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Abstract

E�cient shape morphing techniques play a crucial role in the approx-
imation of partial di�erential equations de�ned in parametrized domains,
such as for �uid-structure interaction or shape optimization problems. In
this paper, we focus on Inverse Distance Weighting (IDW) interpolation
techniques, where a reference domain is morphed into a deformed one via
the displacement of a set of control points. We aim at reducing the compu-
tational burden characterizing a standard IDW approach without compro-
mising the accuracy. To this aim, �rst we propose an improvement of IDW
based on a geometric criterion which automatically selects a subset of the
original set of control points. Then, we combine this new approach with a
model reduction technique based on a Proper Orthogonal Decomposition
of the set of admissible displacements. This choice further reduces compu-
tational costs. We verify the performances of the new IDW techniques on
several tests by investigating the trade-o� reached in terms of accuracy and
e�ciency.

1 Introduction

Shape morphing plays a meaningful role in several engineering and life science
�elds, such as, for instance, aero-elasticity [40], high performance boat design
[31, 30], modelling of the cardiovascular system [4, 35]. On one hand, the same
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physical problem may involve the deformation of the domain, for instance, when
dealing with �uid-structure interaction problems [8]. On the other hand, several
applications imply iterative procedures where the same problem is solved in dif-
ferent geometric con�gurations. This is the case, e.g., of a multi-query context,
such as shape optimization problems, where the shape of the domain is varied
until a prescribed cost functional is minimized (or maximized) [43].

Our interest is focused on partial di�erential equations solved in a domain
which changes in time. In such a case, the goal becomes twofold, since we aim
at accurately approximate the domain as well as the di�erential problem. In
general, it is not computationally a�ordable to generate a new discretization
(mesh) of the domain at each deformed con�guration. Indeed, mesh generation
may be a time consuming procedure (both in terms of CPU time and assembling)
and, sometimes, it is not directly integrated in the solver at hand. Therefore,
it is often more convenient to generate a mesh for a reference con�guration and
then to morph it into the deformed grid. This work can be framed in such a
context.

Several shape morphing techniques are available in the computer graphics
community. A reference mesh is deformed by displacing some points (the so-
called control points); then the shape morphing map associated with these points
is applied to the whole discretized domain, thus avoiding any remeshing. These
techniques have been recently applied to parametrized partial di�erential equa-
tions (PPDEs). For instance, shape morphing techniques based on Free Form
Deformation (FFD) [41] and Radial Basis Functions (RBF) interpolation [12]
have been successfully applied to PPDEs [29, 33], shape optimization problems
[6, 44, 45], reconstruction of scattered geometrical data [18], mesh motion and
interface coupling for �uid-structure interaction problems [10, 21, 23], interpola-
tion between non-conforming meshes [19], sensitivity analysis studies in complex
geometrical con�gurations [5].

In this paper we focus on a di�erent approach, the Inverse Distance Weighting
(IDW) interpolation that relies on the inverse of a weighted sum of distances
between mesh nodes, some of which will be chosen as control points [42, 50, 51,
22].

A proper choice of the control points is a crucial step independently of the
adopted morphing technique. A �rst requirement is to keep the number of control
points as small as possible, since the complexity of the morphing map evaluation
increases as the number of control points becomes larger. Such selection is usually
driven by a prior knowledge of the phenomenon at hand. In some cases an
automatic selection can be carried out. For instance, a sensitivity analysis to
the control points is proposed for shape optimization problems in [6], where
the control points selected are the ones providing the largest variation of a cost
functional. Local minima and maxima of structure eigenmodes are employed
in [23] as control points to perform mesh motion in �uid-structure interaction
problems.

Here, we propose a selective version of the IDW shape morphing procedure
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based on geometrical considerations and, consequently, independent of the under-
lying partial di�erential equations. We further reduce the computational cost of
the morphing by coupling, in a straightforward way, the Selective IDW (SIDW)
interpolation with a suitable model reduction technique. In particular, thanks to
the employment of a reference domain, we identify any shape deformation with
a certain parametric con�guration of the original structure, the parameter being
strictly related to the control point displacement. This suggests us to resort to
a Proper Orthogonal Decomposition (POD) as model reduction approach. We
will refer to this combined technique as to POD-SIDW. POD, also known as
Principal Component Analysis (PCA), is used in the literature, for instance, in
statistical shape analysis [20], as well as for mesh deformation and optimization
[3, 48]. Manifold learning techniques are combined with PCA for e�cient struc-
tural shape optimization in [36]. An equivalent shape representation by means of
currents is sought in [46] in order to introduce an Hilbert space over shapes and
apply PCA. Application to life sciences of PCA has been proposed in [26, 34].

The paper is organized as follows. In Section 2, after formalizing the standard
approach, we set the selective variant of IDW interpolation. Both the approaches
are customized in a shape morphing setting and numerically compared on struc-
tural con�gurations of interest in aeronautic and naval engineering. Section 3
deals with model reduction. POD is directly applied to the selective IDW in-
terpolation and the numerical bene�ts due to such a merging of techniques are
investigated when dealing with shape morphing. Some conclusions are �nally
drawn in Section 4 together with perspectives for a future development of the
present work.

2 Inverse Distance Weighting techniques

In this section, we consider two techniques to drive a shape morphing process,
with particular interest in �uid-structure interaction (FSI) problems. In par-
ticular, �rst we introduce the original Inverse Distance Weighting (IDW) inter-
polation, and then we propose a new variant to overcome some of the intrinsic
computational limits of such an approach.

2.1 The Inverse Distance Weighting (IDW) approach

The IDWmethod has been originally proposed in [42] to deal with two-dimensional
interpolation problems, and successively extended to higher-dimensional and ap-
plicative settings (see, e.g., [15, 32, 51, 50]).

Let Ωr ⊂ Rd, with d = 2, 3, be the reference domain, and let u : Ωr → R be
a continuous function. We select a prescribed set C = {ck}Nc

k=1 ⊂ Ωr of points in
Ωr, known as control points. Then, the IDW interpolant of u, ΠIDW(u), coincides
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with the continuously di�erentiable function

ΠIDW(u)(x) =
Nc∑
k=1

wk(x)u(ck) x ∈ Ωr, (1)

where the local weight functions wk : Ωr → R, for k = 1, . . . ,Nc, are de�ned by

wk(x) =



‖x− ck‖−p

Nc∑
j=1

‖x− cj‖−p

if x 6= ck,

1 if x ≡ ck,

0 otherwise,

(2)

with ‖ · ‖ the standard Euclidean norm, and for some integer p. Notice that
weights are automatically selected such that the in�uence of the k-th control
point ck on x diminishes as the distance between x and ck increases. Power
p tunes such an inverse dependence, so that the weight assigned to a point x
far from the control points becomes smaller and smaller as p increases. With
reference to FSI problems, the choice of parameter p is crucial to avoid compen-
etration e�ects between �uid and structure [50].

2.1.1 IDW for shape morphing

To set shape morphing into the IDW interpolation framework, we identify the
reference domain Ωr with the initial con�guration of the physical domain. Then,
we consider a discretization Ωh = {xi}Nh

i=1 of Ωr, and we identify function u in
(1) with the displacement d of points xi and the set C of the control points (also
denoted as parameters) with a subset of Ωh. In such a context, the IDW inter-
polant, ΠIDW(d), represents the so-called shape parametrization map.
The choice of the control points clearly represents a crucial issue. In general, C
coincides with the set of the boundary points of Ωh. This is a common practice
in several engineering applications, in particular, in FSI problems, where the
displacement is prescribed at the interface between �uid and structure and, suc-
cessively, extended to the interior of the domain to identify the deformed domain,
Ωd [9, 13, 37].

To formalize shape morphing in a more computationally practical way, we col-
lect the displacements assigned at the control points in the vector dc ∈ RNc , with
[dc]i = d(ci) and i = 1, . . . ,Nc. In practice, values d(ci) are often constrained
to suitable ranges in order to satisfy admissible shape con�gurations (see, e.g.,
[29]). Then, the displacement d ∈ RNh of points xi in Ωh, with [d]i = d(xi) and
i = 1, . . . ,Nh, is computed via the IDW interpolant (1)-(2) as

d = Wdc, (3)
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with W ∈ RNh×Nc the IDW matrix of generic component

Wik = wk(xi) for i = 1, . . .Nh and k = 1, . . . ,Nc. (4)

Matrix W keeps trace of the internal structure of Ωh, recording the reciprocal
distance between control and internal points. For this reason, the IDW matrix
is computed before morphing takes place, once and for all. The actual motion is
impressed by vector dc, which, vice versa, varies during the morphing process in
order to follow the shape deformation. Finally, vector d identi�es the deformed
domain Ωd.

Relation (3) highlights the easiness of implementation of a morphing strategy
driven by IDW interpolation. In particular, when applied to FSI con�gurations,
this approach provides a sharp description of the interface displacement, by prop-
erly tackling also portions of the domain characterized by a null displacement
and by avoiding compenetrations e�ects. Additionally, a good mesh quality is
usually guaranteed (we refer to Section 2.3 for more details), even in the presence
of large deformations.
Nevertheless, the standard IDW approach does not prescribe, a priori, any smart
criterion to select the control points. The value Nc may consequently become
very large, especially in the presence of practical con�gurations, so that the com-
putational e�ort required by the assembly and by the storage of matrix W may
be very massive. This justi�es the proposal of the new IDW formulation in the
next section, where a new set Ĉ of control points is properly selected via an auto-
matic procedure, so that card(Ĉ)� Nc, card(S) denoting the cardinality of the
generic set S. Sparsi�cation of matrix W provides an alternative way to reduce
the computational burden of IDW [38, 39], though beyond the goal of this work.

2.2 The Selective Inverse Distance Weighting (SIDW) approach

The new procedure proposed in this section aims at reducing the computational
e�ort demanded by the standard IDW interpolation, without loosing the good
properties of the original approach. In particular, since the most computationally
demanding part of the IDW algorithm is the memory storage, we aim at reducing
the number of control points by automatically selecting the most relevant points
in C to sharply describe the initial con�guration Ωh as well as the deformed
domain Ωd. For this reason, we refer to the new approach as to the Selective
IDW (SIDW) formulation.

Starting point is the approach proposed in [42] which is essentially suited
to deal with regimes of small deformations. Our goal is to improve this pro-
cedure to tackle also large displacement con�gurations, without violating the
no-compenetration constraint. Additionally, we aim at guaranteeing a uniform
distribution in the reduced set of control points.

The complete SIDW procedure is provided byAlgorithm 1. To set notation,
we denote by: Ĉ = {ĉj} ⊂ C the subset of the selected control points; ω ⊆ Ωh

the region where the selection is applied; R > 0 the selection radius; B(c; r) the
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Figure 1: SIDW algorithm: initial (left) and �nal (right) distribution of control
points.

ball of center c and radius r > 0; B(c; ri, re) the circular annulus of center c,
inner radius ri and outer radius re, with re > ri > 0.
We �rst exemplify the action of the SIDW procedure starting from the con�gu-
ration in Figure 1, left, where control points are distributed on the whole domain
Ωh = (0, 10)2, and where ω ≡ Ωh. Then, we will particularize such a procedure
to a shape morphing setting.
SIDW algorithm consists essentially of two phases, i.e., an initialization phase
and the actual selection phase. Now, let ĉ1 ∈ C be a randomly selected control
point.

Goal of the initialization phase is to perform a tessellation of the region
ω \ B(ĉ1;R) via n concentric annuli, {αm}nm=1, of thickness aR (lines 2-7),
being a ∈ R a positive constant picked by the user, with a < 1. Concerning
the speci�c example in Figure 1, we refer to Figure 2(a), where the tessellation
corresponding to R = 2.1 and a = 0.8 is shown, the control point ĉ1 being
marked in the plot. To simplify the graphical representation, we highlight only
the control points constituting Ĉ. Four annular regions are identi�ed by the
choice done for the input parameters, thus inducing a partitioning of the original
control points in C. Then, all the control points in C belonging to the area of
in�uence, B(ĉ1;R), around ĉ1 are removed from C. This operation concludes the
�rst phase of SIDW algorithm.

The selection phase begins with a �rst initialization of the area of selection,
β, around the �rst control point ĉ1, de�ned as the intersection between α1 and
the circular annulus B(ĉ1;R, bR), with b > 1 a user de�ned positive constant
(line 8). Then, a loop on the annular regions {αm}nm=1 of the tessellation
is started (line 9). Inside this loop, until β is empty, a new control point is
selected in β via the SelectControlPoint function (line 11). Then, all
the control points in C belonging to each area of in�uence αl around the current
control point ĉk+1 are removed (lines 12-14), and a new area of selection β
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Algorithm 1 : SIDW interpolation

1: function SIDW(ω, C, ĉ1, R, a, b, u)
2: n← 1, r ← R, rω ← min{r > 0 : ω ⊇ B(ĉ1; r)}
3: while r ≤ rω do

4: αn ← B(ĉ1; r, r + aR) ∩ C
5: r ← r + aR
6: n← n+ 1
7: end while

8: k ← 1, m← 1, β ← α1 ∩B(ĉ1;R, bR)
9: while m ≤ n do

10: while β 6= ∅ do
11: ĉk+1 ← SelectControlPoint(β)
12: for l = m, . . . , n do

13: αl ← αl \B(ĉk+1;R)
14: end for

15: β ← αm ∩B(ĉk+1;R, bR)
16: k ← k + 1
17: end while

18: if αm = ∅ then
19: β ← αm+1 ∩B(ĉk;R, bR)
20: m← m+ 1
21: else

22: β ← αm

23: end if

24: end while

25: Ĉ ← {ĉj}kj=1

26: computation of ΠSIDW(u)
27: end function
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is computed as the intersection between the current area of in�uence αm and a
circular annulus B(ĉk+1;R, bR) (line 15).
Concerning function SelectControlPoint, di�erent criteria can be imple-
mented to select the new control point ĉk+1. For instance, a geometric selection
can be applied by picking the control point closest to the centroid of β or the
farthest control point with respect to the already selected points in Ĉ. To sim-
plify the procedure, in the numerical assessment below, we resort to a random
choice of ĉk+1 in β.
Figure 2(b) displays the �rstly initialized area of selection β, together with the
second control point ĉ2, being b = 1.4. The remaining panels in Figure 2 show
the e�ects of the successive removals operated by the while loop. Six iterations
are associated with the �rst area of in�uence α1. In particular, the new area
of selection β and the corresponding control point ĉk+1 associated with the �rst
two (Figure 2(c)-(d)) and the last (Figure 2(e)) removals are highlighted. We
observe that, as expected, the initial tessellation gradually becomes empty (the
white area becomes larger and larger), while the new control points uniformly
distribute.
When β is empty, a re-initialization of the area of selection is performed (lines
18-23). If the current annulus αm is exhausted, then the area of selection is
sought in the next annulus, αm+1, (lines 19-20). Figure 2(f) shows the tran-
sition from α1 to α2. Additionally, line 22 handles the very peculiar case when
αm is not actually exhausted, yet it is disconnected from the area of selection
around the current control point ĉk+1. In such a case, β is simply reset to αm.

Finally, once all the circular annuli in the tessellation {αm}nm=1 are exhausted,

SIDW algorithm ends, and the new set Ĉ of selected control points is returned
(line 25). The �nal distribution of control points for the considered speci�c
con�guration is provided in Figure 1, right. The selected points are uniformly
distributed as desired. At this point, the SIDW interpolant of u, ΠSIDW(u), can
be computed (line 26) as

ΠSIDW(u)(x) =
Nbc∑
k=1

wk(x)u(ĉk) x ∈ Ωr, (5)

with card(Ĉ) = Nbc � Nc, and where the weight functions wk are de�ned accord-
ing to (2).

Few remarks are in order. The three input parameters, R, a and b, tune the
SIDW algorithm and, as a consequence, the �nal selection Ĉ of control points.
In particular, they vary the area of the annular regions {αm}nm=1, as well as
of the areas of in�uence and selection. In more details, concerning the radius
R, it turns out that the smaller R, the larger the number of selected control
points. As far as a and b are concerned, smaller values of a lead to a larger
number n of annular regions αm, which generally results in a �ner control point
distribution; larger values of b leads to larger areas of selection β, resulting in
a smaller number of selected control points. The choice of R, a and b as well
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Figure 2: SIDW algorithm: initialization (a) and �rst iterations (b)-(f) of the
selection phase applied to the con�guration in Figure 1, left.
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as the corresponding interplay is di�cult to be established a priori and, clearly,
it is problem-dependent. A sensitivity analysis of SIDW with respect to these
parameters will be carried out in Section 2.3.

Finally, we remark that, especially in practical applications, it might be ad-
visable to split ω into smaller subregions, ωp, and to use various values for the
parameters R, a and b to tackle possible local di�erent discretizations.

2.2.1 SIDW for shape morphing

Now we customize SIDW algorithm to manage shape morphing. We consider the
discretization Ωh = {xi}Nh

i=1 of the initial con�guration of the physical domain
and we assume to know the displacement d at each control point ck ∈ C, for
k = 1, . . . ,Nc. We remind that, in such a case, C ⊆ ∂Ωh.

Our idea consists in deforming the boundary ∂Ωh of Ωh, according to the
deformation prescribed at {ck}Nc

k=1, while selecting a subset of control points to
update the displacement of the internal nodes of Ωh.
For this purpose, we resort to the procedure itemized in Algorithm 2, following
a selection-deformation paradigm.
During the selection phase, which is performed once and for all, we �rst �lter set
C via the selection procedure in Algorithm 1, to obtain the subset Ĉ of control
points ĉk, with k = 1, . . . ,Nbc (item (i)). Then, we build the SIDW matrix Ŵ
according (4) associated with Ĉ and with the set of the internal nodes of Ωh (item
(iii)). As an option, we can add to the �ltered set Ĉ extra control points to
include possible speci�c constraints to the problem (item (ii)). This occurs,
for instance, when a null displacement is assigned to a portion of the domain. In
such a case, the �xed nodes have to be necessarily included in the set Ĉ. In the
sequel, we refer to this variant of the SIDW algorithm as to ESIDW (Enriched
SIDW) interpolation.
The online phase performs the actual shape morphing. The boundary ∂Ωh is
deformed via the displacement assigned at the control points in C (item (iv)).
Successively, we deform the internal nodes of Ωh as

di = Ŵdbc, (6)

where di ∈ RN i
h collects the displacements of the internal nodes, xj for j =

1, . . . ,N i
h, of Ωh, Ŵ ∈ RN i

h×Nbc is the (E)SIDW matrix computed in the o�ine
phase, and dbc ∈ RNbc is the vector of the displacements of the selected control
points in Ĉ (item (v)).

Algorithm 2 can be advantageously exploited to deal with FSI problems.
In such a case, we identify domain Ωh with the �uid domain. The displacement
of the interface is generally provided by a structure solver, so that it su�ces to
compute the displacement of the �uid nodes via the procedure detailed in the
algorithm.
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Algorithm 2 SIDW interpolation for shape morphing

Selection phase:
(i) apply the selection procedure in Algorithm 1 to C to extract the

subset Ĉ;
(ii) Optional : add to the set Ĉ extra control points to account for

problem constraints;
(iii) assemble the SIDW matrix Ŵ associated with Ĉ and with the in-

ternal nodes of Ωh.

Deformation phase:
(iv) deform the boundary ∂Ω via the displacement assigned at the control

points in C;
(v) deform the internal nodes of Ωh according to (6).

2.3 IDW versus SIDW interpolation

In this section we investigate the performances of IDW and SIDW interpolation
algorithm. In particular, we consider con�gurations of interest in aeronautic
and naval engineering. We focus on 3D test cases and on tetrahedral meshes,
although the procedure can be generalized to any dimension and to arbitrary
meshes. Concerning the choice of the parameter p in (2), we set p = 4, essen-
tially driven by numerical considerations. Such a choice allows us also to properly
tackle the no-compenetration issue when dealing with FSI settings. To check the
improvements led by the new approach, we compare IDW and SIDW interpo-
lations in terms of computational e�ort. Both the procedures are implemented
in the C++ open source library libMesh [28], while the visualization software
ParaView is employed for the post-processing of the solutions [2]. Concern-
ing mesh generation, we resort to SALOME [1]. Finally, all the simulations are
performed on a laptop with Intel® Core� i7 CPU and 4GB RAM.

2.3.1 Structural deformation of a wing

We consider a wing characterized by a NACA0012 pro�le, clamped on the left side
(see Figure 3, top). Table 1 gathers the main properties of the reference domain
Ωr and of the corresponding mesh Ωh. We impose a vertical displacement to the
wing. In particular, denoting by z the distance from the clamped side and by y
the vertical direction, we assign the displacement

δy = δy(z) = 0.01z2 (7)

in the y direction (see Figure 3, bottom).
First, we apply the standard IDW approach, after identifying C with the set

of all the boundary nodes of ∂Ωh (see Figure 4, top), so that the IDW matrix
W in (3) belongs to R797×1666. The resulting deformed wing, shown in Figure 3,
bottom, is obtained after 0.25 [s].
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Figure 3: Structural deformation of a wing: reference (top) and IDW deformed
(bottom) con�guration.

longitudinal dimension 2π [m]

pro�le chord length 1.01 [m]

card(elements) 8850
card(nodes) 2463

card(internal nodes) 797
card(boundary nodes) 1666

Table 1: Structural deformation of a wing: main properties of Ωr and of Ωh.
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Figure 4: Structural deformation of a wing: control points associated with the
IDW (top), SIDW (center) and ESIDW (bottom) interpolation.

Figure 5: Structural deformation of a wing: cardinality of the control point set
(left), assembly (center) and deformation (right) CPU time as a function of R.
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We now resort to the SIDW interpolation algorithm. Set C still contains all
the boundary nodes. We adopt two di�erent values for the selection radius, i.e.,
R = Rlr = 0.05 [m] for the left and the right lateral surfaces of the wing, and
R = Rtb = 10 · Rlr = 0.5 [m] for the top and the bottom surfaces. Factor 10
is approximately the square root of the ratio, Atb/Alr, between the sum, Atb, of
the areas of the top and of the bottom surfaces of the wing, and the sum, Alr,
of the areas of the left and of the right sides. Finally, parameters a and b are set
to 0.8 and 1.3, respectively.
We �rst employ the basic SIDW interpolation procedure, by skipping the enrich-
ment step (ii). Figure 4, center highlights the new set Ĉ ⊂ C, consisting of 92
control points. Notice the very coarse and uniform distribution of control points
ĉk. The deformed con�guration yielded by the SIDW approach essentially coin-
cides with the one in Figure 3, bottom, despite a considerable reduction of the
interpolation matrix, being Ŵ ∈ R797×92, and of the corresponding computa-
tional time (the deformation phase takes only 0.015 [s]).
We successively resort to the ESIDW variant. We preserve the same values for
a, b, Rlr and Rtb as in the previous numerical check. Additionally, we constrain
the selection procedure to include in Ĉ all the nodes along the left and the right
pro�les of the wing as well as the nodes along the horizontal edges of the NACA
pro�le. This requirement increases the cardinality of Ĉ, now consisting of 390
control points. As shown in Figure 4, bottom, the constraints are guaranteed,
while the distribution of the control points on the top (and on the bottom) of the
wing is essentially the same as in Figure 4, center. Also in this case the deformed
con�guration is essentially the same as the one in Figure 3, bottom. Concerning
the computational time, the increased cardinality of Ĉ results in an deformation
stage that takes 0.034 [s]. This time, despite larger than the one demanded by
SIDW, is still one order of magnitude less with respect to the time required by
the standard IDW interpolation.

Sensitivity to R. We investigate the sensitivity of SIDW and ESIDW inter-
polation to the selection radius. In particular, in Figure 5, we show the trend,
as a function of R, of the number of the control points (left), and of the CPU
time (in seconds) required to assemble the interpolation matrix (center) and to
compute the deformation of the wing (right), respectively.
The relation between the number of control points and R is nonlinear for both
the SIDW and ESIDW approaches. Nevertheless, while for the SIDW interpola-
tion, the number of control points (and, consequently, the associated CPU time)
increases as R becomes smaller, a low sensitivity to R is shown by the ESIDW
variant. In particular, the cardinality of Ĉ remains the same for R greater than
0.1.
Concerning the CPU times, no signi�cant di�erence distinguishes the trend as-
sociated with the matrix assembly and the deformation step, also quantitatively.
As expected, ESIDW interpolation is more computationally demanding than the
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Figure 6: Structural deformation of a wing: relative error (left) and maximum
and mean mesh quality (right) as a function of R.

basic SIDW approach, whereas the standard IDW approach coincides with the
most expensive procedure.

In Figure 6, left we show the error trend as a function of the selection radius.
We compute the L2(Ωh)-norm of the relative error between the SIDW (ESIDW)
and the IDW deformation. The larger number of control points employed by the
ESIDW interpolation yields more accurate deformations compared with the ones
provided by the SIDW approach. In particular, for large enough values of R,
the error due to SIDW is approximately 4%, while, for the ESIDW procedure,
it is about 1%. Convergence to zero is guaranteed by both the methods as R
decreases.

Finally, in Figure 6, right we investigate the in�uence of the selected radius
R on the quality of the elements of the deformed meshes. Di�erent criteria can
be employed to quantify the mesh quality Q. Here, we adopt the ratio between
the longest and the shortest edge [24]. In the �gure, for di�erent values of R,
we compare the maximum and the mean value of Q on the meshes generated
by SIDW and ESIDW algorithms, with the corresponding values associated with
the initial con�guration Ωh. While, on average, the mean value of Q is essentially
independent of the deformation procedure and of the selected R, more sensitivity
is appreciable on the maximum value of Q. The su�ciently large number of
control points allows ESIDW to preserve about the same value of Q as for the
initial mesh, also when R increases. On the contrary, a deterioration on the
maximum mesh quality is evident when dealing with the SIDW interpolation
algorithm, especially for large values of R.

Sensitivity to a and b. We conclude this �rst test case, by studying the
sensitivity of the control point cardinality and of the accuracy of SIDW inter-
polation on the parameters a and b. Similar conclusions can be drawn for the
ESIDW approach. To simplify this analysis, we relate a and b so that b = 1/a,
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we pick a < 1 (i.e., b > 1), and we consider four di�erent values of the selection
radius, namely, R = 0.02, 0.05, 0.2 and 0.3. Figure 7 collects the results of this
check.

For a� 1 (i.e., b� 1), the number of selected control points becomes larger
and larger, as expected, with a consequent increment of the CPU time. Nev-
ertheless, this does not necessarily entail an improvement in terms of accuracy,
especially for large values of R. Indeed, for R = 0.2, 0.3, choosing a ≈ 1 (i.e.,
b ≈ 1) reduces the number of control points of about one order of magnitude
with respect to the choice a� 1 (i.e., b� 1), while only a slightly lower relative
error is guaranteed (see Figure 7, right). On the contrary, when R is small (see
Figure 7, left), decreasing a (i.e., increasing b) improves the accuracy. This is
due the fact that, for these choices of a (b) and R, the SIDW procedure selects
almost all the available control points.

Thus, since the actual goal of SIDW procedures, is to reduce the computa-
tional burden, we are essentially interested in su�ciently large values of R. This
suggests us that the choice a ≈ 1 (i.e., b ≈ 1) ensures a reasonable trade-o�
between e�ciency and accuracy to the morphing procedure.

Figure 7: Structural deformation of a wing: cardinality of the control point set
(top) and L2(Ωh)-norm of the relative error (bottom) as a function of a, for
R = 0.02, 0.05 (left) and for R = 0.2, 0.3 (right).
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wind tunnel dimensions 10× 5× 4π [m3]

wing longitudinal dimension 2π [m]

wing chord length 1.01 [m]

card(elements) 169598
card(nodes) 36036

card(internal nodes) 21910
card(boundary nodes) 14126

Table 2: Fluid mesh motion around a wing: main properties of Ωr and of Ωh.

2.3.2 Fluid mesh motion around a wing

In this section we move to a FSI setting, by considering the �uid mesh motion
around the NACA0012 pro�le in Figure 8, top. This test case mimics a typical
study performed in a wind tunnel, where the wing is clamped on one side while,
on the other side, it is deformed by a vertical displacement, such as the one
in (7). Table 2 gathers the main properties of the physical domain and of the
corresponding discretization.

To investigate the deformation in the �uid mesh, we start by applying the
standard IDW approach, thus identifying the set C with all boundary nodes
(see Figure 9, top for a detail in correspondence with the clamped side). The
corresponding interpolation matrix in (3) belongs to R14126×21910. The resulting
deformed con�guration, shown in Figure 8, bottom, is obtained after 83.09 [s].

In order to reduce the computational costs, we resort to the ESIDW interpo-
lation, by enriching the selection of control points in Ĉ with all the nodes on the
left and right sides as well as along the horizontal edges of the NACA pro�le.
Di�erent values of radius R are selected for the faces of the (outer) box and for
the sides of the (inner) wing. In particular, with similar considerations as in the
previous section, we choose: Rtop,b = Rbottom,b = Rfront,b = Rrear,b = 0.5 [m] and
Rright,b = Rleft,b = 0.25 [m] for the box; Rtop,w = Rbottom,w = Rright,w = 0.05 [m]
for the wing. Parameters a and b are set to 0.8 and 1.3, respectively. Algorithm
2 provides a subset Ĉ consisting of 9339 control points (see the enlarged view in

Figure 9, bottom), so that matrix Ŵ in (6) is now in R9339×21910. As shown in
the �gure, control points are essentially located on the structure pro�le only.
The selection process reduces the computational time more than one third with
respect to the IDW approach, the time required by the deformation phase being
equal to 23.9 [s].

Finally, the L2(Ωh)-norm of the relative error between the ESIDW and the
IDW deformation is approximately 5.86%.

Sensitivity to R. We numerically check the sensitivity of IDW and ESIDW
techniques to the selection radius, by mimicking the investigation in the previous
section. For this purpose, we choose Rtop,b = Rbottom,b = Rfront,b = Rrear,b = R,
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Figure 8: Fluid mesh motion around a wing: rest (top) and deformed (bottom)
con�guration; 3D (left) and section (right) view.

Figure 9: Fluid mesh motion around a wing: control point distribution associated
with the IDW (top) and ESIDW (bottom) interpolation in correspondence with
the clamped side.
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Rright,b = Rleft,b = 0.5R for the box, and Rtop,w = Rbottom,w = Rright,w = 0.1R
for the wing, while preserving the values previously adopted for a and b.

The trend exhibited by the number of control points in Figure 10, left is
completely di�erent with respect to the one in Figure 5, left. The cardinality of
Ĉ is essentially the same as for the IDW approach until R su�ciently increases.
Then, for R > 0.1, the cardinality reduces more and more ensuring, for instance,
a gain of one order of magnitude for R > 2.
The central panel in Figure 10 computes the associated CPU time (in seconds),
where now we have quanti�ed the assembly and the deformation time, altogether.
As expected, the trend of the computational time follows the one of the control
point cardinality, as well as the L2(Ωh)-norm of the relative error between ESIDW
and IDW deformation, as shown in Figure 10, right. In contrast to Figure 6, left
no stagnation of the error is detected when varying R.

Finally, concerning the quality characterizing the meshes yielded by IDW
and ESIDW procedures, we have that the maximum and the mean value of Q,
independently of the adopted interpolation, is equal to 4.31 and 1.48, respectively
with negligible variations (on the second decimal digit only) for ESIDW, as long
as R ≤ 1.

Figure 10: Fluid mesh motion around a wing: cardinality of the control point
set (left), total CPU time (center), and the relative error (right) as a function of
R.

2.3.3 Fluid mesh motion around a rotating hull

We conclude this section by testing the performances of the ESIDW interpolation
when dealing with a FSI setting where a large deformation occurs. In more detail,
we model a �uid mesh motion which results from the rotation of a structural
domain in a naval engineering context. The initial con�guration coincides with
an outer box containing an inner Wigley hull [49] (see Figure 11, top). A rotation
of −5◦ with respect to the z-axis is successively applied. We refer to Table 3 for a
summary of the main properties of the physical domain and of the corresponding
discretization.
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mesh dimension 50× 25× 10 [m3]

hull length 2.5 [m]

card(elements) 30265
card(nodes) 7186

card(internal nodes) 3322
card(boundary nodes) 3864

Table 3: Fluid mesh motion around a rotating hull: main properties of Ωr and
of Ωh.

Figure 11: Fluid mesh motion around a rotating hull: control points (top) and
deformed con�guration (bottom) provided by the ESIDW interpolation.
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Figure 12: Fluid mesh motion around a rotating hull: detail of the deformed
con�guration provided by ESIDW interpolation.

The standard IDW approach results in solving the linear system (3), matrix
W being in R3322×3864. This leads to a CPU time of 4.51 [s].

To reduce the computational burden, we apply Algorithm 2. The selection
is performed by considering a radius R = 1.5 [m], a = 0.8 and b = 1.3. Notice
that the value of R is comparable with the hull length. This allows a consider-
able reduction in the number of control points along the boundaries of the �uid
domain. Moreover, in order to accurately capture the rotation of the hull, we
switch on the enriching step (ii) of the selection procedure, by adding to Ĉ all
the nodes belonging to the edge of the hull. The resulting distribution of control
points is shown in Figure 11, top. Most of the points is identi�ed by the con-
straint step, while very few nodes (only two in the speci�c case) are retained by
the selection at step (i). As a result, the hull turns out to be sharply described
by the control points. ESIDW procedure essentially halves the computational
time, the CPU time of the deformation phase being now equal to 2.56 [s]. Fig-
ure 11, bottom displays the deformed �uid mesh, obtained by solving system (6),

with Ŵ ∈ R3322×1057. We also refer to Figure 12 for a detail of the deformed
grid.

The computational cost reduction provided by ESIDW does not compromise
the accuracy of the approximation. Indeed, the L2(Ωh)-norm of the relative error
between the ESIDW and the IDW deformation is 2.42%.

We have investigated the sensitivity to R also for this con�guration, by mim-
icking the analysis in the previous section. Figure 13 provides the same results as
in Figure 10. In contrast to this last case, we remark a less signi�cant reduction
in the number of the control points and of the total CPU time. Moreover, while
for the wing con�guration the ESIDW interpolation allows to gain six orders of
magnitude in terms of accuracy for a su�ciently small R, only 2 orders less are
obtained for the rotating hull con�guration.
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Finally, the rotation causes a slight increment in the maximum mesh quality
(which changes from 2.47 in the reference con�guration to 2.56 for the deformed
one), while essentially preserving the mean value of Q (varying from 1.62 to 1.63
before and after the deformation). These values are essentially independent of
the adopted interpolation and of R.

Figure 13: Fluid mesh motion around a rotating hull: cardinality of the control
point set (left), total CPU time (center), and the relative error (right) as a
function of R.

3 POD for SIDW shape morphing

We merge now the SIDW techniques presented in the previous section with a
model reduction technique, following an o�ine-online paradigm [27]. The gen-
eral idea is to exploit, during the o�ine phase, the deformations of the reference
structure associated with certain loads to identify a reduced basis which allows
us to predict, during the online phase, the structure deformation due to a new
weight. In more detail, each deformation will be identi�ed by a certain displace-
ment of the control points. A priori, we can employ all the points in C for this
purpose. Nevertheless, to contain the computational e�ort, we propose to prop-
erly �lter points {ck}Nc

k=1 via SIDW algorithms and to resort to the control points

in Ĉ only.
The reduced basis will be determined via a Proper Orthogonal Decomposition
(POD) technique (see, e.g., [14, 47, 11, 27]). POD reduces the dimensionality of
a system by transforming the original variables into a new set of uncorrelated
variables (called POD modes, or principal components), so that, ideally, the �rst
few modes retain most of the `energy' of the original system.

Generalizing notation, let µ ∈ D denote the generic parameter identifying
the displacement dbc(µ) of the control points ĉk in Ĉ. According to (6), the de-
formation of the internal nodes xj , for j = 1, . . . ,N i

h, of the discretized reference
structure Ωh can be computed as

di(µ) = Ŵdbc(µ), (8)
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the dependence on the parameter being highlighted. Notice that, while both the
input displacement dbc(µ) and the output deformation di(µ) depend on µ, the

SIDW matrix Ŵ is parameter independent.
During the POD o�ine stage, we consider a training set, Ξtrain = {µi}ntrain

i=1 ,
of ntrain values for the parameter µ. With each parameter µi, we associate a
certain displacement dbc(µi) of Ĉ, and we compute the corresponding deformation
di(µi) in (8). This allows us to assemble the so-called snapshot matrix

U = [di(µ1), · · · ,di(µntrain
)] ∈ RN

i
h×ntrain , (9)

whose columns store the di�erent scenarios induced by the training set of de-
formations. To extract the desired reduced basis, we perform now the Singular
Value Decomposition (SVD) of matrix U , so that

U =W
(

Σ 0
0 0

)
VT , (10)

where
W = [ζ1, ζ2, · · · , ζN i

h
] ∈ RN

i
h×N

i
h

and
V = [Ψ1,Ψ2, · · · ,Ψntrain

] ∈ Rntrain×ntrain

are the orthogonal matrices of the left and of the right singular vectors of U ,
while Σ = diag(σ1, · · · , σr) ∈ RN i

h×ntrain is a diagonal rectangular matrix of the
same size as U , whose non-negative real diagonal entries, σ1 ≥ σ2 ≥ · · · ≥ σr,
represent the singular (or principal) values of U , r ≤ ntrain being the rank of
U [25].
The reduced POD basis is thus identi�ed by a subset of the left singular vectors
of U collected in the POD basis matrix

Z = [ζ1, · · · , ζN ] ∈ RN
i
h×N . (11)

with N � r. The integer N can be selected via di�erent criteria. In particular,
since the energy contained in the discarded (i.e., the last r −N) POD modes is
provided by

EU (N) =
r∑

i=N+1

σ2
i , (12)

we set a tolerance ε and choose N as the �rst integer such that EU (N) ≤ ε. The
identi�cation of the POD basis concludes the o�ine phase.

The online phase starts from the choice of a new value µ∗ ∈ D for the pa-
rameter, i.e., with the assignment of a new displacement dbc(µ∗) to the control
points in Ĉ. The POD basis is then exploited to approximate the corresponding
deformation di(µ∗) of the internal nodes in Ωh. In particular, we look for a
suitable linear combination of the POD basis functions {ζl}Nl=1, such that

Z β(µ∗) ≈ di(µ∗), (13)
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where
di(µ∗) = Ŵdbc(µ∗) (14)

and where β(µ∗) ∈ RN , with [β(µ∗)]l = βl and l = 1, . . . , N , is a vector of
unknown coe�cients depending on parameter µ∗. Now, in order to contain the
computational e�ort, we aim at computing β(µ∗) in (13) by skipping the direct
computation of di(µ∗) via (14) and by exploiting the displacement vector dbc(µ∗)
only.
For this purpose, we �rst solve system (14) with respect to dbc(µ∗) in a least
squares sense, so that

dbc(µ∗) = Ŵ+di(µ∗)

where Ŵ+ ∈ RNbc×N i
h denotes the pseudo-inverse of W [25]. Thanks to (13), we

obtain
dbc(µ∗) ≈ Ŵ+Z β(µ∗). (15)

Vector β(µ∗) can thus be computed by resorting to the normal equations asso-
ciated with (15) as

ZT (Ŵ+)T Ŵ+Z β(µ∗) = ZT (Ŵ+)T dbc(µ∗). (16)

The system we are lead to solve has size N , being ZT (Ŵ+)T Ŵ+Z ∈ RN×N and

ZT (Ŵ+)T ∈ RN×Nbc . The deformation of the structure is �nally computed via
the product in (13).
We observe that both the matrices in (16) can be computed once and for all
at the end of the o�ine stage. Thus, the online phase reduces to evaluate the
matrix-vector product on the right-hand side of (16), to solve a linear system
of size N and then to compute the linear combination Z β(µ∗). In terms of
computational burden, the most e�ort involves the internal nodes. In more
detail, we are comparing the full problem (14) demanding O(N i

h · Nbc) �oating
point operations with the POD approach characterized by O(N3+N ·Nbc+N i

h ·N)
operations. This suggests that, if N � Nbc, we expect a computational saving
via the reduced approach. This will be numerically veri�ed in the next section.

The complete POD-SIDW interpolation procedure is itemized inAlgorithm 3

when applied to a generic shape morphing context. The POD-ESIDW variant
can be set in a straightforward way simply by switching on the optional step
(ii) of Algorithm 2 at the �rst item of the o�ine phase. With a view to a
FSI problem, the same setting as for Algorithm 2 is adopted.

3.1 POD-SIDW algorithms in action

We come back to the test cases in Section 2.3 to investigate possible bene�ts
on SIDW interpolation techniques due to POD. In particular, we quantify the
computational improvements in terms of CPU time and accuracy of the approx-
imation.
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Algorithm 3 POD-SIDW interpolation for shape morphing

Offline phase:
(a) apply the Selection phase of Algorithm 2 to extract Ĉ and to

assemble the SIDW matrix Ŵ ;
(b) for each µi ∈ Ξtrain

apply the Deformation phase of Algorithm 2 to compute
di(µi) via (8);

end for

(c) assemble the snapshot matrix U in (9);
(d) extract the POD basis matrix Z in (11);

(e) compute matrices ZT (Ŵ+)T Ŵ+Z and ZT (Ŵ+)T in (16).

Online phase: chosen µ∗ ∈ D:
(f) solve system (16) to derive the weights in β(µ∗);
(g) compute the linear combination Z β(µ∗).

method card(bC) CPU time(Offline) card(Z) CPU time(Online) Error

IDW 1666 - - 0.25 [s] -

ESIDW 390 - - 0.034 [s] 1.06 %

POD-IDW 1666 90.93 [s] 1 0.013 [s] negligible

POD-ESIDW 390 76.84 [s] 1 0.013 [s] 1.09 %

Table 4: Structural deformation of a wing: comparison between the basic IDW
and ESIDW techniques and the corresponding POD variants.

3.1.1 Structural deformation of a wing

We apply the POD reduction procedure to a parameter dependent variant of the
con�guration in Section 2.3.1. To this aim, we impose the parametrized vertical
displacement

δy = δy(z;µ) = µz2 (17)

to the wing, where the parameter µ is a scalar varying in the interval D = [0, 1.3].
We focus on the standard IDW and on the ESIDW interpolation techniques.

With reference to the ESIDW approach, we preserve the two di�erent choices
done for the selection radius in Section 2.3.1, by picking R = Rlr = 0.05 [m] and
R = Rtb = 0.5 [m] for the left and right and for the top and bottom surfaces
of the wing, respectively. Then, accordingly to Section 2.3.1, the enrichment is
performed by adding in Ĉ all the nodes along the left, the right and the horizontal
edges of the NACA pro�le.

To build the snapshot matrix U , we randomly select ntrain = 100 values in D
which identify the set Ξtrain. Then, to extract the POD basis we �x ε = 10−5

as tolerance on the energy EU (N) in (12). Finally, we choose µ∗ = 0.01 as
parameter value during the online phase.

Table 4 compares the performances of the plain IDW and ESIDW interpo-
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lations with the corresponding POD variants. The second column provides the
number of control points employed for morphing the original structure, being
understood that Ĉ ≡ C when dealing with the IDW approach. The third column
gathers the CPU time required by the o�ine phase of Algorithm 3 to construct
the response matrix, to extract the POD basis, whose cardinality is furnished in
the fourth column, and to assemble matrices ZT (Ŵ+)T Ŵ+Z and ZT (Ŵ+)T in
(16). The �fth column summarizes the CPU time required to perform the shape
morphing via (3) and (6) in the case of the basic IDW and SIDW interpolations,
respectively; for the POD variants, this coincides with the CPU time demanded
by the online phase, i.e., by the resolution of system (16) and by the computa-
tion of the linear combination Zβ(µ∗). Finally, the last column investigates the
accuracy of the provided deformation by collecting the value of the L2(Ωh)-norm
of the relative error between the computationally cheaper deformations and the
reference IDW shape.

Concerning the speci�c values in Table 4, we observe that both the POD
variants identify a minimal reduced basis, a single POD mode being su�cient to
ensure the desired tolerance. Figure 14, left shows the decay of the spectrum,
normalized to the maximum singular value, for both the POD-IDW and the
POD-ESIDW reduction. The �rst approach exhibits a more evident drop so
that a single mode ensures actually an accuracy of 10−7 (considerably higher
than the one demanded). The POD-ESIDW procedure in this case requires a
larger number of modes to guarantee the same accuracy, for instance, two modes
are demanded for ε = 10−6 whereas four modes are required for ε = 10−7. The

Figure 14: Structural deformation of a wing: spectrum decay (of the �rst ten
singular values) for POD-IDW and POD-ESIDW procedures (left); comparison in
terms of mesh quality between IDW and ESIDW interpolation (center) and POD-
IDW and POD-ESIDW reduction (right) in the presence of large deformations.

computational time demanded by the o�ine phase of both the POD-IDW and
POD-ESIDW procedures is not negligible, being equal to 90.93 [s] and to 76.84
[s], respectively. Nevertheless, this phase takes place just once and, as expected,
allows a considerable saving in the actual computation of the shape morphing
(0.013 [s] to be compared with 0.25 [s] and with 0.034 [s], respectively), thus
becoming the ideal tool, for instance, for a multi-query context. Moreover, the
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method card(bC) CPU time(Offline) card(Z) CPU time(Online) Error

IDW 14126 - - 83.09 [s] -

ESIDW 9339 - - 23.90 [s] 5.86%

POD-IDW 14126 2479.51 [s] 1 0.55 [s] negligible

POD-ESIDW 9339 1613.65 [s] 1 0.55 [s] 5.94 %

Table 5: Fluid mesh motion around a wing: comparison between the basic IDW
and ESIDW techniques and the corresponding POD variants.

POD procedure does not compromise the accuracy of the approximation, the
error (with respect to standard IDW interpolation) being negligible (less than
10−8) in the POD-IDW case, while increasing from 1.06% to 1.09% when dealing
with the enriched procedure.

Finally, we check how the POD procedure does in�uence the quality of the
deformed mesh, with emphasis on large deformations. In particular, since mesh
quality is expected to deteriorate for larger and larger displacements, we consider
a normalized mesh quality index, de�ned as the ratio between the mean mesh
quality and the maximum displacement measured at the side of the wing which
is not clamped. A cross comparison of the plots in Figure 14, center and right,
shows that the POD approach essentially has no in�uence on the mesh quality as
well as the ESIDW interpolation, the selected index preserving a constant value
of about 0.28 for µ > 0.3.

3.1.2 Fluid mesh motion around a wing

We move to the parametric version of the FSI test case in Section 2.3.2, dealing
with the �uid mesh motion around a NACA0012 pro�le. The wing is now de-
formed by the parametrized vertical displacement (17), with µ ∈ R varying in
D = [0, 0.05].

We compare POD-IDW with POD-ESIDW and with the corresponding pro-
cedures without any model reduction. The parameters R, a and b characterizing
the selection procedure are the same as in Section 2.3.2, as well as the constraints
driving the enrichment step of Algorithm 2. The training set Ξtrain is now con-
stituted of 20 samples randomly distributed in D, and the tolerance ε employed
in the POD o�ine phase is set to 10−5 as in the previous test case. The actual
deformation is then identi�ed by µ∗ = 0.01.

Table 5 o�ers a summary of the performances of the proposed methods. The
successive columns collect the same quantities as in Table 4. The advantages due
to the enriched selective procedure have been already highlighted in Section 2.3.2,
both in terms of reduction of the control points and of the CPU time.
A further saving in the computational time demanded for the actual structure
deformation is obtained via POD, the online CPU time reducing to 0.55 [s] for
both the POD-IDW and the POD-ESIDW procedures. The global CPU time
reduction due to a selection of the control points combined with a POD procedure
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is of two orders of magnitude with respect to the standard IDW approach, for
each new morphing. This considerable saving is justi�ed by the small dimension
of the POD basis, consisting of a unique mode (notice that, for this test case, the
trend of the �rst ten singular values associated with the two POD procedures
is exactly the same, as Figure 15, left shows). The POD o�ine phase remains
the most time consuming part of the whole procedure, requiring 2479.51 [s] and
1613.65 [s] in the POD-IDW and POD-ESIDW case, respectively.

Figure 15: Fluid mesh motion around a wing: spectrum decay (for the �rst ten
singular values) for POD-IDW and POD-ESIDW procedures.

Finally, we remark that the accuracy of the POD-ESIDW interpolation is
essentially limited by the selection applied to control points. Indeed, the POD-
ESIDW approach entails a relative error of 5.94% to be compared with an error
of 5.86% for the basic ESIDW method.

3.1.3 Fluid mesh motion around a rotating hull

We conclude the numerical assessment by studying the bene�ts provided by the
POD reduction onto the large deformation setting in Section 2.3.3. The rotation
of the hull with respect to the z axis is now parametrized, µ coinciding with the
rotation angle assuming values in the range D = [−36◦, 0◦].

As in the two previous sections, POD is combined with IDW and ESIDW
interpolations. For the control point selection procedure, we adopt the same
values for R, a and b as in Section 2.3.3. To build the snapshot matrix and to
extract the POD basis, we exploits ntrain = 50 values for parameter µ, randomly
distributed in D. The tolerance ε for the energy check is set to 10−5. Finally, the
target con�guration is identi�ed by the parameter µ∗ = −5◦. From Figure 16,
left, we realize that few POD modes su�ce to describe the new rotation with
a good accuracy. In particular, tolerance ε is reached by resorting only to two
modes.

The performances of POD-IDW and POD-ESIDW methods are summarized
in Table 6, whose columns are organized as in Tables 4 and 5. The computa-
tional gain yielded by ESIDW with respect to the standard IDW interpolation
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method card(bC) CPU time(Offline) card(Z) CPU time(Online) Error

IDW 3864 - - 4.51 [s] -

ESIDW 1057 - - 2.56 [s] 2.42%

POD-IDW 3864 203.07 [s]
1 0.38 [s] 0.23% ∼ 2.85%
2 0.38 [s] negligible

POD-ESIDW 1057 150.26 [s]
1 0.38 [s] 2.62% ∼ 3.84%
2 0.38 [s] 2.43%

Table 6: Fluid mesh motion around a rotating hull: comparison between the
basic IDW and ESIDW techniques and the corresponding POD variants.

is evident, following the analysis in Section 2.3.3.
Concerning the combined e�ect of selecting the control points and resorting to a
POD reduction, Table 6 quantitatively con�rms what already remarked for the
two previous test cases. In particular, while ESIDW manages almost to halve
the CPU time required for a shape morphing compared to the standard IDW
approach, a successive reduction of about one seventh is reached via POD, two
basis functions being enough to reach the prescribed tolerance ε. Similar conclu-
sions hold when comparing IDW with POD-IDW, the CPU time being reduced
of about eleven times when resorting to a POD space constituted of two basis
functions only. The price to pay for this computationally cheap shape morphing
is represented, according to an o�ine/online paradigm, by the o�ine phase in
Algorithm 3, which demands 203.07 [s] and 150.26 [s] for the POD-IDW and
the POD-ESIDW approach, respectively.

Figure 16, center compares the trend of the L2(Ωh)-norm of the relative error
between the POD-IDW (POD-ESIDW) and the standard IDW deformation as a
function of the rotation angle, when either one or two POD modes are adopted
to predict the new deformation. The plot of the POD-IDW procedure associated
with two POD modes is omitted, the corresponding relative error being essen-
tially negligible (less than 10−8). The accuracy guaranteed by the POD-IDW
approach strongly depends on the selected angle when a single POD mode is
employed, with a signi�cant improvement in the presence of large rotations. On
the contrary, a low sensitivity to the rotation angle is exhibited by the POD-
ESIDW reduction, the error always being of the order of 10−2. Moreover, from
the last column in Table 6, we deduce that the control point selection still rep-
resents the principal responsible for an accuracy deterioration regardless of the
selected angle, the relative error remaining essentially the same when combining
the ESIDW approach with a POD reduction.

Finally, as shown in Figure 16, right, the POD reduction does not perturb
essentially the quality of the deformed mesh with respect to the standard ESIDW
approach, and exhibits a contained dependence on the applied rotation.
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Figure 16: Fluid mesh motion around a rotating hull: spectrum decay (for the
�rst ten singular values) for POD-IDW and POD-ESIDW procedures; relative
error as a function of the rotation angle for POD-IDW and POD-ESIDW re-
ductions (center); comparison in terms of mesh quality between ESIDW and
POD-ESIDW procedures (right).

4 Conclusions and perspectives

Shape morphing techniques based on IDW are actually powerful computational
tools, even though, often, very time consuming. We have proposed two strategies
(and a possible combination of these) to limit this drawback. The �rst approach
(the SIDW/ESIDW interpolation), based on a geometric selection of the control
points, is very general and can be applied to any dimension and to arbitrary
meshes. SIDW/ESIDW variants, tested on con�gurations of interest in engi-
neering applications, such as airfoils and hulls, proved to be very e�ective since
they considerably reduce the set of control points (i.e., the CPU time) without
excessively compromising the accuracy of the approximation.
A further reduction of the computational burden is then carried out by means of
a POD (o�ine phase) and a least squares regression (online phase) techniques.
This allows us to convert any shape morphing into the resolution of a linear
system of size N , with N the number of selected POD basis functions. In the
considered test cases, the number N turns out to be very small. Indeed, one or,
at most, two POD basis functions were enough to guarantee a tolerance of 10−5

to the energy contained in the discarded POD modes. We have combined POD
model reduction with IDW and ESIDW interpolations, event though any shape
morphing algorithm can be alternatively considered.
The numerical veri�cation in Section 3.1 shows that the combined POD-IDW
and POD-ESIDW techniques lead to a large computational saving, up to two
orders of magnitude on the CPU time. The o�ine phase remains the most
time-consuming part of the procedure, according to an o�ine/online paradigm.
Finally, an accuracy analysis highlights that SIDW/ESIDW entail very small rel-
ative errors (few percentage points) with respect to the standard IDW procedure,
while POD reduction does not signi�cantly contribute further.

A possible future development of this work might concern the integration of
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the proposed methods into a FSI solver, or the application to several optimization
contexts. An adaptive selection of the control points driven by some quantity
of interest rather than the employment of other model reduction procedures for
parametrized problems (e.g., [7, 16, 27]), as well as the use of active subspaces
method [17, 45] as pre-processing, represent further topics of interest for the
following of the current work.
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