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IMPROVEMENTS ON UNCERTAINTY QUANTIFICATION
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ANDREA TONINI1,∗, TAN BUI-THANH2,3, FRANCESCO REGAZZONI1, LUCA DEDE’1 AND ALFIO
QUARTERONI4,5

ABSTRACT. Inverse problems aim to determine model parameters of a mathematical prob-
lem from given observational data. Neural networks can provide an efficient tool to solve
these problems. In the context of Bayesian inverse problems, Uncertainty Quantification
Variational AutoEncoders (UQ-VAE), a class of neural networks, approximate the pos-
terior distribution mean and covariance of model parameters. This allows for both the
estimation of the parameters and their uncertainty in relation to the observational data. In
this work, we propose a novel loss function for training UQ-VAEs, which includes, among
other modifications, the removal of a sample mean term from an already existing one. This
modification improves the accuracy of UQ-VAEs, as the original theoretical result relies
on the convergence of the sample mean to the expected value (a condition that, in high
dimensional parameter spaces, requires a prohibitively large number of samples due to
the curse of dimensionality). Avoiding the computation of the sample mean significantly
reduces the training time in high dimensional parameter spaces compared to previous lit-
erature results. Under this new formulation, we establish a new theoretical result for the
approximation of the posterior mean and covariance for general mathematical problems.
We validate the effectiveness of UQ-VAEs through three benchmark numerical tests: a
Poisson inverse problem, a non affine inverse problem and a 0D cardiocirculatory model,
under the two clinical scenarios of systemic hypertension and ventricular septal defect. For
the latter case, we perform forward uncertainty quantification.

Keywords: Bayesian inverse problem, deep learning, partial differential equations, uncer-
tainty quantification, variational autoencoders.
AMS Subject Classification: 68T07, 62C10

1. INTRODUCTION

Forward problems describe mathematical models that map a set of parameters to a cor-
responding set of observational data. On the other hand, inverse problems aim to determine
the model parameters from (noisy) observational data by minimizing a loss function that
quantifies the mismatch between the observational data and the model outputs.
Deterministic inverse problems seek to identify the single values of the parameters.24 How-
ever, even when the forward map from parameters to outputs exists, the inverse map may
not, leading to the ill-posedness of deterministic inverse problems. To address this issue,
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Tikhonov regularization is often applied to the loss function by adding a term that penal-
izes the norm of the parameters.39

Bayesian inverse problems aim to determine the posterior distribution of the parame-
ters, that is their probability distribution given an observational data.37 The solution to a
Bayesian inverse problem accounts for uncertainty in the parameters estimate that depends
on the noise in the observational data.

Neural Networks (NNs) have gained increasing attention for solving inverse problems
in recent years.5, 31, 32, 50 They offer a significant reduction in the computational cost of
solving inverse problems that would otherwise require numerous iterations of an optimiza-
tion method.4, 6, 23 A single iteration of the chosen optimization method requires solving
the forward problem, which can make inverse problems prohibitively expensive when the
forward one is computationally demanding.
Tikhonov Networks (TNets) have been shown to effectively solve deterministic inverse
problems.25 Their loss function consists of two terms: one incorporating the prior knowl-
edge of the parameters and another enforcing a physics-aware constraint. Data random-
ization has been theoretically and numerically demonstrated to implicitly regularize the
weights and biases of the NN. Tikhonov autoencoders (TAEN) further enhance the use
of data randomization, enabling the training of the NN generating new data by the ran-
domization of a single sample.45 InVAErt networks address the ill-posedness nature of
deterministic inverse problems by extending the observational data space with latent vari-
ables, enabling the identification of different parameters generating the same observational
data.40, 41 NETworks Tikhonov (NETT) have been applied to inverse problems in imag-
ing, leveraging a data-driven regularization approach.21 Additionally, convolutional Neu-
ral Networks (CNN) have been widely explored for image-based inverse problems.8, 17, 22

In the context of Bayesian inverse problems, Uncertainty Quantification Variational Au-
toEncoders (UQ-VAE) have been developed to estimate the mean and covariance of the
posterior distribution of parameters. In Ref. 14, the authors established the theoretical
foundations of UQ-VAEs, deriving a loss function based on a family of Jensen-Shannon di-
vergences.26 This approach comes from generative modeling that employs Jensen-Shannon
divergences to compute the posterior parameter distribution and generate new data sam-
ples.9, 38 In Ref. 42, a novel loss function was proposed to improve the estimation accuracy
of UQ-VAEs, while enhancing their generalization capabilities. However, this approach
required an increased computational cost for evaluating the training loss function, leading
to prolonged training times.

In this work, we build upon the results of Ref. 42 proposing a novel loss function by
removing a sample mean term from the original loss function, among other modifications.
This approach improves accuracy and reduces the training time compared to previous lit-
erature results. The time reduction advantage becomes more pronounced as the dimen-
sionality of the parameter space increases. We obtain a theoretical result analogous to the
original one for affine forward problems and extend it to general forward problems under
additional assumptions, thereby strengthening the theoretical background of UQ-VAEs.
We validate our approach on a Poisson problem and compare it in terms of training time
and accuracy with the previous one on a non linear problem. Furthermore, we test our
approach on two test cases involving 0D cardiocirculatory models,1, 10, 12, 28, 43 specifically
modeling systemic hypertension27 and ventricular septal defect.7, 36 For the latter case, we
perform forward uncertainty quantification to further assess the performances of the new
approach.



3

The paper is structured as follows: in section 2, we introduce the new loss function and
UQ-VAEs; in section 3, we present the numerical tests on the Poisson problem and the 0D
cardiocirculatory model; in section 4, we draw our conclusions.

2. BAYESIAN INVERSE PROBLEMS

We present the general framework of Bayesian inverse problems and UQ-VAEs. Addi-
tionally, we propose a novel loss function for training the UQ-VAEs addressing previous
limitations.42 The new loss function reduces the computational cost of training the UQ-
VAE while extending the theoretical result of the previous approach.

Bayesian inverse problems are used to estimate the parameters of a mathematical model
along with their uncertainties, given noisy observational data. Let U and Y be random
variables representing the parameters and the noisy observational data, respectively. We
assume the existence of a map F from the parameters to the observational data in absence
of noise. Let E denote the noise random variable. The mathematical model under consid-
eration is:

Y = F(U) + E.(1)

We focus on the case where U and Y are finite dimensional real random variables. Specif-
ically, each parameter is a vector u ∈ RD and each observational data is a vector y ∈ RO,
with D,O ∈ N. Thus, the map is defined as F : RD → RO. The solution of a Bayesian
inverse problem is the posterior distribution of the parameters pU|Y(u|y), which is the dis-
tribution of the parameters conditioned to the given noisy observational data.
Using the Bayes’ theorem,2 it is possible to retrieve an implicit formula for the poste-
rior distribution that, in most of the cases, is not possible to compute explicitly as it re-
quires the evaluation of an integral. Generally, one looks for the mean and covariance,
namely the first two moments, of the posterior distribution to characterize the expected
parameter and its uncertainty subjected to the noisy observational data. A standard ap-
proach to solve Bayesian inverse problems is by computing the Maximum A Posteriori
estimate (MAP) parameter uMAP ∈ RD, that is the most likely parameter to observe given
a noisy observational data y ∈ RO, and the Laplace approximation of the covariance ma-
trix ΓLap ∈ RD×D.11 By the Bayes’ theorem, the posterior distribution can be expressed
as:

pU|Y(u|y) =
pU,Y(u,y)

pY(y)
=
pY|U(y|u) pU(u)

pY(y)
=

pY|U(y|u) pU(u)∫
RD pY|U(y|u)pU(u)du

,(2)

where pU,Y(u,y), pY(y), pU(u) and pY|U(y|u) are the probability density functions (pdf)
of the joint probability distribution of U and Y , the marginal pdfs of Y and U , and the
conditioned probability of Y with respect to U (likelihood), respectively. We assume that
E and U are independent, so the likelihood function is:

pY|U(y|u) = pE(y −F(u)),(3)

where pE is the pdf of the noise random variable E. Furthermore, we assume that U ∼
N (µpr,Γpr) and E ∼ N (µE,ΓE), where µpr ∈ RD and µE ∈ RO are the means of
the parameters and noise random variables, respectively, and Γpr ∈ RD×D and ΓE ∈
RO×O are the corresponding covariance matrices. In this work, we restrict our analysis to
symmetric positive definite (SPD) covariance matrices, as well as their inverses, to ensure
the well definition of the loss function used in training the variational autoencoders. Using
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(3) and the normality assumptions on U and E, the joint pdf pU,Y(u,y) can be rewritten
as:

pU,Y(u,y) = pE(y −F(u)) pU(u) =
1

(2π)
O+D

2 |ΓE| 12 |Γpr| 12

exp

(
−1

2

(
∥y −F(u)− µE∥2Γ−1

E

+ ∥u− µpr∥2Γ−1
pr

))
,

where |·| denotes the matrix determinant and ∥·∥Γ−1 represents the norm induced by an
SPD matrix Γ−1. Maximizing the posterior pdf pU|Y(u|y) with respect to u yields the
MAP estimate:

uMAP := argmax
u∈RD

pU|Y(u|y)

= argmin
u∈RD

(
∥y −F(u)− µE∥2Γ−1

E

+ ∥u− µpr∥2Γ−1
pr

)
.(4)

The first term of the optimization problem derives from the likelihood function and quanti-
fies the mismatch between the observational data and model predictions. The second term
encodes prior knowledge about the parameters and serves as a regularization term. Solving
this optimization problem typically requires gradient-based methods, which can be com-
putationally expensive, particularly when evaluating the map F is costly.
To quantify uncertainty in the parameter estimate due to noise, the Laplace approximation
ΓLap of the covariance matrix can be used:11

ΓLap =
(
JF (uMAP)

TΓ−1
E JF (uMAP) + Γ−1

pr

)−1
,(5)

where JF (uMAP) ∈ RO×D is the Jacobian of F evaluated at uMAP. Computing ΓLap

requires evaluating JF (uMAP), which is significantly more expensive than a single evalu-
ation of F .

When evaluating F is expensive (such as when F represents the solution operator of
a complex partial differential equation), computing uMAP and ΓLap becomes infeasible.
UQ-VAEs,14, 42 a class of NNs, offer a way to mitigate this computational burden. Although
the most advanced UQ-VAE formulation42 presents strong generalization capabilities, even
with small datasets, it has two main drawbacks when F is not affine: an inaccurate esti-
mate of the posterior covariance matrix and a high computational cost for training. Even if
the latter is compensated by the efficient solution of Bayesian inverse problems, reducing
the training cost is a priority. In this work, we propose a modification to the loss function
used for training UQ-VAEs.42 The new loss function extends the previous theoretical re-
sult while significantly reducing computational costs. This reduction enables also faster
testing of the NN architectures, indirectly improving the accuracy of the posterior mean
and covariance matrix estimates.

Employing variational inference, we approximate the posterior distribution pU|Y(u|y)
using a Gaussian distribution:

qϕ(u|y) = N (µpost(y, ϕ),Γpost(y, ϕ)),(6)

where µpost(y, ϕ) ∈ RD, Γpost(y, ϕ) ∈ RD×D and ϕ denotes a set of hyper-parameters
(in section 2.2, ϕ is the set of weights and biases of the UQ-VAE). For conciseness, we
omit the explicit dependence of µpost and Γpost on y and ϕ.
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2.1. Loss function. We describe the loss function and the theoretical result presented in
Ref. 42, modifying the former to reduce its computational cost.
Given α ∈ (0, 1) and an observational data y ∈ RO, the loss function proposed in the
previous work is:

Lα(µ, C) = (1− α)
(
∥µ− µpr∥2Γ−1 + tr

(
Γ−1Γpr

))
+

α
(
∥µ− µpr∥2Γ−1

pr
+ tr

(
Γ−1
pr Γ

))
+

αEN (µ,Γ)

[
∥y − µE −F(u)∥2

Γ−1
E

]
,(7)

where EN (µ,Γ) [·] is the expected value with respect to the probability distribution N (µ,Γ),
µ ∈ RD, Γ ∈ RD×D is SPD and C is its Cholesky factor (a lower triangular matrix with
positive diagonal entries). This loss function is an upper bound for a family of Jensen-
Shannon divergences (JSD)26 summed to a Kullback-Leibler divergence, which measure
the difference between the posterior distribution pU|Y(u|y) and the distribution N (µ,Γ).
The first two lines come from the Kullback-Leibler divergences between the prior and the
distribution N (µ,Γ) and the third line represents the expected squared error on the obser-
vational data.

When F is affine (i.e., F(u) = Fu + f , where F ∈ RO×D, f ∈ RO), (4) and (5) can
be expressed as:

uMAP = ΓLap

(
FTΓ−1

E (y − f − µE) + Γ−1
pr µpr

)
,(8)

ΓLap =
(
FTΓ−1

E F + Γ−1
pr

)−1
.(9)

Moreover, the expected value in (7) is computed exactly:

EN (µ,Γ)

[
∥y − µE −F(u)∥2

Γ−1
E

]
=

∥y − µE − EN (µ,Γ) [F(u)]∥2
Γ−1
E

+ tr
(
Γ−1
E CovN (µ,Γ) [F(u)]

)
=

∥y − µE − Fµ− f∥2
Γ−1
E

+ tr
(
Γ−1
E FΓFT

)
,(10)

where CovN (µ,Γ) [·] is the covariance with respect to the probability distribution N (µ,Γ).
Minimizing this loss function yields the following result.42

Theorem 1. Assume that F(u) = Fu + f , where F ∈ RO×D, f ∈ RO, and y ∈ RO.
Suppose that the prior and noise models are Gaussian and independent, N (µpr,Γpr) and
N (µE,ΓE), respectively. Then, the posterior distribution pU|Y(u|y) is N (uMAP,ΓLap),
where (uMAP,ΓLap) are given by (8) and (9).
Let α ∈ (0, 1) and (µ̂, Ĉ) (with Γ̂ = ĈĈT) be the stationary points of the loss function

Lα(µ, C) =(1− α)
(
∥µ− µpr∥2Γ−1 + tr

(
Γ−1Γpr

))
+

α
(
∥µ− µpr∥2Γ−1

pr
+ tr

(
Γ−1
pr Γ

))
+

α
(
∥y − µE − Fµ− f∥2

Γ−1
E

+ tr
(
Γ−1
E FΓFT

))
.(11)

Let

µpost =
1− α

α
ΓLapΓ̂

−1(µ̂− µpr) + µ̂,(12)

Γpost = Γ̂A−1Γ̂,(13)
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with

A =
1− α

α

(
(µ̂− µpr)(µ̂− µpr)

T + Γpr

)
.

Then (µpost,Γpost) = (uMAP,ΓLap).

Remark. In practice, we minimize the loss function (11) to find (µ̂, Γ̂) and we compute
(µpost,Γpost) using (12) and (13).
Remark. The matrix A is SPD since it is a positive scalar multiple of the sum of two sym-
metric matrices that are positive semidefinite and positive definite. Consequently, Γ̂A−1Γ̂
is also SPD, as Γpost and ΓLap are.

When the map F is not affine, EN (µ,Γ)

[
∥y − µE −F(u)∥2

Γ−1
E

]
cannot be computed in

a closed form. To approximate this expectation, the central limit theorem is used, leading
to the following loss function:

(1− α)
(
∥µ− µpr∥2Γ−1 + tr

(
Γ−1Γpr

))
+

α
(
∥µ− µpr∥2Γ−1

pr
+ tr

(
Γ−1
pr Γ

))
+

α
1

K

K∑
k=1

∥y − µE −F(uk
draw)∥2Γ−1

E

,(14)

whereK ∈ N and, for k = 1, . . . ,K, uk
draw = µ+Cεk, with εk ∈ RD and εk ∼ N (0, I).

Therefore, at each iteration of the optimization algorithm, uk
draw are drawn from N (µ,Γ).

Approximating the expectation in (7) is typically expensive, even when Quasi-Monte
Carlo methods are used,15 as a large number of samples K is required for convergence.
Given the Cholesky factorizations of Γpr and ΓE the computational cost of evaluating (14)
is O(D3 +KD2 +Kc(F)+KO2), where c(F) is the cost of an evaluation of F . O(D3)
is the cost of solving D linear systems with matrix Γpost or Γpr. O(KD2), O(Kc(F))
and O(KO2) are the costs of computing K samples uk

draw, of K evaluations of F and
of solving K linear systems with matrix ΓE, respectively. The computational costs of the
other terms are lower than the previous ones.

We propose a novel loss function that significantly reduces the previous computational
cost:

Lθ(µ, C) = θ2tr
(
Γ−1Γpr

)
+ ∥µ− µpr∥2Γ−1

pr
+ θ2tr

(
Γ−1
pr Γ

)
+

∥y − µE −F(µ)∥2
Γ−1
E

+

tr

(
Γ−1
E

(
F̃(θC + µ1T

D)−F(µ)1T
D

)(
F̃(θC + µ1T

D)−F(µ)1T
D

)T
)
,(15)

where F̃(A) = [F(A:,1) . . . F(A:,D)] ∈ RO×D, forA ∈ RD×D, is the map F applied
column wise to A. The vector 1D ∈ RD consists of ones and the optimal value for θ ∈
R \ {0} is analyzed in section 3.1.
The new loss function fixes α = 1/2 in the previous one (7) and removes the term ∥µ −
µpr∥2Γ−1 , since it vanishes for µ = µpr as ∥µ − µpr∥2Γ−1

pr
does. The coefficient θ is a

(small) perturbation needed to obtain the following theoretical result. The coefficient θ2

balances the derivatives of Lθ with respect to C. The expected value of (7) is substituted
with the second and third lines of (15) which are more efficient to compute and mimic the
expected value in the affine case (10).
With this novel loss function, we are able to establish the following new theorem.
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Theorem 2. Assume that F is a C1(RD,RO) function, y ∈ RO and that the prior and
noise models are Gaussian and independent, N (µpr,Γpr) and N (µE,ΓE), respectively.
Let (µ̂(θ), Ĉ(θ)) be the stationary points of Lθ(µ, C). Suppose that µ̂ = limθ→0 µ̂(θ)

and Ĉ = limθ→0 Ĉ(θ) exist and are bounded in norm, Ĉ is invertible and the minimization
problem (4) has only one stationary point uMAP.
Let Γ̂ = ĈĈ

T
and define:

µpost = µ̂,

Γpost = Γ̂Γ−1
pr Γ̂.

Then (µpost,Γpost) = (uMAP,ΓLap), where (uMAP,ΓLap) are given by (4) and (5).

Proof. We compute the gradients of Lθ(µ, C):

∂Lθ

∂µ
=2Γ−1

pr (µ− µpr)− 2JT
F (µ)Γ−1

E (y − µE −F(µ))+

2

D∑
k=1

(JF (θC:,k + µ)− JF (µ))
T
Γ−1
E (F(θC:,k + µ)−F(µ)) ,

∂Lθ

∂C
=− 2θ2Γ−1ΓprC

−T + 2θ2Γ−1
pr C+

2θ
[
JT
F (θC:,1 + µ)Γ−1

E (F(θC:,1 + µ)−F(µ)) . . .
]
.

Setting the gradients to vanish and omitting the dependence of (µ̂(θ), Ĉ(θ)) on θ, we get:

Γ−1
pr (µ̂− µpr)− JT

F (µ̂)Γ−1
E (y − µE −F(µ̂))+

D∑
k=1

(
JF (θĈ:,k + µ̂)− JF (µ̂)

)T

Γ−1
E

(
F(θĈ:,k + µ̂)−F(µ̂)

)
= 0,(16)

− Γ̂−1ΓprΓ̂
−1 + Γ−1

pr +

1

θ

[
JT
F (θĈ:,1 + µ̂)Γ−1

E

(
F(θĈ:,1 + µ̂)−F(µ̂)

)
. . .

]
Ĉ−1 = 0.(17)

As F ∈ C1(RD,RO) and Ĉ is bounded in norm, we can expand the terms F(θĈ:,k + µ̂)

and JF (θĈ:,k + µ̂) for θ → 0 as:

F(θĈ:,k + µ̂) = F(µ̂) + θJF (µ̂)Ĉ:,k + o(θ∥Ĉ:,k∥2) = F(µ̂) + θJF (µ̂)Ĉ:,k + o(θ),

JF (θĈ:,k + µ̂) = JF (µ̂) + o(∥Ĉ:,k∥2) = JF (µ̂) + o(1),

where o(·) indicates the small-o notation. The boundedness of Ĉ is needed to remove
∥Ĉ:,k∥2 from o(·). By computing the limit for θ → 0 of equation (16), using F ∈
C1(RD,RO) and that µ̂, Ĉ exist and are bounded, we obtain:

Γ−1
pr (µ̂− µpr)− JT

F (µ̂)Γ−1
E (y − µE −F(µ̂)) + o(θ) →

Γ−1
pr

(
µ̂− µpr

)
− JT

F
(
µ̂
)
Γ−1
E

(
y − µE −F

(
µ̂
))

= 0,

By the above equation, we observe that µpost = µ̂ satisfies the same equation of the
stationary point uMAP of equation (4), therefore, by the uniqueness of the stationary point
of (4), µpost is equal to uMAP.
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Since Ĉ is invertible, Γ̂
−1

exists. We compute the limit of equation (17) for θ → 0:

− Γ̂−1ΓprΓ̂
−1 + Γ−1

pr +
1

θ

(
JT
F (µ̂) + o(1)

)
Γ−1
E

(
θJF (µ̂)Ĉ + o(θ)

)
Ĉ−1 →

− Γ̂
−1

ΓprΓ̂
−1

+ Γ−1
pr + JT

F
(
µ̂
)
Γ−1
E JF

(
µ̂
)
= 0.(18)

Since µ̂ is equal to uMAP, we get:

Γ−1
pr + JT

F
(
µ̂
)
Γ−1
E JT

F
(
µ̂
)
= Γ−1

Lap.

Therefore, from equation (18), Γpost is equal to ΓLap. □

Remark. The above theorem only holds for θ → 0. In practice, θ can be chosen arbi-
trarily small without incurring additional computational cost, as long as machine precision
does not hinder the evaluation of the loss.
Remark. The limθ→0 Lθ(µ, C) corresponds to the loss function of minimization problem
(4), which makes the result µpost = uMAP intuitive. However, it must be shown that the
minimization of Lθ(µ, C) with respect to µ and the limit as θ → 0 commute, as we have
done. Moreover, although taking θ → 0 recovers the minimization problem for uMAP, the
θ dependent terms still enable the estimation of the posterior covariance matrix.
Remark. When F(u) = Fu + f is affine, the result of Theorem 2 holds ∀ θ ∈ R \ {0}
without any hypotheses on µ̂, Ĉ and the minimization problem (4). It is sufficient to sub-
stitute in (16) and (17) the expression of F and JF (u) = F .
Remark. The above theorem does not assume a specific posterior distribution therefore the
mean and covariance estimates hold in general. We choose to approximate the posterior
distribution using a multivariate Gaussian distribution, as shown in (6).
Remark. The assumption of a unique stationary point for (4) is restrictive and generally
holds only when the prior dominates the loss function.

The computational cost of evaluating (15) is O(D3 +Dc(F) +DO2), which follows
from the same cost analysis as for (14). Thanks to the curse of dimensionality, the number
of samples K to accurately estimate an expected value is generally much higher than the
sample space dimension D. Consequently, evaluating (15) is significantly less expensive
than evaluating (14).

2.2. Uncertainty quantification variational autoencoders. An autoencoder consists in
the composition of two maps called encoder and decoder. The encoder maps the inputs
of the autoencoder to a latent space, while the decoder maps the outputs of the encoder
to the original space. Autoencoders typically approximate the identity function, mean-
ing that their inputs and outputs should match. In our method, the encoder is a NN
φ : RO → RD+

D(D+1)
2 , while the decoder corresponds to the map F or an approximation

of it. The latent space of the UQ-VAE represents the mean µ and the Cholesky factor C of
the multivariate normal distribution N (µ,Γ) (Figure 1).
The following Corollary, proven in Ref. 42 and easy to extend to the new loss function
(15), demonstrates the convergence of the outputs of a single-layer linear encoder to the
posterior mean and covariance in the case of F affine.

Corollary 3. Consider a single-layer linear encoder. Let Lθ(ϕ) = Lθ(µ(ϕ),Γ(ϕ)), where
ϕ is the set of weights and biases of the NN. Under the assumptions of Theorem 2 and F
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FIGURE 1. Structure of the UQ-VAE when F is evaluated.

affine, we define:

µ =Wµy + bµ,(19)

C = vec−1
L (l) + diag(σ),(20)

σ = exp (Wσy + bσ) ,(21)
l =Wly + bl,(22)

whereWµ ∈ RD×O andWσ ∈ RD×O,Wl ∈ R
D(D−1)

2 ×O are the encoder weight matrices,
bµ ∈ RD,bσ ∈ RD and bl ∈ R

D(D−1)
2 are the encoder biases. The functions exp,

vecL and diag denote the elementwise exponential function, the vectorization of a strictly
lower triangular matrix and the construction of a diagonal matrix from its vector diagonal,
respectively.
The stationary points ϕ̂ of Lθ(ϕ) are such that (µpost(ϕ̂),Γpost(ϕ̂)) = (uMAP,ΓLap).

For deeper encoders with non linear activation functions, (µ, C) is computed as in (19),
(20), (21) and (22), using the encoder’s outputs in place of Wµy + bµ, Wσy + bσ and
Wly + bl.

In many applications, evaluating F is computationally expensive or F can be unknown.
In such cases, we approximate the map F using a second NN ψ : RD → RO (Figure 2).
To account for the approximation error introduced by the NN ψ, we use an error random
variable Edec ∼ N (µdec,Γdec) in the model (1):

F(U) = ψ(U) + Edec ⇒ Y = ψ(U) + Edec + E.

We assume that Edec and E are independent random variables, so that their sum Edec +E
is distributed as N (µdec+µE,Γdec+ΓE). Defining µẼ = µdec+µE and ΓẼ = Γdec+ΓE,
the corresponding loss function becomes:

θ2tr
(
Γ−1Γpr

)
+ ∥µ− µpr∥2Γ−1

pr
+ θ2tr

(
Γ−1
pr Γ

)
+

∥y − µẼ − ψ(µ)∥2
Γ−1

Ẽ

+

tr

(
Γ−1

Ẽ

(
ψ̃(θC + µ1T

D)− ψ(µ)1T
D

)(
ψ̃(θC + µ1T

D)− ψ(µ)1T
D

)T
)
,(23)

where ψ̃(A) = [ψ(A:,1) . . . ψ(A:,D)] ∈ RO×D, for A ∈ RD×D.
When the UQ-VAE consists of two NNs, its training is performed in two stages: at first
the decoder NN is trained and after the encoder one.45 Simultaneous training of both NNs
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FIGURE 2. Structure of the UQ-VAE using a NN to approximate F .

may lead to unpredictable results, as our analysis of the minima of the loss function (15)
assumes a fixed decoder during optimization.

Remark. In practice, we always use fully connected feed forward NNs as encoders and
decoders. However, the proposed approach is compatible with other NN architectures.
Remark. We train the decoder NN using the squared error between its outputs and the
noiseless observational data.
Remark. After training the decoder NN, we estimate µdec and Γdec by computing the sam-
ple mean and covariance of F(U)− ψ(U) on a test set of approximately 29, 000 samples.
Remark. When a dataset {y(m)}Mm=1, with M ∈ N, is available, we train the encoder by
minimizing the average of the loss functions (15) or (23) over the dataset.

2.2.1. Weights and biases initialization and dataset normalization. The initialization of
the weights and biases of the encoder plays a crucial role in its training. A good initial
guess is obtained by setting µ ∼ µpr and C ∼ Cpr (with Cpr the Cholesky factor of Γpr),
as these values minimize the term θ2tr

(
Γ−1Γpr

)
+ ∥µ − µpr∥2Γ−1

pr
+ θ2tr

(
Γ−1
pr Γ

)
in the

loss function (15). The encoder weights are initialized according to the Xavier uniform
initializer.13 Then, all the weights in the last layer are scaled by 10−4. This ensures that,
up to a small discrepancy, the output of the encoder is given by the biases of the last layer.
All encoder biases are set to zero, except for those of the last layer which are fixed to µpr

and cpr, where cpr is given by applying the inverse of the right hand side transformation
of (20) to Cpr ∈ RD×D.

Since the loss function (15) depends on the mean and covariance of both parameters
and noise, normalizing the dataset (to enhance the UQ-VAE generalization capability) also
affects these quantities.
We consider a dataset {(u(m),y(m))}Mm=1, where M ∈ N, y(m) = F(u(m)) + ε(m), with
u(m) and ε(m) are sampled from N (µpr,Γpr) and N (µE,ΓE), respectively. To normalize
the data within a given range, e.g., [0, 1], we introduce vectors a,b ∈ RD and c,d ∈ RO

such that:

ū(m) = u(m) ⊙ a+ b ∈ [0, 1]D,

ȳ(m) = y(m) ⊙ c+ d ∈ [0, 1]O.

As shown in Section 2.4.1 of Ref. 42, the normalized random variables Ȳ , Ū and Ē
satisfy a model analogous to (1) in the normalized scale, with Ū ∼ N(µ̄pr, Γ̄pr) and
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Ē ∼ N(µ̄E, Γ̄E), where:

µ̄pr = µpr ⊙ a+ b,

Γ̄pr = Γpr ⊙ (aaT),

µ̄E = µE ⊙ c,

Γ̄E = ΓE ⊙ (ccT).

The same normalization is applied to observational data both with and without noise. Once
(µ̄post, Γ̄post) in the normalized scale is computed, we revert to the original scale using the
transformation:

µpost = (µ̄post − b)⊘ a,

Γpost = Γ̄post ⊙ ((1D ⊘ a)(1D ⊘ a)T).

3. NUMERICAL RESULTS

We carry out three benchmark numerical tests to show the capabilities of UQ-VAEs: in
section 3.1, we solve Bayesian inverse problems for the Poisson equation and study the
impact of varying the number of neurons and layers of both the decoder and the encoder,
as well as modifying θ and the robustness with respect to the noise level η, the number
of observations O, the prior distribution N (µpr,Γpr); in section 3.2, we face Bayesian
inverse problems involving an exponential map F , investigate the effect of varying the
dimensions of the parameter and data space, D and O, and compare the performance,
both in terms of computational time and accuracy, of UQ-VAEs trained using the loss
function Lα (7) or Lθ (15); in section 3.3, we address Bayesian inverse problems for a
0D cardiocirculatory model in the context of systemic hypertension (section 3.3.1) and
ventricular septal defects (section 3.3.2). The activation functions of the NNs are ReLU
functions and the data are normalized to the range [0, 1]. Additionally, we always use the
Adam optimizer.18 We tuned the number of neurons and layers of each NN to minimize
the validation loss functions. The generated datasets consist of M samples, which are split
in ⌊9M/10⌋ training samples and M − ⌊9M/10⌋ validation samples, where ⌊·⌋ denotes
the lower integer part.

In the following sections, the true posterior mean and covariance matrix are approxi-
mated using Sobol’ sequences,33 a Quasi-Monte Carlo method that accelerates the conver-
gence of the sample mean to the expected value. Using (2) and (3), we obtain:

EpU|Y(u|y)[u] =
EpU(u)[u pE(y −F(u))]

EpU(u)[pE(y −F(u))]
,(24)

CovpU|Y[u|y](u) =
EpU(u)[uu

T pE(y −F(u))]

EpU(u)[pE(y −F(u))]
−

EpU(u)[u pE(y −F(u))]EpU(u)[u pE(y −F(u))]T

EpU(u)[pE(y −F(u))]2
.(25)

This procedure is computationally expensive and can only be performed for simple prob-
lems.

3.1. Poisson equation. We consider the Poisson equation on the unit square Ω = (0, 1)2:{
−∇(eu(x)∇y(x)) = 17

4 π
2 sin(2πx1) sin(2πx2) x ∈ Ω,

y(x) = 0 x ∈ ∂Ω,
(26)
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where u(x) is the (log) diffusion parameter. We approximate the solution y(x) of the Pois-
son problem by the linear finite element method on a triangular mesh of D = 172 = 289
degrees of freedom.
We define a Gaussian random field on the whole domain Ω, with mean and covariance
functions µpr(x) and Cpr(x, z), for x, z ∈ (0, 1). The parameter U is given by the eval-
uation of this Gaussian random field at the degrees of freedom of the mesh, obtaining
U ∼ N (µpr,Γpr). We define µpr to be zero in Ω and the covariance function Cpr to ensure
the well-posedness of infinite dimensional Bayesian inverse problems.3, 37 We define the
differential operator A:

Au = −γ∆u+ δu in Ω,

where γ, δ > 0. The operator A−2(x, z) = G2(x, z), for (x, z) ∈ Ω, is defined as the
solution operator of:

AG1(x, z) = δx z ∈ Ω,

∇G1(x, z) · n(z) + βG1(x, z) = 0 z ∈ ∂Ω,

AG2(x, z) = G1(x, z) z ∈ Ω,

∇G2(x, z) · n(z) + βG2(x, z) = 0 z ∈ ∂Ω,

where, for x ∈ Ω, δx is the Dirac delta centered in x, n is the unit exterior normal to ∂Ω and
β is chosen to reduce the boundary artifacts.8 We set γ = 0.1 and δ = 0.5. The covariance
function is given by Cpr(x, z) = A− 3

2 (x, z). We compute Cpr using the same mesh and
finite element method as for solving the Poisson problem, via the Python library for inverse
problems hIPPYlib.46–48 Finally, we define (µpr)i = µpr(xi) and (Γpr)i,j = Cpr(xi,xj)
for i, j = 1, · · · , D, where xi are the coordinates of the degrees of freedom of the mesh.
The observational data consist of noisy evaluations of the solution y(x) of (26) at O = 20
random points in the domain Ω.

We generate a dataset {(u(m),y(m))}Mm=1, where M ∈ N and u(m) is sampled from
N (µpr,Γpr). Let ỹ(m) be the noiseless observations of the solution of (26) with parameter
u(m). Then, y(m) = ỹ(m) + ε(m), for m = 1, · · · ,M , where ε(m) is sampled from
N (µE,ΓE) with µE = 0 and ΓE is a diagonal matrix with (ΓE)i,i = (ηmax

j,m
|ỹ(m)

j |)2, for

i = 1, · · · , O and η ∈ R. We fix η = 0.01.
To normalize the data to [0, 1], we apply a uniform normalization to the parameters and

observational data across the entire mesh. We define:

a = (max
i,m

u
(m)
i −min

i,m
u
(m)
i )−1,

b = −amin
i,m

u
(m)
i ,

c = (max
i,m

y
(m)
i −min

i,m
y
(m)
i )−1,

d = −cmin
i,m

y
(m)
i

and set ū(x) = u(x)a+ b and ȳ(x) = y(x)c+ d in the continuous framework. Referring
to section 2.2.1, in the discrete setting, a = a1D, b = b1D, c = c1O and d = d1O. We
can derive the Poisson problem in the normalized scale:{

−∇(e
ū(x)
a ∇ȳ(x)) = ce

b
a
17
4 π

2 sin(2πx1) sin(2πx2) x ∈ Ω,

ȳ(x) = d x ∈ ∂Ω.



13

Decoder
Neurons \ Layers 1 2 3 4 5 6

50 5.8 · 10−4 2.8 · 10−4 2.2 · 10−4 2.0 · 10−4 2.3 · 10−4 2.1 · 10−4

100 7.4 · 10−4 3.1 · 10−4 2.1 · 10−4 1.8 · 10−4 1.5 · 10−4 1.2 · 10−4

150 6.4 · 10−4 2.8 · 10−4 2.3 · 10−4 1.6 · 10−4 1.3 · 10−4 1.4 · 10−4

200 6.4 · 10−4 3.0 · 10−4 2.4 · 10−4 1.8 · 10−4 2.1 · 10−4 1.5 · 10−4

250 5.9 · 10−4 3.4 · 10−4 2.3 · 10−4 2.5 · 10−4 2.1 · 10−4 1.8 · 10−4

Encoder
Neurons \ Layers 1 2 3 4

500 26.8 24.0 25.2 25.7

750 25.6 24.2 24.6 25.5

1000 24.5 23.5 24.9 25.6

1250 24.5 24.0 25.3 26.5

TABLE 1. Final validation loss functions for the decoder and the en-
coder for the Poisson problem.

We perform hyperparameter tuning to select the optimal number of layers and neurons
per layer for both the decoder and the encoder neural networks. We first determine the
best architecture for the decoder network and then use this decoder to train the encoder
with parameter θ = 10−4. According to the hyperparameter tuning results (Table 1), we
select a decoder with 6 hidden layers and 100 neurons per layer, trained on a dataset of
M = 4096 samples. The chosen encoder has 2 hidden layers and 1000 neurons per layer
and is trained on a subset of 100 samples of the decoder dataset. Although the dimension
of the encoder dataset is small with respect to the decoder one, we show in the following
that it still generalizes to unseen data.

We generate 219 samples from the distribution N (µpr,Γpr) to estimate (24) and (25).
We analyze the UQ-VAE performances varying θ in the loss function (23). For the

posterior means EpU|Y(u|y(m))[u] and variances VarpU|Y(u|y(m))[u] (the diagonal of (25)),
with m ∈ {1, . . . ,M}, we compute the relative error with respect to the infinity norms at
each degree of freedom:

eE
pU|Y(u|y(m))

[u] =
|µ(m)

post − EpU|Y(u|y(m))[u]|
∥EpU|Y(u|y(m))[u]∥∞

,(27)

eVar
pU|Y(u|y(m))

[u] =
|diag

(
Γ
(m)
post

)
−VarpU|Y(u|y(m))(u)|

∥VarpU|Y(u|y(m))[u]∥∞
,

where (µ(m)
post,Γ

(m)
post) are the UQ-VAE mean and covariance estimates for them-th sample,

|·| is applied element-wise and ∥·∥∞ is the vector infinite norm. The maximum over the
mesh of these errors is the relative error on the m-th sample in the infinity norm.

The average relative errors on the posterior mean for a test set of 100 samples share
similar trends and magnitudes for all values of θ (Figure 3). The maximum average relative
error on the posterior variance is more than 50% for θ = 10−5 ∨ 10−6, due to the small
gradient of Lθ (23) with respect to C which scales with θ2. For the other values of θ the
errors on the variance are similar. We choose to use in all the tests that follow (also in
section 3.2 and section 3.3) θ = 10−4, because Theorem 2 holds for θ → 0.
For θ = 10−4, the average relative error on the posterior mean and the posterior variance
are less than 11%. Even if there are differences in EpU|Y(u|y(m))[u] and µ

(m)
post, they estimate

the true diffusion coefficients u(m) with the same accuracy (Figure 4), showing that the



14

FIGURE 3. Average relative errors (in logarithmic scale) of the UQ-VAE
mean µ

(m)
post and variance Γ

(m)
post on the posterior mean EpU|Y(u|y(m))[u]

and on the posterior variance VarpU|Y(u|y(m))[u] in dependence of θ for
a test set of 100 samples for the Poisson problem.

FIGURE 4. Averages and standard deviations of the relative errors of the
posterior mean EpU|Y(u|y(m))[u] and µ

(m)
post on the true diffusion coeffi-

cients u(m) for a test set of 100 samples for the Poisson problem.

Offline phase Online phase (100 samples)
UQ-VAE 5.5h 10.74s

Sobol’ sequences 0.6h 8880s

TABLE 2. Comparison between the time required to solve Bayesian
inverse problems with UQ-VAE or approximating (24) and (25) with
Sobol’ sequences.

UQ-VAE approach is effective in estimating parameters in a noisy setting. The relative
errors on the true diffusion coefficients are computed by substituting EpU|Y(u|y(m))[u] with
u(m) in (27).

The offline computational time for the UQ-VAE (generating the dataset and training the
decoder and the encoder) is 5.5h, whereas the one for generating 219 samples to estimate
(24) and (25) is 0.6h (Table 2). The UQ-VAE approach is advantageous on the online
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FIGURE 5. True solutions y(m)(x) with marked observation points,
true diffusion coefficients u(m), posterior and UQ-VAE mean
(EpU|Y(u|y(m))[u] and µ

(m)
post) and variance (VarpU|Y(u|y(m))[u] and

Γ
(m)
post) estimates for three samples. The last two columns are the pos-

terior or UQ-VAE means (continue blue lines) and true diffusion coeffi-
cients (dashed red lines) evaluated at y = 0.5. The width of the shaded
areas is equal to two times the standard deviation.

phase, when the Bayesian inverse problems are solved, with an average elapsed time of
0.1s, compared to the 88.8s required to estimate (24) and (25).

We analyze, for three test samples, the posterior and UQ-VAE estimates for the mean
and variance (Figure 5). The three diffusion coefficients are highly irregular and, when the
data are not informative enough, the estimates are poor, like in the third case. For the first
two cases, both the posterior and UQ-VAE mean are capable of capturing the trend and
the magnitude of the true diffusion coefficient. The two estimates are smoother than the
true diffusion coefficient. The UQ-VAE variance is comparable to the posterior one. The
estimated mean and variance together are able to catch the irregularity of the true diffusion
coefficient, both for the posterior and the UQ-VAE estimates.

We test the UQ-VAE approach on different values for the noise level η and the number
of observation pointsO (Figure 6). For all the values of η andO the posterior and UQ-VAE
mean estimates are in agreement. For η = 0.05 the UQ-VAE variance estimates slightly
differ from the posterior ones, whereas for η = 0.01 the two variances are similar. This also
happens for η = 0.005 with O = 5 ∨ 20. In all such cases, the variance is smaller near the
observational data. For low values of η and large number of observations O, the posterior
distribution is less regular and the variance estimates get worse, even with 219 Quasi-Monte
Carlo samples, making the comparison with the UQ-VAE estimates unfair (as can be seen
for η = 0.005 and O = 40). Indeed, as η decreases or O increases, the determinant of the
noise covariance matrix ΓE decreases. The reduction of the regularity of ΓE corresponds
to a lower regularity for pU|Y(u|y) (2), due to its dependence on ∥·∥Γ−1

E
and |ΓE|−1/2.

Therefore, (24) and (25) require an elevated number of samples to be estimated accurately,
resulting in a high (and unaffordable) computational cost.

Finally, we test the UQ-VAE approach for different exponents ξ of the covariance func-
tion Cpr(x, z) = A−ξ (Figure 7). We consider three different values of ξ in (1, 2) and
use the same neural network architecture for all cases. For ξ = 3/2, we obtain the results
already analyzed in Figures 3 and 4. For ξ = 7/4, the posterior variance is estimated with
similar accuracy as in the ξ = 3/2, while the errors in the estimates of the true parameters
and posterior means are slightly higher. This increase in error is due to hyperparameters
tuning being performed exclusively for the case ξ = 3/2. Nonetheless, the errors remain
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FIGURE 6. Posterior and UQ-VAE estimates for a test sample, with
noise level η varying across rows and number of observation points O
varying across columns. The first row shows the true diffusion coef-
ficient and the corresponding solution with marked observation points.
Estimated means are shown in the second, fourth and sixth rows, while
the third, fifth, seventh rows display the corresponding estimated vari-
ances.

of the same order of magnitude. In the case ξ = 5/4, the average error on the true pa-
rameters is comparable to the other two cases, whereas the errors on the posterior means
and variances are higher. As for a low noise level η and a high number of observations O,
smaller values of ξ reduce the regularity of the prior distribution,which in turn decreases
the regularity of the posterior distribution. As a result, (24) and (25) would require a large
(and computationally infeasible) number of samples to be estimated accurately.

3.2. Exponential Bayesian inverse problem. We test the UQ-VAE approach on a non
linear Bayesian inverse problem with forward map F(u) = eu, where the exponentiation
is applied element wise. We compare the training time and accuracy of the UQ-VAE
trained with loss functions Lα (7) and Lθ (15). To compute Lα, we use a Sobol’ sequence
withK = 212 samples. In this test, we compare the UQ-VAE estimates with the maximum
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FIGURE 7. Average relative errors of UQ-VAE estimates on the true
parameters and posterior means and variances on 100 test samples.

FIGURE 8. Performance comparison in terms of computational time and
accuracy of UQ-VAEs (tested on 100 samples) trained with the loss func-
tion Lα and Lθ on the non linear Bayesian inverse problem with forward
map F(u) = eu.

a posteriori parameter uMAP (4) and the Laplace approximation of the covariance matrix
ΓLap (5) because the true posterior mean (24) and covariance (25) are expensive to estimate
with an exponential map F .

We set the dimensions of the parameter and observational data space equal (D = O)
and vary them from 25 and 150. We set (µpr)i = −3, for i = 1, . . . , D, and Γpr = 4I ,
where I ∈ RD×D is the identity matrix.

We generate a dataset {(u(m),y(m))}Mm=1, where M ∈ N and u(m) is sampled from
N (µpr,Γpr). The noiseless observations are denoted by ỹ(m) = F(u(m)). The noisy ob-
servations are then defined as y(m) = ỹ(m)+ε(m), form = 1, · · · ,M , where ε(m) is sam-
pled from N (µE,ΓE) with µE = 0 and ΓE diagonal has entries (ΓE)i,i = (ηmax

m
|ỹ(m)

i |)2,
for i = 1, · · · , O and η ∈ R. We fix η = 0.01.

We use the true map F as the decoder. The encoder consists of 3 hidden layers with
1000 neurons each and is trained on a dataset of 100 samples.

While the training time of the UQ-VAE using Lα loss increases with D and O, the
training time with Lθ loss is nearly constant (Figure 8). This is because the computational
cost of the training with Lθ is mainly driven by the network dimension. In contrast, with
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FIGURE 9. 0D cardiocirculatory model. We depict pressures and flow
rates in red and blue, respectively, and parameters in black.

Lα, the cost of sampling significantly contributes to the training time, even for small values
of D. The average errors (on a dataset of 100 samples) in the estimation of uMAP, ΓLap

and true parameters follow a similar trend for both loss functions. Nonetheless, training
with Lθ yields lower errors across all metrics. The errors in estimating the true parameters
with both loss functions are slightly higher than those of uMAP, but still comparable.

3.3. 0D cardiocirculatory model. 0D (or lumped-parameter) cardiocirculatory models
represent the human cardiovascular system as an electrical circuit: the current corresponds
to the blood flow through vessels and valves, the electric potential represents the blood
pressure, the electric resistance plays the role of the resistance to blood flow, the capaci-
tance represents the vessel compliance and the inductance corresponds to the blood inertia.
In this context, Bayesian inverse problems are used to personalize the model for individual
patients and provide insights into their clinical condition, while accounting for the uncer-
tainty in the estimated parameters due to measurement errors (and poor observability of
the parameters themselves).

A 0D cardiocirculatory model partitions the cardiovascular system into distinct com-
partments (e.g. right atrium, systemic arteries/veins). The 0D cardiocirculatory model
used here is the one proposed in Ref. 28 (Figure 9). The model consists in the four cardiac
chambers, the systemic and pulmonary circulation, split into arterial and venous compart-
ments.
The 0D cardiocirculatory model depends on the heart rate (HR), which determines the
heartbeat period THB= 60/HR, and on the parameters ǔ listed in Table 3. A subset u of
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Parameter Unit Reference value Description

GSA

EALA mmHg/mL 0.2273 Left atrial active elastance
EBLA mmHg/mL 0.209 Left atrial passive elastance
VU,LA mL 2.0 Left atrial unstressed volume
EALV mmHg/mL 3.0391 Left ventricular active elastance
EBLV mmHg/mL 0.10 Left ventricular passive elastance
VU,LV mL 16.0 Left ventricular unstressed volume
EARA mmHg/mL 0.0429 Right atrial active elastance
EBRA mmHg/mL 0.0636 Right atrial passive elastance
VU,RA mL 2.0 Right atrial unstressed volume
EARV mmHg/mL 0.6683 Right ventricular active elastance
EBRV mmHg/mL 0.07 Right ventricular passive elastance
VU,RV mL 16.0 Right ventricular unstressed volume
Rmin mmHg· s/mL 0.0075 Minimal valve resistance
Rmax mmHg· s/mL 75006.2 Maximal valve resistance
RSYS

AR mmHg· s/mL 0.588 Systemic arterial resistance
CSYS

AR mL/mmHg 0.96 Systemic arterial compliance
LSYS

AR mmHg· s2/mL 0.005 Systemic arterial inertia
RSYS

VEN mmHg· s/mL 0.352 Systemic venous resistance
CSYS

VEN mL/mmHg 60.0 Systemic venous compliance
LSYS

VEN mmHg· s2/mL 0.0005 Systemic venous inertia
RPUL

AR mmHg· s/mL 0.104 Pulmonary arterial resistance
CPUL

AR mL/mmHg 5.0 Pulmonary arterial compliance
LPUL

AR mmHg· s2/mL 0.0005 Pulmonary arterial inertia
RPUL

VEN mmHg· s/mL 0.0105 Pulmonary venous resistance
CPUL

VEN mL/mmHg 16.0 Pulmonary venous compliance
LPUL

VEN mmHg· s2/mL 0.0005 Pulmonary venous inertia
HR s 75 Heart rate

No GSA

tCLA s 0.79THB Time of left atrial contraction
TCLA s 0.11THB Duration of left atrial contraction
tRLA s tCLA + TCLA Time of left atrial relaxation
TRLA s 0.8THB Duration of left atrial relaxation
tCLV s 0.0 Time of left ventricular contraction
TCLV s 0.35THB Duration of left ventricular contraction
tRLV s tCLV + TCLV Time of left ventricular relaxation
TRLV s 0.4TTHB Duration of left ventricular relaxation
tCRA s 0.8THB Time of right atrial contraction
TCRA s 0.1THB Duration of right atrial contraction
tRRA s tCRA + TCRA Time of left atrial relaxation
TRRA s 0.7THB Duration of left atrial relaxation
tCRV s 0.0 Time of right ventricular contraction
TCRV s 0.3THB Duration of left ventricular contraction
tRRV s tCRV + TCRV Time of right ventricular relaxation
TRRV s 0.4THB Duration of left ventricular relaxation

TABLE 3. List of parameters and their reference values for an ideal
healthy individual

these parameters is used to define the model (1), depending on the specific application.
The hemodynamics of the cardiovascular system are described by the following dynamical
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system: 

V̇LA(t) = QPUL
VEN(t)−QMV(t),

V̇LV(t) = QMV(t)−QAV(t),

CSYS
AR ṗSYS

AR (t) = QAV(t)−QSYS
AR (t),

LSYS
AR Q̇SYS

AR (t) = −RSYS
AR QSYS

AR (t) + pSYS
AR (t)− pSYS

VEN(t),

CSYS
VENṗ

SYS
VEN(t) = QSYS

AR (t)−QSYS
VEN(t),

LSYS
VENQ̇

SYS
VEN(t) = −RSYS

VENQ
SYS
VEN(t) + pSYS

VEN(t)− pRA(t),

V̇RA(t) = QSYS
VEN(t)−QTV(t),

V̇RV(t) = QTV(t)−QPV(t),

CPUL
AR ṗPUL

AR (t) = QPV(t)−QPUL
AR (t),

LPUL
AR Q̇PUL

AR (t) = −RPUL
AR QPUL

AR (t) + pPUL
AR (t)− pPUL

VEN(t),

CPUL
VENṗ

PUL
VEN(t) = QPUL

AR (t)−QPUL
VEN(t),

LPUL
VENQ̇

PUL
VEN(t) = −RPUL

VENQ
PUL
VEN(t) + pPUL

VEN(t)− pLA(t),

(28)

coupled with suitable initial conditions x0 and with t ∈ (0, T ]. The model unknowns are
the volumes of the left atrium (VLA) and ventricle (VLV) and of the right atrium (VRA) and
ventricle (VRV), the circulatory pressures of the systemic arteries (pSYS

AR ) and veins (pSYS
VEN)

and of the pulmonary arteries (pPUL
AR ) and veins (pPUL

VEN), the circulatory fluxes of the sys-
temic arteries (QSYS

AR ) and veins (QSYS
VEN) and of the pulmonary arteries (QPUL

AR ) and veins
(QPUL

VEN).
The fluxes through the valves (tricuspid, pulmonary, mitral and aortic) depend on the pres-
sure jump between the upstream and downstream compartments and the resistance through
the valves is given by the non linear function Rvalve as follows:

QTV(t) = Qvalve(pRA(t)− pRV(t)), QMV(t) = Qvalve(pLA(t)− pLV(t)),

QPV(t) = Qvalve(pRV(t)− pPUL
AR (t)), QAV(t) = Qvalve(pLV(t)− pSYS

AR (t)),

Qvalve(∆p) =
∆p

Rvalve(∆p)
, Rvalve(∆p) =

√
RmaxRmin

(
Rmax

Rmin

) arctan(−100π∆p)
π

.

Each cardiac chamber is described as a pressure generator and depends on the periodic
function ec(t) that models the periodicity of each heartbeat.

pc(t) = Ec(t)(Vc(t)− VU,c),

Ec(t) = EBc + EAcec(t),

ec(t) =


1
2

[
1− cos

(
π

TCc
mod (t− tCc, THB)

)]
if mod (t− tCc, THB) < TCc,

1
2

[
1 + cos

(
π

TRc
mod (t− tRc, THB)

)]
if mod (t− tRc, THB) < TRc,

0 otherwise,

for c ∈ {LA,LV,RA,RV }.
We solve the discrete dynamical system for 25 heartbeats (T = 25THB) to approach its

periodic state and focus on the last heartbeat. We compute the model outputs y̌ as functions
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Model output Unit Range Model value Description
LAI−Vmax mL/m2 [16,34]20 33.1 Indexed maximal left atrial volume
LAPmax mmHg [6,20]16 12.0 Maximal left atrial pressure
LAPmin mmHg [-2,9]16 8.1 Minimal left atrial pressure
LAPmean mmHg [4,12]16 10.9 Mean left atrial pressure
LVSV mL [30,80]20 67.6 Left ventricular stroke volume
CI L/min/m2 [2.8,4.2]16 2.8 Cardiac index

LVI−EDV mL/m2 [50,90]16 66.0 Indexed left ventricular end diastolic volume
LVESV mL [18,52]20 50.6 Left ventricular end systolic volume
LVEF % [53,73]20 57.2 Left ventricular ejection fraction

LVPmax mmHg [90,140]16 113.2 Maximal left ventricular pressure
LVPmin mmHg [4,12]16 5.6 Minimal left ventricular pressure
RAPmax mmHg [2,14]16 8.4 Maximal right atrial pressure
RAPmin mmHg [-2,6]16 5.7 Minimal right atrial pressure
RAPmean mmHg [-1,8]16 7.2 Mean right atrial pressure
RVI−EDV mL/m2 [44,80]29 65.8 Indexed right ventricular end diastolic volume
RVI−ESV mL/m2 [19,46]29 28.1 Indexed right ventricular end systolic volume
RVEF % [44,71]29 57.3 Right ventricular ejection fraction

RVPmax mmHg [15,28]16 27.4 Maximal right ventricular pressure
RVPmin mmHg [0,8]16 3.9 Minimal right ventricular pressure
SAPmax mmHg [-,140]20 112.2 Systolic systemic arterial pressure
SAPmin mmHg [-,80]20 62.0 Diastolic systemic arterial pressure
PAPmax mmHg [15,28]16 25.8 Systolic pulmonary arterial pressure
PAPmin mmHg [5,16]16 16.0 Diastolic pulmonary arterial pressure
PAPmean mmHg [10,22]16 20.6 Mean pulmonary arterial pressure
PWPmin mmHg [1,12]16 11.2 Minimal pulmonary wedge pressure
PWPmean mmHg [6,15]16 11.8 Mean pulmonary wedge pressure

SV R mmHg · min/L [11.3,17.5]16 15.7 Systemic vascular resistance
PV R mmHg · min/L [1.9,3.1]16 1.9 Pulmonary vascular resistance

TABLE 4. List of model outputs, their units of measure, the echocardio-
graphic ranges for a healthy individual and the values returned by the 0D
cardiocirculatory model with the reference setting of parameters.

(e.g. the maximum or the mean) of the unknowns x and the parameters ǔ:

y̌ = g({x(t;x0, ǔ), t ∈ [24THB, 25THB]}; ǔ).
The model outputs are defined in Table 4, where a subscript “I-” refers to the indexed vol-
umes, i.e., normalized by the body surface area (BSA). In general, a subset y of the model
outputs is used as observational data in model (1), depending on the specific application.

We determine the reference setting of parameters ǔR to represent an ideal healthy in-
dividual (Table 3). Specifically, we set HR = 75 bpm49 and adjust the values of the other
parameters based on modifications of literature values,1, 10, 43 ensuring that the model out-
puts y̌ fall within echocardiograpic ranges characteristic of a healthy individual (Table 4).

We perform a global sensitivity analysis (GSA) on the ǔ parameters of the 0D car-
diocirculatory model indicated in Table 3 to identify those that most influence a set of
observational data y. This allows to reduce the dimensionality of the parameter space by
focusing on the most significant parameters. We compute total Sobol’ indices34 to evalu-
ate the impact of each model parameter on the variance of each observational data yj, for
j = 1, . . . , O, accounting for both first-order and higher-order interactions among param-
eters:

Sj,T
i = 1− Varp̌(ǔ∼i)[Ep̌(ǔi)[yj|ǔ∼i]]

Varp̌(ǔ)[yj]
,

where p̌ is the sampling pdf of the parameters and ǔ∼i represents the set of all parameters
except for ǔi. We estimate the total Sobol’ indices using Saltelli’s method,30 allowing the



22

Parameter EALV VU,LV RSYS
AR CSYS

AR RSY S
VEN CSYS

VEN RPUL
AR CPUL

AR HR

Modification +40% −10% +50% −40% +5% −5% +10% −10% +10%

TABLE 5. List of further modifications in the parameters ranges for the
GSA to model hypertension. The modifications affect the lower bound
(-) or the upper bound (+) of the ranges.

parameters ǔ to vary in a hypercube. The number of samples for the Saltelli’s method
increases linearly with the number of parameters Nu and a user-defined value N ∈ N as
2N(Nu + 1). We set N = 212. Since the sensitivity analysis depends on the parameter
ranges, we will specify them for the specific application (sections 3.3.1 and 3.3.2). We
will solve Bayesian inverse problems for the parameters u ∈ RD associated with at least
one Sobol index greater than 0.1. All the parameters not selected will be kept fixed at their
reference value.

Remark. The heart rate (HR) is usually measured in clinical practice. In our framework
there are two possibilities to treat HR: ignoring the data and estimating it by means of the
UQ-VAE; developing one decoder that can handle different values for HR. Even if the
second approach reduces the dimension of the parameter space by one, it would require
the training of an encoder for each value of HR because the map F of the mathematical
model (1) would change with HR. Therefore, we restrain ourselves to the first approach.

3.3.1. Systemic hypertension test case. We solve the Bayesian inverse problem for the 0D
cardiocirculatory model in the context of systemic hypertension.27 The chosen observa-
tional data are:

y = [CI,LVI−ESV, LVEF, LVPmax, SAPmax, SAPmin].

These observational data are directly affected by pressure increases in the systemic circu-
lation.

The hypercube used for the sensitivity analysis is built around the reference parameter
setting ǔR, with variations of ±25% relative to ǔR to account for intervariability between
individuals. Additionally, the parameters listed in Table 5 allow for further adjustments to
the lower and upper bounds of the ranges to model systemic hypertension. Based on the
total Sobol’ indices (Figure 10), the selected parameters are:

u = [EALV, R
SYS
AR , CSYS

AR , RSYS
VEN, HR].

Since all entries of the parameter vector u of the 0D cardiocirculatory model are posi-
tive, we work with their logarithms to formulate an unconstrained inverse problem. We
assume the parameter vector to be distributed as a lognormal random variable logU ∼
N (µpr,Γpr). We set the prior mean as µpr = loguR, where uR is the vector of reference
values for u and log is applied element-wise. We let Γpr to be a diagonal matrix. During the
sensitivity analysis, for i = 1, . . . , D, each entry ui of the parameter vector varies in the in-
terval [aiuRi , biu

R
i ] with ai, bi ∈ R+, ai < bi, thus log ui ∈ [log ai+log uRi , log bi+log uRi ].

We set (Γpr)i,i = (log bi − log ai)
2/12.

We generate a dataset {(u(m),y(m))}Mm=1, where M ∈ N and u(m) is sampled from
N (µpr,Γpr). Let ỹ(m) be the noiseless observations of the solution of (28) with pa-
rameter u(m). Then, y(m) = ỹ(m) + ε(m), for m = 1, · · · ,M , where ε(m) is sampled
from N (µE,ΓE) with µE = 0 and ΓE diagonal with (ΓE)i,i = (ηmax

m
|ỹ(m)

i |)2, for

i = 1, · · · , O and η ∈ R. Observe that differently from section 3.1, (ΓE)i,i depends on



23

CI LV
I−

ESV

LV
EF

LV
Pm

ax

SAPm
ax

SAPm
in

EALA

EBLA

V0LA

EALV

EBLV

V0LV

EARA

EBRA

V0RA

EARV

EBRV

V0RV

Rmin

Rmax

RSYS
AR

CSYS
AR

LSYS
AR

RSYS
VEN

CSYS
VEN

LSYS
VEN

RPUL
AR

CPUL
AR

LPUL
AR

RPUL
VEN

CPUL
VEN

LPUL
VEN

HR

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.66 0.44 0.01 0.01 0.00

0.01 0.00 0.00 0.01 0.01 0.00

0.00 0.07 0.05 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.01 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.20 0.15 0.55 0.56 0.69

0.00 0.03 0.02 0.20 0.20 0.16

0.00 0.00 0.00 0.00 0.00 0.00

0.79 0.05 0.05 0.21 0.20 0.04

0.02 0.00 0.00 0.01 0.01 0.01

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.11 0.00 0.29 0.00 0.00 0.12

Sobol indices (ST)

FIGURE 10. Total Sobol’ indices for 0D cardiocirculatory model in the
hypertension case.

the specific observational data because they are associated with different quantities. We fix
η = 0.05.

We use a decoder with 5 hidden layers and 250 neurons per layer trained on a dataset
of M = 4096 samples. The encoder consists of 3 hidden layers and 250 neurons per layer
and is trained on a subset of 100 samples of the decoder dataset.

We generate 217 samples from the distribution N (µpr,Γpr) to estimate (24) and (25).

The UQ-VAE mean µ
(m)
post estimates the posterior mean EpU|Y(u|y(m))[u] with an aver-

age relative error less than 2.0% on 100 test samples (Figure 11). The UQ-VAE covariance
Γ
(m)
post estimates the posterior covariance CovpU|Y(u|y(m))(u) with an average relative error

less than 0.5%. Both the posterior and the UQ-VAE means achieve similar average relative
errors on the true parameters u(m).

The chosen observational data y are related to the practical case of systemic hyper-
tension. We now test the UQ-VAE using 25 equally spaced observations of all the 12
unknowns of (28) in [24THB, 25THB] (O = 300). We perform a new sensitivity analysis
to account for the different observational data and we select the parameters:

u = [EALA, EBLA, EALV, EBLV, EBRA, EARV, EBRV, VU,RV,

RSYS
AR , CSYS

AR , RSYS
VEN, C

SYS
VEN, R

PUL
AR , CPUL

AR , LPUL
AR , HR].

The definition of the prior distribution and of the dataset are analogous to the previous
case. The noise distribution has mean µE = 0 and diagonal covariance matrix ΓE. ΓE is
such that all the observations of the same unknown of (28) are related to the same variance
obtained by taking the maximum of the absolute values of all the corresponding samples
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FIGURE 11. From left to right: average and standard deviation of
the relative errors of the UQ-VAE mean µ

(m)
post on the posterior one

EpU|Y(u|y(m))[u]; average relative error of the UQ-VAE covariance Γ(m)
post

on the posterior one VarpU|Y(u|y(m))[u]; average and standard deviations
of the relative errors of the posterior and UQ-VAE means on the true pa-
rameters u(m). The test are run for 100 samples for the systemic hyper-
tension case and the relative errors and standard deviations are computed
element-wise.

and observations:

(ΓE)i,i =

η max
m

1+25mod(i−1,25)≤k≤25(mod(i−1,25)+1)

|ỹ(m)
k |


2

.

We generate 219 samples from the distribution N (µpr,Γpr) to estimate (24) and (25).
In this case, the UQ-VAE mean is more accurate than the posterior mean in estimating

the true parameters (Figure 12). As in Figure 6, this is because the increase in the number
of observational data corresponds to a decrease in the regularity of pU|Y(u|y) and a poorer
estimate of (24) and (25). Consequently, also the estimates of the posterior mean and
covariance matrix are worse than Figure 11 with average relative errors less than 15%
and 1.6%, respectively. Moreover, the accuracy of the UQ-VAE on the true parameters
is unaffected by the higher number of parameters to estimate with respect to the previous
case.

3.3.2. Ventricular septal defect test case. We solve the Bayesian inverse problem for the
0D cardiocirculatory model in the context of ventricular septal defect.7, 36 This congenital
defect is characterized by a hole in the septum (wall) between the two ventricles. To
account for the blood flow through the ventricular septal defect, the 0D cardiocirculatory
model requires a modification in the differential equations for the volumes of the left and
right ventricles: {

V̇LV(t) = QMV(t)−QAV(t)−QVSD(t),

V̇RV(t) = QTV(t)−QPV(t) +QVSD(t),
(29)
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FIGURE 12. From left to right: average and standard deviation of
the relative errors of the UQ-VAE mean µ

(m)
post on the posterior one

EpU|Y(u|y(m))[u]; average relative error of the UQ-VAE covariance Γ(m)
post

on the posterior one VarpU|Y(u|y(m))[u]; average and standard deviations
of the relative errors of the posterior and UQ-VAE means on the true pa-
rameters u(m). The test are run for 100 samples for the systemic hyper-
tension case and the relative errors and standard deviations are computed
element-wise. The data are 25 equally spaced observations of all the 12
unknowns of (28).

where:

QVSD(t) =
pLV(t)− pRV(t)

RVSD
,

with RVSD representing the resistance to the blood flow through the ventricular septal de-
fect. We use as parameter the radius of the ventricular septal defect rVSD with a reference
value of 0.6rAV = 0.9 cm, where rAV = 1.5 cm is the aortic annulus radius.7 We compute
RVSD by assuming that the length of the ventricular septal defect and the thickness of the
aortic annulus are equal to L and applying two times the Poiseuille law:

RVSD =
8µL

πr4VSD

= Rmin

(
rAV
rVSD

)4

,

where µ denotes the blood viscosity.
The observational data are chosen as follows:

y =[LVPmax, LVPmin, RAPmean, RVPmax, RVPmin, SAPmax, SAPmin,

PAPmax, PAPmin, PAPmean, PWPmean, PV R,QP, QS],

where QP and QS are the mean flows through the pulmonary and aortic valves. These
two observational data are particularly important in the case of ventricular septal defects
because their ratio QP/QS is typically around 1 in healthy individuals, indicating that
the same amount of blood flows through the pulmonary and systemic circulation. In the
case of ventricular septal defect, this ratio increases beyond one, meaning that some of
the oxygenated blood from the lungs flows to the right ventricle, bypassing the systemic
circulation and failing to supply oxygen to the body’s cells.

The hypercube used for the sensitivity analysis is built around the reference setting of
parameters ǔR, accounting for intervariability between individuals by allowing a variation
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FIGURE 13. Total Sobol’ indices for 0D cardiocirculatory model in the
ventricular septal defect case.

of ±25% with respect to ǔR. Based on the sensitivity analysis results (Figure 13), the
selected parameters are:

u = [EBLV, EARV, EBRV, R
SYS
AR , CSYS

AR , RSYS
VEN, R

PUL
AR , rVSD, HR].

Since all entries of the parameter vector u of the 0D cardiocirculatory model are positive,
we work with their logarithms to formulate an unconstrained inverse problem. We assume
that the parameter vector follows a lognormal distribution logU ∼ N (µpr,Γpr). We set
the prior mean as µpr = loguR, where uR is the vector of reference values for u and
log is applied element-wise. We let Γpr to be a diagonal matrix. During the sensitivity
analysis, for i = 1, . . . , D, each entry ui of the parameter vector varies within the range
[0.75uRi , 1.25u

R
i ], so that log ui ∈ [log 0.75+log uRi , log 1.25+log uRi ]. We set (Γpr)i,i =

(log 1.25− log 0.75)2/12.
We generate a dataset {(u(m),y(m))}Mm=1, where M ∈ N and u(m) is sampled from

N (µpr,Γpr). Let ỹ(m) be the noiseless observations of the solution of (28) modified with
(29) with parameter u(m). Then, y(m) = ỹ(m) + ε(m), for m = 1, · · · ,M , where ε(m) is
sampled from N (µE,ΓE) with µE = 0 and ΓE diagonal with (ΓE)i,i = (ηmax

m
|ỹ(m)

i |)2,
for i = 1, · · · , O and η ∈ R. We fix η = 0.05.

We use a decoder with 5 hidden layers and 250 neurons per layer trained on a dataset
of M = 4096 samples. The encoder consists of 3 hidden layers and 250 neurons per layer
and is trained on a subset of 100 samples of the decoder dataset.

We generate 217 samples from the distribution N (µpr,Γpr) to estimate (24) and (25).

The UQ-VAE mean µ
(m)
post estimates the posterior mean EpU|Y(u|y(m))[u] with an aver-

age relative error less than 2.0% on 100 test samples (Figure 14). The UQ-VAE covariance
Γ
(m)
post estimates the posterior covariance CovpU|Y(u|y(m))(u) with an average relative error
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FIGURE 14. From left to right: average and standard deviation of
the relative errors of the UQ-VAE mean µ

(m)
post on the posterior one

EpU|Y(u|y(m))[u]; average relative error of the UQ-VAE covariance Γ(m)
post

on the posterior one VarpU|Y(u|y(m))[u]; average and standard deviations
of the relative errors of the posterior and UQ-VAE means on the true pa-
rameters u(m). The test are run for 100 samples for the ventricular septal
defect case and the relative errors and standard deviations are computed
element-wise.

EBLV EARV EBRV RSYS
AR CSYS

AR RSYS
VEN RPUL

AR rVSD HR
u 0.11 0.70 0.087 0.66 1.1 0.32 0.10 0.79 82

µpost 0.09 0.64 0.074 0.62 1.0 0.32 0.09 0.82 82

Relative error 0.14 0.08 0.15 0.07 0.06 0.01 0.10 0.04 0.01

TABLE 6. True and estimated parameter, along with their relative error,
for a test sample of the 0D cardiocirculatory model with VSD.

less than 0.2%. Both the posterior and the UQ-VAE means achieve similar average relative
errors on the true parameters u(m).

We perform forward uncertainty quantification of a single test sample. We use a Sobol’
sequence to generate 216 parameter samples from the approximate posterior distribution
qϕ(u|y) = N (µpost,Γpost). For each parameter sample, we run the 0D cardiocirculatory
model with the VSD and compute the mean and standard deviation of the resulting time
transients pressures and volumes in the four cardiac chambers. We compare the means and
standard deviation of the estimated pressure-volume (PV) loops with the true PV loops
(Figure 15). PV loops are indicators of cardiac dysfunction and their accurate estimation
provides valuable clinical insights into a patient’s condition. The estimated PV loops for
the right atrium and both ventricles are highly accurate, with smaller uncertainties observed
in the left ventricle. The estimation for the left atrium is less accurate compared to the
other chambers. This discrepancy may be attributed to the high estimation error in EBLV

(Table 6) which affects both the pressure and volume in the left atrium. Another possible
explanation is that the true posterior distribution may not be Gaussian, as we assumed in
our approximation, potentially introducing a bias in the estimated distribution.
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FIGURE 15. Comparison between the true PV loops (blue) and the mean
(orange) of those estimated by sampling the parameters from the ap-
proximate posterior distribution qϕ(u|y). The shaded area represents
the standard deviation of the estimated PV loops.

4. CONCLUSIONS

We proposed an improvement (in the form of a novel loss function) of Uncertainty
Quantification Variational AutoEncoders (UQ-VAE) for solving Bayesian inverse prob-
lems. We introduced a new loss function that significantly reduces the computational cost
of a single evaluation, compared to the loss function proposed in Ref. 42, while preserving
a relationship between its minimum (µ̂, Γ̂) and (uMAP,ΓLap) when the forward map F in
(1) is affine (Theorem 1 and Theorem 2) and extending the result to the non affine case.

We showed the capabilities of the UQ-VAEs to approximate both the mean and covari-
ance of the posterior distribution in the cases of the Poisson problem (section 3.1), a non
linear problem (section 3.2) and a 0D cardiocirculatory model for systemic hypertension
(section 3.3.1) and for ventricular septal defect (section 3.3.2).
With few observational data, the UQ-VAE estimates of the true parameters are as accurate
as the posterior mean. With a large number of observational data, the true parameters were
estimated better using the UQ-VAE mean rather than the posterior one, due to the latter
being poorly approximated by the sample mean in the case of low regularity of the poste-
rior distribution. A similar behavior was observed when the noise level η decreased from
high to low. These results show that the UQ-VAE approach is effective in estimating model
parameters by solving inverse problems, even for low regular posterior distributions.
The main advantage of a trained UQ-VAEs is in performing inverse uncertainty quan-
tification on the estimated parameters in a short computational time. UQ-VAEs estimated
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posterior covariance matrices, with average relative errors less than 1.6% for the 0D cardio-
circulatory model and a test set of 100 samples. The average relative error on the posterior
variance in the case of the Poisson problem for a test set of 100 samples was less than 11%.
For this problem, the UQ-VAE estimated about 42, 000 coefficients (D+D(D+1)/2, with
D = 172) for the mean and the covariance matrix, maintaining a good accuracy.

The proposed novel loss function significantly reduced the training time compared to
the previous formulation, while also improving accuracy in estimating (uMAP,ΓLap). This
reduction in computational cost enables the solution of high dimensional Bayesian inverse
problems that were previously computationally infeasible.

A limitation of UQ-VAEs arises when the map F is approximated by a NN ψ. In this
case, the decoder is trained on noiseless observational data and the approximation error is
also computed using such data, which is only feasible within an in silico framework. In
contrast, the encoder is trained using noisy observational data. When the map F is known,
noiseless observational data are no longer required: an advantage in realistic scenarios
where observational data are inherently noisy.
Moreover, the decoder is trained using a supervised approach, with paired input and output
data, whereas the encoder is trained in a semi-supervised manner, requiring only obser-
vational data and prior knowledge about the distribution of the parameters. In real case
scenarios, the observational data of a phenomenon are directly measured, while the prior
knowledge is represented by a mathematical model describing the phenomenon. The prior
mean can be fixed to a reference setting of the model parameters and the prior covariance
can be defined by a variation of the prior mean, as we have done in section 3. Therefore, a
semi-supervised approach for training the decoder, which requires only observational data,
would broaden the applicability of UQ-VAEs, as it would eliminate the need for in silico
generated parameters and observational data.
Finally, we approximate the posterior distribution using a Gaussian distribution, which is
not correct for general maps F from parameters to observational data. This limitation can
be addressed by using hierarchical VAEs, which enable sampling from more expressive
approximate posteriors.19, 35, 44
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