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Abstract

In this paper, we propose a generalized functional linear regression model
for a binary outcome indicating the presence/absence of a cardiac disease
with a multivariate functional data among the relevant predictors. In par-
ticular the motivating problem is an analysis of Electrocardiographic (ECG)
traces of patients whose prehospital ECG has been sent to 118 Dispatch
Center of Milan (the Italian free-toll number for emergencies) by life sup-
port personnel of the basic rescue units. The statistical analysis starts with
a preprocessing step of ECGs, treated as multivariate functional data. They
are reconstructed from noisy observations, then the biological variability is
removed by a nonlinear registration procedure based on landmarks. Thus,
a Multivariate Functional Principal Component Analysis (MFPCA) is car-
ried out on the variance-covariace matrix of the reconstructed and registered
ECGs as well as of their first derivatives, in order to perform a data-driven
dimensional reduction. The scores of the principal components that result
to be significant are then used within a generalized functional regression
model, together with other standard covariates of interest. Hence, a new
semi-automatic diagnostic procedure is proposed to model the probability
of disease (in the case of interest, the probability of being affected by Left
Bundle Brunch Block) and to classify patients. Finally, the performance of
this classification method is evaluated through cross validation and com-
pared with other methods proposed in literature.
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1 Introduction

The use of telemedicine systems in prehospital emergency rescues has allowed
diagnoses for patients with cardiovascular ischaemic diseases to be performed
more rapidly. The literature has shown that prehospital ECG reduces treatment
times and in-hospital mortality (see Canto et al., 1997; Ting et al., 2008 and
Diercks et al., 2009 among others) and it also suggests that prehospital ECG may
either be transmitted for interpretation by hospital staff or can be interpreted
locally by paramedics, who then communicate their diagnosis to the hospital
(see Brown et al., 2008; Trivedi et al., 2009).

Starting from 2006, in the Milanese urban area a working group collecting 23
Cardiology Units and the 118 Dispatch Center (the Italian free-toll number for
emergencies), performed monthly data collections twice a year on all patients ad-
mitted to any hospital in Milano with coronary artery disease (MOMI2: MOnth
MOnitoring Myocardial Infarction in MIlan survey). The statistical analysis of
the collected data (see Ieva and Paganoni 2010, Grieco et al., 2012a, 2012b)
confirmed the time of first ECG teletransmission as the most important factor
to guarantee a quick access to an effective treatment for patients. Then, since
2008, a project named PROMETEO (PROgetto sull’area Milanese Elettrocar-
diogrammi Teletrasferiti dall’Extra Ospedaliero) has been started with the aim
of spreading the intensive use of ECG as prehospital diagnostic tool and of con-
structing a new database of ECGs with features never recorded before in any
other data collection on heart diseases. Thanks to the partnerships of Azienda
Regionale Emergenza Urgenza (AREU), Abbott Vascular and Mortara Rangoni
Europe s.r.l., ECG recorder with GSM transmission have been installed on all
Basic Rescue Units (BRUs) of Milanese urban area.

The principal aim of this work is the development of a new semi-automatic diag-
nostic procedure for classification of the ECG signals generated by telemedicine
equipment of the BRUs.

In Ieva et al. (2013), an identification, from a statistical perspective, of spe-
cific ECG patterns which could benefit by an early invasive approach has been
performed, on a sample of data arising from PROMETEO database. In fact,
the identification of statistical tools capable of classifying curves using their sole
shape could support an early detection of coronary disease, not based on usual
clinical criteria. In order to do this, in Ieva et al. (2013) ECG traces are consid-
ered as a noisy multivariate functional data. A real time procedure consisting
of preliminary steps like reconstructing signals, wavelets denoising and remov-
ing biological variability in the signals through data registration has been tuned
and tested. Then a multivariate functional k-means has been considered, thus
simultaneously clustering all 8 leads of each patient. This classification proce-
dure uses group centroids as reference signals. The technique proposed in Ieva
et al. (2013) allowed diagnoses to be consistent with clinical practice, starting
from purely statistical considerations. Anyway, despite the attractiveness of this
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method, the estimation of the number of groups as well as their identification
might not be straightforward.

In this work we approach the problem in a different way: we aim at con-
structing and validating a statistical procedure to model the binary outcome of
interest (i.e., the presence of cardiovascular acute ischaemic event) by means of
suitable covariates (i.e., patients characteristics, whenever available) and of mul-
tivariate functional predictors (i.e., the ECG signal available for each patient).
In particular, we focus our attention on estimating the probability to belong to
Left Bundle Branch Block (LBBB) group, using as predictor the 8-leads ECG
trace of each patient and its first derivative, which are inserted in a suitable gen-
eralized functional regression model. Specifically, following for example James
(2002), Ratcliffe et al. (2002), Escabias et al. (2004), Müller and Stadtmüller
(2005) and Zhu and Cox (2009), we perform a dimensionality reduction by a Mul-
tivariate Functional Principal Component Analysis (MFPCA, see Ramsay and
Silvermann, 2005), summarizing the information carried out by the covariance
matrices of the signals and their first derivatives by the corresponding scores,
obtained projecting data and derivatives on the corresponding Karhunen-Loève
bases. Then we introduce the scores into the generalized regression model where
the response is the Bernoulli variable indicating the presence of LBBB. A con-
sequent classification of patients as well as a comparison with previous results
are proposed and discussed.

The paper is then structured as follows: Section 2 contains the theoretical
framework of the MFPCA we adopt for carrying out dimensional reduction of
the multivariate functional data (§2.1) and the corresponding first derivatives
(§2.2). As we said above, this step is performed in order to point out relevant
components to be inserted in the generalized regression model for risk prediction
of the presence of the disease (§2.3). In Section 3 the analysis of ECG data aris-
ing from PROMETEO dataset is presented, together with the cross validation
analysis aimed at testing the robustness of the procedure. Finally, in Section 4
conclusions are drawn and further developments are discussed.
All the analyses are carried out using R statistical software (see R Development
Core Team, 2009).

2 Models and Methods

A common strategy to deal with complex or high-dimensional data is to perform
a dimensional reduction (see Ramsay and Silverman, 2005). In the motivating
example we consider, the 8-leads ECG signal of each patient (a multivariate
functional curve) is considered as a predictor of the presence of LBBB, then we
deal with the dimensional reduction of such data and their first derivatives in
order to input them in a generalized regression model for predicting the risk of
LBBB.
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2.1 Multivariate Functional Principal Component Analysis

Also in the functional setting, Principal Components Analysis (PCA) provides a
way of looking at covariance structure of data that can be much more informative
and can complement, or even replace altogether, a direct examination of the
variance-covariance function, as detailed in Ramsay and Silverman (2005).

Let X a stochastic process with law P taking values on the space L2(I;Rh)
of square integrable functions X(t) = (X1(t), . . . , Xh(t))

T : I → R
h, where I is

a compact interval of R. Let µl(t) = E[Xl(t)], for each t ∈ I, denote the mean
function of the l−component Xl(t), for 1 ≤ l ≤ h, then

µ(t) := (µ1(t), . . . , µh(t))
T = E[X(t)]

is the mean function of X. The covariance operator V of X is a integral operator
from L2(I;Rh) to L2(I;Rh) acting on a function g as follows:

(Vg)(s) =

∫

I

V (s, t)g(t)dt,

The kernel V (s, t) is defined by

V (s, t) = E[(X(s)− µ(s))⊗ (X(t)− µ(t))], s, t ∈ I

where ⊗ is a outer product in R
h. V (s, t) is a h×h matrix, whose elements will

be denoted as Vrq(s, t), for r, q = 1, ..., h.
In what follows, the model formulation is already intended for the application
of interest, where the ECG of each patient j = 1, ..., n is a 8-variate functional
data generated by the stochastic process X taking values on the Hilbert space
L2(I;R8). The general case of h ≥ 2, h ̸= 8 follows straightforwardly. We con-
sider, as data reduction strategy, the Multivariate Functional Principal Compo-
nent Analysis (MFPCA) proposed in Ramsay and Silverman (2005).
So let Vrr(s, t), r = 1, . . . , 8, be the variance functions of the components of X,
as well as Vrq(s, t), r, q = 1, . . . , 8, r ̸= q the cross covariance functions. Thus,
for any (s, t) ∈ I × I, Vrq(s, t) = Cov(Xr(s), Xq(t)), r, q = 1, . . . , 8.
Consider the usual scalar product between two elements U and W in L2(I;R8)

⟨U,W⟩ =

8∑

r=1

∫

I

Ur(t)Wr(t)dt. (1)

Call ek(t) = (ek
1
(t), . . . , ek

8
(t))T the k−element of the Karhunen-Loève expansion,

that is the solution of the eigenequation system
∫

I

V11(s, t)e
k
1(t)dt+ · · ·+

∫

I

V18(s, t)e
k
8(t)dt = ρkek1(s),

... =
...

∫

I

V81(s, t)e
k
1(t)dt+ · · ·+

∫

I

V88(s, t)e
k
8(t)dt = ρkek8(s).

4



The eight-leads ECGs {(X)i}, (i = 1, ..., n), are a sample fromX. Eigenfunction-
eigenvalue couples {(ek, ρk)}k∈N completely explain modes of variation in the
data, in the sense that eigenfunctions represent orthonormal directions of de-
creasing variability with respect to the explained variances expressed by the
corresponding eigenvalues. Thanks to the basis expansion given by principal
components, it is possible to represent data using just the first K elements of
{ek}k∈N, the linear combination of which is, by construction, a good approxi-
mation for the original curves. The interpretation of eigenvalues as variances is
useful also to determine a criterion to choose the most relevant modes. Since
∑K

k=1
ρk represents variance captured by the first K components, we can choose

K so that the proportion of variance described by these components is higher
than a given threshold c, i.e.,

∑K
k=1

ρk
∑m

k=1
ρk

≥ c, (2)

where m is the number of abscissa values on which functional data are known,
which is an upper bound to the number of components that can be estimated.
In the analysis of data, as literature advises, we deal with centered and scaled
data, that is:

Z(t) = (Z1(t), . . . , Z8(t))
T =

(

X1(t)− µ1(t)
√

V11(t, t)
, . . . ,

X8(t)− µ8(t)
√

V88(t, t)

)T

.

2.2 Derivatives Refinements

The problem with discrete and noisy observations, is amplified when the in-
terest focuses also on data derivatives. In our case, since the information on
the presence of the disease is carried out not only by morphological changes we
observe on the original signals, but also by changes that happen in their first
derivatives, it is even more necessary to smooth data in a suitable way. In fact,
the smoothing procedure is essential not only for an accurate reconstruction of
data, but also for a proper estimate of their derivatives (see Ieva et al., 2013
for deeper discussion of such arguments and comparison of different derivatives’
computations). Moreover, since the eight ECG leads of interest (I, II, V1, V2,
V3, V4, V5 and V6) jointly describe the complex heart dynamics, the smooth-
ing technique should take into account simultaneously all the components of the
multivariate functional data (i.e., the leads).

Among possible smoothing methods, wavelet bases seem suitable for smooth-
ing our data because every basis function is localized both in time and in fre-
quency and is therefore able to capture strongly localized ECG features (peaks,
oscillations,. . . ). Details of the wavelets smoothing applied to ECG data can be
found in Pigoli and Sangalli (2012). The procedure proposed there is able to take
jointly into account the multi-dimensionality of the data, obtaining smoothed
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estimates of the 8-dimensional curves of the ECGs. It has also the advantage of
providing an estimate of the curves derivatives, which is straightforward when
functional reconstruction is obtained via a basis expansion: each derivative can
be obtained simply by a linear combination of the corresponding basis function
derivatives.

Once we get the smoothed data and the corresponding first derivatives, we carry
out the same dimensionality reduction also on the variance-covariance matrix of
the first derivatives, in order to take into account also the variability of the first
derivatives when modelling the risk prediction, according to the procedure de-
scribed in §2.1. So doing we really take advantage of the functional nature of
data.

2.3 Generalized regression with multivariate functional predic-

tors

We consider now a logistic regression model, where the response variable is
Yi ∼ Be(pi) for i ∈ 1, . . . , n and θi = log (pi/(1− pi)). We model θi as linear
transformation of the covariates related to i−th statistical unit.

θi =

∫

I

δT (t)Zi(t)dt+

∫

I

δTd (t)Z
′

i(t)dt+

q
∑

h=1

dihγh (3)

being Zi(t) the centered and scaled multivariate functional data concerning the
i-th statistical unit, and Z

′

i(t) the corresponding first derivatives. The vector
di = (di1, ..., diq)

T , di ∈ R
q, for i = 1, . . . , n, contains the traditional covariates

that are possibly available for the i-th statistical unit. Moreover, δ(t) : I 7→ R
8

and δd(t) : I 7→ R
8 are 8-variate functional parameters to be estimated as well

as γ ∈ R
q is a vector of parameters to be estimated.

Thanks to the dimensional reduction driven by the selection of the number of
MFPC basis obtained using (2), the linear predictor in (3) may be approximated
with the following expression:

∫

I

K∑

k=1

ξki δ(t)
Tek(t)dt+

∫

I

Kd∑

k=1

ξ̃ki δ(t)
T
d e

k
d(t)dt

q
∑

h=1

dihγh,

where ξki = ⟨Zi, e
k⟩, ξ̃ki = ⟨Z

′

i, e
k
d⟩, and {ekd}k∈N is the basis expansion given by

principal components of derivatives. We can represent also δ(t) and δd(t) using
the correspondent Karhunen-Loève expansions, i.e., δ(t) =

∑K
l=1

ζ lel, where ζ l =

⟨δ, el⟩ and δd(t) =
∑Kd

l=1
ζ lde

l
d, where ζ

l
d = ⟨δd, e

l
d⟩. Thanks to the orthonormality

6



of {ek}k∈N and of {ekd}k∈N we obtain

θi =
K∑

k=1

ξki ζ
k +

Kd∑

k=1

ξ̃ki ζ
k
d +

q
∑

h=1

dihγh

= ξTi ζ
︸︷︷︸

data
contribution

+ ξ̃Ti ζd
︸ ︷︷ ︸

derivatives
contribution

+ dT
i γ
︸︷︷︸

covariates
contribution

, i = 1, . . . , n.

The model is then reduced to a classical logistic regression, in which the un-
knowns are represented by the parameters ζ = (ζ1, . . . , ζK)T , ζd = (ζ1d , . . . , ζ

Kd

d )T

and γ = (γ1, . . . , γq)
T . The same approach can be extended without further dif-

ficulties to the more general context of generalized linear models with different
responses and link functions.

3 An application to ECG signals

In Ieva et al. (2013), a statistical framework for analysis and classification of
ECG curves starting from their sole morphology is proposed. The main goal of
that paper is to identify, from a statistical perspective, specific ECG patterns
which could benefit from an early invasive approach. In fact, the identification of
statistical tools capable of classifying curves using their shape only could support
an early detection of heart failures, not based on usual clinical criteria.

The basic statistical unit is the 8-variate function, which describes the heart
dynamics of each patient on the eight leads I, II, V1, V2, V3, V4, V5 and V6,
together with the corresponding derivative. There, the outcome we consider
is the group label, indicating the presence of the disease. It is modeled by a
Bernoulli random variable Yi, which takes value 1 if LBBB is diagnosed, and 0
if the trace is considered as physiological. The sample from the PROMETEO
database we analyse consists of the ECG signals of n = 149 subjects, among
which 101 are Normal and 48 are affected by LBBB. The main reason for the
sample size being relatively small is the incidence of LBBB among all the pos-
sible kind of acute myocardial infarction, that is not so high (about 3%). So,
among all the diagnosis records we inspected, only fews were eligible. In addic-
tion, among these, only a small part can be retained as “pure LBBB” diagnoses,
since it often happens that LBBB arises together with other comorbidities (say
arrythmias like Atrial Fibrillation, Atrioventricular Block, Atrial Flutter, Parox-
ysmal and Supraventricular tachycardia, etc.). Since we want modification on
morphological variations in ECGs to be induced only by the presence of LBBB,
at least in the training set we compute the MFPC basis upon, excluding traces
where LBBB was not the only diagnosis. So doing, we avoided a priori the biases
carried by the presence of other comorbidities.

The idea of the analysis presented here is to set up a generalized regression
model able to discriminate between patological and physiological traces, explain-
ing the disease probabiity by means of multivariate functional predictors, i.e.,
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ECG signals and their first derivatives. The contribution of the multivariate
curves is summarized through the dimensional reduction carried out by MF-
PCA of the covariance matrices of signals and signals’ first derivatives proposed
in §2.1 and §2.2, in order to take advantage of the functional nature of the data.

In practice, we deal with a noisy and discrete observation of the function
describing the ECG trace of each patient. We use the wavelet based smoothing
technique for multivariate curves proposed in Pigoli and Sangalli (2012) to obtain
the smoothed estimates of 8-dimensional ECG signals and their first derivative.
Moreover, since each patient has his own “biological” time, the same event of
the heart dynamics may happen at different times for different patients. Since
the morphological change due to this difference in timings is misleading from a
statistical perspective, we need to register data. It is well known that a correct
separation between the different kinds of variability is necessary for a successful
analysis (see Ramsay and Silverman, 2005). In particular, as detailed in Ieva
et al. (2013), we adopt a registration procedure based on landmarks, which are
points of the curve that can be associated with a specific biological time. Five
of these landmarks (Ponset, QRSonset, QRSoffset, Tonset, Toffset) are provided
by Mortara-Rangoni procedure. They identify, for each patient i = 1, ..., n,
the P wave, the QRS complex and the T wave, i.e., the main segments and
waves of the ECG signal. We add one more landmark: the R peak identified
on the lead I (Iipeak). We choose the time point identified on this lead as rep-
resentative for all the leads because only on the lead I both the physiological
and pathological ECG traces present a clearly identifiable R peak. Then, since
all the leads capture the same heart dynamics, biological time must be the same.

Figure 1 shows denoised and registered data we consider for our analysis. The
black solid lines represent the mean functions. Figure 2 shows the corresponding
first derivatives. Again the black solid lines represent the mean functions.

We shall now select the components of the MFPC to be considered in the
subsequent analysis, both for ECG signals and their first derivatives. In both
cases, we choose the first K and Kd components of data and derivative’s ba-
sis respectively, such that their associated eigenvalues explain a proportion of
variance equal to 70%.

Among these, we retained only the first principal components, using the cor-
responding scores as covariates. The scores are computed projecting data and
first derivative on the first elements of the corresponding MFPC basis. We re-
tained only the first MFPC essentially for two reasons: both a stepwise selection
based on the AIC as well as a Brier’s score minimization criterium selected the
scores on the first and tenth components as the most useful ones to explain the
illness probability, but since it is known that the efficiency of the estimates of
the eigenfunctions and of the corresponding scores is decreasing with respect to
the index of eigenfunctions, we decided to focus only on the first ones. Moreover,
the results of the risk prediction obtained with the parimonious choice of the
first MFPC only remain very robust with respect to those obtained considering
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Figure 1: Denoised and registered data (8 leads) for the 149 patients with su-
perimposed the mean functions (black solid lines).

more than one MFPC (as it will be detailed in the following). The scores of the
first principal component are then the only ones identified as statistically signifi-
cant for the generalized regression model, both for the original data and the first
derivatives. Figure 3 shows the distributions of the first principal components
scores, for the data (left panel) and the first derivatives (right panel) respec-
tively, stratified by the presence/absence of LBBB. The p-values of Wilcoxon
tests carried out to compare the distributions of the scores are less than 2 ∗ e−16

in both cases.
So we fitted the following logistic model: for i = 1, . . . , n,

θi = γ0 + ξki ζ
1 + ξ̃1i ζ

1

d (4)

It arises from model (4), where K = Kd = 1 and no further patient’s covariates
are available. The model output is reported in Table 1.

Figure 4 shows the first multivariate functional principal component of the
original data. Sample means of each lead are plotted (solid lines), together with
two curves obtained by adding (+) and subtracting (-) a suitable multiple C
of the principal component. As suggested in Ramsay and Silverman (2005), we
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Figure 2: First derivatives (8 leads) for the 149 patients with superimposed the
mean functions (black solid lines).

set C as 0.2 times the root-mean-square difference between the estimated mean

(µ̂1(t), . . . , µ̂8(t)) and its overall time average, i.e., µ̄ = 1

8

8∑

i=1

∫

I

µ̂i(t)dt. ¿From

Figure 4 it is clear that the first functional principal component speaks about
the morphological variability expressed by specific segments of the ECG. These
morphological changes are particulary marked in the ST-segment (the part of
the ECG curve usually including among time interval between 350 and 600 ms),
which in fact is the most useful part of the ECG, apart from the QRS complex,
to carry out the LBBB diagnosis, as confirmed by the cardiologists.
The confusion matrix obtained comparing the true and the estimated label of
the patients is reported in Table 2. We set the threshold for the classification
carried out by the logistic model in (4) equal to 0.5. The mean Cross Validation
error of the logistic model is 3.6%, that is not far from the error committed in
diagnosing LBBB by physicians, if both false positives and false negatives are
considered.

We propose this method as an automatic diagnostic tool to predict the risk
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Figure 3: Distributions of first principal components scores, stratified by the
presence of disease, for the original data (left panel) and the first derivatives
(right panel).

also for new patients entering the study. In fact, although the MFPC basis is a
data-driven basis, we check method robustness through a leave-j-out simulation
study: we randomly choose a subsample of j patients (j = 1, 5, 10, 20), we
perform the MFPC analysis and fit the logistic model on the remaining n − j
patients, obtaining the estimation of the number of basis components to be
retained and the coefficients. This is what we will refer to as the “off-line” step.
Then we projects the j isolated ECGs on the basis previously pointed out (“on-
line” step), in order to get a real-time computation of the scores corresponding
to the new j data and their first derivatives, and the estimated probability of
disease. We repeat the experiment 500 times. In Table 3 are reported the
mean Actual Error Rate (AER) over the 500 simulations, and the corresponding
standard deviation.
In general, the idea is the following: once a reliable and representative dataset
of N ECGs is pointed out according to clinical best practice, the procedure
we propose computes the “off-line step” described above on the N multivariate
curves, selecting a suitable number of components for data and first derivatives
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Parameter Estimate Std. Error p-value

γ0 (Intercept) -0.07148 0.53112 0.892938
ζ1 (First PC) 0.16941 0.04695 0.000308
ζ1d (First PC deriv.) 0.16304 0.06352 0.010262

Table 1: Estimates, standard errors and p-values for the parameters of the
logistic regression model.
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Figure 4: First multivariate functional principal component.

basis and providing the coefficients for the generalised regression model. Then,
as long as new patients enter in the study, the semi-automatic diagnosis tool
projects their ECGs on eigenfunctions selected in the off-line basis and plugs in
the scores estimates as predictors of the logistic model for estimating LBBB risk
of the new patients.

4 Conclusions

In this paper, we propose a generalized functional linear regression model for
a binary outcome indicating the presence/absence of a cardiac disease, with
a multivariate functional data among the relevant predictors. This is an ex-
ample of data to be necessarily treated in the multivariate functional context;
this framework despite its evident interest is quite rarely treated in statistical
literature.

The principal aim of this work is then the development of a new semi-
automatic diagnostic procedure for classification of the ECG signals generated
by telemedicine equipment of the Basic Rescue Units (BRUs). In fact, we set up
a framework for carrying out semi-automatic diagnosis of LBBB, starting from
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Normal LBBB

Classified as Normal 100 4
Classified as LBBB 1 44

Table 2: Confusion matrix.

Mean Standard Deviation

j = 1 0.062 0.241
j = 5 0.047 0.088
j = 10 0.055 0.068
j = 20 0.056 0.0491

Table 3: Mean and Standard Deviation of AER.

the statistical analysis of the sole curve morphology. The method we propose is
then aimed at supporting decisions of people the basic rescue units are equipped
by and at identifying specific ECG patterns which could benefit by an early
invasive approach, performing a real-time diagnosis.

In particular, we focus our attention on estimating the probability to belong
to Left Bundle Branch Block (LBBB) group, using as predictor the 8-leads ECG
trace of each patient and its first derivative, which are inserted in a suitable
generalized functional regression model. Specifically, we perform a dimensional-
ity reduction by a Multivariate Functional Principal Component Analysis (MF-
PCA), summarizing the information carried out by the covariance matrices of
the signals and their first derivatives by the corresponding scores, obtained pro-
jecting data and derivatives on the corresponding Karhunen-Loéve bases. Then
we introduce the scores into a generalized regression model where the response
is the Bernoulli variable indicating the presence of LBBB. We finally carry out
the consequent classification of patients as well as a check for robustness of our
method. To this aim, we are actually trying to robustify the estimation method
for regression parametera through the use of a wider dataset of numerically
simulated ECGs.

The innovative aspect of this paper lies in developing advanced statistical
methods aimed at detecting pathological ECG traces (in particular, LBBB),
starting only from morphological features of the curves. This allows for diag-
noses that are consistent with clinical practice, starting from purely statistical
considerations. Further extensions of this work consist to enlarge the spectrum
of acute cardiovascular diseases this technique can be applied to. Owing to the
extreme generality of the method, this generalization is theoretically straight-
forward.
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