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Abstract

Reduced Order Modeling is of paramount importance for efficiently inferring high-dimensional spatio-temporal
fields in parametric contexts, enabling computationally tractable parametric analyses, uncertainty quantifica-
tion and control. However, conventional dimensionality reduction techniques are typically limited to known
and constant parameters, inefficient for nonlinear and chaotic dynamics, and uninformed to the actual sys-
tem behavior. In this work, we propose sensor-driven SHallow REcurrent Decoder networks for Reduced
Order Modeling (SHRED-ROM). Specifically, we consider the composition of a long short-term memory
network, which encodes the temporal dynamics of limited sensor data in multiple scenarios, and a shallow
decoder, which reconstructs the corresponding high-dimensional states. SHRED-ROM is a robust decoding-
only strategy that circumvents the numerically unstable approximation of an inverse which is required by
encoding-decoding schemes. To enhance computational efficiency and memory usage, the full-order state
snapshots are reduced by, e.g., proper orthogonal decomposition, allowing for compressive training of the
networks with minimal hyperparameter tuning. Through applications on chaotic and nonlinear fluid dynam-
ics, we show that SHRED-ROM (i) accurately reconstructs the state dynamics for new parameter values
starting from limited fixed or mobile sensors, independently on sensor placement, (ii) can cope with both
physical, geometrical and time-dependent parametric dependencies, while being agnostic to their actual val-
ues, (iii) can accurately estimate unknown parameters, and (iv) can deal with different data sources, such
as high-fidelity simulations, coupled fields and videos.

1. INTRODUCTION

Reduced order models (ROMs) are widely used computational tools for accelerating engineering design
and characterization [4, 3, 49, 27]. Specifically, scientific computing is now an integral part of every field
of application, with high-fidelity numerical solvers and methods [35] playing a critically enabling role in the
modeling of high-dimensional, complex dynamical systems. However, this might be extremely demanding —
or even prohibitive — in case repeated predictions are required for multiple scenarios, in very rapid times,
or within sequential design or control loops. ROMs designate any approach aimed at replacing the high-
fidelity problem by one featuring a much lower numerical complexity. In emerging modern applications,
such as turbulence closure modeling, weather forecasting, powergrid networks, climate modeling and neuro-
science, the construction of tractable dynamic models directly from data or high-fidelity simulations enables
both engineering design and scientific discovery. Scientific machine learning [6] is an emerging paradigm
for constructing data-driven ROMSs. As with traditional ROMs, machine learned ROMs aim to learn both
low-dimensional embeddings and evolution dynamics which accurately reconstruct (in a least-square or sta-
tistical sense) the high-fidelity and high-dimensional state of the original (possibly parametric) system. In
what follows, we advocate a new ROM architecture based upon the method of separation of variables for
solving partial differential equations (PDEs). Specifically, we train a recurrent neural network to capture the
temporal behavior of limited sensor data, while mapping its latent space to the high-dimensional state via
a shallow decoder. The resulting Shallow REcurrent Decoder-based Reduced Order Model (SHRED-ROM)
turns out to be an ultra-hyperreduced order modeling framework which provides a fully data-driven and
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Figure 1: Graphical summary of the SHallow REcurrent Decoder-based Reduced Order Model (SHRED-ROM). Sparse sensor

values sf:" over time windows of length L in multiple scenarios are encoded through a long short-term memory (LSTM), while

a shallow decoder network (SDN) projects the resulting latent representation in the high-dimensional state space. Full-order
state snapshots ugi are reduced by proper orthogonal decomposition (POD), allowing for compressive training at the POD
level. After training, in the online phase, it is possible to reconstruct high-dimensional state trajectories ﬁf: for new parameters
.

robust ROM architecture for data or high-fidelity simulations. A graphical summary of the SHRED-ROM
architecture for parametric state reconstruction from limited sensor data is presented in Figure 1.
PDEs model a diversity of spatio-temporal systems, including those found in the classical physics fields
of fluid dynamics, electrodynamics, heat conduction, and quantum mechanics. Indeed, PDEs provide a
canonical description of how a system evolves in space and time due the presence of partial derivatives which
model the relationships between rates of change of time and space. Governing equations of physics-based
systems simply provide a constraint, or restriction, on how these evolving quantities are related. We consider
PDEs of the form [13]
= N(u,x,t, ) (1)

where u(x, t) is the variable of interest, or the state-space, which we are trying to model. Alternatively, it may
be that N(+) is unknown, so a purely data-driven strategy must be considered. The solution u(x,t) of the PDE
depends upon the spatial variable x, which can be in 1D, 2D or 3D, and time ¢. Importantly, solutions can
often depend on a vector of parameters p, thus requiring a solution that can model parametric dependencies,
ie. wu(x,t,p). Solutions of (1) are typically achieved through numerical simulation, unless N(-) is linear
and constant coefficient so that analytic solutions are available. Asymptotic and perturbation methods
can also offer analytically tractable solution methods [36]. In many modern applications, discretization of
the evolution for u(x,t, u) results in a high-dimensional system for which computations are prohibitively
expensive. The goal of building ROMs is to approximate the full simulations of (1) through inexpensive
tractable computations.

Traditional ROMs generate a computational proxy of (1) by projecting the governing PDE into a new
coordinate system [4, 3, 49, 27]. Coordinate transformations are one of the fundamental paradigms for
producing solutions to PDEs [33]. Specifically, ROMs produce coordinate transformations from the simu-
lation data itself. Thus, if the governing PDE (1) is discretized so that u(x,t) — u, = u(ty) € RV for



k=1,...,NN;, then snapshots of the solution can be collected into the data matrix

where X € CM»*N:e In case of parametric dependencies, the data matrix contains the discretized states
u(x,t, p) — ubf = u(ty, p) € RV» for N, different parametric instances, that is

| | | \
N

where X € CV»*NtNo - An optimal coordinate system for ROMs is extracted from the data matrix X with

a singular value decomposition (SVD) [35]:
X =v¥yVv*

where ¥ € CNnx7 '3 € R™" and V € CN*NoX" with N, = 1 for nonparametric problems, and r is the
number of modes extracted to represent the data. The SVD, which is more commonly known in the ROMs
community as the proper orthogonal decomposition (POD) [30, 4], computes the dominant correlated activity
of the data as a set of orthogonal modes. It is guaranteed to provide the best £3-norm reconstruction of the
data matrix X for a given number of modes r. Importantly, the  modes ¥ extracted from the data matrix
are used to produce a separation of variables solution to the PDE [25]:

u = E(x)alt, p) (2)

where the vector a = a(t, u) is determined by using this solution form and performing a Galerkin projection
of (1) [4]. Thus, a projection-based ROM simply represents the governing PDE evolution (1) in the r-rank
subspace spanned by W.

The projection-based ROM construction often produces a low-rank model for the dynamics of a(t, u)
that can be unstable [8]. Machine learning techniques offer a diversity of alternative methods for computing
the dynamics in the low-rank subspace. The simplest architecture aims to train a deep neural network that
maps the solution forward in time, possibly being robust on different admissible scenario parameters:

afc‘_H = fg(al)) (3)
where a}f = a(ty, pu) and fy represents a deep neural network whose weights and biases 8 are determined by
minimizing the prediction error on the available reduced snapshots aj* for i =1,..., N, and k = 1,..., N.

A diversity of neural networks can be used to advance solutions, or learn the flow map from time t to
t + At [48, 40]. Indeed, deep learning algorithms provide a flexible framework for constructing a mapping
between successive time steps in multiple scenarios. Recently, Parish and Carlberg [47] developed a suite of
neural network-based methods for learning time-stepping models for (3), along with an extensive comparison
between different neural network architectures and traditional techniques for time-series modeling.

Machine learning algorithms offer options beyond POD-Galerkin projection and deep learning-based
modeling of the time-stepping in the variable a(t, p). Thus, instead of inserting (2) back into (1) or learning
a flow map fy for (3), we can instead think about directly building a model for the dynamics of a(¢, i), that
is

a="f(at p)

where f(-) now prescribes the dynamics. Two highly successful options have emerged for producing a model
for this dynamical system: (i) the dynamic mode decomposition (DMD) [37] and (ii) the sparse identification
of nonlinear dynamics (SINDy) [7]. The DMD model for f(-) is assumed to be linear so that

a~ La

where L is a linear operator found by regression. Solutions are then trivial as all that one requires is to find
the eigenvalues and eigenvectors of L in order to provide a general solution by linear superposition. Note



that, in parametric settings, it may be convenient to consider interpolation strategies among a set of linear
operators L(p;) for ¢ = 1,...,N,, as proposed by Andreuzzi et al. [2] and Huhn et al. [31]. The SINDy
method makes, instead, a different assumption: the dynamics f(-) can be represented by only a few terms.
In this case, the regression has the form

A~ Oa,p)g

where the columns of the matrix @(a, p) are (possibly p-dependent) candidate terms from which to construct
a dynamical system and € contains the loading (or coefficient or weight) of each library term. SINDy assumes
that & is a sparse vector so that most of the library terms do not contribute to the dynamics. The regression
is a simple solve of an overdetermined linear system that is regularized by sparsity, or the sparsity-promoting
lo or £1 norms.

In addition to the diversity of methods for building a model for the time dynamics of a(t, i), there also
exists the possibility of using coordinates other than those defined by ¥. Moving beyond a linear subspace
can provide improved coordinate systems for building latent dynamic models. Importantly, there exists the
possibility of learning a coordinate system where, for instance, a linear DMD model or a parsimonious SINDy
model can be more efficiently imposed. Thus we wish to learn a coordinate transformation

zZ = fg(u)

where z is the new variable representing the state space u and fg is a neural network — such as, e.g., the
encoder part of an autoencoder — that defines the coordinate transformation. This allows us to find a
coordinate system beyond the standard linear, low-rank subspace ¥, which can be advantageous for ROM
construction. The goal is then to fit a dynamical model in the new coordinate system

z=1(z,t,p)

through, for instance, a DMD or SINDy approximation [9]. A more recent extension to parametric problems
has been proposed by Conti et al. [11], also featuring uncertainty quantification by considering variational
autoencoders [12]. Similarly, Regazzoni et al. [50, 51] automatically discover a suitable low-dimensional
coordinate system and the corresponding latent dynamics that best describe the input-output data pairs.
A more flexible and theoretically rigorous formulation of the problem of latent dynamics learning has been
proposed by Farenga et al. [16], whereas alternative approaches to evolve the latent space dynamics using
recurrent neural networks or an auto-regressive attention mechanism have been proposed by Koumoutsakos
and coauthors [54, 23]. Importantly, in contrast to autoencoders, the decoding-only strategy of SHRED-
ROM does not require the computation of inverse pairs, i.e. an encoder and the corresponding decoder.
Since the early days in scientific computing, it has been well known that the computation of the inverse of
a matrix is highly unstable and non-robust [18, 14, 28]. By decoding only, SHRED-ROM circumvents this
problem and learns a single embedding without the corresponding inversion.

Instead of learning a dynamical model at POD or latent level, it is also possible to focus on the map from
time-parameters to the POD coefficients (¢, ) — a(t, ) or to other low-dimensional coordinate systems
(t, ) — z(t,p). This is the case, for instance, of the non-intrusive reduced order modeling frameworks
proposed by Hesthaven and Ubbiali [26] and Fresca et al. [22, 20], where long-short term memory networks
have also been employed [21].

In what follows, we introduce a new reduced order modeling framework based upon the separation of
variable method that combines recurrence and decoding in order to reconstruct high-dimensional states
starting from limited sensor measurements, while being agnostic to sensor placement and parameter values.
Differently from the aforementioned ROM strategies, we encode the sensor dynamics through a recurrent
neural network, mapping its latent representation to the state space with a shallow decoder. The proposed
decoding-only strategy turns out to be very efficient and accurate in a wide range of applications, such as
the reconstruction of chaotic and nonlinear fluid dynamics in multiple scenarios.

2. SHALLOW RECURRENT DECODER-BASED REDUCED ORDER MODELING

The shallow recurrent decoder network (SHRED) proposed by Williams et al. [55] is a promising sensing
strategy, with impressive reconstruction and forecasting results in the low-data limit. See [38, 15, 52, 24]



for a complete presentation with possible extensions. In this work, we extend the SHRED strategy to a
unified reduced order modeling framework capable of (i) reconstructing high-dimensional dynamics from
sparse sensor measurements, regardless of sensor placement, (#) dealing with both physical, geometrical
and time-dependent parametric dependencies, while being agnostic to their actual values, (i) estimating
unknown parameters, and (iv) coping with both fixed or mobile sensors, as well as different data sources
such as high-fidelity simulations, coupled fields or videos. Importantly, computational efficiency and memory
usage are enhanced by reducing the dimensionality of full-order snapshots, allowing for compressive training
of the networks.

2.1. The rationale behind SHRED-ROM: separation of variables

SHRED-ROM consists of a combination of recurrence and decoding, as better detailed in Section 2.2.
While the former operation captures the temporal behavior of limited sensor data, the latter performs
a spatial upscaling to recover the corresponding high-dimensional state. A similar split in spatial and
temporal components is taken into account by the well-known method of separation of variables for solving
linear PDEs [17], which assumes that the solution has the form u(x,t, u) = T(t, u) X (x, p). For the sake of
simplicity, we first review the case of nonparametric problems, postponing at the end of the section the case
of parametric PDEs.

Linear PDEs. Let us consider the 1D constant coefficient linear PDE
U= Lu (4)

where £ = £(0,,02,...) is a linear differential operator modeling the dynamics of u(z,t). Note that (4) has
to be coupled with suitable initial and boundary conditions in order to guarantee its well-posedness. When
looking for solutions in the separated form wu(z,t) = T'(¢) X (x), (4) reduces to two differential equations for,
respectively, time T'(¢) and space X (x), namely

T = \T; LX = )X, (5)

where A € C. Finally, thanks to the linearity assumption, the explicit formula for u(zx,t) is given by
superposition of the solutions of (5), that is

N
u(x,t) = Z ap, exp(Ant)dn(z) (6)

n=1

where ¢, (z) and A, are, respectively, the eigenfunctions and eigenvalues of the linear operator L, i.e.
Lon(x) = Apon(x). Note that the sum in (6) is truncated up to N terms, as standard practice for numer-
ical evaluation. To uniquely determine the coefficients a,,, the initial condition u(x,0) = ug(z) is typically
imposed in (6), while exploiting the orthogonality of the eigenfunctions ¢, (z), yielding

uo(x) = Y andn(r) = an = (uo(x), $n(x))
n=1

where (-, ) stands for the inner product.

In general, when dealing with real-world high-dimensional problems, it is more likely to measure the
dynamical system in few locations over time. Therefore, the coefficients a,, can be determined requiring that
the solution (6) matches the available sensor measurements. For instance, if N temporal observations of a
single sensor located in x = x, are available, the system of equations

N
u(xsv tk) = Z 427 exp()‘ntk)¢n(xs) for k=1,...,N

n=1

uniquely determine the solution u(z, t). Similarly, the high-dimensional state may be prescribed by employing
multiple sensors over time. For example, if two sensors are available in the considered domain, then N/2



temporal observations steps are needed to compute the coefficients a,,. In general, we can exploit N, sensors
on N/Nj trajectory points.

Besides the initial condition and the temporal history of stationary sensors, mobile sensors can be ex-
ploited, as shown in Section 3.1 and Section 3.4 with sensors passively transported by the underlying fluid.
For example, if we take into account a single mobile sensor with time-dependent position x5 = zs(t), the
constraints become

N
w(@s(tr), th) = Y an expAnti)dn(@s(t))
n=1
for k = 1,...,N. The temporal trajectory information at a single spatial location, as well as a mobile

sensor, is therefore equivalent to knowing the full spatial field at a given time instant. The above arguments
guarantee that, in the linear case, SHRED-ROM reconstructs exactly the high-dimensional spatio-temporal
state. Note that the same argument may be easily extended to systems in higher spatial dimensions.

Nonlinear PDEs. Let us consider the 1D nonlinear PDE
i = N(u) (7)

equipped with suitable initial and boundary conditions, where N = N(9,,92,...) is a nonlinear differential
operator. The dynamical system in (7) is typically solved through numerical techniques such as, e.g., finite
differences, finite element methods, finite volume methods and spectral methods [35]. In the latter case, the
solution is approximated by a spectral basis expansion

N

u(aa t) = Z an(t)¢n(x) (8)

n=1

Standard choices of spectral basis functions {¢,(x)}2_; include, e.g., Fourier modes or Chebyshev polyno-

mials. Inserting (8) back into (7) yields a system of N coupled ODEs for a,(t):
an = fnlay, a9, - ,an) for n=1,... N. (9)

Similarly to the method of separation of variables in the linear limit, the solution of this N-dimensional ODE
depends on N constants of integration to be determined by imposing initial condition and orthogonality in
(8), that is

an(0) = (uo(x), dn(x)).

If a fixed sensor monitors the PDE solution in = x4 over IV time steps, we can still uniquely determine the
dynamics of the time-dependent coefficients a,, in (9). Specifically, we impose the constraints

N
w(@e,te) = Y an(tr)gn(zs) for k=1,...,N
n=1

to determine the N constants of integration that arise while solving (9), thus obtaining the state approxi-
mation through (8). In the nonlinear case, establishing rigorous theoretical bounds for SHRED-ROM poses
challenges, consistently with the difficulties encountered to rigorously bound both analytical and numerical
solutions in computational PDE settings. However, time-series of sparse sensor measurements allows us
to recover standard numerical techniques, such as the spectral method. The same argument can be then
extended to multiple or mobile sensors, as detailed for the linear case.

Coupled PDEs. Let us now consider coupled, constant coefficient 1D linear PDEs, such as the first-
order coupled system

U= Liu+ Lov (10a)
U = Lau+ L4v (10b)



in the unknowns u(z,t) and v(z,t), where £; = £;(0,,02,...) fori = 1,2, 3,4 are linear differential operators.
If we differentiate (10a) with respect to time and substitute v and v with, respectively, (10a) and (10b), we
rewrite the coupled system as a second-order PDE

U = Elu + [,2,53“ + £2£4 (E (U — Elu))

dependent only on the spatio-temporal field u(x,t). This suggests that the solution fields u(z,t) and v(z,t)
can be reconstructed by only knowing u(z,t¢). For instance, in the application detailed in Section 3.1,
we reconstruct the high-dimensional flow velocity exploiting sensors monitoring a coupled quantity, that
is the height deviation of the pressure surface from its mean height. Second-order PDEs require both an
initial condition u(x,0) and an initial velocity @ (z,0) to uniquely determine the solution. As with previous
arguments, we can show that the high-dimensional coupled fields can be prescribed by, e.g., a single sensor
measurement over 2N temporal trajectory points, as well as by multiple or mobile sensors.

Parametric PDEs. Let us consider the parametric, constant coefficient 1D linear PDE
= LFPu (11)

with suitable initial and boundary conditions, where £* = £(8,,02, ..., u) is a parameters-dependent linear
differential operator. As with the linear nonparametric case, looking for solutions of (11) in the separated
form u(x,t, u) = T(t, ) X (z, p) leads to the differential equations

T = \T; LPX = )\X,

with A € C. The parametric high-dimensional state u(x,t, ) is then given by

N
u(z, t,p) = Z an exp(Ayt)oh (z)

n=1

where ¢k (x) and A¥ are, respectively, the eigenfunctions and eigenvalues of the parametric linear operator
LB ie. LFPM(z) = Mo (r). As with previous arguments, the coefficients a, and thus the solution
u(x,t, u) can be uniquely determined by employing a fixed sensor in position = x5 monitoring the state
on N trajectory points in the scenario identified by the set of parameters p, that is

u(xs, te, ) = Zanexp (At ot (xs) for k=1,...,N.

The same arguments can be generalized to multiple or mobile sensors, to nonlinear and coupled parametric
PDEs, as detailed in the previous cases, as well as to systems in higher spatial dimensions or ordinary
differential equations (ODESs), as highlighted in the following example.

Example 1. Let us consider the 3 x 3 parametric linear system of ODEs

1 2 0
a= |0 -1 p|u (12)
0 0 2

where u(t, ) = [u1(t, p), ua(t, ), uz(t, 1)] 7. The explicit solution of (12) is given by

uy(t, p) 21 -1 1
ug(t, )| =cre® | | +coe™t | 1| +c3et |0
ug(t, 1) 3 0 0

where the coefficients c1, ¢z, c3 has to be determined. To this aim, we may exploit the initial condition
u(0, 1) = [1,2,3]7, that is we solve the system

u1 (0, i) 1 2u —1 1| |
u2(0, )| = (2] = 1 0| |
u3(0, 1) 3 30 0| |es



yielding ¢; = 1, o = 2—p and ¢3 = 3—3pu. Equivalently, we can determine the coefficients by employing one
sensor monitoring u; over time. Specifically, if we measure [u1(0,1),u;(1,1),u1(2,1)]T =[1,€2 —e~1,2e* —
e~2] in the scenario identified by ;1 = 1, we obtain the same results by solving the system

u1(0,1) 1 2 -1 1] [a
u(L,1)| = (22 —e | = (22 —e1 e |
u1(2,1) 2et —e72 2¢t —e7? €2 |es

The same strategy can be then repeated for different values of the parameter p. Note that, if we consider
measurements of us and/or wuz only, the coefficient c¢3 does not appear in the corresponding system of
constraints, and it is not possible to uniquely determine the exact solution. This limitation is due to the
non-observability of the system with respect to us and/or uz. Thus, in this setting, full state reconstruction
from sensor data is guaranteed whenever we have observability with respect to the measured quantity.

2.2. SHRED-ROM architecture and compressive training

SHRED-ROM aims to reconstruct a high-dimensional spatio-temporal field starting from Ny sensors in
multiple scenarios. Rather than learning the one-shot reconstruction map s = {u(xs, ty, u)}i\’;l — uf for
k=1,...,N; — as considered by, e.g., [45, 44, 43, 56] — we take advantage of the temporal history of sensor
values. Specifically, a recurrent neural network fr encodes the sensor measurements over a time window of
length L < N, into a latent representation of dimension N;, that is

fr RN xRN 5 RN Wl =fr(sh L. s,
—_——
L times

where the hyperparameter L identifies the number of lags considered by SHRED-ROM, and may be selected
according to the problem-specific evolution rate or periodicity. The high-dimensional state is then approx-
imated through a decoder fx, which performs a nonlinear projection of the latent representation onto the
state space

fx (RM 5 RYh ult mal = fy(hY) = fx (fr(sh ..., st)).

In this work, we consider a long short-term memory (LSTM) network [29] to model the temporal dependency
of sensor data, and a shallow decoder network (SDN) as latent-to-state map. In general, SHRED-ROM
provides a modular framework where different architectures — such as, e.g., convolutional neural networks [39],
gated recurrent units [10], echo state networks [42], transformers [53] and variational autoencoders [34] —
may be exploited.

In the offline phase, once for all, the neural networks appearing in SHRED-ROM have to be properly
trained. To this aim, suppose to collect snapshots of the high-dimensional state — either in the form of experi-
mental measurements or synthetic data generated by high-fidelity simulations — along with the corresponding
sensor data

ull—;l = u(t/w IJ’Z) S RNha S;:i = {u(xsatka l*l’l)}i\gl € RNS

for different time instants ¢1,...,%y, and scenario parameters g1, ..., py, in the parameter space P. Note
that, as discussed in the previous section, mobile sensors can be easily taken into account, resulting in the
measurements st = {u(xs(tx), tr, pi) }ooo € RVs. Note also that, in order to strengthen the generalization
capabilities of SHRED-ROM, it is crucial to adequately explore the variability in time and in the parameter
space. Starting from the sequences of sensor measurements in multiple scenarios, we extract time-series of
length L

{sti, ,....st"} fori=1,...,N, and k=1,..., N, (13)

where pre-padding (s}* = 0 for k < L and ¢ = 1,...,N,) is applied to obtain state reconstructions on the
whole time interval [t1,¢y,], avoiding any burn-in period. After a training-validation-test splitting of the
available input-output pairs, the recurrent neural network fx and the shallow decoder fr are trained by
minimizing the reconstruction error

Jupap) = Y e —a P = ) e~ e (Er(si i) (14)
1€ ¢rain 1€ Ltrain
keKtrain keKtrain



where [irain and Kipain identify the times and scenarios in the training set, while ||-|| stands for the Euclidean
norm. Once trained, in the online phase, SHRED-ROM provides a real-time reconstruction of the state
trajectory starting from the corresponding sensor history in new time instants and/or new scenarios p
unseen during training.

Whenever the state dimension N}, is remarkably high, compressive training strategies may be employed
to enhance computational efficiency and memory usage. Specifically, it is possible to reduce the state
dimensionality through a data- or physics-driven basis expansion of the snapshots u;*. Doing so, SHRED-
ROM estimates only the r < N basis expansion coefficients, rather than the entire high-dimensional
state. For example, we can project the state snapshots onto a lower-dimensional subspace by POD, that is
u}’ = Wal”, resulting in the SHRED reconstruction

Q= Wal = Wy (fr(st ... s™)).

An example of an alternative basis is provided in Section 3.1, where spherical harmonics are taken into
account to properly describe and compress synthetic state snapshots simulated on a sphere.

3. NUMERICAL RESULTS

This section presents five test cases where SHRED-ROM is employed to reconstruct high-dimensional
spatio-temporal fields starting from limited sensor measurements. In Section 3.1, we employ SHRED-ROM
to reconstruct synthetic spherical snapshots in a nonparametric setting, while exploiting both fixed and
mobile sensors, as well as different compressive training strategies based on POD and spherical harmonics.
To demonstrate the wide applicability of SHRED-ROM, we cope with the reconstruction of videos given
limited pixel values in Section 3.2. The remaining three test cases are devoted to the reconstruction of
high-dimensional states of chaotic, nonlinear and parametric fluid dynamics in multiple scenarios. Note
that, when dealing with nonparametric problems, 80% of the time instants are randomly selected as training
sequences in Kiain, while the remaining ones are equally split in validation and test. Instead, in parametric
contexts, we consider a parameter-wise splitting — i.e. 80% of the trajectories are regarded as training set,
while the remaining trajectories related to different parameter values constitute validation and test sets.

Differently to many deep learning-based models, SHRED-ROM requires minimal hyperparameter tuning.
Indeed, in all the test cases presented, the following lightweight architecture is exploited: the LSTM fr shows
2 hidden layers with 64 neurons each, while the SDN fx is made of 2 hidden layers having 350 and 400 neurons,
respectively. Moreover, we select ReLU as activation function, and we prevent overfitting through dropout
with rate equal to 0.1. Regarding the neural networks training, we exploit Adam optimizer for 200 epochs,
half with learning rate equal to 0.001 and half with learning rate equal to 0.0001, considering a batch size
equal to 64. The relatively light and simple SHRED-ROM architecture, along with compressive training
strategies, allows us to efficiently solve a wide range of challenging reconstruction problems with laptop-level
computing.

The generalization capabilities of SHRED-ROM on new times and new scenarios in the test set are
quantitatively assessed with the following mean relative error

ey = Ly oo laft — Ex (st s))]
koo Tk Ntest i€ Thost ||u§:l|| Ntest i€ st HUZZH ’
k€ Kiest k€ Kiost

where Iiest and Ko identify the time and parameters in the test set, while Niest is the test set cardinality.

3.1. Shallow Water Equations

The first test case we consider deal with the reconstruction of synthetic spherical data in a nonparametric
setting. The snapshots correspond to the solution of the Shallow Water Equations (SWE) on a sphere with
earth-like topography and daily /annual periodic external forces, available in the dataset The Well [46]. The
SWE solution includes three high-dimensional fields (N;, = 131072), corresponding to the height deviation
of pressure surface from its mean height, and to the velocity components with respect to the polar and
azimuthal angles, over a year (N; = 1008 time steps).
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Figure 2: Shallow Water Equations. Ground truth (first row), SHRED-ROM reconstructions with POD-based compressive
training (second row) and SHRED-ROM reconstructions with spherical harmonics-based compressive training (third row). The
following test cases are considered: height reconstruction from 3 fixed height sensors (first column); velocity reconstruction from
3 fixed height sensors (second column); velocity reconstruction from the coordinates of 1 mobile sensor at ¢ = 11 hours (third
column) and ¢ = 957 hours (fourth column). The sparse sensors exploited by SHRED-ROM are depicted with magenta dots.

We first consider randomized SVD to reduce the data dimensionality and allow for compressive training.
With only » = 50 POD modes (compression ratio equal to 99.96%), it is possible to compress the height
snapshots with a relative reconstruction error on test data equal to 1.34%. Instead, r = 75 are retrieved for
the velocity components reductions (compression ratio equal to 99.94%), with relative test errors equal 1.71%
and 0.91%. Note that the number of POD modes to retrieve for accurate compressions is problem-dependent,
and can be determined by looking at the singular values decay.

SHRED-ROM is then applied to reconstruct the high-dimensional spatio-temporal fields starting from 3
fixed sensors at as many random locations. To show the wide applicability of SHRED-ROM with coupled
fields, we suppose that the sensors can monitor the height variable only, without having access to the velocity
values. After data preprocessing with a lag L = 100 and neural networks compressive training, SHRED-
ROM can accurately reconstruct the trajectories of the three high-dimensional fields starting from the limited
sensors randomly chosen. Specifically, the reconstruction errors on the time instants unseen during training
are equal to 3.14%, 9.59% and 5.90% for, respectively, the height variable and the polar and azimuthal
components of the velocity.

The system configuration may also be captured by mobile sensors, such as drifting buoys. In particular,
we consider 1 sensor passively transported by the velocity field on the sphere. Starting only from the history
of the sensor coordinates, thus without monitoring any quantity, SHRED-ROM accurately predicts the
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Figure 3: GoPro Physics. Original videos (first row), preprocessed data (second row) and SHRED-ROM reconstructions from
3 fixed pixels in the cylinder wake (first column). The following test cases are considered: symmetric shedding reconstruction
of the 400th (first column) and the 800th frame (second column); alternating symmetric shedding reconstruction of the 269th
(third column) and the 1002nd frame (fourth column). The sparse pixels exploited by SHRED-ROM are depicted with yellow
dots.

velocity components, with test relative errors equal to 7.43% and 4.80%, respectively.

Instead of considering data-driven compression techniques for the snapshots, such as POD, we can also
exploit a different physics-based basis of functions that properly capture the variability of the SWE solution.
In this context, we employ the spherical harmonics up to degree 50, resulting in a dimensionality reduction
with 7 = 2601 and with test reconstruction errors equal to 0.25%, 9.45% and 6.37% for the height and velocity
components, respectively. By measuring the height values in 3 random locations over time, SHRED-ROM can
still accurately predict the spherical harmonics expansion coefficients. The reconstruction errors committed
on the test snapshots of height and velocity components are, respectively, 2.15%, 10.71% and 7.13%. If,
instead, we take into account a mobile sensor passively transported by the velocity field, SHRED-ROM
reconstructs the high-dimensional polar and azimuthal components of the velocity with test errors equal to
11.64% and 7.68%.

Figure 2 shows four height and velocity magnitude snapshots in the test set, along with the correspond-
ing SHRED-ROM reconstructions obtained considering both POD and spherical harmonics as compression
techniques. By a visual inspection, it is possible to assess the high level of accuracy of SHRED-ROM despite
the limited input information, that are 3 fixed sensors capturing the height variable or the temporal history
of the mobile sensor coordinates.
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3.2. GoPro Physics

The second test case focuses on reconstructing videos of experimental studies in fluid dynamics, typically
referred to as GoPro physics, in contrast with the other examples where we exploit synthetic snapshots
simulated through high-fidelity solvers. Specifically, we consider two videos recording the vortex shedding
in the wake of an oscillating cylinder provided by Boersma et al. [5]. Due to different inflow velocities
considered, two different patterns are displayed, that are the so-called symmetric and alternating symmetric
shedding. Starting from sparse pixels values, we aim to build a SHRED-ROM capable of reconstructing the
videos frames, while discriminating between the two scenarios.

Each video consists of N; = 1077 frames of dimension 400 x 504 (Nj, = 201600). In the preprocessing
stage, the original frames are converted to gray scale, the background is removed and the pixel values are
normalized. POD is then applied to allow for compressive training. Specifically, retaining the first » = 100
POD coefficients for every frame with randomized SVD (that is a compression ratio equal to 99.95%), we
achieve a POD reconstruction error equal to 11.96%.

SHRED-ROM is taken into account to reconstruct the frames starting from 3 pixels randomly sampled
within the region behind the cylinder. With a lag parameter equal to L = 150, SHRED-ROM accurately
approximates the test snapshots with a relative error equal to 13.17%. In the direction of parametric settings,
it is interesting to note that SHRED-ROM is able to automatically discriminate among the two videos from
the pixel values, without requiring any knowledge about the underlying setting. Figure 3 presents 4 test
snapshots of the original videos, along with the corresponding preprocessed data and the SHRED-ROM
reconstructions.

3.3. Kuramoto-SivashinskyEquation

In this section, we cope with a nonlinear and chaotic fluid dynamics exhibiting parametric dependency.
In particular, we model the dynamics of a 1D state variable u : [0, L] x [0,7] — R with the Kuramoto-
Sivashinsky equation (KS)
U + Uy + Vigger + Uy =0

with periodic boundary conditions. To deal with chaotic patterns, we set L = 22 and T' = 200. Regarding
the initial condition, we consider

2 2
u(x,0,w) = cos (?m) (1 + sin (?x))

The viscosity v and the frequency of the initial datum are regarded as parameters, that is g = [v,w]". As
discussed in Section 2.2, our goal is to employ SHRED-ROM to rapidly and accurately approximate the state
trajectory for a new set of parameters, unseen in the offline phase. To this aim, we generate 500 trajectories
corresponding to parameters v and w randomly sampled in the intervals [1,2] and [1, 5], respectively. Note
that an adequate exploration of the parameter space is crucial due to the chaotic and instable patterns given
by KS, where small changes in the parameter values result in completely different solutions. To solve the KS
equation, we consider the Exponential Time Differencing fourth-order Runge-Kutta (ETDRK4) method [32]
with a uniform space discretization of Ny = 100 spatial points and a time step equal to At = 0.01. Finally,
starting from the initial values at ¢ = 0, we save the KS solution with a frequency of 100, resulting in
trajectories of Ny = 201 snapshots. The dimensionality of the generated data is then reduced through
randomized SVD: r = 20 POD modes are sufficient to capture most of the variability (compression ratio
equal to 80%), with a relative error on test data equal to 0.35%.

After generating and compressing the data, it is now possible to train SHRED-ROM. We consider 2 fixed
sensors randomly sampled in the domain and a lag parameter equal to L = 50. When reconstructing the
state trajectories corresponding to new parameters unseen during training, the relative error with respect to
the ground truth is equal to 9.13%. Note that only the sensor values are exploited as input, disregarding any
information about the parameters values — which, in general, may be unknown or uncertain — as typically
considered by other ROM strategies. The performance of SHRED-ROM can be also visually assessed in
Figure 4, panel (a), where we compare three test spatio-temporal KS solutions along with the corresponding
SHRED-ROM approximations.

The panel (b) of Figure 4 presents, instead, an analysis of the SHRED-ROM test reconstruction errors
with respect to the lag parameter L (while considering 2 fixed sensors) and the number of sensors (with lag
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Figure 4: Kuramoto-Sivashinsky. (a) Ground truth (first row) and SHRED-ROM reconstructions (second row). The following
test cases are considered: state reconstruction from 2 fixed sensors with g = [1.27,3.71]7 (first column), p = [1.18,4.34]T
(second column) and g = [1.33,1.35] T (third column). (b) Relative reconstruction errors committed by SHRED-ROM on test
data for different lag values (first column) and different number of sensors (second column), while considering different sensor
placements.

L = 50). To show that the proposed architecture is agnostic to sensor placement, every setting takes into
account the errors committed by 10 different SHRED-ROMs trained on as many sensor configurations. The
fast decay of the error distributions suggest that even a small temporal history, as well as a tiny amount of
sensors, are enough to achieve acceptable results. Note that the case with unitary lag (L = 1) corresponds
to the one-shot reconstruction through a shallow recurrent decoder with compressive training, equivalent to
the POD-based deep state estimation (PDS) proposed by Nair and Goza [45].

Sensor measurements in real-world problems are typically corrupted by noise. If we corrupt the sensor
values with Gaussian random noise with zero mean and standard deviation equal to 0.25 (which corresponds
approximately to the 5% of the state data range), the generalization capabilities of SHRED-ROM in test sce-
narios get worse, with a relative reconstruction error equal to 23.24%. In this case, thanks to the lightweight
SHRED-ROM architecture and the efficient compressive training strategy, we can consider an ensemble of
SHRED-ROMs in order to provide a robust state estimation, as proposed by Riva et al. [52]. We thus
consider 20 different SHRED-ROMs trained on 2 sensor trajectories corrupted by as many Gaussian random
noises. The state reconstruction can be now obtained by averaging the predictions of every SHRED-ROM,
with a mean relative reconstruction errors on test data equal to 15.51%
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Figure 5: Fluidic Pinball. (a) Ground truth (first row) and SHRED-ROM reconstructions (second row). The following test
cases are considered: state reconstruction from 3 fixed sensors with p = [—1.38, —4.56, —2.54] T at ¢ = 1 seconds (first column)
and ¢t = 3 seconds (second column); state reconstruction from the coordinates of 1 mobile sensor with g = [—1.42,4.65,2.68] "
at t = 1 seconds (third column) and ¢ = 3 seconds (fourth column). (b) Relative reconstruction errors committed by SHRED-
ROM on test data for different lag values (first column) and different number of sensors (second column), while considering
different sensor placements. The sparse sensors exploited by SHRED-ROM are depicted with magenta dots.

3.4. Fluidic Pinball

The fourth test case copes with an involved 2D advection-diffusion problem characterized by an implicit
parametric dependence. We consider an incompressible fluid constrained in a square domain (—1,1)? with
three cylinders centered at (—0.5,—0.5), (0.5, —0.5) and (0.0,0.5), and with radius 0.15. The cylinders can
rotate with constant velocities v; for i = 1,2, 3 — here regarded as parameters p = [v1, v, v3] " — resulting in
a fluid motion inside the box. Specifically, the fluid velocity v : [-1,1]> — R? and pressure p: [-1,1]> = R
are determined by the steady Navier-Stokes equations

—VAV+ (v-V)Vv+Vp=0
V-v=0
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with viscosity v = 1.0, no-slip boundary conditions on the external walls and Dirichlet boundary conditions
on the three cylinders.

Let us now consider a time-dependent quantity y : [~1,1]? x [0,7] — R — which may represent, for
instance, heat, mass or density of particles — that spreads and moves in the domain according to the advection-
diffusion PDE

Y + V- (=nVy+v(pn)y) =0

with homogeneous Neumann boundary conditions and initial condition
10 9 9
y(x,0) = —exp(—10x7 — 10z3).
™

Therefore, starting from a Gaussian function with mean (0, 0) and variance 0.05, the quantity y is transported
and deformed by the parametric fluid flow with velocity v(u). To mainly focus on the advection effect over
the diffusion one, we set the viscosity 7 = 0.001. Moreover, we set the final time 7' = 3.

SHRED-ROM is now exploited to provide the state evolution for new combinations of cylinder velocities,
unseen during training. To train the LSTM f; and the SDN fx, we generate 500 trajectories for different
parameter values in the parameter space P = [—5,5]3. Note that both clockwise and counter-clockwise
rotations are considered according to the signs of the sampled parameters. Both the steady Navier-Stokes
equations and the advection-diffusion PDE are solved with finite element solvers in fenics [1], taking into
account a time step At = 0.1 — resulting in state trajectories of length N; = 31 — and a mesh with N, = 7525
vertices. The dimensionality of the simulated snapshots is then reduced to » = 200 thanks to randomized
SVD. Despite a compression ratio equal to 97%, the low-dimensional features are enough to accurately
reconstruct the high-dimensional data with a test error equal to 1.54%.

We now build two SHRED-ROMSs to deal with, respectively, fixed and mobile sensors. In the first case, we
measure the state y at 3 fixed locations within the domain. In the second setting, we suppose to know only
the spatial coordinates of 1 mobile sensor located in (0, 0) at ¢t = 0 and passively transported by the fluid flow.
Note that, to show the versatility of the method, we suppose to know the parameter values u, and we thus
exploit this information as input, in addition to the sensor values. After training the corresponding LSTM
networks and the SDNs with a time window of length L = 10, both SHRED-ROMs are able to reconstruct
the state patterns in new scenarios with mean relative errors equal to, respectively, 7.90% and 8.44%. The
panel (a) of Figure 5 displays four different test snapshots along with the corresponding reconstructions
provided by SHRED-ROM, both taking into account fixed and mobile sensors. The panel (b) of Figure 5
shows, instead, the behavior of the mean relative error on test data with respect to different lag values and
different number of fixed sensors, while taking into account 10 different random sensor placements in each
setting. Similarly to the findings in Section 3.3, a small time window L and a very limited amount of sensors
are enough to achieve accurate results. In particular we note that, in both the parametric applications
presented so far, accurate results are obtained by exploiting d 4+ 1 fixed sensors, where d is the problem
dimension (d = 1 in the Kuramoto-Sivashinsky setting, d = 2 in the fluidic pinball one). Similarly, an object
in a d-dimensional space can be localized by d + 1 constraints, such as d + 1 sensors measuring the distance
to that object.

3.5. Flow Around an Obstacle

The last test case is devoted to the reconstruction of fluid flows where both time-dependent, physical and
geometrical parametric dependencies are employed. Let us consider a 2D channel [0, 10] x [0, 2] with a circular
obstacle centered in (1,1) and with radius equal to 0.2. Through Radial Basis Function (RBF) interpolation,
it is possible to deform the reference setting in order to obtain different obstacle shapes, without changing the
number of degrees of freedom Nj,. In particular, we lengthen the circle to the left and right by, respectively,
v and 7, so that the surface of the deformed obstacle passes through the points (0.8 — ~;,1.0), (1.0,1.2),
(1.2 4+ 7,,1.0) and (1.0,0.8). Let us also consider an incompressible fluid flow around the obstacle, whose
dynamics is described by the unsteady Navier-Stokes equations

vi —VAV+ (v-V)V+Vp=0
V-v=0
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Figure 6: Fluid Around an Obstacle. Ground truth (first row), SHRED-ROM reconstructions (second row) and parameter
estimations (third row). The following test cases are considered: state reconstruction at t = 5 seconds and parameter estimation
over [0,10] seconds from 3 fixed horizontal velocity sensors with pu = [—0.40,2.21,0.46,0.91]T (first column) and u(t) =
[cos(0.32t + 3.68),5.77,0.45,0.47] T (second column). The sparse sensors exploited by SHRED-ROM are depicted with magenta

dots.
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Figure 7: Fluid Around an Obstacle. (a) Ground truth and competing methods velocity reconstructions with test parameters
wu(t) = [cos(2.2t + 2.3),5.19,0.22,0.53] T at t = 2.5 (first column), t = 5.0 (second column) and ¢t = 7.5 seconds (third
column). (b) Distributions of relative reconstruction errors committed on test data by competing methods. (c) Median
relative reconstruction errors committed on test data by competing methods over the time horizon [0,T]. For SHRED-ROM,
also the corresponding interquartile range is displayed. (d) Training and execution times required by the full-order model
(FOM), randomized SVD (rSVD) and competing methods. (e) Median relative reconstruction errors committed on test data
by competing methods for different training set dimensions. For SHRED-ROM, also the corresponding interquartile range is
displayed.
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in terms of the velocity v : Q(v;,7,) x [0,7] — R? and pressure p : Q(y;,7,) % [0,T] — R, where Q(v;,7:)
stands for the spatial parametric domain. Starting from a zero velocity at time ¢t = 0, the fluid enters the
domain from the left boundary with angle of attack «;, and intensity 7i,, that is

v((0,22),t) = (7in cos(in), 2(2 — x2)Vin sin(ain )) (15)

where the parabolic profile z5(2 — x2) is useful to prevent discontinuities. Moreover, free-slip and no-slip
boundary conditions are employed to, respectively, the walls and the obstacle.

Our goal is to reconstruct the high-dimensional velocity field over time for different sets of parameters pu =
[@in, Vin, V15 V] |- To this aim, we generate 200 velocity trajectories by solving (15) through the incremental
Chorin-Temam projection method in fenics [1] with 7' = 10 and At = 0.05 (N, = 200 time steps). The
first 100 scenarios consider constant parameters randomly sampled in the space P = [—1.0,1.0] x [1.0, 10.0] x
[0.2,0.6] x [0.2,1.0]. The other 100 velocity trajectories take into account as many time-dependent angles
of attack ai,(t) = cos (22t + ) with 7 and ¢ randomly sampled in (2.5,20.0) and (0.0,27), respectively.
The dimensionality of the simulated snapshots (N, = 80592) is then reduced to » = 150 through POD.
Despite a remarkably high compression ratio (99,81%), the latent representations are enough to recover the
high-dimensional velocities up to a test relative error equal to 1.16%.

The spatio-temporal velocity behavior in multiple scenarios can be approximated by SHRED-ROM start-
ing from 3 fixed sensors monitoring the horizontal velocity only. Besides the POD coefficients of the velocity,
we consider the (possibly time-dependent) angle of attack as an additional output of the proposed model,
allowing for a real-time parameter estimation through SHRED-ROM. After training the neural networks
with a lag equal to L = 50, SHRED-ROM is capable of reconstructing the high-dimensional velocities in new
scenarios with a mean relative error equal to 6.65%, and to estimate the corresponding angle of attack with
a mean absolute error equal to 0.037 radians. Figure 6 shows the results obtained in two test cases: by a
visual inspection it is possible to assess the high accuracy of SHRED-ROM for both the state reconstructions
and the parameter estimations. Note that the estimate of the angle of attack &;, is not accurate in the first
few time steps. However, a very limited temporal history of sensor values allows the estimation to align with
respect to the ground truth a;y,.

With a different training-validation-test splitting, we can estimate state and angle of attack for future
times with respect to the ones considered during training. In particular, we now exploit 160 trajectories in
the time range [0, 5] for randomized SVD and SHRED-ROM training, while the remaining data (that are
the same 160 trajectories for 5 < ¢t < 10 and 40 full trajectories over [0, 10]) are used for evaluation purposes
only. SHRED-ROM is now able to reconstruct the high-dimensional velocity both in new scenarios and
future time instants with a mean relative error equal to 7.96%. Similar results are obtained for the angle of
attack estimation, with a mean absolute error equal to 0.045 radians.

The SHRED-ROM performances are compared to 5 different state-of-the-art frameworks arising from
different fields. In particular, we take into account (i) sensor-based state estimation techniques such as
POD-based deep state estimation (PDS) [45] and POD-enhanced autoencoder state estimation (POD-AE-
SE) [43], (i) the POD-DeepONet [41] operator learning strategy, and (i) non-intrusive reduced order
modeling techniques such as POD-NN [26] and POD-enhanced deep learning-based reduced order model
(POD-DL-ROM) [22]. Note that, differently from SHRED-ROM, the first three frameworks rely on a one-
shot state reconstruction from sensor data, while the last two learn the parameters-to-state map. To perform
fair comparisons, every setting takes into account POD-based compressive training with » = 150 modes, 3
fixed sensors measuring the horizontal velocity and neural networks with comparable numbers of parameters
with respect to SHRED-ROM. For instance, the mappings from sensors or parameters to reduced states
show similar complexities with respect to the proposed LSTM, while the encoders and decoders exploited by
POD-AE-SE and POD-DL-ROM share the same architecture of the proposed SDN, with a hidden dimension
equal to 11 as suggested by Franco et al. [19]. Panel (a) of Figure 7 displays the velocity fields predicted
by the aforementioned strategies for pu(t) = [cos(2.2t +2.3),5.19,0.22,0.53] T at three different time instants.
The temporal history of sensor values encoded through the LSTM in SHRED-ROM is crucial to achieve
more accurate reconstructions with respect to the competing methods. The superiority of SHRED-ROM
is also confirmed by the distributions of the relative test errors shown in panels (b) and (c¢) of the same
figure. Panel (d) compares, instead, the training and execution times of the different frameworks, along with
the computational times of the full-order model (FOM) and randomized SVD (rSVD). While the evaluation
times of all the competing methods are extremely fast (ranging between 0.15 and 0.3 seconds), with a

18



remarkably high speed up with respect to the FOM, SHRED-ROM is faster to train than POD-DeepONet
and autoencoder-based techniques, such as POD-AE-SE and POD-DL-ROM. Note that the training time
differences would be even higher whenever non-compressive training strategies were considered. Finally,
panel (e) of Figure 7 presents a data requirement analysis across all the competing models. Even with few
training trajectories, SHRED-ROM is able to achieve impressive generalization capabilities, superior to the
other competitors investigated.

4. CONCLUSIONS

In this work, we advocate a new decoding-only reduced order modeling framework to reconstruct high-
dimensional fields from temporal history of sparse sensor measurements in multiple scenarios. Importantly,
state snapshots reduction through, e.g., POD or spherical harmonics expansion, allows for lightweight neural
networks and efficient compressive training strategies, feasible with laptop-level computing. Moreover, differ-
ently from other deep learning-based models, minimal hyperparameter tuning is required, as demonstrated
throughout the test cases detailed in Section 3.

With several applications dealing with chaotic and nonlinear fluid dynamics, as well as video data, we
show that the temporal history of at most 3 sensors is enough to achieve accurate reconstructions for new
scenario parameters, with a remarkably high speed up with respect to numerical simulations. Moreover,
we demonstrate that SHRED-ROM serves as a versatile framework capable of dealing with fixed and mo-
bile sensors, synthetic and video data, noisy measurements, coupled fields, time extrapolation in periodic
regimes, physical and geometric (possibly time-dependent) parametric dependencies, while being agnostic to
sensor placement and parameter values. Indeed, differently from traditional ROMs strategies, the parameter
values are not required both at training and evaluation stage, allowing for unknown or uncertain parametric
dependencies. As shown in Section 3.5, SHRED-ROM outperforms competing sensing methods focusing on
one-shot reconstructions, as well as non-intrusive ROMs, both in terms of accuracy, training time and data
requirement.

The proposed SHRED-ROM framework may be extended in future works in multiple directions. For
instance, forecasting may be easily taken into account, as proposed by Williams et al. [55], in order to
reconstruct the state variables in multiple scenarios even in the absence of sensor values. To this aim, differ-
ent deep learning-based recurrence strategies may be considered to embed temporal sensor measurements,
with accurate forecasts in autoregressive or free-running mode. Moreover, interpretable and sparse dynam-
ical models can be identified at latent level through a SINDy-based regularization, as proposed by Gao et
al. [24] in nonparametric settings, promoting smooth predictions and stable forecasts. Finally, a variational
SHRED-ROM may be taken into account to quantify uncertainties in the model reconstructions and in the
parameter estimates.

DATA AND CODE AVAILABILITY

The data and the code can be found in our repositories
https://doi.org/10.5281/zenodo. 14524524
https://github.com/MatteoTomasetto/SHRED-ROM.
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