UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM FOR THIN IMPERFECTIONS WEAKLY OR STRONGLY CONDUCTING

V.Bacchelli, C.D.Pagani, F.Saleri

Abstract: In a two-dimensional domain Ω , we consider the potential u harmonic in $\Omega \setminus \sigma$, σ a curve in Ω , which satisfies on σ the transmission condition $\lambda (u^+ - u^-) = \frac{\partial u}{\partial \nu}$ or the condition $-\mu \left(\frac{\partial u^+}{\partial \nu} - \frac{\partial u^-}{\partial \nu}\right) = \frac{\partial^2 u}{\partial \tau^2}$ and on $\partial \Omega$ the usual Neumann condition. By the additional knowledge of $u \mid_{\partial \Omega}$, we state some results of uniqueness of σ , in case σ is a graph. The two conditions considered describe a situation in which the curve σ represents a thin imperfection, whose conductivity is, respectively, very weak or very strong.