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Abstract

We apply spatio-temporal regression with partial differential equation
regularization to the Telecom Italia mobile phone data. The technique
proposed allows to include specific information on the phenomenon under
study through a definition of the non-stationary anisotropy characterizing
the spatial regularization based on the texture of the domain on which the
data are observed.

1 Space-Time regression with differential regulariza-
tion

The analysis of functional data with spatial dependence has been of great interest
in the last years and various methods have been recently proposed to deal with
this kind of data [10]. In this work, we consider spatial regression methods with
Partial Differential Equation (PDE) regularization [12, 13, 4, 5]. In particular, we
consider the Space-Time regression with PDE penalization method (ST-PDE)
introduced in [7] and extend it to deal with observations featuring complex
spatial dependency.

ST-PDE is a penalized regression method that models separately the spatial
and the temporal regularization by considering two roughness penalties, which
account separately for the regularity of the field in space and in time by using
a tensor product, following the approach used also by [1, 3, 9]; while, in the
generalization of the technique proposed by [2], a single roughness penalty is
used to jointly model the spatial and temporal dimensions. Therefore, in the
ST-PDE model, the field is estimated minimizing a functional composed by
three parts: a data-fitting part, a penalization for the spatial regularity, and a
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penalization for the temporal regularity. In [7], the spatial penalization involves a
simple differential operator that imposes smoothness to the solution. Instead, in
this work, we consider a spatial penalization involving a more general PDE, that
allows to impose non-stationary anisotropy to the solution, thus modeling more
complex spatial dependencies. Moreover, the PDE can model problem-specific
knowledge on the phenomenon under study. For example, if the PDE governing
the physical phenomenon generating the data is available, it can be exploited
in the spatial regularization term of the ST-PDE functional, thus driving the
estimation towards a physically sound solution. In the context of the analysis
of mobile phone data, where no physical knowledge on the phenomenon under
study is available, we use the PDE to include in the model information about the
texture of the spatial domain; in particular, we here characterize the PDE using
the road network, which highly influences the data. This application highlights
the high flexibility of the definition of spatial dependence imposed by the ST-
PDE model.

Section 2 describes the Telecom Italia mobile phone data. Section 3 presents
the model and how the texture of the domain can be used to estimate the non-
stationary anisotropy characterizing the regularization.

2 Telecom Italia mobile phone data

We consider the Telecom Italia database, provided by Convenzione di Ricerca
DiAP–Politecnico di Milano and Telecom Italia. This dataset concerns the usage
of mobile phone data in the metropolitan area of Milan. It collects the measure-
ments of the Erlang, a dimensionless unit calculated by adding up the length of
all the calls made by mobile phones within a region of the spatial domain in a
time interval, and dividing the sum by the length of the time interval. In the
case of the Telecom Italia database, Erlang data are collected over time intervals
of 15 minutes from Wednesday, March 18th 2009, 00:15 to Tuesday, March 31st
2009, 23:45 on a uniform lattice of 97×109 sites with dimension 232m×309m
covering the metropolitan area of Milan. In Figure 1, the top panel shows the
map of the metropolitan area of Milan on which the data are observed, the
central panel shows the Erlang data for a fixed time instant, the bottom panel
shows the data in a fixed spatial location.

Since the Erlang is a measurement of the average number of active mobile
phones, these data can be considered as an approximation of the number of peo-
ple present in the considered sites during the sampling time windows. Therefore,
the goal of the analysis of these data is the study of the population distribution
and dynamics. Indeed, this dataset has been used in the context of the Green
Move Project, an an interdisciplinary research project financed by Regione Lom-
bardia and focused on the development of a vehicle sharing system. Some works
on this dataset are [8, 14, 17, 11, 15].

The data can be interpreted as a sampling of temporal curves with spatial
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Figure 1: Telecom Italia mobile phone data. Top panel: the metropolitan area
of Milan, the spatial domain of the dataset. Central panel: data for a fixed time
instant (white corresponds to missing data). Bottom panel: evolution in time
of the data for a fixed spatial location.
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dependencies; equivalently, they can also be interpreted as a sampling of spatial
surfaces with temporal dependencies. In both interpretations, the data are func-
tional in nature and using the functional data analysis framework allows us to
properly characterize the complex dependencies and extract meaningful results.

Furthermore, the data are integrals over both time and space of the quantity
of interest, since each Erlang datum is a cumulative measurement over a 15-
minutes time interval and a 232m×309m site. Therefore, the analysis should
properly take into account the fact that the data are areal in space and integral
in time.

Moreover, as Figure 1 shows, the spatial distribution of the data is strongly
influenced by the characteristics of the urban area considered. Therefore, it is of
paramount importance to take into consideration the spatial dependence driven
by physical phenomenon generating the data, i.e. the population dynamics in the
metropolitan area of Milan, and to adapt the estimation technique to properly
take into account the characteristics of the specific urban configuration under
study.

Next Section deals with the characterization of the spatial dependence of the
data through the definition of a penalization term involving a non-stationary
anisotropic diffusion operator which represents the structure of the underlying
spatial domain.

3 ST-PDE model and estimating the non-stationary
anisotropy

In the ST-PDE functional, the classical square L2-norm of the second derivative
is employed for the temporal penalty, while we need a term which allows us to
model non-stationary anisotropy for the spatial penalty. This is obtained by
penalizing the misfit from a diffusion PDE −div(K(p)∇f) = 0, where K(p) is a
function defined on the spatial domain, taking values in the space of symmetric
and positive definite 2×2-matrices. When K is a constant function equal to the
identity matrix all over the spatial domain, the smoothing is isotropic in space
(which is the case considered in [7]); otherwise, the smoothing is anisotropic.
If, moreover, K is non-constant as a function of the spatial location p, the
smoothing is non-stationary. In our work, we exploit the texture of the spatial
domain to estimate the symmetric tensor K(p).

We can observe, from Figure 1, that the number of active phones presents lo-
calized strongly anisotropic features in correspondence of the main roads. Thus,
we want to use the information about the morphology of the road network of the
city to include non-stationary anisotropy in the ST-PDE model. The motivation
for our choice is that, when we deal with cars moving on highways, we know that
it is more probable that these cars will stay in the highway then that they will
exit. Thus, for the spatial locations corresponding to main roads, we want to
impose anisotropic smoothing that smooths more in the direction tangential to
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the road, and less in the other directions.
We use data form Regione Lombardia about the road network of the metropoli-

tan area of Milan (see Figure 2, left panel), in order to estimate K(p) from the
city texture. In particular, we select the main roads and highways (see Figure 2,
right panel) and exploit the orientation of the roads to identify the direction of
the major axis of K(p), i.e. the eigenvector corresponding to the larger eigen-
value. Indeed, for each spatial location p, the direction of the major axis of
K(p) can be defined by looking at the road map at a small scale that allows to
consider one road at a time. Where no roads are present, the isotropic diffusion
operator is used.

The intensity of the anisotropy can be set either exploiting prior knowledge
on the phenomenon (for example, the speed limits of the roads) or extracting
information from the data using an approach similar to [6], which proposes to
estimate the anisotropy directly from the data.

The use of the ST-PDE model with a spatial regularization involving a non-
stationary and anisotropic diffusion differential operator carrying information
about the road network is particularly useful in the analysis of Telecom Italia
mobile phone data, since this technique is able to suitably capture the non-trivial
spatial dependencies of the observed data.

Figure 2: Road network in the metropolitan area of Milan. Left panel: a
view of the area from Google maps which includes main roads, secondary
roads, highways and railways. Right panel: main roads and highways from
www.geoportale.regione.lombardia.it used to estimate K(p).

References

[1] Aguilera-Morillo M. C., Durbán M., Aguilera A. M.: Prediction of func-
tional data with spatial dependence: a penalized approach. Stochastic En-
viron Res Risk Assess 1–16 (2016) doi: 10.1007/s00477-016-1216-8

5



[2] Arnone E., Azzimonti L., Nobile F., Sangalli L. M.: Modeling spatially
dependent functional data via regression with differential regularization.
Journal of Multivariate Analysis, 170, 275–295 (2019)

[3] Augustin N. H., Trenkel V. M., Wood S. N., Lorance P.: Space-time mod-
elling of blue ling for fisheries stock management. Environmetrics 24(2)
109–119 (2013)

[4] Azzimonti L., Nobile F., Sangalli L. M., Secchi P.: Mixed Finite Elements
for Spatial Regression with PDE Penalization. SIAM/ASA Journal on Un-
certainty Quantification 2(1), 305–335 (2014)

[5] Azzimonti L., Sangalli L. M., Secchi P., Domanin M., Nobile F.: Blood flow
velocity field estimation via spatial regression with PDE penalization. Jour-
nal of the American Statistical Association 110(511), 1057–1071 (2015)

[6] Bernardi M. S., Carey M., Ramsay J. O., Sangalli L. M.: Modeling spatial
anisotropy via regression with partial differential regularization. Journal of
Multivariate Analysis, 167, 15–30 (2018)

[7] Bernardi M. S., Sangalli L. M., Mazza G., Ramsay J. O.: A penalized
regression model for spatial functional data with application to the analysis
of the production of waste in Venice province. Stochastic Environ Res Risk
Assess, 1–16, (2016)

[8] Manfredini F., Pucci P., Secchi P., Tagliolato P., Vantini S., Vitelli V.:
Treelet decomposition of mobile phone data for deriving city usage and
mobility pattern in the milan urban region. In: Advances in complex data
modeling and computational methods in statistics, pp 133–147. Springer
(2015)

[9] Marra G., Miller D. L., Zanin L.: Modelling the spatiotemporal distribution
of the incidence of resident foreign population. Statistica Neerlandica 66(2)
133–160 (2012)

[10] Mateu J., Romano E.: Advances in spatial functional statistics. Stochastic
Environ Res Risk Assess (2016) doi: 10.1007/s00477-016-1346-z

[11] Passamonti F., Spatio-temporal mobile phone data in Milan: Bagging-
Voronoi exploration and modeling through soil use and land cover data.
Master’s thesis, Politecnico di Milano, MOX - Dipartimento di Matematica
(2016)

[12] Ramsay, T.: Spline smoothing over difficult regions. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 54(2), 307–319
(2002)

6



[13] Sangalli L. M. and Ramsay J. O. and Ramsay T. O.: Spatial spline regres-
sion models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 75(4), 681–703 (2013)

[14] Secchi P., Vantini S., Vitelli V.: Analysis of spatio-temporal mobile phone
data: a case study in the metropolitan area of Milan. Statistical Methods
& Applications 24(2), 279–300 (2015)

[15] Secchi P., Vantini S., Zanini P.: Analysis of Mobile Phone Data for Deriving
City Mobility Patterns. In Electric Vehicle Sharing Services for Smarter
Cities (pp. 37-58). Springer, Cham (2017)

[16] Xun X., Cao J., Mallick B., Maity A., Carroll R. J.: Parameter Estimation
of Partial Differential Equation Models. Journal of the American Statistical
Association 108(503), 1009–1020 (2013)

[17] Zanini P., Shen H., Truong Y.: Understanding resident mobility in Milan
through independent component analysis of Telecom Italia mobile usage
data. The Annals of Applied Statistics 10(2), 812–833 (2016)

7



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

49/2020 Bonaventura,L.; Garres Diaz,J.
Flexible and efficient discretizations of multilayer models with variable
density

50/2020 Bonaventura,L.; Gomez Marmol, M.
The TR-BDF2 method for second order problems in structural mechanics

51/2020 Ferraccioli, F.; Sangalli, L. M.; Arnone, E.,; Finos, L.
A functional data analysis approach to the estimation of densities over
complex regions

52/2020 Arnone, E.; Kneip, A.; Nobile, F.; Sangalli, L. M.
Some first results on the consistency of spatial regression with partial
differential equation regularization

53/2020 Arnone, E.; Kneip, A.; Nobile, F.; Sangalli, L. M.
Some numerical test on the convergence rates of regression with differential
regularization

48/2020 Clerici, F.; Ferro, N.; Marconi, S.; Micheletti, S.; Negrello, E.; Perotto, S.
Anisotropic adapted meshes for image segmentation: application to 3D
medical data

46/2020 Bucelli, M.; Salvador, M.; Dede', L.; Quarteroni, A.
Multipatch Isogeometric Analysis for Electrophysiology: Simulation in a
Human Heart

45/2020 Gatti, F.; Menafoglio, A.; Togni, N.; Bonaventura, L.; Brambilla, D.; Papini, M; Longoni, L.
A novel dowscaling procedure for compositional data in the Aitchison
geometry with application to soil texture data

44/2020 Masci, C.; Ieva, F.; Paganoni A.M.
EM algorithm for semiparametric multinomial mixed-effects models

47/2020 Sangalli, L.M.
A novel approach to the analysis of spatial and functional data over complex
domains


