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Abstract

For each generating set A of a finite semigroup S the integer ∆(A)
is defined as the least n for which every element of S is expressible as
a product of at most n elements of A. The status of S is defined as the
least value of |A|∆(A) among generating sets of A. Some general bounds
are obtained, and the notion is explored in more detail for certain well
understood classes of semigroups.
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1 Introduction

In a finite semigroup S we normally have many choices for a generating set: in
particular, if A is a generating set for S then so is any subset of S containing
A. For an arbitrary non-empty subset V of S and for all n ≥ 1, define

V [n] = V ∪ V 2 ∪ . . . ∪ V n . (1)

It is clear that
V ⊆ V [2] ⊆ · · · ⊆ V [n] ⊆ · · · , (2)

and equally clear that

〈V 〉 =
⋃

n≥1

V n =
⋃

n≥1

V [n] .

If 〈V 〉 = S, then the V -depth dV (s) of an element s in S is the unique n for
which s ∈ V [n] \ V [n−1].

Let S be a finite semigroup. Associated with each generating set A of S is a
natural number ∆(A), called the radix of A, defined by

∆(A) = min{m : A[m] = S} . (3)

Thus, for example, if S is the cyclic group of order 12 generated by a, then
∆({a}) = 12. If we choose another generating set A = {a3, a4}, we find that

A2 = {a6, a7, a8} , A3 = {a9, a10, a11, 1} ,
A4 = {1, a, a2, a3, a4} , A5 = {a3, a4, a5, a6, a7, a8} ;

thus A[4] ⊂ S, A[5] = S, and so ∆(A) = 5.

Roughly speaking, a larger set of generators might be expected to have a
smaller value of ∆(A), and we may reasonably measure the effectiveness of a
set of generators using the product |A|∆(A). We define the status Stat (S) of
a finite semigroup S by

Stat (S) = min{|A|∆(A) : 〈A〉 = S} . (4)

It is on the whole easy to find upper bounds for Stat (S); for example, we have
established that Stat (Z12) ≤ 10. What is harder is to show that a particular
generating set gives us the smallest possible value of |A|∆(A).
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2 Preliminaries, trivialities and generalities

For undefined terms in semigroup theory, see [4]. Throughout the paper, log
will denote the natural logarithm.

Clearly questions regarding status are related to those regarding rank, where
the rank r(S) of a semigroup S is defined by

r(S) = min{|A| : 〈A〉 = S} ,

and it is useful at this stage to recall the work of Giraldes and Howie ([3], [2])
on ‘royal’ semigroups (those with the highest possible rank), where r(S) = |S|,
and ‘noble’ semigroups, where r(S) = |S| − 1. Their structure is described in
some detail in [3] and [2]; here we need only note that

1. left and right zero semigroups are royal, and so is a chain (with xy =
min{x, y});

2. a null semigroup, in which all products are equal to 0, is noble.

It is obvious that Stat (S) = |S| if S is royal or noble. Indeed, if we follow
the whimsical precedent of [3] and call a semigroup S genteel if r(S) ≥ |S|/2,
we obtain the obvious result that Stat (S) = |S| for every genteel semigroup.
(The whimsy continues: genteel, noble and royal semigroups have high status.)
It is, however, not the case that every semigroup for which Stat (S) = |S| is
genteel: an obvious example is Z6.

The following theorem shows how easy it is to construct genteel semigroups:

Theorem 2.1 Every finite semigroup is embeddable in a genteel semigroup.

Proof Let S be a finite semigroup, and let E be the chain

e1 < e2 < · · · < en ,

with eiej = min{ei, ej}. Let T = S ∪E (a disjoint union) and, for each s in S
and each ei in E, let

eis = sei = s .

Then T is a semigroup containing S as a subsemigroup. Every generating set
of T must contain E, and so r(T ) > n. If we choose n > |S|, we deduce that
r(T ) > |T |/2, and so T is genteel. 2

The status concept does have one friendly property:
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Theorem 2.2 Let S be a finite semigroup and let ρ be a congruence on S.
Then Stat (S/ρ) ≤ Stat (S).

Proof Suppose that A is a generating set of S, chosen so that |A|∆(A) =
Stat (S). Every element s of S is expressible as a product

s = a1a2 . . . an ,

where a1, a2, . . . , an ∈ A and n ≤ ∆(A). The set Aρ = {aρ : a ∈ A} generates
S/ρ, and |Aρ| ≤ |A|. Since

sρ = (a1ρ)(a2ρ) . . . (anρ) ,

with n ≤ ∆(A), we deduce that ∆(Aρ) ≤ ∆(A). Thus

Stat (S/ρ) ≤ |Aρ|∆(Aρ) ≤ |A|∆(A) = Stat (S) .

2

It is reasonable to ask whether Stat (U) ≤ Stat (S) for every subsemigroup U .
In general this is not true, as the following example shows.

Example 2.3 Let S = FSLn be the free semilattice on a set

E = {e1, e2, . . . , en}
of n generators, where n ≥ 6. It is in effect the semilattice of all non-empty
subsets of the set E, and the semigroup multiplication corresponds to the
operation ∪ on subsets. The order of the semigroup is 2n − 1. It is clear
that ∆(E) = n, since the minimum element e1e2 . . . en is the longest possible
product. Hence Stat (S) ≤ n2. Now let U be the subsemigroup of S consisting
of all elements of depth not less than 3. This is generated by the set E3 of all
elements of depth precisely 3, and any generating set of U must contain E3.
However, |E3| = n(n− 1)(n− 2)/6, and so

Stat (U) ≥ 2|E3| = 1

3
n(n− 1)(n− 2) .

This lies between n2 and |U | for all n ≥ 6.

Remark As we shall see in Section 5, the upper bound n2 for Stat (FSLn) is
certainly not best possible.

In Example 2.3 above, we incidentally used the obvious lower bound result
that Stat (U) ≥ 2r(U) if U is not genteel.
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3 Groups

Related questions have been asked for groups. Let G be a finite group of order
N and let A be a subset of G. Then A is called an h-basis of G if Ah = G.
It follows that |G| ≤ |A|h, or equivalently that |A| ≥ |G|1/h. In 1937 Rorbach
[12, 13] asked if for every h ≥ 2 there is a function c(h) with the property that,
in every finite group G, there exists an h-basis A for which |A| < c(h)|G|1/h.

Rohrbach himself proved that such a function c(h) exists for cyclic groups.
Much later, in 1980, Cherley [1] proved that every finite abelian group G of
order N has a 2-basis A such that |A| ≤ 2

√
N log N + 2. Nathanson [10]

improved this result: if h ≥ 3 then, for every δ > 0 and for sufficiently large
N , there exists an h-basis A such that |A| ≤ (h + δ)[N log N ]1/h.

Jia [6, 7] proved that Rohrbach’s question has a positive answer for finite
abelian and finite nilpotent groups, obtaining values c(h) = h(1 + 2−1/h)h−1 in
the abelian case, and c(h) = h2h−1 in the nilpotent case. Kozma and Lev [9]
obtained the value c(h) = 2h−1 for solvable or alternating groups. This is the
strongest result so far, since the class of solvable groups includes all nilpotent
and all abelian groups.

These results give rise to an upper bound on the status of groups since trivially
∆(A) ≤ h for every h-basis A of G; in particular, for solvable groups we have

Stat (G) ≤ min{h|A| : h ≥ 2 and A is an h-basis of G}
≤ min{hc(h)n1/h : h ≥ 2} . (5)

Given a real number x, we shall use the notations

bxc = max{n ∈ Z : n ≤ x} , dxe = min{n ∈ Z : n ≥ x} .

Theorem 3.1 Let G be a solvable group of order N ≥ 19, and let s(h) =
h(2h− 1)N1/h. Then Stat (G) ≤ bs(h̄)c, where h̄ is the nearest integer to

1

8

(
2 log n + 1 +

√
4(log n)2 − 12 log n + 1

)
.

Proof We determine min{hc(h)N1/h : h ≥ 2}, with c(h) = 2h− 1, and this
can be done using elementary calculus. Taking h as a real variable, we find
that

s′(h) =
N1/h

h
[4h2 − (2 log N + 1)h + log N ] .
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For N ≤ 18 the discriminant of the quadratic inside the square brackets is
negative; otherwise there is a zero of s′(h), giving a minimum of s(h) at

h =
1

8
(2 log N + 1 +

√
4(log N)2 − 12 log N + 1 ) .

Let h̄ be the nearest integer number to this minimum point. (Since h is irra-
tional, it cannot be a half-integer, and so h̄ is well defined.) Then Stat (G) ≤
s(h) ≤ s(h̄), and, being an integer, cannot exceed bs(h̄)c. 2

If N ≤ 18 then the function s(h) is increasing for all h(≥ 2), and so its
minimum value is s(2). The bound obtained in this way is of no interest, since
it exceeds the order of the group.

It is of interest to do some calculations:

|G| h̄ Stat (G) ≤
50 2 42
100 2 60
500 3 119
1000 3 150
5000 4 235

10,000 4 280
50,000 5 391
100,000 5 450

106 7 654
109 10 1509
1012 14 2720

It was also shown by Kozma and Lev [8] that every finite group has a 2-basis

A such that |A| ≤ 4
√
|G|/√3, and so we have the bound

Stat (G) ≤ 8
√

N√
3

,

applying to every finite group of order N . This new bound is lower than or
equal to the one given for solvable groups in Theorem 3.1 for N ≤ 1170 (apart
from N = 19, 20, 21 where both of the bounds are anyway greater than N − 1)
but it becomes quickly much weaker for greater values of N : asymptotically,
s(h̄) ∼ 1

2
e2(log N)2.

We can get better bounds for special classes of groups. For example let us
consider the symmetric group Sn (of order n!) on n ≥ 3 elements:
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Theorem 3.2
Stat (Sn) ≤ b3

2
(n− 1)c(n− 1) .

Proof Let
A = {(1 j) : j = 2, 3, . . . , n}

be a generating set for Sn, of cardinality n − 1; for distinct i1, i2, . . . , if in
{2, 3, . . . , n}, we have:

(i1 i2 . . . if ) = (1 i1 i2 . . . if )(1 i1) = (1 i1)(1 i2) . . . (1 if )(1 i1) .

Now, each permutation moving exactly s elements is the product of k disjoint

cycles of length fj, with s =
k∑

j=1

fj and fj ≥ 2, and so we have at most k = bs/2c
cycles. A cycle of length fj can be written as the product of fj + 1 generators
in A, though from this we can subtract two generators if the cycle involves 1.

Thus each permutation of length s =
k∑

j=1

fj can be written as the product of

at most
k∑

j=1

(fj + 1) ≤
k∑

j=1

fj + b s
2
c = s + b s

2
c = b3s

2
c

generators (minus 2 if the permutation moves 1).

The maximum number of moved elements is s = n, and in this case we can
subtract 2, since one of the cycles must involve 1. Thus we use at most

n + bn
2
c − 2 ≤ b3

2
(n− 1)c

generators to generate such a permutation. The same bound is still obtained
if the permutation moves less than n elements, and we deduce that

Stat (Sn) ≤ b3
2
(n− 1)c(n− 1) .

2

A comparable result can be obtained for the alternating group An:

Theorem 3.3 For all n ≥ 4,

Stat (An) ≤ 2(n− 2)2 .

Proof Let
A = {(1 2 n) , (1 3 n) , . . . , (1 n− 1 n)} (6)
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be a generating set for An, of cardinality n − 2. The following equalities, in
which h and k are distinct elements of {2, . . . , n− 1}, are easy to check:

(1 n h) = (1 h n)(1 h n) ,
(h k n) = (h n)(k n) = (1 h n)(1 h n)(1 k n) ,
(1 h k) = (1 h n)(1 k n)(1 k n) ,

(1 h)(k n) = (k n)(1 h) = (1 h n)(1 k n) .





(7)

Each permutation α in An can be expressed as a product of disjoint cycles.
Consider a cycle in α of odd length 2r + 1; it can be expressed as a product of
cycles of length 3 as follows :

• If a1 = 1, then

(a1 a2 . . . a2r+1) = (1 a2 a3)(1 a4 a5) . . . (1 a2r a2r+1) .

(If a2s+1 = n, with 1 ≤ s ≤ r, then one of the factors in the product
is (1 a2s n); if a2s = n, with 1 ≤ s ≤ r, then one of the factors is
(1 n a2s+1).)

We get a dual identity if a2r+1 = n.

• If a1 6= 1 and a2r+1 6= n then

(a1 a2 . . . a2r+1) = (1 a1 a2 . . . a2r+1 n) (1 n a1)

= (1 a1 n)(a2 a3 n) . . . (a2r a2r+1 n) (1 n a1) .

Hence by (7) we get that a cycle of odd length 2r + 1 can be expressed as the
product of at most 3r + 3 generators (minus 3 if it moves 1 or n; minus 4 or
5 if it moves both of them, as in that case the product includes either (1 n h)
or (1 h n) for some h).

Now consider a cycle of even length 2r; of course it does not belong to An, but
it can be expressed anyway as follows:

• If a1 = 1 then

(a1 a2 . . . a2r) = (1 a2 a3) . . . (1 a2r−2 a2r−1) (1 a2r)
= (1 a2)(1 a3 a4) . . . (1 a2r−1 a2r) ,

}
(8)

and if a2r = n then

(a1 a2 . . . a2r) = (a1 a2 n) . . . (a2r−3 a2r−2 n) (a2r−1 n)
= (a1 n)(a2 a3 n) . . . (a2r−2 a2r−1 n) .

}
(9)

In both cases the cycle can be expressed as the product of 3(r − 1)
generators and a cycle of two elements; note that if a1 = 1 and as = n
for some s 6= 1 then we need at least one or two generators less.
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• If a1 6= 1 and a2r 6= n, then

(a1 a2 . . . a2r) = (1 a1 a2 . . . a2r n) (1 n a1)
= (1 a1) (1 a2 a3) . . . (1 a2r n) (1 n a1)
= (1 n a2r) (1 a1 a2 . . . a2r n)
= (1 n a2r) (1 a1 n) . . . (a2r−2 a2r−1 n) (a2r n) ,




(10)

and so the cycle can be expressed as the product of 3r generators and a
cycle of two elements.

Since all our permutations are even, and since cycles of even length are odd
permutations, there must be an even number of cycles of even length. A
product of two disjoint cycles

β = (b1 b2 . . . b2p) and γ = (c1 c2 . . . c2q)

of even lengths 2p and 2q can be expressed as the product of generators in
different ways; consider the following cases:

• If β = (1 n), then

βγ = (1 n)(c1 c2 . . . c2q) = (1 c2 n)(c3 c4 n) . . . (c2q−1 c2q n)(1n c1)(1 c2 n) ,

and so is expressed as a product of generators of length at most
3(q − 1) + 4 = 3(p + q)− 2.

• If p > 1 and β moves both 1 and n, with b1 = 1 and bs = n for some
s ≥ 2, then by (9) and (10) we need at most 3(p− 1)− 1+ 3q generators
plus two generators for the product

(b2p n)(1 c1) = (1 c1 n)(1 b2p n) ,

making 3(p + q)− 2 generators in all.

• If β moves 1 and γ moves n, with b1 = 1 and c2q = n, then by (8) and (9)
we need 3(p− 1) + 3(q− 1) generators plus 2 generators for the product

(1 b2p)(c1 n) = (1 b2p n)(1 c1 n) ,

making 3(p + q)− 4 generators in all.

• If β moves 1 (with b1 = 1) and neither β nor γ moves n, then by (8) and
(10) we need 3(p− 1) + 3q generators plus 3 generators for the product
(1 b2p)(1 c1) = (1 b2p c1), making 3(p + q) generators in all.
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• If β and γ move neither 1 nor n, then by (10) we need 3p+3q generators
plus 2 generators for the product (b2p n)(1 c1), making 3(p + q) + 2
generators in all.

Since other cases are dual, the product βγ of a pair of cycles of even lengths
2p and 2q can be expressed as the product of at most 3(p + q) + 2 generators
(minus 4 if both 1 and n are moved by the same one of the two cycles, minus
6 if 1 is moved by one and n is moved by the other of them, and minus 2 if
the cycles move just one among 1 and n).

Suppose that a permutation α moves exactly s elements, then:

s =
m∑

i=1

(2ri + 1) +
k∑

j=1

(2pj + 2qj) ,

and we need at most

3
( m∑

i=1

ri +
k∑

j=1

(pj + qj)
)

+ 3m + 2k (11)

generators to express it. But

m∑

i=1

ri +
k∑

j=1

(pj + qj) =
s−m

2
. (12)

(Note that this equality carries the implication that s −m is even.) Now, by
assumption, 2ri + 1 ≥ 3 and 2pj + 2qj ≥ 4; hence

4k ≤
k∑

j=1

2(pj + qj) = s−
m∑

i=1

(2ri + 1) ≤ s− 3m,

and so

k ≤
⌊
s− 3m

4

⌋
≤ s− 3m

4
. (13)

It now follows from (11), (12) and (13) that the number of generators in A
which are needed to express a permutation α moving s elements is at most

3
( m∑

i=1

(ri) +
k∑

j=1

(pj + qj)
)

+ 3m + 2k

= 3
s−m

2
+ 3m + 2k ≤ 3

s−m

2
+ 3m + 2

s− 3m

4
= 2s .

If s ≤ (n− 2) then we need at most 2(n− 2) generators, but this is also true
for s = n or n− 1. In fact if s = n then both 1 and n are moved: in the worst
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cases we need 2n − 4 = 2(n − 2) generators. Similarly, if s = n − 1 then the
worst case is when only one among 1 and n is moved by one even cycle and
we need 2(n− 1)− 2 generators.

Since the generating set A has n− 2 elements, we conclude that

Stat (An) ≤ 2(n− 2)2 .

2

4 Lower bounds for status

Let S be a finite semigroup, of order N . Given a generating set A containing g
elements, there is an obvious limit on the number of elements in A[m], namely
the number of words of length not exceeding m that can be formed from the
alphabet A. Thus A can be a generating set with ∆(A) = m only if

N ≤ |A[m]| ≤ g + g2 + · · ·+ gm =
g(gm − 1)

g − 1
.

Thus
m ≥ logg[N(g − 1) + g]− 1 . (14)

For a given N , the minimum value of mg, subject to (14), is a lower bound for
Stat (S).

For example, if N = 1000, we easily obtain the following table:

g 2 3 4 5 6 7 8 9 10
m 9 6 5 5 4 4 4 4 3

mg 18 18 20 25 24 28 32 36 30

Further routine calculation reveals that

m =

{
3 for g ∈ {10, . . . , 32}
2 for g ∈ {33, . . . , 999},

and so Stat (S) ≥ 18 for every semigroup of order 1000.

Further calculations, available in [11], yield the following result:

Theorem 4.1 Let S be a finite semigroup of order N and let A be a set of
generators with |A| = g. Denote by mg the element dlogg[N(g − 1) + g] − 1e.
If N = 3, then Stat (S) = 3 = N . If N 6= 3 then Stat (S) ≥ min{2m2, 3m3}.
Indeed, if N > 67, 108, 862 then Stat(S) ≥ 3m3 = 3dlog3[2N + 3]− 1e.
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In the case of a commutative semigroup we can obtain a better lower bound:

Theorem 4.2 Let S be a finite commutative semigroup with a generating set
A consisting of g elements. Then

|A[m]| ≤
(
m + g

g

)
. (15)

Proof Let A = {a1, a2, . . . , ag}, and let F (m, g) denote the number of words
of length exactly m in the g commuting variables a1, a2, . . . , ag. It is clear that
|Am| ≤ F (m, g). Among the F (m, g) words of length m, we have F (m− 1, g)
words that contain a1 (since we may assume that each such word begins with
a1) and F (m, g − 1) words that do not contain a1. Hence, for all m, g ≥ 2,

F (m, g) = F (m− 1, g) + F (m, g − 1) . (16)

It is now easy to prove by induction that, for all m, g ≥ 1,

F (m, g) =

(
m + g − 1

g − 1

)
=

(
m + g − 1

m

)
. (17)

the key step, motivated by (16), being the Pascal identity
(
m + g − 2

g − 1

)
+

(
m + g − 2

g − 2

)
=

(
m + g − 1

g − 1

)
.

From the definition it is clear that, for all m ≥ 1,

|A[m+1]| ≤ |A[m]|+ F (m + 1, g) .

If we suppose inductively that

|A[m]| ≤
(
m + g

g

)
,

(which is obviously true if m = 1) then it follows, again by the Pascal identity,
that

|A[m+1]| ≤
(
m + g

g

)
+

(
m + g

g − 1

)
=

(
m + g + 1

g

)
.

2

The minimum value of mg, subject to

N ≤
(
m + g

g

)
, (18)

12



is a lower bound for Stat (S).

Taking N = 1000 once again as an example, we easily obtain the table

g 2 3 4 5 6 7 8 9 10
m 44 17 10 8 7 6 5 5 4

mg 88 51 40 40 42 42 40 45 40

Further routine calculation reveals that

m =





4 for g ∈ {10, . . . , 16}
3 for g ∈ {17, . . . , 43}
2 for g ∈ {44, . . . , 999},

and so Stat (S) ≥ 40 for every commutative semigroup of order 1000.

5 Rectangular bands and semilattices

It is natural to begin the investigation of status by looking at particular cases
in which the structure of the semigroup is well understood. The easiest case
is the rectangular band:

Theorem 5.1 Let B = P ×Q, with |P |, |Q| ≥ 2, be a finite rectangular band.
Then

Stat (B) = 2 max{|P |, |Q|} .

Proof The multiplication in B is given by

(p1, p2)(q1, q2) = (p1, q2) ,

and from this it is clear that B satisfies the identical relation xyz = xz.
Thus ∆(A) = 2 for all generating sets A (with the obvious exception of B
itself) and so all we require is to determine the smallest possible generating
set for B. From [5] we have that r(B) = max{|P |, |Q|}, and so Stat (B) =
2 max{|P |, |Q|}, as required. 2

For a general semilattice E we do not have as straightforward a description as
we do for rectangular bands. We do, however, have a lower bound for Stat (E):

Theorem 5.2 If E is a semilattice of order N , then

Stat (E) ≥ 2 log2(N + 1) .
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Proof Let A be a set of generators for E. Since the number of elements
generated by A is at most 2|A| − 1, we must have N ≤ 2|A| − 1, and so |A| ≥
log2(N + 1), the bound being attained if and only if E is a free semilattice.
The result follows. 2

For the free semilattice on n generators (which is isomorphic to the set of all
non-empty subsets of a set of n elements under the operation ∪) we have the
following upper bound:

Theorem 5.3 Let FSLn be the free semilattice on n generators, where n ≥ 2.
Then

Stat (FSLn) ≤
{

n2 − bn/2c2 if n is even
n2 − bn/2c2 − 1 if n is odd.

Proof The free semilattice, generated by

X = {e1, e2, . . . , en} ,

is of order 2n − 1, and every generating set must contain e1, e2, . . . , en.

Suppose first that n is even, say n = 2k. We add k extra generators

e1e2 , e3e4 , . . . , e2k−1e2k (19)

to obtain a generating set A. Every element

ei1ei2 . . . eil (1 ≤ l ≤ k)

lies in X [k], and so certainly in A[k]. Every element

ei1ei2 . . . eik+r
(1 ≤ r ≤ k)

in FSLn must contain at least r of the elements (19). This is perhaps not quite
obvious, but we can prove it by ‘reverse induction’, it being obvious that the
statement is true when r = k. If we suppose it true for r, consider a product p
of length k+r−1, and the product pei (where ei does not appear in p) of length
k + r. We suppose inductively that pei contains at least r of the generators
(19). The addition of one extra generator to p cannot have increased the count
of generators from (19) by more than 1, and so p must contain at least r − 1
generators from (19).

We reach the conclusion that every element of FSLn is expressible as a product
of generators in A of length at most k. Hence

Stat (FSLn) ≤ |A|∆(A) = 3k2 = n2 − bn/2c2 .
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Suppose now that n = 2k + 1, an odd number. From the even case above we
may be sure that every element containing only factors from {e1, e2, . . . , e2k−2}
can be generated with not more than k − 1 factors chosen from

B = {e1, e2, . . . , e2k−2} ∪ {e1e2, e3e4, . . . , e2k−3e2k−2} .

Now let

A = B ∪ {e2k−1, e2k, e2k+1, e2k−1e2k, e2k−1e2k+1, e2ke2k+1, e2k−1e2ke2k+1} .

It is clear that A is a generating set, with |A| = |B|+7 = 3k+4 and ∆(A∗) = k.
Hence

Stat (FSLn) = (3k + 4)k = (2k + 1)2 − k2 − 1 = n2 − bn/2c2 − 1 .

2

6 Monogenic semigroups

From [5] it is clear that we can ask algebraic questions about a finite mono-
genic semigroup 〈a | ak+n = ak〉 that are not easy to answer. It is certainly
reasonable to consider the status of a monogenic semigroup S of order N , but
we have to settle for a lower bound rather than an equality. It is clear that
Stat (S) ≤ N , but it is clear also that we can do better than this: if N = 7 we
may choose A = {a, a3} as a generating set and observe that A[3] = S; thus
Stat (S) ≤ 6. In this case we have equality, for if 3 ≤ |A| ≤ 6 we must have
∆(A) ≥ 2, and so |A|∆(A) ≥ 6.

The proof of the following theorem is adapted from [6].

Theorem 6.1 Let M be a monogenic semigroup of order m. Then for every
integer d such that 1 ≤ d ≤ m there exists a generating set A of radix d for
M , with

|A| = d(d(m + 1)1/de − 1) .

Proof We shall write the elements of M simply as 1, 2, . . . , m− 1,m so as to
avoid awkward notation. (In this notation we know that m+1 = k for some k
in {1, 2, . . . , m}, but we shall not make use of this fact.) Let u = d(m+1)1/de,
and let A consist of the d(u− 1) elements

1, 2, . . . , u− 1;

u, 2u, . . . , (u− 1)u;

u2, 2u2, . . . , (u− 1)u2;

. . .

ud−1, 2ud−1, . . . , (u− 1)ud−1 .
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We prove by induction on k that each integer up to uk−1 is expressible as the
sum of at most k elements of A. This is trivially true for k = 1. Suppose that
it holds for k and consider an integer v such that uk ≤ v ≤ uk+1 − 1. Then,
by the division algorithm,

v = quk + r , where 1 ≤ q ≤ u− 1, 0 ≤ r ≤ uk − 1 .

By the induction hypothesis, r is a sum of at most k elements in A, and the
required result follows immediately, since quk ∈ A.

Thus every integer up to ud − 1 is expressible as a sum of at most d elements
of A. 2

Theorem 6.1 immediately gives an upper bound for Stat (S):

Corollary 6.2 Let S be a monogenic semigroup of order N . Then

Stat (S) ≤ Φ(N, d) = min
{
d2

(
d(N + 1)1/de − 1

)
: 1 ≤ d ≤ m

}
.

Remark 6.3 The presence of the function d e in the formula means that a
standard calculus approach to minimization is not necessarily very effective.
For large N we can approximate Stat (S) by min{d2(N + 1)1/d : d ≥ 1}, and
this is attained when d = (1/2) log(N +1). The approximation, however, gives
only a ‘ballpark’ value. For example, if N +1 = 106 we have (1/2) log(N +1) ≈
6.9, but if we calculate Φ(N, d) we obtain the table

d 5 6 7 8 9 10 11 12 13 14
Φ 375 369 343 320 324 300 363 432 338 392

and so the minimum occurs when d = 10. As d increases, we obtain a low value
when d(N +1)1/de− 1 jumps down an integer. In this case, d(N +1)1/de− 1 is
equal to 4 when d = 9 but equals 3 when d = 10. The next jump downwards
occurs at 13, when d(N +1)1/de− 1 drops from 3 to 2, and the final downward
jump, from 2 to 1, occurs when d = 20.

7 Brandt semigroups

Let n ≥ 2 and let Bn denote the aperiodic Brandt semigroup (see [4]) of degree
n. Thus

Bn = ({1, 2, . . . , n} × {1, 2, . . . , n}) ∪ {0} ,
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where

(i, j)(k, l) =

{
(i, l) if j = k

0 otherwise

(i, j)0 = 0(i, j) = 00 = 0 .

Denote the set {1, 2, . . . , n} by Nn with its natural order. In the sequel we
refer to the elements of Bn as pairs.

Theorem 7.1 Let Bn be the aperiodic Brandt semigroup of degree n; then

Stat (Bn) = 4n− 4 .

Proof It is clear that

A = {(1, 2), (2, 1), (1, 3), (3, 1), . . . , (1, n), (n, 1)}
is a generating set for Bn, and that ∆(A) = 2. Hence Stat (S) ≤ 2|A| = 4n−4.

To show equality, notice first that the rank of Bn is n, a minimal generating
set being

{(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)} .

Thus every generating set U of Bn must have |U | ≥ n. If ∆(U) ≥ 4, then
certainly |U |∆(U) > 4n−4. So if we are to find U such that |U |∆(U) < 4n−4
we must look at generating sets U with ∆(U) = 2 or ∆(U) = 3.

Note that for each i ∈ Nn there must exist j ∈ Nn such that (i, j) ∈ U . If, for
every i ∈ Nn there exist distinct pairs (i, j1), (i, j2) in U , then |U | ≥ 2n. Hence
we may choose i in {1, 2, . . . , n} with the property that there is a unique j such
that (i, j) ∈ U ; such a j is surely different from i or it would be impossible
to generate any other (i, j′), j′ 6= 1. For notational simplicity we may suppose
that i = 1, j = 2.

Let U be a generating set such that ∆(U) = 2. We shall show that |U | ≥ 2n−2.
Since (1, 1) ∈ U [2] we must have (2, 1) ∈ U . Also, since (1, i) ∈ U [2] for all
i /∈ {1, 2}, we must have (2, i) ∈ U . Thus

|U | ≥ |{(1, 2), (2, 1)} ∪ {(2, i) : i 6= 1, 2} ∪ {(i, ∗) : i 6= 1, 2}| = 2n− 2 ,

and so |U |∆(U) ≥ 4n− 4.

Next, suppose that U is a generating set such that ∆(U) = 3. We aim to prove
that |U | ≥ 2n− 4. Let B (respectively C) be the set of elements y ∈ Nn such
that the U -depth of (1, y) equals 2 (respectively 3), that is :

B = {i ∈ Nn : (2, i) ∈ U} ,

C = {j ∈ Nn : j 6= 2, (2, j) /∈ U, (∃i ≥ 3) (2, i), (i, j) ∈ U} .
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Then B and C are disjoint, C 6= ∅ and B ∪ C = Nn \ {2}. Let

x =

{
1 if 1 ∈ B
0 if 1 ∈ C.

Let |C| = k; then |B| = n− k − 1. We want now to count the elements in U .
Let us start by defining a suitable subset U of U . Define a map f from C into
B by putting f(c) = b if and only if (b, c) ∈ U and, for all b′ ∈ B, if (b′, c) ∈ U
then b < b′ in the natural order of Nn. Let U0 = {(f(c), c) : c ∈ C} and let
B1 = {b ∈ B : f−1(b) 6= ∅}. Denote |B1| by h. By our definition, f is a map
from C onto B1, and so k ≥ h.

For each b 6= 1 belonging to B \ B1 there is at least one (b, xb) in U . Define
a map g from B \ (B1 ∪ {1}) into Nn by putting g(b) = x, where (b, x) ∈ U
and, for all x′ ∈ Nn , (b, x′) ∈ U implies x < x′ in the natural order of Nn. Let
U1 = {(b, g(b)) : b ∈ B \ (B1 ∪ {1})} .

Similarly for each c 6= 1 in C there is at least one (c, xc) ∈ U . Note that if in
U there exists only one pair (c, ∗) for some c ∈ C, then ∗ 6= 1, for otherwise it
would be impossible to express (c, c) as a product of length at most 3: in fact
(c, 1), (c, 2) = (c, 1)(1, 2), (c, b) = (c, 1)(1, 2)(2, b) would be the only possible
products which can be generated under our assumptions on the U -depth of
elements of Bn. Hence we may define a map l from C \ {1} into Nn \ {1} as
follows: l(c) = x, where x 6= 1, (c, x) ∈ U and, for all x′ ∈ Nn \{1}, (c, x′) ∈ U
implies x < x′ in the natural order of Nn. Let U2 = {(c, l(c)) : c ∈ C \ {1}}.
Obviously Ui ⊆ U, i = 0, 1, 2 and Ui ∩ Uj = ∅ if i 6= j. Let U = {(1, 2)} ∪
{(2, b) : b ∈ B} ∪ U0 ∪ U1 ∪ U2. Hence U contains the following pairs:

• 1 pair (1, 2);

• n− k − 1 pairs (2, b) (b ∈ B);

• n− k − 1− x− h pairs (b, g(b)) ∈ U1;

• k pairs (b, c) ∈ U0 (c ∈ f−1(b));

• k − 1 + x pairs (c, l(c)) ∈ U2.

Thus

|U | ≥ |U | ≥ 1+(n−k−1)+(n−k−1−x−h)+k +(k−1+x) = 2n−2−h .

If h ≤ 2 we have proved the required result. So let h > 2. Our aim is to show
that in U there must be at least h− 2 elements not in U .
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If there exist h− 2 elements b ∈ B1 such that (cb, j1), (cb, j2) are in U for some
cb ∈ f−1(b), j1 6= j2, then we have finished because for each cb at most one
such pair is in U . Let B = {b1, b2, . . . , bt}, 2 < t ≤ h be the set of elements
in B1 such that for all c ∈ f−1(bi), i = 1, . . . , t there exists in U only the pair
(c, l(c)).

Consider b1 ∈ B. It is not possible to have l(c) ∈ {2, b1, c′} (with c′ ∈ f−1(b1))
for every c in f−1(b1), for in this case it would be impossible to generate
any pair (b1, y), where y /∈ C \ f−1(b1), as a product of at most 3 pairs in
U . Suppose now that, for all bi ∈ B and all c ∈ f−1(bi), we have either
l(c) ∈ {2, bi, c′} (with c′ in f−1(bi)) or l(c) = b ∈ B1 \ B. Then the latter
case must hold for at least one ci ∈ f−1(bi). We must generate the pairs
(b1, ci) for ci ∈ f−1(bi), i 6= 1, as a product of at most 3 pairs in U. By
means of the pairs in U we get only (b1, cj), (b1, cj)(cj, b), (b1, cj)(cj, b)(b, c) for
cj ∈ f−1(b1), b ∈ B1 \ B, c ∈ f−1(b). Thus there must exist in U \ U at least
one pair (b1, ci) or (b, ci) for all ci ∈ f−1(bi), i 6= 1. Hence there are at least
t− 1 new pairs, and so |U \ U | ≥ h− t + t− 1 = h− 1.

Thus we may now suppose that for every bi ∈ B there exists at least one
element in f−1(bi) (denote it by ci) such that l(ci) = b ∈ (B \ {bi}) ∪ (B \B1)
or l(ci) = c ∈ C \ f−1(b1). Suppose first that for all i and for all ci we have
l(ci) = b ∈ (B \ {bi}) ∪ (B \B1).

Consider b1 and c1. Let us first suppose that l(c1) = b2 ∈ B and let cj ∈
f−1(bj), j = 3, . . . , t. By means of pairs in U we can generate only (c1, b2),
(c1, b2)(b2, c), (c1, b2)(b2, c)(c, b) for c ∈ f−1(b2) and b ∈ B. Thus, in order to
generate (c1, cj) as a product of at most 3 elements in U, we need in U \ U at
least a pair (b2, cj), ∀j = 3, . . . , t. Hence |U \ U | ≥ h− t + t− 2 = h− 2.

Now suppose that l(c1) = b′ ∈ B \ B1 and let b ∈ B1 and cb ∈ f−1(b). The
pair (c1, cb) must be generated as a product of at most 3 elements in U, and
so the pair (b′, cb) must be generated as a product of at most 2 elements in U.
If (b′, cb) is in U then we have done: suppose that this is the case for r (< h)
elements cb. For the remaining h − r elements cb there must exist pairs in U
(b′, z) and (z, cb) for some z ∈ B ∪C. Consider the minimum element z in the
natural order of Nn for which this happens and suppose that we have s such
elements z. Thus in U there must exist r + s pairs having b′ as first element.
For at most one of them the second element is g(b′) and the corresponding
pair is in U . Now consider the h − r pairs (z, cb): in U we have at most one
of them for every z, and so at most s of them are in U . Thus we have at least
(r + s− 1) + (h− r − s) = h− 1 pairs in U \ U .

We have to consider the final case when for all bi ∈ B and for all c ∈ f−1(bi)
we have that either l(c) ∈ {2, bi, c′} (with c′ in f−1(bi)) or l(ci) = b ∈ (B \
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{bi})∪ (B \B1) or l(ci) = c ∈ C \ f−1(b1), and that the latter case holds for at
least one index i. Without loss of generality, let i = 1, consider b1 and c1 and
suppose that l(c1) = c ∈ C \ f−1(b1). For every b ∈ B1 \ f(c) let cb ∈ f−1(b).
The pair (c1, cb) must be generated as a product of at most 3 elements in U,
and by computations similar to those in the previous case we deduce that there
are at least (r + s− 1) + (h− 1− r − s) = h− 2 pairs in U \ U .

In all cases there must be in U at least h− 2 pairs not in U and

|U | ≥ 2n− 2− h + h− 2 = 2n− 4 .

It follows that Stat Bn ≥ 3(2n− 4) ≥ 4n− 4 for all n ≥ 4.

It remains to verify the result for n = 2 and n = 3. First, let n = 2. Then
4n− 4 = 4. Since |U | ≥ 2 it follows that |U |∆(U) ≥ 6 if ∆(U) = 3. If n = 3,
so that 4n− 4 = 8, then ∆(U) = 3 and |U | ≥ 3 gives |U |∆(U) ≥ 9. 2
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