
MOX-Report No. 56/2022

lifex: a flexible, high performance library for the
numerical solution of complex finite element problems

Africa, P.C.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it

lifex: a flexible, high performance library for the
numerical solution of complex finite element problems

P. C. Africa

MOX, Department of Mathematics, Politecnico di Milano
Piazza Leonardo da Vinci, 32, 20133, Milano (Italy)

Abstract

Numerical simulations are ubiquitous in mathematical and computational modeling, where many indus-
trial and clinical applications are required to deal with multiphysics problems and with complex systems
characterized by multiple spatial and temporal scales.

This document introduces the design and the capabilities of lifex, an open source C++ library for
high performance finite element simulations of multiphysics, multiscale and multidomain problems. lifex

offers a versatile solution to answer the emerging need for efficient computational tools that are also easily
approachable by a wide community of users and developers. We showcase illustrative examples of use,
benchmarks, advanced application scenarios and demonstrate its parallel performance up to thousands of
cores.

Keywords: mathematical software, high performance computing, scientific computing, finite elements,
numerical simulations, multiphysics problems
PACS: 02.30.Jr, 02.60.Cb, 02.70.-c, 02.70.Dh
2020 MSC: 35-04, 65-04, 65Y05, 65Y20, 68-04, 68N30

Code repository https://gitlab.com/lifex/lifex

Homepage https://lifex.gitlab.io/

Documentation https://lifex.gitlab.io/lifex/

License LGPLv3
Programming language and tools C++ (standard ≥ 17)

MPI

CMake ≥ 3.12.0
Third-party dependencies deal.II ≥ 9.3.0

VTK ≥ 9.0.0
Boost ≥ 1.76.0

Table 1: lifex metadata.

1. Background

A broad range of applications in biology, medicine, physics, engineering, astronomy, energy, environmen-
tal and material sciences can be described by multiple complex physical processes interacting at different
spatial and temporal scales [1]. Such models can be seen as agglomerations of well-defined physics referred
to as core models. Therefore, it is fundamental to develop new computational frameworks for the numerical

Email address: pasqualeclaudio.africa@polimi.it (P. C. Africa)

https://gitlab.com/lifex/lifex
https://lifex.gitlab.io/
https://lifex.gitlab.io/lifex/
https://www.gnu.org/licenses/lgpl-3.0.html

Figure 1: lifex official logo. This image is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License.

solution of multiphysics, multiscale, multidomain problems. Such tools should aim at reproducibility of in
silico experiments while providing at the same time a stable and intuitive simulation environment without
compromising the computational accuracy, efficiency and universality.

The development of tool of this kind plays a central role in decoupling the software development phase
from the time-consuming process of performing different kinds of analysis – from forward simulations to
sensitivity analysis, optimization, and uncertainty quantification – and in enabling the simulation of each
core model both as standalone and in various coupled configurations [2].

In this work we introduce lifex (pronounced /,laIf"Eks/, metadata listed in Tab. 1 and official logo
shown in Fig. 1), an open source library for the numerical solution of Partial Differential Equations (PDEs)
and related coupled problems. It is written in C++ using modern programming techniques available in the
C++17 standard and builds upon the deal.II 9.3.1 [3] Finite Element (FE) core. lifex aims at providing
a flexible, intuitive, yet robust and high performance tool simplifying the definition of complex physical
models and parameters, coupling and post-processing.

lifex enables its users to shift the focus from technical numerical details to the plain mathematical
formulation of the problem of interest. The library provides extensive documentation and a number of test
cases covering a wide range of numerical applications and coupling strategies.

While serving similar purposes as other multiphysics libraries already available in the open source com-
munity, such as FEniCS [4, 5], MFEM [6], MOOSE [7] and preCICE [8], lifex offers several unique features,
including:

• an intuitive user interface with extreme ease of use;

• a open source license that allows for unrestricted academic use;

• modern programming paradigms by design, leveraging the C++17 standard, and up-to-date versions of
third-party dependencies;

• high parallel scalability;

• interoperability, i.e. the possibility to import (export) data and meshes from (to) common file formats,
with reference in particular to VTK;

• support for arbitrary finite elements and the possibility to import meshes with either hexahedral or
tetrahedral elements [9];

• a clean and meticulously documented code base.

All of these features will be highlighted hereafter in this manuscript.

2. Software description

lifex has been conceived in 2019 as an academic research library in the framework of the iHEART project
(see Sec. Acknowledgements) at Politecnico di Milano, with a primary focus on mathematical models and
numerical schemes for integrated simulations of the cardiac function.

Since its initial design, many modules for the simulation of different core models were added to the code
base. The development of lifex has been founded on strict coding conventions and practices [10]. The fast

2

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://vtk.org/
https://iheart.polimi.it/

increase of the number developers and users is a testament to the fact that its kernel is intuitive, fast and
general enough to be used for diverse applications and worthy of being built and released as a standalone
library.

Third-party dependencies of lifex include: deal.II (configured with support to PETSc [11] and Trilinos
[12]), VTK, and Boost. lifex can be configured to use, by default, linear algebra data structures and algo-
rithms from PETSc, Trilinos (through the interfaces exposed by deal.II) or deal.II itself; where needed,
a specific datatype or solver provided by one of the three backends may also be hard-coded, disregarding
the default type lifex was configured with. All the code is natively parallel through the Message Passing
Interface (MPI): following a distributed memory paradigm, the global mesh is decomposed so that each MPI

process owns and stores only a subset of cells.
This library aspires for maximum portabilty, having being deployed successfully on Linux, Windows and

macOS operating systems. This builds upon advanced deployment technology, more specifically: mk (a set of
portable, pre-compiled scientific packages for x86-64 Linux systems), lifex-env (a set of build-from-source
shell scripts, deliberately inspired from candi), or via Spack. Pre-built Docker images with all dependencies
installed are also ready for download and use. More details can be found on lifex website.

2.1. Overview

Structurally, the key features of lifex can be grouped in three main components:

1. an abstraction layer built on top of the deal.II FE library, exposing abstract numerical helpers
as essential building blocks that foster the development of advanced data structures and numeri-
cal schemes for time integration, linearization, solving and preconditioning linear systems, imposing
boundary conditions and mesh handling;

2. a framework for multiphysics coupling, with functionalities enabling to transfer solution fields and
data from one core model to the other, either in the same domain or across multiple domains;

3. a seamless user interface through several advanced Input/Output (I/O) capabilities, with a focus on
importing data coming from the post-processing of experimental results, imaging techniques or other
numerical simulations, e.g. with the help of the VTK library.

The main code components, classes and their interaction falling into these three categories are depicted
in Fig. 2.

All lifex executables belong to one of three main categories.

apps:
generic applications that are not model-specific, such as tools for printing mesh statistics or for converting
between compatible file formats.

examples:
problems and solvers that define specific model or geometrical parameters, such as boundary conditions,
initial conditions, domain, . . .

tests:
executables used for automatic testing (run via CTest), automatically run on continuous integration
services at each git push on GitLab remote. Tests also include a number of tutorials, which can be used
as prototypes for building new applications. All tests and tutorials are used to determine the overall
code coverage, i.e. a metric that determines the number of lines of code that are successfully validated
by the test procedure.

2.2. Implementation

All lifex applications are associated with a set of common attributes, such as: user-specified command
line flags; the name of a parameter file, i.e. a file with a tree-like structure containing all configurations,
parameters and settings used to run the executable; a subsection path, i.e. the path in the parameter file

3

https://www.dealii.org/
https://www.mcs.anl.gov/petsc/
https://trilinos.github.io/
https://vtk.org/
https://www.boost.org/
https://github.com/elauksap/mk
https://gitlab.com/lifex/lifex-env
https://github.com/dealii/candi
https://spack.io/
https://www.docker.com/
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Testing%20With%20CMake%20and%20CTest.html
https://gitlab.com/

Figure 2: Overview of lifex main components. The main classes and their interaction are shown, grouped in three categories:
abstract numerical helpers (blue), multiphysics coupling (red), user interface (yellow).

associated with the currently open subsection; an execution mode flag that specifies whether to generate a
new parameter file or actually execute the app; an output directory, which will contain all output files; MPI
rank and size used for parallel computations. Upon running, such attributes are shared among instances of
all classes.

Moreover, all main classes are designed in such a way to expose their own specific parameters, such as
geometry, physical parameters, discretization schemes, numerical settings, I/O options, from the parameter
file.

The following three main classes are used to define a global, common interface for all lifex applications:

Core:
a class implemented following the singleton design pattern that stores attributes that are global and
common to all other classes, such as the ones mentioned above.

CoreModel:
an abstract class that inherits from Core and extends it with pure virtual methods that define the interface
exposed by each core model or solver throughout lifex. Classes within the CoreModel hierarchy expose
a set of parameters that configure their behavior. Such parameters are exposed to the user through the
parameter file (see Sec. 2.2.3). A sample code snippet will be provided and discussed in Sec. 2.3.

lifex init:
a lifespan handler that takes care of properly initializing all attributes and dependencies needed by each
run, such as the instance of the singleton Core and MPI; an instance of this class is typically constructed
at the very beginning of the main() function and destroyed at the program end.

More specific, high level data structures are described below.

4

2.2.1. Abstract numerical helpers

A huge part of lifex consists of abstract wrappers and helpers: most of these classes explicitly invoke
or refer to deal.II design and features [13], with the goal of providing a higher level interface to them and
facilitating the implementation of advanced numerical schemes for a given problem. The main classes are
described below.

MeshHandler:
a wrapper around deal.II distributed meshes. The user can select whether to import a mesh with hexa-
hedral or tetrahedral elements; depending on this choice, this class owns an instance of a distributed or
a fullydistributed triangulation from deal.II; the latter is a recent introduction that adds support
to tetrahedral meshes [3], which at the time of writing is still to be consolidated. The MeshHandler class
tightly interacts with MeshInfo, that parses information from the input mesh such as volume and surface
tags to be used, for instance, to impose different boundary conditions on different parts of the boundary
or to differentiate material properties in different sub-regions. Helper functions (implemented in the
geometry/mesh info and geometry/finders modules) allow the computation of (sub)domain volumes
and boundary surfaces or to locate, e.g., the closest degrees of freedom, mesh vertex or boundary face
to a given input point.

BCHandler:
a helper class to impose boundary conditions; Dirichlet boundary conditions can be applied directly to
a FE vector or imposed as linear constraints to the linear systems arising from a FE discretization. For
vector problems, the normal flux or tangential flux can also be imposed. A helper method to assemble
Neumann and Robin-like contributions to a local system right-hand side is also provided.

LinearSolverHandler:
for a (sparse, distributed) linear system, this class provides a simple interface that enables the user to
select at run-time which linear solver to use and all of its options (for instance, maximum number of
iterations, tolerances, stopping criteria, history log, . . .), parsed from parameter files. Many common
solvers are already included, such as CG, GMRES, BiCGStab, MinRes, FGMRES, but in principle any solver
exposed by deal.II (including those from PETSc and Trilinos) is supported. The complete suite of
solvers from PETSc is still accessible via the -options file command-line flag, forwarded from lifex to
PETSc.

PreconditionerHandler:
analogously to LinearSolverHandler, this class exposes parameters that are used for the preconditioning
of linear systems. It supports many types of preconditioner, such as Algebraic Multi-Grid (AMG), block
Jacobi, additive Schwarz (SOR, SSOR, block SOR, block SSOR, ILU, ILUT), and can be easily extended
to support more.

BDFHandler:
for time dependent problems, semi-implicit Backward Difference Formula (BDF) time discretization
schemes [14] are implemented in this class, which deals with storing the information to advance the
problem from one time step to the next one. This class stores and exposes the BDF solution and its
extrapolation and can be easily extended to different time advancing schemes.

NonLinearSolverHandler:
for solving non-linear problems, a family of Newton methods is provided. An abstract implementation
requires the user to specify an assemble function, that assembles the Jacobian matrix and the residual
vector, and a solve function that assembles the preconditioner and solves the linear system associated
with each non-linear iteration; the two functions must return the norms of residual, solution and Newton
increment, to be used as possible stopping criteria. The frozen Jacobian (or Jacobian lagging) approach
[15], which consists of re-assembling the Jacobian only once every n time steps, can be toggled to in-
crease the computational efficiency. Two specializations for the quasi-Newton method with the Jacobian
matrix approximated via finite differences [16] and for the inexact Newton method [17] are also supplied.

5

Figure 3: Possible solution schemes for a geometrically coupled problem: monolithic (left) solution scheme vs. partitioned
(right). Reprinted from [21]. The original image is licensed under a CC BY 3.0 License.

Moreover, each non-linear solution scheme can be equipped with proper acceleration strategies (static re-
laxation, Aitken [18], Anderson [19] acceleration) to accelerate convergence. In addition to the non-linear
solver handler, the user can benefit from the use of automatic differentiation (with support to Sacado

and ADOL-C interfaces exposed by deal.II), demonstrated on Tutorial04 AD and Tutorial07 AD, which
allows to compute the derivatives of often complicated functions to a very high accuracy.

2.2.2. Multiphysics coupling

The complexity of multiphysics, multiscale and multidomain problem can be eased by the help of three
hierarchies of classes. They all serve the purpose of transferring solution fields and data from one core model
to the other, or across internal interfaces.

In order to keep the code as general as possible, we assume that different core models can be solved using
arbitrarily independent discretization schemes, such as different finite element degrees or mesh resolutions.
This allows to better capture all the physical phenomena involved, whose dynamics can be characterized by
extremely different spatial and temporal scales.

We remark that problems involving more than one physical model (possibly on multiple domains sharing
a common interface, such as in the case of Fluid-Structure Interaction) can be generally solved using either
monolithic or partitioned algorithms [20], as schematized in Fig. 3. In the former case, a global system
involving all the unknowns from all problems is assembled and solved (at each time step); in the latter, each
sub-problem is solved independently and coupling conditions are imposed, e.g. using explicit schemes or
sub-iterating with a fixed-point scheme until convergence of coupling conditions is reached. Both choices
are possible within lifex and illustrated on a number of examples and tests.

QuadratureEvaluation:
this class provides a high level interface for the evaluation of arbitrary analytic functions or more complex
data structures at a given quadrature point. User-defined classes deriving from QuadratureEvaluation

can be easily implemented for scalar, vector or tensor fields. Furthermore, the QuadratureEvaluationFEM
hierarchy of classes is implemented to enable the coupling of multiple physical models solved in the same
domain. The different problems can be discretized using different finite element degrees and the in-
tegrals arising from the weak formulation can be approximated using quadrature formulas of different
type and/or accuracy. The QuadratureEvaluationFEM classes provide an interface similar to that of
FEValues from deal.II: such objects are constructed using the DoFHandler associated with the finite
element field to evaluate and the quadrature rule used for the target problem. By re-initializing such
objects on each mesh cell, the input field can be evaluated at the corresponding quadrature points. lifex

provides specializations to automatically evaluate finite element solutions, gradients and divergence of a
given solution vector.

ProjectionL2:
instead of the exact numerical evaluation allowed by QuadratureEvaluation classes, a smoothed L2

projection approach can be considered. Given a function f(x), this class computes a finite element
solution fh(x) that satisfies (ε∇fh,∇φi)Ω + (fh, φi)Ω = (f, φi)Ω for each basis function φi in the chosen
finite element space. The numerical solution to this problem clearly involves a mass matrix: its lumping
can be toggled and the regularization parameter ε can be tuned in order to avoid numerical oscillations,

6

https://creativecommons.org/licenses/by/3.0/
https://trilinos.github.io/sacado.html
https://github.com/coin-or/ADOL-C

Figure 4: Example of handling two domains Ω1 (left) and Ω2 (right) sharing a common interface with conforming mesh
discretizations. The InterfaceHandler is able to properly deal with non-conforming parallel partitioning.

e.g. in the case of coarse meshes [22]. The solution fh thus obtained can be easily evaluated at quadrature
nodes associated with the target problem.

InterfaceHandler:
consider two subdomains Ω1 and Ω2, sharing a common interface Σ, with conforming discretizations
and let u1 and u2 be finite element functions defined on the two subdomains, typically representing
solutions to differential problems defined on the two subdomains. Suppose that the problem defined
on Ω1 (Ω2) involves conditions on Σ that depend on u2 (u1) [23, 20]. This class manages, for each of
the subdomains, the extraction of interface data on Σ from the other subdomain and its application
as a boundary condition on Σ. InterfaceHandler also deals with interface maps, i.e. two mappings
of degrees of between the local interface Σ and the global domains Ω1 and Ω2. This is of critical
importance in parallel simulations, where the parallel partitioning on both domains can be different,
such as the example shown in Fig. 4. This class only deals with conforming meshes, whereas extensions
to non-conforming discretizations, such as the INTERNODES technique [24], are still under development.

The last case to be considered is transferring solutions between multiple core models solved using the
same finite element discretization but with different mesh resolutions. For nested hexahedral grids, the
VectorTools namespace of deal.II already provides functions that do exactly what is needed. This proce-
dure is hardly generalizable as it tightly depends on how the different meshes have been generated and on the
mesh element type. For instance, transfer operator built upon Radial Basis Function (RBF) interpolators
could be used in the case of non-conforming discretizations [25, 26] but are still to be implemented in lifex.

Clearly, both approaches can be combined in order to couple different models solved with different finite
element approximations and different mesh resolutions.

2.2.3. User interface

CommandLineParser:
lifex makes use of the lightweight clipp interface for parsing command-line arguments. All executables
expose a set of command-line options, which can be printed using the -h (or --help) flag:

7

https://github.com/muellan/clipp

./ executable_name -h

ParamHandler:
each lifex application or example defines a set of parameters that are required in order to be run. They
involve problem-specific parameters (such as constitutive relations, geometry, time interval, boundary
conditions, . . .), numerical parameters (types of linear/non-linear solvers, tolerances, maximum number
of iterations, . . .), I/O options, . . . In case an application has sub-dependencies (such as a linear solver),
also the related parameters are included (typically in a proper subsection). Parameters are organized in
a tree-like structure following the functionalities exposed by the ParameterHandler class from deal.II.
The first step before running any executable is to generate the default parameter file(s). This is done
via the -g (or --generate-params) flag:

./ executable_name -g -f filename.ext

At user’s option, in order to guarantee a flexible interface to external file processing tools, the parameter
file extension ext can be chosen among three different interchangeable file formats prm, json or xml,
sorted from the most human-readable to the most machine-readable.

An excerpt of a prm file is the following:

subsection Problem

subsection Mesh and space discretization

Here goes the parameter description.

set Element type = Hex

...

end

...

subsection Linear solver

set Type = GMRES

subsection GMRES

set Max. number of temporary vectors = 100

...

end

end

...

subsection Preconditioner

set Type = AMG

subsection AMG

set W-cycle = true

...

end

end

Listing 1: Example of parameter file in prm format.

Omitting the -g flag reads an existing parameter file and runs the simulation.

The ParamHandler class of lifex extends the deal.II class by two main functionalities:

verbosity control:
by default, only parameters considered with a standard verbosity are printed. In order to customize
the user experience, the verbosity of each parameter can be decreased (minimal) or increased (full)
from the source code. A parameter file containing a minimal (full) set of parameters can be generated
by passing the optional flag minimal (full) to the -g flag, respectively:

./ executable_name -g [minimal ,full] \

-f filename.ext

8

If the -g is provided without any further specification, the intermediate level of verbosity is assumed.

multiple default values:
in principle, each application could be run to simulate different scenarios or simply with different
pre-defined sets of parameters; lifex gives the possibility to provide multiple default parameter files
out of the box. The ParamHandler class can read user-provided files in json format specifying a list
of parameter names and their (new) default values, which will be appended to the complete set of
parameters and written to file, ready to use (see, e.g., the time interpolation test).

Utilities for parsing lists of values are also provided in the param handler helpers module for conve-
nience of use.

(De-)serialization:
lifex includes a checkpointing system that allows for all aspects of a simulation to be serialized to
file. This allows to recover a simulation state after an unexpected failure, to restart it after maxi-
mum computational wall time has been reached, or simply to initialize a simulation with custom input
data. Convenient tools for (de-)serializing (distributed) meshes and solution vectors is provided in the
io/serialization module, with interface to deal.II-compatible binary files.

CSV readers and writers:
the simplicity of use of Comma-Separated Values (CSV) files is widespread to process data organized as
fields. Many utility functions and classes are present in lifex to read and write CSV files by converting
number and text values into deal.II data structures (vectors, matrices, . . .). This enables to easily
post-process simulation results, e.g. by exporting point-wise variables at each time step.

TimeInterpolation:
many applications require to resample discrete sets of data at arbitrary points, such as time dependent
variables that need to be interpolated in correspondence of the time steps performed by the numerical
simulation. The TimeInterpolation class provides methods based on: linear interpolation, cubic splines,
smoothing cubic splines, trigonometric interpolation (discrete Fourier transform) and linear and spline
interpolation of the derivative of the input data.

VTKFunction and VTKPreprocess:
many physical problems are characterized by coefficients that are derived from experimental data or
imaging techniques, such as segmented geometries of organs from Magnetic Resonance Imaging (MRI)
or Computer Tomography (CT) scans [27, 28], or from post-processing of other numerical simulation
steps [29]. VTK toolkit certainly defines some of the most common data formats to deal with data
defined over volumes (vtkUnstructuredGrids) or surfaces (vtkPolyData). Moreover, it is also used in
sophisticated pipelines for surface processing and mesh generation [30]. lifex provides a class named
VTKFunction, inheriting from dealii::Function, that imports a VTK file containing a cell or point data
field and evaluates it at an arbitrary point, possibly belonging to a related computational mesh. Three
possible evaluation methods are available, namely closest-point, linear projection and signed distance.
Finally, VTKPreprocess exploits VTKFunction to interpolate input VTK data onto finite element vectors,
which are serialized to file for later importing and reuse in numerical simulations.

2.3. Sample code

The following code illustrates a sample code snippet with comments, containing the minimal interface
exposed by the vast majority of all lifex classes, i.e. those inheriting from CoreModel. In particular, the
declare_parameters and parse_parameters methods are pure virtual and must be overridden, whereas
the run method is virtual and has an empty definition by default. An example on how to locally adjust the
verbosity of some parameters is also shown. Finally, this sample class makes use of a LinearSolverHandler,
for which we also declare and parse related parameters.

9

https://vtk.org/

namespace lifex

{

class Problem : public CoreModel

{

public:

// Specify the subsection path where to

// declare current parameters.

Problem(const std:: string &subsection_path)

: CoreModel(subsection_path)

// Specify a "relative" subsection.

// Subpaths are separated by a "/".

, linear_solver(

prm_subsection_path + " / Linear solver",

/* ... */)

{}

virtual void

declare_parameters(ParamHandler ¶ms) const override

{

// Navigate subsections and declare parameters.

params.enter_subsection_path(prm_subsection_path);

{

// Problem -dependent parameters.

// ...

params.set_verbosity(VerbosityParam ::Full);

{

// If -g full is *not* specified ,

// the parameters declared here will

// be hidden from the parameter file.

// ...

}

params.reset_verbosity ();

}

params.leave_subsection_path ();

linear_solver.declare_parameters(params);

}

virtual void

parse_parameters(ParamHandler ¶ms) override

{

// Actually parse parameter file.

params.parse();

// Analogously to declare_parameters ,

// navigate subsections , read parameters

// and possibly store them into class

// members.

// ...

}

virtual void

run() override

{

// Create mesh.

// Setup system.

// Assemble system.

// Solve system.

// Output solution.

}

private:

10

LinearSolverHandler linear_solver;

// ...

};

}

3. Applications

lifex is capable of solving complex multiphysics problems. The functionalities described in the previous
section are pointed out in a series of tutorials that are found in the source code as tests. The tutorials are
sorted by increasing complexity and involve different kind of scalar equations and coupled problems solved
either monolithically or partitioned, namely:

1. linear elliptic equation;

2. non-linear elliptic equation;

3. linear parabolic equation;

4. non-linear parabolic equation;

5. non-linear parabolic equation, with Jacobian matrix assembled via automatic differentiation;

6. parabolic system of equations (solved monolithically);

7. parabolic system of equations (solved using a partitioned scheme and exploiting QuadratureEvaluationFEM
capabilities);

8. Cahn-Hilliard equation.

The mathematical and numerical formulation for all of these problems is detailed in the package docu-
mentation. The results of some of these simulations are showcased below.

Scalability study

We perform a strong scaling test on Tutorial06, where the following equations are solved:
∂u

∂t
−∆u+ u2 = f, in Ω× (0, T],

∂v

∂t
−∆v + uv = g, in Ω× (0, T],

where Ω = (−1, 1)3, with suitable data, boundary and initial conditions (please refer to the documentation
for further details).

The two equations are discretized in time using the BDFHandler of order 1 for u and 3 for v, decoupled
using an explicit partitioned scheme and linearized using the NonLinearSolverHandler class. Finally, the
space discretization makes use of linear (u) and quadratic (v) finite elements, respectively. The solution
u appearing in the second equation is evaluated using the capabilities of QuadratureEvaluationFEM. The
mesh size consists of 2’097’152 cells (average cell diameter: h ≈ 0.027) and 19’121’282 degrees of freedom
(2’146’689 for u, 16’974’593 for v), the time step is chosen equal to ∆t = 0.1 and the simulation is run until
T = 1.

The scalability test has been run on the GALILEO100 supercomputer available at CINECA (Intel Cascade-
Lake 8260, 2.40GHz). We have recorded the total simulation time as well as partial times spent in the
assembly and in the linear solving phases; the speedup for the three quantities shown in Fig. 5 confirms that
on such benchmark problem lifex main data structures scale approximately linearly up to 4096 cores. The
linear solver performances slowly degrades starting from about 512 cores probably due to the limited prob-
lem size; however, the additional overhead from the LinearSolverHandler wrapper is negligible compared
to the time spent in applying the GMRES solver from the Trilinos library.

11

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide

Figure 5: Parallel speedup of lifex, demonstrated on Tutorial06. The speedup has been computed on the total time (red),
the time spent in assembling the linear system at each time step (green) and the time spent in solving the linear system at
each time step (blue).

Cahn-Hilliard multiphase system

To demonstrate the multiphysics capabilities of lifex we present a results of the spinodal decomposi-
tion of a binary fluid undergoing shear flow using the advective Cahn-Hilliard equation, a stiff, nonlinear,
parabolic equation characterized by the presence of fourth-order spatial derivatives [31]. Spinodal decompo-
sition consists in the separation of a mixture of two or more components to the bulk regions of both, which
occurs, e.g., when a high temperature mixture of two or more alloys is cooled rapidly.

The equation has been discretized using finite elements in mixed form, by splitting it into a system of
two parabolic-elliptic equations: 

∂c

∂t
−∆µ = 0, in Ω× (0, T],

µ− df

dc
(c) + λ∆c = 0, in Ω× (0, T],

with homogeneous natural conditions and suitable initial condition (please refer to the documentation for
further details).

The solver is implemented in Tutorial07 AD by exploiting automatic differentiation along with the
numerical schemes and multiphysics capabilities described above. Fig. 6 shows the steady state solution
over the unit cube.

4. Discussion

4.1. Impact

The impact and the wide applicability of lifex is demonstrated by the high number of journal articles,
preprints, conference abstracts and Ph.D. theses citing it.

Computational studies carried out with lifex have recently appeared in a variety of fields, mostly
originated from but not limited to cardiovascular modeling, such as: cardiac electrophysiology [32, 33, 34, 35],

12

Figure 6: Solution of the Cahn-Hilliard equations implemented in Tutorial07. Isosurfaces corresponding to values of the
solution c equal to 0.35 (red), 0.5 (green), 0.65 (blue) are shown.

cardiac mechanics, electromechanics and blood circulation [36, 29, 37, 38, 39, 40], fluid dynamics [41, 42, 28],
Fluid-Structure Interaction [20], poromechanics coupled with blood perfusion [43, 44], hemodynamics in
patients affected by COVID-19 [45].

A recent remarkable result is a comprehensive and biophysically detailed computational model of the
whole human heart electromechanics [46], as displayed in Fig. 7.

Other studies oriented towards numerical methods have addressed the development of a high-order
matrix-free solver for cardiac electrophysiology [47] and of reduced order methods for real-time simulations
[48, 49, 50].

A comprehensive and up-to-date list of publications making use of lifex can be found at https://

lifex.gitlab.io/lifex/publications.html.
lifex has provided a fast and stable environment with a gentle learning curve, enabling to obtain

unprecedented results in terms of model reliability, numerical accuracy and computational efficiency. We
expect that future directions for lifex will lead towards expanding its developer and user bases, keeping an
active and friendly community that welcomes new contributions and making new advanced features openly
available to the wider public (see also [51, 52]).

4.2. Conclusions

lifex is a parallel C++ library for simulations of multiphysics, multiscale and multidomain problems
based on the deal.II finite element core. lifex shows a low computational footprint and seamless parallel
performances enhanced by advanced numerical solvers, thus realizing an invaluable tool that can be run on
diverse architectures, ranging from laptop computers to HPC facilities and cloud platforms.

On the one hand, lifex provides a robust and friendly interface enabling easily accessible and re-
producible in silico experiments, yet without any compromise on computational efficiency and numerical
accuracy. On the other hand, being conceived as a research library, lifex can be exploited by scientific com-
puting experts to address new modeling and numerical challenges within an easily approachable development
framework.

We expect lifex to attract a sizable community of users and developers. Any contribution is highly
appreciated, from code commits to bug reports or by suggesting new ideas for improving lifex.

13

https://lifex.gitlab.io/lifex/publications.html
https://lifex.gitlab.io/lifex/publications.html

Figure 7: Snapshot of a cardiac electromechanics simulation on a whole-heart geometry during ventricular systole. The color
map show the intracellular concentration of calcium ions.

As we approach the exascale era dominated by high-end supercomputers, numerical simulations are
expected to be one of the main computational workloads [53]: lifex will contribute towards this direction
by offering transparency, accessibility, reproducibility and reusability of in silico experiments, within a
flexible, high performance software tool.

5. Conflict of Interest

We wish to confirm that there are no known conflicts of interest associated with this publication and
there has been no significant financial support for this work that could have influenced its outcome.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No 740132, iHEART - An Inte-
grated Heart Model for the simulation of the cardiac function, P.I. Prof. A. Quarteroni). We acknowledge
the CINECA award MathBeat under the ISCRA initiative, for the availability of high performance computing
resources and support. lifex logo has been designed by S. Pozzi.

lifex would not have been possible without a large and loyal team working on software development and
review, contributing code and fixes or reporting bugs and suggestions: N. Barnafi, L. Bennati, M. Bucelli,
L. Cicci, S. Di Gregorio, M. Fedele, I. Fumagalli, S. Pagani, R. Piersanti, F. Regazzoni, M. Salvador, S.
Stella, E. Zappon, A. Zingaro and many others.

Special thanks go to Profs. A. Quarteroni, L. Dede’, L. Formaggia, P. Gervasio, A. Manzoni, C. Vergara,
P. Zunino for all the stimulating and inspiring discussions, and to L. Paglieri for the endless patience and
support.

lifex follows all the enthusiasm, passion, experience and dedication to scientific computing brought in
by several people who contributed to the LifeV library [54]. The name itself is inspired by LiFE (Library
of Finite Elements), conceived by Prof. Fausto Saleri.

14

https://iheart.polimi.it/

References

[1] D. Groen, S. J. Zasada, P. V. Coveney, Survey of multiscale and multiphysics applications and communities, Computing
in Science Engineering 16 (2) (2014) 34–43. doi:10.1109/MCSE.2013.47.

[2] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice, J. Bell, J. Brown, A. Clo, J. Connors,
E. Constantinescu, D. Estep, K. Evans, C. Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao,
K. Jordan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee, A. Lott, Q. Lu, J. Magerlein, R. Maxwell, M. McCourt, M. Mehl,
R. Pawlowski, A. P. Randles, D. Reynolds, B. Rivière, U. Rüde, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel,
B. Smith, X. Tang, C. Wilson, B. Wohlmuth, Multiphysics simulations: Challenges and opportunities, The International
Journal of High Performance Computing Applications 27 (1) (2013) 4–83. doi:10.1177/1094342012468181.

[3] D. Arndt, W. Bangerth, B. Blais., M. Fehling, R. Gassmöller., T. Heister., L. Heltai, U. Köcher, M. Kronbichler, M. Maier,
P. Munch, J. P. Pelteret, S. Proell, S. Konrad, B. Turcksin, D. Wells, J. Zhang, The deal.II library, version 9.3, Journal
of Numerical Mathematics 29 (3) (2021) 171–186. doi:10.1515/jnma-2021-0081.
URL https://www.dealii.org/

[4] M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, G. N. Wells,
The FEniCS project version 1.5, Archive of Numerical Software 3 (2015). doi:10.11588/ans.2015.100.20553.

[5] M. W. Scroggs, I. A. Baratta, C. N. Richardson, G. N. Wells, Basix: a runtime finite element basis evaluation library,
Journal of Open Source Software 7 (73) (2022) 3982. doi:10.21105/joss.03982.

[6] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev,
W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, S. Zampini, MFEM: A modular finite element
methods library, Computers & Mathematics with Applications 81 (2021) 42–74, development and Application of Open-
source Software for Problems with Numerical PDEs. doi:10.1016/j.camwa.2020.06.009.

[7] C. J. Permann, D. R. Gaston, D. Andrš, R. W. Carlsen, F. Kong, A. D. Lindsay, J. M. Miller, J. W. Peterson, A. E.
Slaughter, R. H. Stogner, R. C. Martineau, MOOSE: Enabling massively parallel multiphysics simulation, SoftwareX 11
(2020) 100430. doi:10.1016/j.softx.2020.100430.

[8] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, B. Uekermann, preCICE – a fully
parallel library for multi-physics surface coupling, Computers & Fluids 141 (2016) 250–258, advances in Fluid-Structure
Interaction. doi:10.1016/j.compfluid.2016.04.003.

[9] A. Quarteroni, A. Valli, Numerical approximation of partial differential equations, Vol. 23, Springer Science & Business
Media, 2008. doi:10.1007/978-3-540-85268-1.

[10] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T. Guy, S. H. Haddock, K. D. Huff, I. M. Mitchell,
M. D. Plumbley, et al., Best practices for scientific computing, PLOS Biology 12 (1) (2014) 1–7. doi:10.1371/journal.

pbio.1001745.
[11] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. Dalcin,

A. Dener, V. Eijkhout, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong,
S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich,
B. F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc Web page (2022).
URL https://petsc.org/

[12] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P.
Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, K. S. Stanley,
An overview of the Trilinos project, ACM Trans. Math. Softw. 31 (3) (2005) 397–423. doi:10.1145/1089014.1089021.

[13] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin,
D. Wells, The deal.II finite element library: Design, features, and insights, Computers & Mathematics with Applications
81 (2021) 407–422, development and Application of Open-source Software for Problems with Numerical PDEs. doi:

10.1016/j.camwa.2020.02.022.
[14] D. Forti, L. Dedè, Semi-implicit BDF time discretization of the Navier–Stokes equations with VMS-LES modeling in a high

performance computing framework, Computers & Fluids 117 (2015) 168–182. doi:10.1016/j.compfluid.2015.05.011.
[15] J. Brown, P. Brune, Low-rank quasi-Newton updates for robust Jacobian lagging in newton methods, in: Proceedings of the

2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering,
2013, pp. 2554–2565.
URL https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf

[16] P. E. Gill, W. Murray, Quasi-Newton methods for unconstrained optimization, IMA Journal of Applied Mathematics 9 (1)
(1972) 91–108. doi:10.1007/BF01585529.

[17] S. C. Eisenstat, H. F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM Journal of Scientific
Computing 17 (1) (1996) 16–32. doi:10.1137/0917003.

[18] U. Küttler, W. A. Wall, Fixed-point fluid–structure interaction solvers with dynamic relaxation, Computational Mechanics
43 (1) (2008) 61–72. doi:10.1007/s00466-008-0255-5.

[19] H. F. Walker, P. Ni, Anderson acceleration for fixed-point iterations, SIAM Journal on Numerical Analysis 49 (4) (2011)
1715–1735. doi:10.1137/10078356X.

[20] M. Bucelli, L. Dede’, A. Quarteroni, C. Vergara, Partitioned and monolithic algorithms for the numerical solution of
cardiac fluid-structure interaction (2021).
URL https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf

[21] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, B. Chopard, D. Groen, P. Coveney, A. Hoek-
stra, Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment, Journal of
Computational Science 5 (5) (2014) 719–731. doi:10.1016/j.jocs.2014.04.004.

15

https://doi.org/10.1109/MCSE.2013.47
https://doi.org/10.1177/1094342012468181
https://www.dealii.org/
https://doi.org/10.1515/jnma-2021-0081
https://www.dealii.org/
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.21105/joss.03982
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.softx.2020.100430
https://doi.org/10.1016/j.compfluid.2016.04.003
https://doi.org/10.1007/978-3-540-85268-1
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://petsc.org/
https://petsc.org/
https://doi.org/10.1145/1089014.1089021
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.compfluid.2015.05.011
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://jedbrown.org/files/BrownBrune-LowRankQuasiNewtonRobustJacobianLagging-2013.pdf
https://doi.org/10.1007/BF01585529
https://doi.org/10.1137/0917003
https://doi.org/10.1007/s00466-008-0255-5
https://doi.org/10.1137/10078356X
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://www.mate.polimi.it/biblioteca/add/qmox/78-2021.pdf
https://doi.org/10.1016/j.jocs.2014.04.004

[22] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Vol. 37, Springer Science & Business Media, 2010. doi:

10.1007/b98885.
[23] A. Quarteroni, A. Valli, Domain decomposition methods for partial differential equations, Oxford University Press, 1999.

URL http://infoscience.epfl.ch/record/140704

[24] S. Deparis, D. Forti, P. Gervasio, A. Quarteroni, INTERNODES: an accurate interpolation-based method for coupling the
Galerkin solutions of PDEs on subdomains featuring non-conforming interfaces, Computers & Fluids 141 (2016) 22–41,
advances in Fluid-Structure Interaction. doi:10.1016/j.compfluid.2016.03.033.

[25] S. Deparis, D. Forti, A. Quarteroni, A rescaled localized Radial Basis Function interpolation on non-Cartesian and non-
conforming grids, SIAM Journal on Scientific Computing 36 (6) (2014) A2745–A2762. doi:10.1137/130947179.

[26] M. Salvador, L. Dede’, A. Quarteroni, An intergrid transfer operator using radial basis functions with application to
cardiac electromechanics, Computational Mechanics 66 (2) (2020) 491–511. doi:10.1007/s00466-020-01861-x.

[27] N. Paliwal, R. L. Ali, M. Salvador, R. O’Hara, R. Yu, U. A. Daimee, T. Akhtar, P. Pandey, D. D. Spragg, H. Calkins,
N. A. Trayanova, Presence of left atrial fibrosis may contribute to aberrant hemodynamics and increased risk of stroke in
atrial fibrillation patients, Frontiers in Physiology 12 (2021). doi:10.3389/fphys.2021.657452.

[28] I. Fumagalli, M. Fedele, C. Vergara, L. Dede’, S. Ippolito, F. Nicolò, C. Antona, R. Scrofani, A. Quarteroni, An image-
based computational hemodynamics study of the systolic anterior motion of the mitral valve, Computers in Biology and
Medicine 123 (2020) 103922. doi:10.1016/j.compbiomed.2020.103922.

[29] F. Regazzoni, M. Salvador, P. Africa, M. Fedele, L. Dede’, A. Quarteroni, A cardiac electromechanical model coupled
with a lumped-parameter model for closed-loop blood circulation, Journal of Computational Physics 457 (2022) 111083.
doi:10.1016/j.jcp.2022.111083.

[30] M. Fedele, A. Quarteroni, Polygonal surface processing and mesh generation tools for the numerical simulation of the
cardiac function, International Journal for Numerical Methods in Biomedical Engineering 37 (4) (2021) e3435. doi:

10.1002/cnm.3435.
[31] J. Liu, L. Dede’, J. A. Evans, M. J. Borden, T. J. Hughes, Isogeometric analysis of the advective Cahn–Hilliard equation:

Spinodal decomposition under shear flow, Journal of Computational Physics 242 (2013) 321–350. doi:10.1016/j.jcp.

2013.02.008.
[32] C. Vergara, S. Stella, M. Maines, P. C. Africa, D. Catanzariti, C. Demattè, M. Centonze, F. Nobile, A. Quarteroni,

M. Del Greco, Computational electrophysiology of the coronary sinus branches based on electro-anatomical mapping
for the prediction of the latest activated region, Medical & Biological Engineering & Computing (2022). doi:10.1007/

s11517-022-02610-3.
[33] R. Piersanti, P. C. Africa, M. Fedele, C. Vergara, L. Dede’, A. F. Corno, A. Quarteroni, Modeling cardiac muscle fibers in

ventricular and atrial electrophysiology simulations, Computer Methods in Applied Mechanics and Engineering 373 (2021)
113468. doi:10.1016/j.cma.2020.113468.

[34] S. Pagani, L. Dede’, A. Frontera, M. Salvador, L. R. Limite, A. Manzoni, F. Lipartiti, G. Tsitsinakis, A. Hadjis,
P. Della Bella, A. Quarteroni, A computational study of the electrophysiological substrate in patients suffering from
atrial fibrillation, Frontiers in Physiology 12 (2021). doi:10.3389/fphys.2021.673612.

[35] S. Stella, C. Vergara, M. Maines, D. Catanzariti, P. C. Africa, C. Dematté, M. Centonze, F. Nobile, M. Del Greco,
A. Quarteroni, Integration of activation maps of epicardial veins in computational cardiac electrophysiology, Computers
in Biology and Medicine 127 (2020) 104047. doi:10.1016/j.compbiomed.2020.104047.

[36] R. Piersanti, F. Regazzoni, M. Salvador, A. Corno, C. Vergara, A. Quarteroni, et al., 3D–0D closed-loop model for the
simulation of cardiac biventricular electromechanics, Computer Methods in Applied Mechanics and Engineering 391 (2022)
114607. doi:10.1016/j.cma.2022.114607.

[37] M. Salvador, F. Regazzoni, S. Pagani, L. Dede, N. Trayanova, A. Quarteroni, The role of mechano-electric feedbacks and
hemodynamic coupling in scar-related ventricular tachycardia, Computers in Biology and Medicine 142 (2022) 105203.
doi:10.1016/j.compbiomed.2021.105203.

[38] M. Salvador, M. Fedele, P. C. Africa, E. Sung, L. Dede’, A. Prakosa, N. Trayanova, J. Chrispin, A. Quarteroni, Electrome-
chanical modeling of human ventricles with ischemic cardiomyopathy: numerical simulations in sinus rhythm and under
arrhythmia, Computers in Biology and Medicine 136 (2021) 104674. doi:10.1016/j.compbiomed.2021.104674.

[39] L. Dedè, A. Quarteroni, F. Regazzoni, Mathematical and numerical models for the cardiac electromechanical function, Atti
della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei - Matematica
e Applicazioni 32 (2) (2021) 233–272. doi:10.4171/rlm/935.

[40] A. Quarteroni, L. Dedè, F. Regazzoni, Modeling the cardiac electromechanical function: A mathematical journey, Bulletin
of the American Mathematical Society 59 (3) (2022) 371–403. doi:10.1090/bull/1738.

[41] A. Zingaro, I. Fumagalli, M. Fedele, P. C. Africa, L. Dede’, A. Quarteroni, A. F. Corno, A geometric multiscale model for
the numerical simulation of blood flow in the human left heart, Discrete and Continuous Dynamical Systems - S 15 (8)
(2022) 2391–2427. doi:10.3934/dcdss.2022052.

[42] I. Fumagalli, P. Vitullo, C. Vergara, M. Fedele, A. Corno, S. Ippolito, R. Scrofani, A. Quarteroni, Image-based compu-
tational hemodynamics analysis of systolic obstruction in hypertrophic cardiomyopathy, Frontiers in Physiology (2022)
2437doi:10.3389/fphys.2021.787082.

[43] N. A. Barnafi Wittwer, S. D. Gregorio, L. Dede’, P. Zunino, C. Vergara, A. Quarteroni, A multiscale poromechanics model
integrating myocardial perfusion and the epicardial coronary vessels, SIAM Journal on Applied Mathematics 82 (4) (2022)
1167–1193. doi:10.1137/21M1424482.

[44] S. Di Gregorio, M. Fedele, G. Pontone, A. F. Corno, P. Zunino, C. Vergara, A. Quarteroni, A computational model applied
to myocardial perfusion in the human heart: From large coronaries to microvasculature, Journal of Computational Physics
424 (2021) 109836. doi:https://doi.org/10.1016/j.jcp.2020.109836.

16

https://doi.org/10.1007/b98885
https://doi.org/10.1007/b98885
http://infoscience.epfl.ch/record/140704
http://infoscience.epfl.ch/record/140704
https://doi.org/10.1016/j.compfluid.2016.03.033
https://doi.org/10.1137/130947179
https://doi.org/10.1007/s00466-020-01861-x
https://doi.org/10.3389/fphys.2021.657452
https://doi.org/10.1016/j.compbiomed.2020.103922
https://doi.org/10.1016/j.jcp.2022.111083
https://doi.org/10.1002/cnm.3435
https://doi.org/10.1002/cnm.3435
https://doi.org/10.1016/j.jcp.2013.02.008
https://doi.org/10.1016/j.jcp.2013.02.008
https://doi.org/10.1007/s11517-022-02610-3
https://doi.org/10.1007/s11517-022-02610-3
https://doi.org/10.1016/j.cma.2020.113468
https://doi.org/10.3389/fphys.2021.673612
https://doi.org/10.1016/j.compbiomed.2020.104047
https://doi.org/10.1016/j.cma.2022.114607
https://doi.org/10.1016/j.compbiomed.2021.105203
https://doi.org/10.1016/j.compbiomed.2021.104674
https://doi.org/10.4171/rlm/935
https://doi.org/10.1090/bull/1738
https://doi.org/10.3934/dcdss.2022052
https://doi.org/10.3389/fphys.2021.787082
https://doi.org/10.1137/21M1424482
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109836

[45] L. Dedè, F. Regazzoni, C. Vergara, P. Zunino, M. Guglielmo, R. Scrofani, L. Fusini, C. Cogliati, G. Pontone, A. Quarteroni,
Modeling the cardiac response to hemodynamic changes associated with COVID-19: a computational study, Mathematical
Biosciences and Engineering 18 (4) (2021) 3364–3383. doi:10.3934/mbe.2021168.

[46] M. Fedele, R. Piersanti, F. Regazzoni, M. Salvador, P. C. Africa, M. Bucelli, A. Zingaro, L. Dede’, A. Quarteroni,
A comprehensive and biophysically detailed computational model of the whole human heart electromechanics (2022).
doi:10.48550/ARXIV.2207.12460.

[47] P. C. Africa, M. Salvador, P. Gervasio, L. Dede’, A. Quarteroni, A matrix-free high-order solver for the numerical solution
of cardiac electrophysiology (2022). doi:10.48550/ARXIV.2205.05136.

[48] L. Cicci, S. Fresca, S. Pagani, A. Manzoni, A. Quarteroni, Projection-based reduced order models for parameterized
nonlinear time-dependent problems arising in cardiac mechanics, Mathematics in Engineering 5 (2) (2023) 1–38. doi:

10.3934/mine.2023026.
[49] F. Regazzoni, M. Salvador, L. Dedè, A. Quarteroni, A machine learning method for real-time numerical simulations of

cardiac electromechanics, Computer Methods in Applied Mechanics and Engineering 393 (2022) 114825. doi:10.1016/j.
cma.2022.114825.

[50] F. Regazzoni, A. Quarteroni, Accelerating the convergence to a limit cycle in 3D cardiac electromechanical simulations
through a data-driven 0D emulator, Computers in Biology and Medicine 135 (2021) 104641. doi:10.1016/j.compbiomed.
2021.104641.

[51] P. C. Africa, R. Piersanti, M. Fedele, L. Dede’, A. Quarteroni, lifex – heart module: a high-performance simulator for the
cardiac function. Package 1: Fiber generation (software documentation), Zenodo (01 2022). doi:10.5281/zenodo.5810268.

[52] P. C. Africa, R. Piersanti, M. Fedele, L. Dede’, A. Quarteroni, lifex - heart module: a high-performance simulator for the
cardiac function. Package 1: Fiber generation (2022). doi:10.48550/ARXIV.2201.03303.

[53] S. Alowayyed, D. Groen, P. V. Coveney, A. G. Hoekstra, Multiscale computing in the exascale era, Journal of Computa-
tional Science 22 (2017) 15–25. doi:https://doi.org/10.1016/j.jocs.2017.07.004.

[54] L. Bertagna, S. Deparis, L. Formaggia, D. Forti, A. Veneziani, The LifeV library: engineering mathematics beyond the
proof of concept (2017). doi:10.48550/ARXIV.1710.06596.

17

https://doi.org/10.3934/mbe.2021168
https://doi.org/10.48550/ARXIV.2207.12460
https://doi.org/10.48550/ARXIV.2205.05136
https://doi.org/10.3934/mine.2023026
https://doi.org/10.3934/mine.2023026
https://doi.org/10.1016/j.cma.2022.114825
https://doi.org/10.1016/j.cma.2022.114825
https://doi.org/10.1016/j.compbiomed.2021.104641
https://doi.org/10.1016/j.compbiomed.2021.104641
https://doi.org/10.5281/zenodo.5810268
https://doi.org/10.48550/ARXIV.2201.03303
https://doi.org/https://doi.org/10.1016/j.jocs.2017.07.004
https://doi.org/10.48550/ARXIV.1710.06596

MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

55/2022 Cavinato, L.; Pegoraro, M.; Ragni, A.; Ieva, F.
Imaging-based representation and stratification of intra-tumor Heterogeneity
via tree-edit distance

54/2022 Bucelli, M.; Zingaro, A.; Africa, P. C.; Fumagalli, I.; Dede', L.; Quarteroni, A.
A mathematical model that integrates cardiac electrophysiology, mechanics
and fluid dynamics: application to the human left heart

51/2022 Losapio, D.; Scotti, A.
Local Embedded Discrete Fracture Model (LEDFM)

52/2022 Fedele, M.; Piersanti, R.; Regazzoni, F.; Salvador, M.; Africa, P. C.; Bucelli, M.; Zingaro, A.; Dede', L.; Quarteroni, A.
A comprehensive and biophysically detailed computational model of the
whole human heart electromechanics

50/2022 Elías, A.; Jiménez, R.; Paganoni, A.M.; Sangalli, L.M.
Integrated Depths for Partially Observed Functional Data

53/2022 Antonietti, P.F; Cauzzi, C.; Mazzieri, I.; Melas L.; Stupazzini, M.
Numerical simulation of the Athens 1999 earthquake including simplified
models of the Acropolis and the Parthenon: initial results and outlook

47/2022 Botti, M.; Di Pietro, D.A.; Salah, M.
A serendipity fully discrete div-div complex on polygonal meshes

49/2022 Botti, M.; Fumagalli, A.; Scotti, A.
Uncertainty quantification for mineral precipitation and dissolution in
fractured porous media

48/2022 Gregorio, C.; Barbati, G.; Ieva, F.
A wavelet-mixed landmark survival model for the effect of short-term
oscillations in longitudinal biomarker’s profiles

45/2022 Franco, N.; Fresca, S.; Manzoni, A.; Zunino, P.
Approximation bounds for convolutional neural networks in operator
learning

	qmox56-copertina
	mox-2022729144235
	Background
	Software description
	Overview
	Implementation
	Abstract numerical helpers
	Multiphysics coupling
	User interface

	Sample code

	Applications
	Discussion
	Impact
	Conclusions

	Conflict of Interest

	qmox56-terza_di_copertina

