combination of feature values. Once these probabilities are calculated, each student can be associated 
with a vector that reflects the dropout probabilities based on their profile, where each element of the 
vector corresponds to one feature. This personalized representation offers a nuanced assessment of 
dropout risk, providing institutions with a practical tool to identify at-risk students and implement 
targeted interventions. 

Finally, to assess the validity of the proposed tool, an analysis is conducted to determine whether it 
could be used as a predictive tool. Specifically, once the the Dropout-DNA has been computed for a 
new group of students, their computed dropout probabilities are compared with the probability 
distributions obtained from the original dataset. This approach relies on probability density estimation 
and allows us to assign each student to one of the two dropout classes, the most probable one. 

Data description and preprocessing 
The proposed methodology was applied to a dataset comprising 5,575 engineering students enrolled in 
the bachelor’s degree program of Computer Science and Engineering at the Politecnico di Milano 
between 2010 and 2019. 

The dataset includes a vast range of variables, divided into two main groups. The first group covers 
features related to students’ characteristics available at enrolment, including demographic information 
(age, gender, place of residence), and previous academic background—such as high school type 
(according to the Italian system) and final grade. It also includes a socioeconomic variable, represented 
by income bracket categories. Lastly, this group contains data from the admission test, including the 
score and whether the student was assigned Obligatory Formative Activities (OFAs). OFAs are 
mandatory credits for students scoring below 60/100 and restrict exam access until completed. 



The second group of variables captures information about the exams taken by each student throughout 
their university career, organized by semester. At Politecnico di Milano, exams can typically be taken 
at the end of each semester, with an additional session available after the summer break. This dataset 
includes detailed records of students’ academic performance, such as the number of exams and 
University Credits (CFUs) taken and passed, and the average grade. 

Finally, the dataset includes the target variable, a binary feature indicating whether the student dropped 
out before completing the degree. Additionally, the dataset provides information on when the dropout 
occurred, enabling more detailed temporal analyses of the phenomenon. 

Data cleaning 
The data cleaning process is crucial to ensure affordability in classification analysis (Alyahyan and 
Düştegör, 2020). To address high feature dimensionality, we selected a reduced set of variables. We 
began with a preliminary correlation analysis to identify highly correlated characteristics, aiming to 
improve model robustness and interpretability. We also drew on existing literature to enhance 
predictive power and reduce overfitting. 

To summarize exam performance compactly and interpretably, we used a Weighted Performance Index 
(WPI), defined as: 

𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐺𝐺𝐺𝐺𝐺𝐺 × 𝑙𝑙𝑙𝑙(1 + 𝐶𝐶𝐶𝐶𝐶𝐶) 1 

Here, GPA denotes the weighted average of exam grades based on course credits (CFU), thus 
measuring performance quality, while CFUs earned represent workload quantity. Calculated over the 
first three semesters, WPI integrates both aspects into a single metric of academic success. 

This process yielded a set of key variables summarized in Table 1, chosen for a balance between 
interpretability and predictive power. The first set of variables describes students’ demographic and 
socioeconomic characteristics. We consider a variable for origins, which classifies students based on 
their nationality and residency status, distinguishing between local students that can be commuter, 
living away from home, local to the university area or international students. Another key 
socioeconomic indicators are the income bracket, which serves as a proxy for the financial background 
of students, gender, and age at admission, which may reflect differences in educational pathways. The 
second group of features captures students’ pre-university academic background. This includes the type 
of high school attended, which helps account for differences in educational experiences prior to 
university. We also consider academic performance indicators such as the final high school grade and 
the university admission score. Additionally, we include information on whether the student was 
assigned any OFAs to reflect possible gaps in preparation for university-level coursework. Finally, as 
already mentioned, we have included three indicators related to the early stages of the students’ 
academic career, meaning the WPI of the first, second and third semester. The last key variable in our 
feature set is, evidently, our target variable, the one related to dropout. 

Data partitioning 
To provide a more nuanced understanding of the dropout phenomenon, we performed four different 
analyses by distinguishing between two types of dropout timing and two sets of features. 

Students in the dataset drop out at different stages in their academic careers, ranging from a few months 
after enrolment to several years later. 



To account for the variability of dropout timing, we categorized dropouts into two cases: early 
dropouts and late dropouts. Dropouts that occur within the first three semesters of a career are 
classified as early dropouts, whereas late dropouts are those that take place after the third semester. 
This distinction is crucial, as the underlying motivations and contributing factors for these two groups 
may differ significantly and conducting separate analyses enables us to uncover these differences more 
effectively. 

Moreover, to support the design of more tailored interventions, we considered two sets of features, as 
summarized in Table 1. We collected data at enrolment and for each semester up to the third. Then, 
depending on the type of dropout we aim to predict and the timing of the prediction, we propose four 
different approaches. This approach allows us to identify students’ specific needs at critical points in 
their academic careers, enhancing the policymakers to act at different moments of time to improve the 
effectiveness of measures aimed at reducing attrition and supporting student success. 

Table 1. Set of variables considered for the analysis. 

Attribute Type Category Possible values 
Descriptive 
statistics 

Origins Cat At admission Commuter 69.6% 
   Milanese 21.5% 
   Offsite 6.1% 
   Foreigner 2.8% 
Income bracket Cat At admission Highest bracket 13.2% 
   High bracket 39.6% 
   Low bracket 34.2% 
   DSU (students who receive 

scholarship) 
13.0% 

Age at admission Num At admission From 16 to 58 19.35 (IQR 18.0 - 
19.0) 

Gender Cat At admission 1: male 89.9% 
   0: female 10.1% 
Highschool type Cat At admission Scientific 63.5 % 
   Technical 21.8% 
   Classic 4.2% 
   Other 10.5% 
Highschool final 
grade 

Num At admission From 60 to 100 82.00 (IQR 72.0 - 
93.0) 

Admission score Num At admission From 60 to 100 83.32 (IQR 83.30 – 
90.24) 

OFA at admission Cat At admission 0: No 90.3% 
   1: Yes 9.7% 
WPI of first 
semester 

Num End of first 
semester 

From 0 to 47.73 20.47 (IQR 0.0 - 
33.53) 



Attribute Type Category Possible values 
Descriptive 
statistics 

WPI of second 
semester 

Num End of second 
semester 

From 0 to 49.86 22.19 (IQR 0.0 - 
36.44) 

WPI of third 
semester 

Num End of third 
semester 

From 0 to 47.58 15.44 (IQR 0.0 - 
31.07) 

Dropout Cat Target 0: No 68% 
   1: Yes 32% 
      

Consequently, the analysis is structured around four distinct cases, each corresponding to a unique 
combination of dropout timing and feature set: 

• Case A – Outcome: Early Dropout; Features: Early Indicators: This case leverages data 
available at the time of enrolment to predict early dropouts, focusing on demographic, high 
school, and admission test variables. It should be noted that, prior to the balancing step, this 
case includes all students: 4,668 who remained enrolled for at least the first three semesters and 
907 who dropped out during that period. 

• Case B – Outcome: Early Dropout; Features: Academic Progress: This extends the previous 
case by incorporating information about academic performance, such as early academic 
performance. In particular, here we consider the WPI calculated from the first semester only in 
order to ensure that the temporal scope remains aligned with the timing of early dropouts. As 
above-mentioned the students considered in this case are all those in the dataset. 

• Case C – Outcome: Late Dropout; Features: Early Indicators: Here, the analysis seeks to 
predict late dropouts using only the information available at the time of enrolment. The students 
included in this case are those who persisted until the third semester thus excluding those who 
early-dropped out. In particular there are 3,298 students that don’t drop out and 1,370 students 
that drop out. 

• Case D – Outcome: Late Dropout; Features: Academic Trajectory: In this case, both 
enrolment data and cumulative academic performance up to the third semester (WPI) are 
utilized to identify late dropouts. As in the previous case, students who dropped out within the 
early three semesters are not included in the analysis of this case. 

For clarity, a summary table (see Table 2) is provided, showing which features are considered in the 
four listed cases. 

Table 2. Early dropout: original and balanced ratio of dropout classes. 

Feature Case A Case B Case C Case D 
Origins X X X X 
Income bracket X X X X 
Age at admission X X X X 
Gender X X X X 
Highschool type X X X X 



Feature Case A Case B Case C Case D 
Highschool final grade X X X X 
Admission score X X X X 
OFA at admission X X X X 
WPI of first semester  X  X 
WPI of second semester    X 
WPI of third semester    X 

Data balancing 
As shown in Table 3, when considering early dropout we have a highly unbalanced dataset, differently 
from what can be seen from the late dropout case (see Table 4). This may impact in a negative way the 
performance of our classification model (Alyahyan and Düştegör, 2020). To balance our datasets, we 
under-sampled the majority class — the dropout 0 class - applying a random undersampling technique. 
This method randomly removes samples to balance the class distribution without introducing synthetic 
data. 

Although random undersampling does not guarantee exact preservation of the original feature 
distributions, we ensured that the sampling strategy maintained a representative subset of the original 
data. The resulting ratio between the two classes is shown in Table 3. 

Table 3. Early dropout: original and balanced ratio of dropout classes. 

Class Size 
(Original) 

Ratio 
(Original) 

Size 
(Balanced) 

Ratio 
(Balanced) 

Dropout 0 4668 84% 2267 60% 
Dropout 1 907 16% 905 40% 

 

Table 4. Late dropout: ratio of dropout classes. 

Class Size 
(Original) 

Ratio 
(Original) 

Dropout 0 3298 60% 
Dropout 1 1367 40% 

Results 
Based on the resulting datasets described in the previous section, we employ the tool of logistic 
regression in order to build a supervised classification model. For each of the four cases described in 
the previous section, we split the datasets into a training and a test set (75% - 25%). 

The model was estimated on the training set, comprising 75% of the dataset, and produced the results 
shown in Table 5. While we report Case B in detail, for the sake of conciseness, the detailed results for 
all cases (A, C, and D) are not reported here, but yield qualitatively consistent outcomes, with 
variations mainly in the relative strength of predictors depending on the available information at each 



stage. The model demonstrates a good explanatory power, as evidenced by the Pseudo 𝑅𝑅2 value of 
0.2879. Additionally, the model is statistically significant with a likelihood ratio p-value of less than 
0.001. Several variables exhibit strong statistical significance. For instance, the variable representing 
the students’ age has a coefficient of -0.0771 with a p-value of less than 0.001, suggesting that older 
admission age is associated with a lower dropout risk. Similarly, the income variable shows a positive 
coefficient of 0.0444 with a p-value of 0.004, indicating that higher income slightly increases the risk 
of dropout. The variable related to the high school grade has a coefficient of 0.0080 and a p-value of 
0.046, suggesting a small positive correlation between the high school performance and dropout risk. 
Lastly, the WPI of the first semester is highly significant with a negative coefficient of -0.0984 and a p-
value of less than 0.001. In contrast, gender, high school type, geographic origin, and admission score 
were not statistically significant. For categorical variables, the reported coefficients refer to 
comparisons with the respective reference categories. 

Table 5. Summary of results of Logistic Regression – Case B. Coefficients for categorical 
variables are relative to the following reference categories: Scientific (high school type), female 
(gender), and Milanese (origins). 

Variabile Coeff. Std. Err. z p-value 
Intercept (const) 0.5613 0.296 1.900 0.057 
Highschool type:Technical 0.150 0.134 1.12 0.262 
Highschool type:Classical 0.0832 0.288 0.289 0.772 
Highschool type:Other 0.1694 0.283 0.599 0.549 
Income bracket 0.0444 0.016 2.851 0.004 
Admission score 0.00003 0.0001 0.291 0.771 
Age at admission -0.0771 0.019 -4.076 0.000 
Gender:male -0.2700 0.195 -1.383 0.167 
Origins:Commuter 0.1560 0.136 1.148 0.251 
Origins:Offsite -0.0038 0.259 -0.015 0.988 
Origins:Foreigner 0.2882 0.469 0.614 0.539 
OFA at admission 0.0964 0.186 0.519 0.603 
Highschool final grade 0.0080 0.004 1.997 0.046 
WPI of first semester -0.0984 0.004 -22.586 0.000 

To evaluate the ranking importance of the features considered in the analysis, we calculated the 
permutation importance. Permutation importance provides insight into the relative importance of each 
feature by measuring how shuffling each feature’s values affects model performance. A larger drop 
indicates greater importance, while a smaller drop suggests lower impact. Note that dummy variables 
originating from the same categorical feature are permuted together to assess their overall contribution. 

As shown in Figure 1, WPI of the first semester is the most important variable, significantly impacting 
model performance. High school grade, income, and age at admission also contribute meaningfully. 

Figure 1. Permutation importance results - Case B 

Another important aspect of evaluating a classification model is to understand its performance. Given 
that TP, FP and FN are respectively the number of true positives, false positives and false negatives 



obtained after applying the learned classifier on the test set, we consider the standard performance 
metrics as follows: 

𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
,  𝑅𝑅 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

,  𝐹𝐹1 =
2𝑃𝑃𝑃𝑃
𝑃𝑃 + 𝑅𝑅

, 2 

The resulting performance of the classification model for Case B is shown in Table 6. 

Table 6. Logistic regression performance - Case B 

Class Precision Recall F1-Score Support 
Dropout 0 87% 83% 85% 567 
Dropout 1 61% 68% 64% 226 

The model performs well in predicting students who do not drop out (class of Dropout 0), with high 
precision (87%) and recall (83%). For dropouts (class of Dropout 1), the model achieves a precision of 
61% and a recall of 68%, indicating a fairly good ability to identify at-risk students. Comparable 
performance was observed across the other cases (A, C, and D), reinforcing the robustness of the 
results. 

After evaluating both the statistical significance of features in the logistic regression models and their 
importance as indicated by permutation importance, we selected the features to be included in the 
Dropout-DNA. In particular, we have decided to consider two distinct scenarios, early indicators and 
academic progress. This choice ensures consistency in the selection of predictive variables across 
different dropout timings, which facilitates the implementation of predictive models in real-world 
interventions. From a practical perspective, to counter dropout the primarily concern is to identify when 
and on which factors to intervene, rather than distinguishing between early and late dropout per se. By 
focusing on these two scenarios, we provide a clearer framework for tailoring interventions based on 
the available data at different stages of a student’s academic journey. In particular, for the early 
indicators case, we select the features related to the high school grade, the admission score, the age at 
admission, the origins and the income of the students. For the academic progress case, we expand this 
selection to include a feature associated with academic performance, in particular, the WPI related to 
the first semester of students’ career that appears in both cases (Cases B and D) at the front of the 
features ranking. 

Dropout-DNA computation 
For our objective of constructing the Dropout-DNA, we consider the attributes selected in the previous 
section. To construct a tool that indicates the predisposition to dropout, we need to quantify the 
relationship between each of the selected features and the target variable. We consider the two subsets 
of students, namely the positive individuals 𝑃𝑃, students who decided to drop out of school, and 
negative individuals 𝑁𝑁, students who continued their course of study. Furthermore, we define each 
selected feature 𝑖𝑖, with 𝑖𝑖 = 1, … ,5 for the case of early dropout and 𝑖𝑖 = 1, … ,6 for the case of late 
dropout, and each possible value 𝑗𝑗 = 1, … ,𝑚𝑚𝑖𝑖 that attribute 𝑖𝑖 can take, where 𝑚𝑚𝑖𝑖 represents the number 
of distinct values attribute 𝑖𝑖 can assume. For categorical features, 𝑚𝑚𝑖𝑖 corresponds to the number of 
unique categories. For numerical features, we discretise the values into a finite set of intervals, so that 
each value can be treated analogously to a category. In this way, we can define the group of individuals 
whose 𝑖𝑖 − 𝑡𝑡ℎ attribute takes the 𝑗𝑗 − 𝑡𝑡ℎ possible value, denoted as 𝐴𝐴𝑖𝑖,𝑗𝑗, and the likelihood with which 
these individuals belong to the set of positive individuals as follows: 



𝑙𝑙𝑖𝑖,𝑗𝑗 =
#(𝑃𝑃 ∩ 𝐴𝐴𝑖𝑖,𝑗𝑗)

#𝐴𝐴𝑖𝑖,𝑗𝑗
 

3 

with #(⋅) being the cardinality of a set. Each student is assigned a unique Dropout-DNA from their 
feature values. Its vector format allows effective visualisation via spider plots. Figure 2a-2d show two 
random examples for each class: Dropout-DNA of students who discontinue their studies (taking as an 
example the late dropout scenario, Figure 2b and Figure 2d) and one of students who persist in their 
academic journey (Figure 2a and Figure 2c). 

 

Figure 2a. Spider plot 
visualizing the 

Dropout-DNA profiles 
for students who 

dropped out versus 
those who persisted, 

based on early 
indicators and 

academic progress. 
Features: Early 

Indicators - Negative 
student DNA 

Figure 2b. Spider plot 
visualizing the 

Dropout-DNA profiles 
for students who 

dropped out versus 
those who persisted, 

based on early 
indicators and 

academic progress. 
Features: Early 

Indicators - Positive 
student DNA 

Figure 2c. Spider plot 
visualizing the 

Dropout-DNA profiles 
for students who 

dropped out versus 
those who persisted, 

based on early 
indicators and 

academic progress. 
Features: Academic 
Progress - Negative 

student DNA 

Figure 2d. Spider plot 
visualizing the 

Dropout-DNA profiles 
for students who 

dropped out versus 
those who persisted, 

based on early 
indicators and 

academic progress. 
Features: Academic 
Progress - Positive 

student DNA

The spider plots reveal clear differences between the DNAs of dropout and non-dropout students, with 
dropout students consistently showing smaller plot areas. This distinction is further emphasized in 
Figure 3a, Figure 3b, Figure 3c and Figure 3d where the area distributions for all four cases show a 
clear separation between the two classes. 

Figure 3a. Dropout-
DNA distribution: 
positive and negative 
students classes for the 
four cases. Case A. 

Figure 3b. Dropout-
DNA distribution: 
positive and negative 
students classes for the 
four cases. Case B. 

Figure 3c. Dropout-
DNA distribution: 
positive and negative 
students classes for the 
four cases. Case C. 

Figure 3d. Dropout-
DNA distribution: 
positive and negative 
students classes for the 
four cases. Case D. 

Dropout-DNA of different courses of study 
To asses the robustness and generalizability of the proposed methodology, the same procedure was 
fully applied to other two datasets related to the Mechanical Engineering and Chemical Engineering 
programs of study. This approach enables a comparison across degree programs in terms of model 
structure and performance. Furthermore, this extension allows the inclusion of the datasets potentially 
composed of students with different characteristics. In particular, in the analysis conducted in the 
previous section, gender never emerged as a relevant feature. Since this outcome differs from what is 
commonly reported in the literature, we decided to include two datasets with different balances of 
female and male students. In particular, the Computer Science and Engineering datasets comprised 
90% of male students and 10% of female students. To further explore this aspect, we selected one 
program with a more evenly balanced proportion (Chemical Engineering) that comprised 55% of male 
students and 45% of female students. Moreover, we decided to consider also an even more unbalanced 
gender ratio with the Mechanical Engineering program that featured 93% of male students and 7% of 



female students. Including these diverse datasets helps assess whether such demographic variations 
impact the predictive features identified by the methodology. 

The two datasets comprised 5376 students for the Mechanical Engineering dataset and 1736 students 
for the Chemical Engineering dataset, and they included information from the years 2010 and 2019 as 
the previous dataset. Furthermore, the datasets included the same range of variables, therefore, the 
initial steps of data pre-processing and data cleaning led to the same considerations. In particular, to 
ensure a fair comparison, we considered the same cases considered in the previous analysis, namely 
Case A, Case B, Case C and Case D with the same selection of features as summarised in Table 2. 

Table 7. Mechanical Engineering - Early dropout: original and balanced ratio of dropout classes. 

Class Size 
(Original) 

Ratio 
(Original) 

Size 
(Balanced) 

Ratio 
(Balanced) 

Dropout 0 4697 87% 1689 63% 
Dropout 1 679 13% 617 37% 
     

Table 8. Mechanical Engineering - Late dropout: original and balanced ratio of dropout classes. 

Class Size 
(Original) 

Ratio 
(Original) 

Size 
(Balanced) 

Ratio 
(Balanced) 

Dropout 0 3775 80% 2305 62% 
Dropout 1 922 20% 885 38% 
     

Table 9. Chemical Engineering - Early dropout: original and balanced ratio of dropout classes. 

Class Size 
(Original) 

Ratio 
(Original) 

Size 
(Balanced) 

Ratio 
(Balanced) 

Dropout 0 1495 86% 602 60% 
Dropout 1 241 14% 239 40% 
     

Table 10. Chemical Engineering - Late dropout: original and balanced ratio of dropout classes. 

Class Size 
(Original) 

Ratio 
(Original) 

Size 
(Balanced) 

Ratio 
(Balanced) 

Dropout 0 1279 86% 540 60% 
Dropout 1 216 14% 214 40% 

As Table 7, Table 8, Table 9 and Table 10 show, there are differences in the distribution of the two 
classes with respect to the Computer Science and Engineering case (see Table 3 and Table 4). In 
particular, for both new datasets, the ratio between Dropout 0 and Dropout 1 class for both the early 
dropout and late dropout case are more unbalanced. Therefore, to once again achieve comparability 
between analyses, we employed the balancing approach as illustrated previously for all cases. 

The same classification pipeline was applied to both datasets. 



Coefficient and p-value analysis reveal both similarities and significant differences across the various 
degree programs. The WPI variable proves to be significant in all study programs whenever it is 
included in the model. Other variables that are consistently significant across all three programs are 
highschool final grade, age at admission, and origins. In contrast, income and OFA at admission are 
significant only for Computer Engineering and Mechanical Engineering, but not for Chemical 
Engineering. The gender variable, on the other hand, is significant in only a few cases. 

Regarding the permutation importance analysis, several of the aforementioned observations are 
confirmed. In particular, the WPI consistently ranks highly in all programs. Highschool final grade also 
shows high importance, while age at admission generally ranks moderately. The income bracket is 
confirmed to be less important in Chemical Engineering, where the origins variable plays a more 
relevant role. Finally, the OFA at admission variable shows lower importance in both Chemical and 
Mechanical Engineering. Gender remains a consistently low-importance variable across all programs. 

As regards the performance metrics, similar to the previous case, the performances result to be 
particularly satisfactory for Case B and Case D with a slight worsening for the performances of 
Chemical Engineering’s Class of Dropout 1 in the Case C. The pattern between Case A and B and 
between Case C and D is again notable, with the performances consistently improving in the latter. 

 

Figure 4a. Mechanical 
Engineering - Dropout-

DNA distribution: 
positive and negative 

students classes for the 
four cases. Case A. 

Figure 4b. Mechanical 
Engineering - Dropout-

DNA distribution: 
positive and negative 

students classes for the 
four cases. Case B. 

Figure 4c. Mechanical 
Engineering - Dropout-

DNA distribution: 
positive and negative 

students classes for the 
four cases. Case C. 

Figure 4d. Mechanical 
Engineering - Dropout-

DNA distribution: 
positive and negative 

students classes for the 
four cases. Case D. 

 
Figure 5a. Chemical 

Engineering - 
Dropout-DNA 

distribution: positive 
and negative students 

classes for the four 
cases. Case A. 

Figure 5b. Chemical 
Engineering - 
Dropout-DNA 

distribution: positive 
and negative students 

classes for the four 
cases. Case B. 

Figure 5c. Chemical 
Engineering - 
Dropout-DNA 

distribution: positive 
and negative students 

classes for the four 
cases. Case C. 

Figure 5d. Chemical 
Engineering - 
Dropout-DNA 

distribution: positive 
and negative students 

classes for the four 
cases. Case D. 

For the sake of a consistent comparison, and considering that the feature rankings derived from the 
permutation importance don’t show substantial differences, the feature selection for constructing the 
Dropout-DNA of Mechanical and Chemical Engineering students remains the same as previously 
selected. Following the methodology for the construction of the Dropout-DNA, as in the previous case, 
we observe that the distributions of the corresponding areas for the two dropout classes are well-
separated (see Figure 4a, Figure 4b, Figure 4c, Figure 4d and Figure 5a, Figure 5b, Figure 5c, Figure 
5d). 

Prediction on different courses of study 
To assess the possibility of using this tool as a predictive instrument, we extended our evaluation by 
using the results obtained from the Computer Science and Engineering dataset as a reference to classify 
enrolled students from the Mechanical Engineering and Chemical Engineering programs. 



In particular, the classification was performed by comparing the estimated probability densities at the 
area value observed for each new student. The two densities, 𝑝𝑝1 and 𝑝𝑝0, were estimated using kernel 
density estimation based on the Dropout-DNA areas of students in the Computer Science and 
Engineering dataset divided in students who dropout (𝐷𝐷1) and studetns who don’t dropout (𝐷𝐷0). For 
each new student 𝑣𝑣 enrolled in Mechanical or Chemical Engineering, we first computed their area 
value 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣 using the same set of features used to build the reference Dropout-DNA. Then, we 
evaluated how compatible this area value was with each of the two estimated distributions. The student 
was assigned to the class for which their area value corresponded to a higher probability density. More 
formally, this corresponds to assigning the student to the class in which their area value falls in a higher 
quantile of the corresponding density, as summarized by the following decision rule: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑣𝑣 = �𝐷𝐷1            𝑖𝑖𝑖𝑖 𝑝𝑝1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣) > 𝑝𝑝0(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣)
𝐷𝐷0                                          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 4 

where 𝑝𝑝1(area𝑣𝑣) and 𝑝𝑝0(area𝑣𝑣) represent the estimated probability densities for the two dropout 
classes, evaluated at the area value computed for student 𝑣𝑣. 

To evaluate the predictive performance, the predicted labels were compared against the true labels 
using the standard performance metrics in (2). A representative subset of results is presented in Table 
11 and Table 12, which report the outcomes when considering Case B. 

For the Mechanical Engineering dataset, the results shows that Case B achieves promising values, with 
an F1-score of 77% for Dropout 0 and 50% for Dropout 1. 

A similar trend is observed in the Chemical Engineering dataset, where Case B also performs well, 
yielding an F1-score of 78% for Dropout 0 and 51% for Dropout 1. 

The corresponding confusion matrices are shown in Figure 6 and Figure 7. In both case, the model 
demonstrates moderately balanced predictive performance, with a notable ability to correctly identify 
students at risk of dropout (Dropout 1), reflected in relatively high true positive rates and a manageable 
number of false negatives. 

Table 11. Prediction: performance indexes over the classification of Mechanical Engineering 
students - Case B 

Class Precision Recall F1-Score Support 
Dropout 0 80% 74% 77% 1689 
Dropout 1 46% 54% 50% 617 

 
Figure 6. Prediction: confusion matrix over the classification of Mechanical Engineering students - 
Case B 

 

Table 12. Prediction: performances indexes over the classification of Chemical Engineering 
students - Case B 

Class Precision Recall F1-Score Support 
Dropout 0 81% 75% 78% 602 



Class Precision Recall F1-Score Support 
Dropout 1 47% 55% 51% 239 

 
Figure 7. Prediction: confusion matrix over the classification of Chemical Engineering students - Case 
B 

Prediction of the same course of study 
To assess the predictive accuracy of the model when applied to students in the same degree 
programme, we split the original dataset of Computer Science and Engineering students into two 
subsets: a training subset, which was used to build the classification model and the Dropout-DNAs, and 
a test subset, on which predictions were made. This cross-validation procedure allows us to assess the 
performance of the model without introducing bias from external datasets. 

As with the other analyses, we considered the four separate cases (Cases A, B, C and D) to maintain 
methodological consistency. The classification was performed using the probabilities of belonging to 
the two dropout classes estimated by kernel density estimation (KDE) models based on the area 
distributions calculated in the training dataset. The decision rule used is the same as that described in 
(4). 

The performance assessment metrics shown in Table 13 indicate that the model applied to the 
Computer Science and Engineering dataset performs comparably to the results obtained for the 
Mechanical and Chemical Engineering datasets in Case B. Specifically, Case B achieves an F1-score of 
75% for Dropout 0 and 50% for Dropout 1, confirming its predictive effectiveness across different 
courses of study. However, However, across the other cases we observed improved performance 
compared to Case B. A visual inspection of the confusion matrices (Figure 8) further confirms these 
findings, revealing a reduction in false positives compared to the scenarios involving Mechanical and 
Chemical Engineering. This trend is consistently observed across the remaining cases. 

Finally, the predictive performance observed in Table 13 demonstrates strong consistency with the 
results from the logistic regression models presented in the earlier analysis. Specifically, the F1-scores 
obtained in the prediction phase for both Dropout 0 and Dropout 1 classes align closely with those 
reported in Table 6, as well as in the corresponding results for the other cases. 

Table 13. Prediction: performances indexes over the classification of Computer Science and 
Engineering students - Case B 

Class Precision Recall F1-Score Support 
Dropout 0 80% 71% 75% 226 
Dropout 1 44% 57% 50% 91 

 
Figure 8. Prediction: confusion matrix over the classification of Computer Science and Engineering 
students - Case B 



Discussion, implications and concluding remarks 
The classification results show valuable insights into the dropout phenomenon and present more than 
satisfactory performance. In particular, we can say that the models relying solely on early indicators 
(Cases A and C) are generally less predictive than those that incorporate information about academic 
progress (Cases B and D). This is evident in the notable improvement in F1-scores for both dropout 
classes when dynamic and longitudinal data such as the WPI are included. Furthermore, the 
classification of the Dropout 1 class consistently shows lower performance compared to the Dropout 0 
class, a gap that narrows when the information about academic performance is included. This may be 
partially attributed to the balancing of the dataset used for Case A as the use of undersampling 
techniques may have influenced the classification results. 

Regarding the classification performed using the Mechanical and Chemical Engineering datasets, some 
differences were observed, particularly in the case of Chemical Engineering. This may be partly 
attributed to the differing ratios between early and late dropouts. In fact, while in the cases of Computer 
Science and Engineering and Mechanical Engineering the majority of dropouts belonged to the late 
dropout category, in the case of Chemical Engineering early dropouts were more prevalent. 

Beyond the standard classification metrics, an important validation of our approach comes from the 
Dropout-DNA itself. The separation of the distribution of the areas defined by the spider plots of the 
students’ DNAs of all courses of study under analysis tells us that the model captures the key dropout 
predictors. The clear difference between the size of the areas, bigger for the students who dropout and 
smaller for the students who don’t, further validates the ranking of the features obtained by the 
permutation importance algorithm. s a result, our tool offers a novel, visual way to represent dropout 
risk. The visual aspect is particularly valuable, as it transforms complex multidimensional data into an 
interpretable format that stakeholders can easily understand. This contribution of our work enhances 
the practical utility of dropout risk assessment. 

The predictor’s results also offer several insights into the potential of the Dropout-DNA tool and show 
the model’s reproducibility. While predictions for Mechanical and Chemical Engineering perform well, 
the tool works best when applied to the dataset of the degree program it was built on. This is supported 
by both quantitative metrics and visual evidence from the confusion matrices, which illustrate the areas 
where the model underperforms. Notably, the reduction of the false negatives implies a better capacity 
of the model to identify the students at risk. This may be due to the phenomenon’s complexity, as some 
predictors could not be consistent across different academic departments. In fact, such complexity may 
result from both contextual factors and differing student characteristics across degree programs. This is 
particularly evident in the case of the Chemical Engineering dataset, where the prediction performance 
was slightly lower than in Mechanical Engineering. This aligns with our findings showing greater 
differences between Chemical and Computer Science students than between Mechanical and Computer 
Science students. 

These findings not only highlight the importance of contextualising predictive models but also 
reinforce the need for adaptable, yet interpretable tools in dropout risk assessment. In this context, this 
study introduces the Dropout-DNA, a novel data-driven tool that can be used to profile students and 
predict early university dropout risk. This is a significant contribution, offering a powerful approach to 
understanding and addressing student retention. Our findings indicate that early indicators matter, but 
academic progress significantly enhances predictive performance. 



Moreover, the defined predictive approach can be generalized to various engineering courses, though 
performance improves when tailored to the specific degree program. This underscores the need for 
further exploration into how the Dropout-DNA may adapt across different degree courses with 
different intrinsic characteristics, as dropout patterns vary. 

These results also have important practical implications. By enabling the early identification of at-risk 
students through the detailed, quantifiable representation offered by the Dropout-DNA, universities can 
intervene with tailored policies. Such policies can address individual dropout risk factors, allowing 
more personalized support. In future work, we aim to explore the temporal dimension of the Dropout-
DNA more explicitly by investigating how student dropout risk profiles evolve throughout different 
stages of the academic journey. This would allow for dynamic monitoring and the potential to design 
time-sensitive interventions aligned with students’ changing academic trajectories. In particular, as in 
our previous contributions (Villa, Breschi, and Tanelli, 2023) and (Villa, Breschi, Ravazzi, et al., 
2023), we aim to apply a quantitative framework based on optimal control theory and opinion 
dynamics to support policy design that prevents dropout. 
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