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Abstract

The convergence and optimality theory of adaptive Galerkin methods is almost exclusively
based on the Dörfler marking. This entails a fixed parameter and leads to a contraction constant
bounded below away from zero. For spectral Galerkin methods this is a severe limitation which
affects performance. We present a dynamic marking strategy that allows for a super-linear
relation between consecutive discretization errors, and show exponential convergence with linear
computational complexity whenever the solution belongs to a Gevrey approximation class.

1 Introduction

The modern analysis of adaptive discretizations of partial differential equations aims at establish-
ing rigorous results of convergence and optimality. The former results concern the convergence
of the approximate solutions produced by the successive iterations of the adaptive algorithm
towards the exact solution u, with an estimate of the error decay rate measured in an appro-
priate norm. On the other hand, optimality results compare the cardinality of the active set of
basis functions used to expand the discrete solution to the minimal cardinality needed to ap-
proximate the exact solution with similar accuracy; this endeavor borrows ideas from Nonlinear
Approximation theory. Confining ourselves in the sequel to second-order elliptic boundary value
problems, such kind of analysis has been carried out first for wavelet discretizations [14, 18],
then for h-type finite elements [19, 22, 13, 12, 15], [19] dealing just with convergence, and more
recently for spectral-type methods [6, 7, 10]; we refer to the surveys [5, 11, 20, 24]. In contrast,
the state of the art for hp-type finite elements is still in evolution; see [16, 3] and the more recent
paper [8] which includes optimality estimates.
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For all these cases, convergence is proven to be linear, i.e., a certain expression controlling
the error (a norm, or a combination of norm and estimator) contracts with some fixed parameter
ρ < 1 from one iteration to the next one, e.g., ‖u−uk+1‖ ≤ ρ‖u−uk‖. This is typically achieved
if the adaptation strategy is based on some form of Dörfler marking (or bulk chasing) with fixed
parameter θ < 1: assuming that

∑
i∈I η

2
i is some additive error estimator at iteration k, one

identifies a minimal subset I′ ⊂ I such that∑
i∈I′

η2
i ≥ θ2

∑
i∈I

η2
i

and utilizes I′ for the construction of the new discretization at iteration k+ 1. For wavelet or h-
type fem discretizations, optimality is guaranteed by performing cautious successive adaptations,
i.e., by choosing a moderate value of θ, say 0 < θ ≤ θmax < 1 [22]. This avoids the need of
cleaning-up the discrete solution from time to time, by subjecting it to a coarsening stage.

On the other hand, the resulting contraction factor ρ = ρ(θ) turns out to be bounded from
below by a positive constant, say 0 < ρmin ≤ ρ < 1 (related to the ‘condition number’ of the
exact problem), regardless of the choice of θ. This entails a limitation on the speed of convergence
for infinite-order methods [6, 7], but is not restrictive for fixed-order methods [22, 13].

It has been shown in [6] that such an obstruction can be avoided if a specific property of the
differential operator holds, namely the so-called quasi-sparsity of the inverse of the associated
stiffness matrix. Upon exploiting this information, a more aggressive marking strategy can
be adopted, which judiciously enlarges the set I′ coming out of Dörfler’s stage. The resulting
contraction factor ρ can be now made arbitrarily close to 0 by choosing θ arbitrarily close to 1.

When a method of spectral type is used, one expects a fast (possibly, exponentially fast)
decay of the discretization error for smooth solutions. In such a situation, a slow convergence of
the iterations of the adaptive algorithm would endanger the overall performance of the method;
from this perspective, it is useful to be able to make the contraction factor as close to 0 as desired.
Yet, linear convergence of the adaptive iterations is not enough to guarantee the optimality of
the method. Let us explain why this occurs, and why a super-linear convergence is preferable,
using the following idealized setting.

As customary in Nonlinear Approximation, we consider the best N -term approximation error
EN (u) of the exact solution u, in a suitable norm, using combinations of at most N functions
taken from a chosen basis. We prescribe a decay law of EN (u) as N increases, which classically
for fixed-order approximations is algebraic and reads

sup
N
NsEN (u) <∞, (1.1)

for some positive s. However, for infinite-order methods such as spectral approximations an
exponential law is relevant that reads

sup
N

eηN
α

EN (u) <∞ (1.2)

for some η > 0 and α ∈ (0, 1], where α < 1 accommodates the inclusion of C∞-functions that
are not analytic. This defines corresponding algebraic and exponential sparsity classes for the
exact solution u. These classes are related to Besov and Gevrey regularity of u respectively.

We now assume the ideal situation that at each iteration of our adaptive algorithm 1

‖u− uk‖ h N−sk or ‖u− uk‖ h e−ηN
α
k , (1.3)

1Throughout the paper, we write Ak . Bk to indicate that Ak can be bounded by a multiple of Bk, independently
of the iteration counter k and other parameters which Ak and Bk may depend on; Ak h Bk means Ak . Bk and
Bk . Ak.
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where Nk is the cardinality of the discrete solution uk, i.e., the dimension of the approximation
space activated at iteration k. We assume in addition that the error decays linearly from one
iteration to the next, i.e., it satisfies precisely

‖u− uk+1‖ = ρ ‖u− uk‖. (1.4)

If u belongs to a sparsity class of algebraic type, then one easily gets Nk h ρ−k/s, i.e.,
cardinalities grow exponentially fast and

∆Nk := Nk+1 −Nk h Nk h ‖u− uk‖−1/s,

i.e., the increment of cardinality between consecutive iterations is proportional to the current
cardinality as well as to the error raised to the power −1/s. The important message stemming
from this ideal setting is that for a practical adaptive algorithm one should be able to derive the
estimates ‖u− uk+1‖ ≤ ρ ‖u− uk‖ and ∆Nk . ‖u− uk‖−1/s, because they yield

Nn =

n−1∑
k=0

∆Nk .
n−1∑
k=0

‖u− uk‖−1/s ≤ ‖u− un‖−1/s
n−1∑
k=0

ρ(n−k)/s . ‖u− un‖−1/s.

This geometric-series argument is precisely the strategy used in [22, 13] and gives an estimate
similar to (1.1). The performance of a practical adaptive algorithm is thus quasi-optimal.

If u belongs to a sparsity class of exponential type, instead, the situation changes radically.
In fact, assuming (1.3) and (1.4), one has e−ηN

α
k h ρk, and so

lim
k→∞

k−1/αNk =
(
| log ρ|/η

)1/α
,

i.e., the cardinality Nk grows polynomially. For a practical adaptive algorithm, proving such
a growth is very hard if not impossible. This obstruction has motivated the insertion of a
coarsening stage in the adaptive algorithm presented in [6]. Coarsening removes the negligible
components of the discrete solution possibly activated by the marking strategy and guarantees
that the final cardinality is nearly optimal [14, 6], but it does not account for the workload to
create uk.

One of the key points of the present contribution is the observation that if the convergence
of the adaptive algorithm is super-linear, then one is back to the simpler case of exponential
growth of cardinalities which is ameanable to a sharper performance analysis. To see this, let
us assume a super-linear relation between consecutive errors:

‖u− uk+1‖ = ‖u− uk‖q (1.5)

for some q > 1. If additionally uk satisfies (1.3), then one infers that e−ηN
α
k+1 h e−ηqN

α
k , whence

lim
k→∞

∆Nk
Nk

= q1/α − 1, lim
k→∞

| log ‖u− uk‖|1/α

Nk
= η1/α,

the latter being just a consequence of (1.3). This suggests that the geometric-series argument
may be invoked again in the optimality analysis of the adaptive algorithm.

This ideal setting does not apply directly to our practical adaptive algorithm. We will be
able to prove estimates that are consistent with the preceding derivation to some extend, namely

‖u− uk+1‖ ≤ ‖u− uk‖q, ∆Nk ≤ Q| log ‖u− uk‖|1/ᾱ,

with constants Q > 0 and ᾱ ∈ (0, α]. Invoking ‖u− un‖ ≤ ‖u− uk‖q
n−k

, we then realize that

Nn =

n−1∑
k=0

∆Nk ≤ Q
n−1∑
k=0

∣∣ log ‖u− uk‖
∣∣1/ᾱ ≤ Qq1/ᾱ

q1/ᾱ − 1

∣∣ log ‖u− un‖
∣∣1/ᾱ.
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Setting η̄ :=
(
Qq1/ᾱ

q1/ᾱ−1

)−ᾱ
, we deduce the estimate

sup
n

eη̄N
ᾱ
n ‖u− un‖ ≤ 1,

which is similar to (1.2), albeit with different class parameters. The most important parameter
is ᾱ. Its possible degradation relative to α is mainly caused by the fact that the residual,
the only computable quantity accessible to our practical algorithm, belongs to a sparsity class
with a main parameter generally smaller than that of the solution u. This perhaps unexpected
property is typical of the exponential class and has been elucidated in [6].

In order for the marking strategy to guarantee super-linear convergence, one needs to adopt
a dynamic choice of Dörfler’s parameter θ, which pushes its value towards 1 as the iterations
proceed. We accomplish this requirement by equating the quantity 1 − θ2

k to some function of
the dual norm of the residual rk, which is monotonically increasing and vanishing at the origin.
This defines our dynamic marking strategy. The order of the root at the origin dictates the
exponent q in the super-linear convergence estimate of our adaptive algorithm.

The paper is organized as follows. In Sect. 2 we introduce the model elliptic problem and
its spectral Galerkin approximation based on either multi-dimensional Fourier or (modified)
Legendre expansions. In particular, we highlight properties of the resulting stiffness matrix that
will be fundamental in the sequel. We present the adaptive algorithm in Sect. 3, first for the
static marking (θ fixed) and later for the dynamic marking (θ tending towards 1); super-linear
convergence is proven. With the optimality analysis in mind, we next recall in Sect. 4 the
definition and crucial properties of a family of sparsity classes of exponential type, related to
Gevrey regularity of the solution, and we investigate how the sparsity class of the Galerkin
residual deteriorates relative to that of the exact solution. Finally, in Sect. 5 we relate the
cardinality of the adaptive discrete solutions, as well as the workload needed to compute them,
to the expected accuracy of the approximation. Our analysis confirms that the proposed dynamic
marking strategy avoids any form of coarsening, while providing exponential convergence with
linear computational complexity, assuming optimal linear solvers.

2 Model Elliptic Problem and Galerkin Methods

Let d ≥ 1 and consider the following elliptic PDE in a d-dimensional rectangular domain Ω with
periodic or homogeneous Dirichlet boundary conditions:

Lu = −∇ · (ν∇u) + σu = f in Ω, (2.1)

where ν and σ are sufficiently smooth real coefficients satisfying 0 < ν∗ ≤ ν(x) ≤ ν∗ < ∞ and
0 < σ∗ ≤ σ(x) ≤ σ∗ <∞ in Ω; let us set

α∗ = min(ν∗, σ∗) and α∗ = max(ν∗, σ∗) .

Let V be equal to H1
0 (Ω) or H1

p (Ω) depending on the boundary conditions and denote by V ∗

its dual space. We formulate (2.1) variationally as

u ∈ V : a(u, v) = 〈f, v〉 ∀v ∈ V , (2.2)

where a(u, v) =
∫

Ω
ν∇u · ∇v̄ +

∫
Ω
σuv̄ (bar indicating as usual complex conjugate). We denote

by |||v||| =
√
a(v, v) the energy norm of any v ∈ V , which satisfies

√
α∗‖v‖V ≤ |||v||| ≤

√
α∗‖v‖V . (2.3)
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2.1 Riesz Basis

We start with an abstract formulation which encompasses the two examples of interest: trigono-
metric functions and Legendre polynomials. Let φ = {φk : k ∈ K} be a Riesz basis of V . Thus,
we assume the following relation between a function v =

∑
k∈K v̂kφk ∈ V and its coefficients:

‖v‖2V '
∑
k∈K

|v̂k|2dk =: ‖v‖2φ , (2.4)

for suitable weights dk > 0. Correspondingly, any element f ∈ V ∗ can be expanded along
the dual basis φ∗ = {φ∗k} as f =

∑
k∈K f̂kφ

∗
k, with f̂k = 〈f, φk〉, yielding the dual norm

representation

‖f‖2V ∗ '
∑
k∈K

|f̂k|2d−1
k =: ‖v‖2φ∗ . (2.5)

For future reference, we introduce the vectors v = (v̂kd
1/2
k )k∈K and f = (f̂kd

−1/2
k )k∈K as well

as the constants β∗ ≤ β∗ of the norm equivalence in (2.4)

β∗‖v‖V ≤ ‖v‖φ = ‖v‖`2 ≤ β∗‖v‖V ∀v ∈ V . (2.6)

This implies
1

β∗
‖f‖V ∗ ≤ ‖f‖φ∗ = ‖f‖`2 ≤

1

β∗
‖f‖V ∗ ∀f ∈ V ∗ . (2.7)

The two key examples to keep in mind are trigonometric basis and tensor products of
Babuška-Shen basis. We discuss them briefly below.

Trigonometric basis. Let Ω = (0, 2π)d and the trigonometric basis be φk(x) = 1
(2π)d/2 eik·x

for any k ∈ K = Zd and x ∈ Ω. Any function v ∈ L2(Ω) can be expanded in terms of {φk}k∈Zd
as follows:

v =
∑
k

v̂kφk , v̂k = 〈v, φk〉 , ‖v‖2L2(Ω) =
∑
k

|v̂k|2 . (2.8)

The space V := H1
p (Ω) of periodic functions with square integrable weak gradient can now be

easily characterized as the subspace of those v ∈ L2(Ω) for which

‖v‖2V = ‖v‖2H1
p(Ω) =

∑
k

|V̂k|2 <∞ (where V̂k := v̂kd
1/2
k , with dk := 1 + |k|2).

This induces an isomorphism between H1
p (Ω) and `2(Zd): for each v ∈ H1

p (Ω) let v = (V̂k)k∈K ∈
`2(Zd) and note that ‖v‖H1

p(Ω) = ‖v‖`2 . Likewise, the dual space H−1
p (Ω) = (H1

p (Ω))′ is
characterized as the space of those functionals f for which

‖f‖2V ∗ = ‖f‖2
H−1
p (Ω)

=
∑
k

|F̂k|2 with F̂k := f̂kd
−1/2
k .

We also have an isomorphism between H−1
p (Ω) and `2(Zd) upon setting f = (F̂k)k∈K for f ∈

H−1
p (Ω) and realizing that ‖f‖H−1

p (Ω) = ‖f‖`2 .

Babuška-Shen basis. Let us start with the one-dimensional case d = 1. Set I = (−1, 1),
V := H1

0 (I), and let Lk(x), k ≥ 0, stand for the k-th Legendre orthogonal polynomial in I,
which satisfies degLk = k, Lk(1) = 1 and∫

I

Lk(x)Lm(x) dx =
2

2k + 1
δkm , m ≥ 0 . (2.9)
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The natural modal basis in H1
0 (I) is the Babuška-Shen basis (BS basis), whose elements are

defined as

ηk(x) =

√
2k − 1

2

∫ 1

x

Lk−1(s) ds =
1√

4k − 2

(
Lk−2(x)− Lk(x)

)
, k ≥ 2 . (2.10)

The basis elements satisfy deg ηk = k and

(ηk, ηm)H1
0 (I) =

∫
I

η′k(x)η′m(x) dx = δkm , k,m ≥ 2 , (2.11)

i.e., they form an orthonormal basis for the H1
0 (I)-inner product. Equivalently, the (semi-

infinite) stiffness matrix Sη of the Babuška-Shen basis with respect to this inner product is the
identity matrix.

We now consider, for simplicity, the two-dimensional case d = 2 since the case d > 2 is
similar. Let Ω = (−1, 1)2, V = H1

0 (Ω), and consider the tensorized Babuška-Shen basis, whose
elements are defined as

ηk(x) = ηk1
(x1)ηk2

(x2) , k1, k2 ≥ 2 , (2.12)

where we set k = (k1, k2) and x = (x1, x2); indices vary in the set K = {k ∈ N2 : ki ≥ 2 for i =
1, 2}, which is ordered ‘a la Cantor’ by increasing total degree ktot = k1 + k2 and, for the same
total degree, by increasing k1. The tensorized BS basis is no longer orthogonal, since

(ηk, ηm)H1
0 (Ω) = (ηk1 , ηm1)H1

0 (I)(ηk2 , ηm2)L2(I) + (ηk1 , ηm1)L2(I)(ηk2 , ηm2)H1
0 (I) , (2.13)

whence (ηk, ηm)H1
0 (Ω) 6= 0 if and only if k1 = m1 and k2 − m2 ∈ {−2, 0, 2}, or k2 = m2 and

k1 −m1 ∈ {−2, 0, 2}. Obviously, we cannot have a Parseval representation of the H1
0 (Ω)-norm

of v =
∑
k∈K v̂kηk in terms of the coefficients v̂k. With the aim of getting (2.4), we follow [10]

and we first perform the orthonormalization of the BS basis via a Gram-Schmidt procedure.
This allows us to build a sequence of functions

Φk =
∑
m≤k

gmkηm , (2.14)

such that gkk 6= 0 and
(Φk,Φm)H1

0 (Ω) = δkm ∀ k,m ∈ K .

We will refer to the collection Φ := {Φk : k ∈ K} as the orthonormal Babuška-Shen basis (OBS
basis), for which the associated stiffness matrix SΦ with respect to the H1

0 (Ω)-inner product is
the identity matrix. Equivalently, if G = (gmk) is the upper triangular matrix which collects
the coefficients generated by the Gram-Schmidt algorithm above, one has

GTSηG = SΦ = I , (2.15)

that is the validity of (2.6) with dk = 1. However, unlike Sη, which is very sparse, the upper
triangular matrix G is full; in view of this, we next apply a thresholding procedure to wipe-out
a significant portion of the non-zero entries sitting in the leftmost columns of G. This leads to a
modified basis whose computational efficiency is quantitatively improved, without significantly
deteriorating the properties of the OBS basis. To be more precise, we use the following notation:
Gt indicates the matrix obtained from G by setting to zero a certain finite set of off-diagonal
entries, so that in particular diag(Gt) = diag(G); correspondingly, E := Gt − G is the matrix
measuring the truncation quality, for which diag(E) = 0. Finally, we introduce the matrix

Sφ = GTt SηGt (2.16)
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which we interpret as the stiffness matrix associated to the modified BS basis defined in analogy
to (2.14) as

φk =
∑

m∈Mt(k)

gmkηm (2.17)

where Mt(k) = {m ≤ k : Emk = 0}. This forms a new basis in H1
0 (Ω) (because k ∈Mt(k) and

gkk 6= 0). We will term it a nearly-orthonormal Babuška-Shen basis (NOBS basis). Note that
only the basis functions φk having total degree not exceeding a certain value, say p, may be
affected by the compression, while all the others coincide with the corresponding orthonormal
basis functions Φk defined in (2.14).

If Dφ = diagSφ, then for any value of p there are strategies to build Gt (depending on p)such
that the eigenvalues λ of

Sφx = λDφx (2.18)

are close to one and bounded from above and away from 0, independently of p [10]. This
guarantees the validity for NOBS basis of (2.4) with dk equal to the diagonal elements of the
matrix Dφ and (2.6) for suitable choice of constants β∗, β

∗ depending on the eigenvalues of
(2.18) (see [10] for more details).

2.2 Infinite Dimensional Algebraic Problem

Let us identify the solution u =
∑
k ûkφk of Problem (2.1) with the vector u = (ûk)k∈K of its

coefficients w.r.t. the basis {φk}k∈K. Similarly, let us identify the right-hand side f with the

vector f = (f̂`)`∈K of its dual coefficients. Finally, let us introduce the bi-infinite, symmetric
and positive-definite stiffness matrix

A = (a`,k)`,k∈K with a`,k = a(φk, φ`) . (2.19)

Then, Problem (2.1) can be equivalently written as

Au = f , (2.20)

where, thanks to (2.3) and the norm equivalences (2.6)-(2.7), A defines a bounded invertible
operator in `2(K).

Decay Properties of A and A−1. The decay of the entries of A away from the diagonal
depends on the regularity of the coefficients ν and σ of L. If ν and σ are real analytic in a
neighborhood of Ω, then ak,m decays exponentially away from the diagonal [6, 7, 10]: there
exist parameters cL, ηL > 0 such that

|ak,m| ≤ cLexp(−ηL|k −m|) ∀k,m ∈ K; (2.21)

we then say that A belongs to the exponential class De(ηL), in particular A is quasi-sparse.
This justifies the symmetric truncation AJ of A with parameter J , defined as (AJ)`,k = a`,k if
|`− k| ≤ J and (AJ)`,k = 0 otherwise, which satisfies [6, 7, 10]

‖A−AJ‖ ≤ CA(J + 1)d−1e−ηLJ (2.22)

for some CA > 0 depending only on cL.
Most notably, the inverse matrix A−1 is also quasi-sparse [6, 7, 10]. Precisely A−1 ∈ De(η̄L)

for some η̄L ∈ (0, ηL] and c̄L only dependent on cL and ηL. Thus, there exists an explicit
constant CA−1 (depending only on cL and ηL) such that the symmetric truncation (A−1)J of
A−1 satisfies
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‖A−1 − (A−1)J‖ ≤ CA−1(J + 1)d−1e−η̄LJ ≤ CA−1e−η̃LJ , (2.23)

for a suitable exponent η̃L < η̄L.

Galerkin Method. Given any finite index set Λ ⊂ K, we define the subspace VΛ =
span {φk | k ∈ Λ} of V ; we set |Λ| = card Λ, so that dim VΛ = |Λ|. If v ∈ V admits the expan-
sion v =

∑
k∈K v̂kφk, then we define its projection PΛv upon VΛ by setting PΛv :=

∑
k∈Λ v̂kφk.

Similarly, we define the subspace V ∗Λ = span {φ∗k | k ∈ Λ} of V ∗. If f admits an expansion

f =
∑
k∈K f̂kφ

∗
k, then we define its projection P ∗Λf onto V ∗Λ upon setting P ∗Λf :=

∑
k∈Λ f̂kφ

∗
k.

Given any finite Λ ⊂ K, the Galerkin approximation of (2.1) is defined as

uΛ ∈ VΛ : a(uΛ, vΛ) = 〈f, vΛ〉 ∀vΛ ∈ VΛ . (2.24)

Let uΛ be the vector collecting the coefficients of uΛ indexed in Λ; let fΛ be the analogous
restriction for the vector of the coefficients of f . Finally, denote by RΛ the matrix that restricts
a vector indexed in K to the portion indexed in Λ, so that RH

Λ is the corresponding extension
matrix. If

AΛ := RΛARH
Λ , (2.25)

then problem (2.24) can be equivalently written as

AΛuΛ = fΛ . (2.26)

For any w ∈ VΛ, we define the residual r(w) ∈ V ∗ as

r(w) = f − Lw =
∑
k∈K

r̂k(w)φ∗k , where r̂k(w) = 〈f − Lw, φk〉 = 〈f, φk〉 − a(w, φk) .

The definition (2.24) of uΛ is equivalent to the condition P ∗Λr(uΛ) = 0, i.e., r̂k(uΛ) = 0 for every
k ∈ Λ. By the continuity and coercivity of the bilinear form, one has

1

α∗
‖r(uΛ)‖V ∗ ≤ ‖u− uΛ‖V ≤

1

α∗
‖r(uΛ)‖V ∗ , (2.27)

which in view of (2.3) and (2.7) can be rephrased as

β∗√
α∗
‖r(uΛ)‖φ∗ ≤ |||u− uΛ||| ≤

β∗
√
α∗
‖r(uΛ)‖φ∗ . (2.28)

Therefore, if (r̂k(uΛ))k∈K are the coefficients of r(uΛ) with respect to the dual basis φ∗, the
quantity

‖r(uΛ)‖φ∗ =

∑
k 6∈Λ

|R̂k(uΛ)|2
1/2

with R̂k(uΛ) = r̂k(uΛ)d
−1/2
k

is an error estimator from above and from below. However, this quantity is not computable
because it involves infinitely many terms. We discuss feasible versions in [6, 7, 10] but not here.

Equivalent Formulation of the Galerkin Problem. For future reference, we now rewrite
the Galerkin problem (2.24) in an equivalent (infinite-dimensional) manner. Let

PΛ : `2(K)→ `2(K)
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be the projector operator defined as

(PΛv)λ :=

{
vλ if λ ∈ Λ ,

0 if λ /∈ Λ .

Note that PΛ can be represented as a diagonal bi-infinite matrix whose diagonal elements are
1 for indexes belonging to Λ, and zero otherwise. We set QΛ := I − PΛ and introduce the bi-
infinite matrix ÂΛ := PΛAPΛ + QΛ which is equal to AΛ for indexes in Λ and to the identity
matrix, otherwise. The definitions of the projectors PΛ and QΛ yield the following property:

If A is invertible with A ∈ De(ηL), then the same holds for ÂΛ. (2.29)

Furthermore, the constants CÂΛ
and C(ÂΛ)−1 which appear in the inequalities (2.22) and (2.23)

for ÂΛ can be bounded uniformly in Λ, since in turn they can be bounded in terms of ηL and
cL, respectively.
Now, let us consider the following extended Galerkin problem: find û ∈ `2 such that

ÂΛû = PΛf . (2.30)

Let uΛ be the Galerkin solution to (2.26); then, it is easy to check that û = RH
Λ uΛ.

3 Adaptive Spectral Galerkin Method

In this section we present our adaptive spectral Galerkin method, named DYN-GAL, that is
based on a new notion of marking strategy, namely a dynamic marking. In Section 3.1 we recall
the enriched Dörfler marking strategy, introduced in [6], which represents an enhancement of
the classic Dörfler marking strategy. In Section 3.2 we introduce the dynamic marking strategy,
present DYN-GAL and prove its quadratic convergence.

3.1 Static Dörfler Marking

Fix any θ ∈ (0, 1) and set Λ0 = ∅, uΛ0 = 0. For n = 0, 1, . . . , assume that Λn and un := uΛn ∈
VΛn and rn := r(un) = Lun − f are already computed and choose Λn+1 := Λn ∪ ∂Λn where the
set ∂Λn is built by a two-step procedure that we call E-DÖRFLER for enriched Dörfler:

∂Λn = E-DÖRFLER (Λn, θ)

∂̃Λn = DORFLER (rn, θ)

∂Λn = ENRICH (∂̃Λn, J)

The first step is the usual Dörfler’s marking with parameter θ:

‖P ∗
∂̃Λn

rn‖φ∗ = ‖P ∗
Λ̃n+1

rn‖φ∗ ≥ θ‖rn‖φ∗ or
∑
k∈∂̃Λn

|R̂k(un)|2 ≥ θ2
∑
k∈K

|R̂k(un)|2 , (3.1)

with Λ̃n+1 = Λn ∪ ∂̃Λn. This also reads

‖rn − P ∗Λ̃n+1
rn‖φ∗ ≤

√
1− θ2‖rn‖φ∗ (3.2)

and can be implemented by rearranging the coefficients R̂k(un) in decreasing order of modulus
and picking the largest ones (greedy approach). However, this is only an idealized algorithm be-
cause the number of coefficients R̂k(un) is infinite. This marking is known to yield a contraction
property between un and the Galerkin solution ũn+1 ∈ VΛ̃n+1

of the form

|||u− ũn+1||| ≤ ρ(θ)|||u− un||| ,
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with ρ(θ) =
√

1− α∗
α∗ θ

2 [6, 7]. When α∗ < α∗ we see that in contrast to (3.2), ρ(θ) is bounded

below away from 0 by
√

1− α∗
α∗ .

The second step of E-DÖRFLER is meant to remedy this situation and hinges on the a

priori structure of A−1 already alluded to in §2.2. The goal is to augment the set ∂̃Λn to ∂Λn
judiciously. This is contained in the following proposition (see [6]) whose proof is reported here
for completeness.

Proposition 3.1 (enrichment). Let ∂̃Λn = DORFLER (rn, θ), and let J = J(θ) > 0 satisfy

CA−1e−η̃LJ ≤

√
1− θ2

α∗α∗
, (3.3)

where CA−1 and η̃L are defined in (2.23). Let ∂Λn = ENRICH (∂̃Λn, J) be built as follows

∂Λn :=
{
k ∈ K : there exists ` ∈ ∂̃Λn such that |k − `| ≤ J

}
.

Then for Λn+1 = Λn ∪ ∂Λn, the Galerkin solution un+1 ∈ VΛn+1
satisfies

|||u− un+1||| ≤ ρ̄(θ)|||u− un||| (3.4)

with

ρ̄(θ) = 2
β∗
√
α∗

β∗
√
α∗

√
1− θ2. (3.5)

Proof. Let gn := P ∗
∂̃Λn

rn = P ∗
Λ̃n+1

rn which, according to (3.2), satisfies

‖rn − gn‖φ∗ ≤
√

1− θ2‖rn‖φ∗ .

Let wn ∈ V be the solution of Lwn = gn, which in general will have infinitely many components,
and let us split it as

wn = PΛn+1wn + PΛcn+1
wn =: yn + zn ∈ VΛn+1 ⊕ VΛcn+1

.

The minimality property in the energy norm of the Galerkin solution un+1 over the set Λn+1

yet to be defined, in conjunction with (2.3) and (2.28), implies

|||u− un+1||| ≤ |||u− (un + yn)||| ≤ |||u− un − wn + zn|||

≤ 1
√
α∗
‖L(u− un − wn)‖+

√
α∗‖zn‖ =

β∗
√
α∗
‖rn − gn‖φ∗ +

√
α∗‖zn‖ ,

whence

|||u− un+1||| ≤
β∗
√
α∗

√
1− θ2 ‖rn‖φ∗ +

√
α∗‖zn‖ .

Since zn =
(
PΛcn+1

L−1P ∗
∂̃Λn

)
rn, we now construct Λcn+1 to control ‖zn‖. If

k ∈ Λcn+1 and ` ∈ ∂̃Λn ⇒ |k − `| > J ,

then we have
‖PΛcn+1

L−1P ∗
∂̃Λn
‖ ≤ ‖A−1 − (A−1)J‖ ≤ CA−1e−η̃LJ ,

where we have used (2.23). We now choose J = J(θ) > 0 to satisfy (3.3), and we exploit that
‖zn‖ ≤ CA−1e−η̃LJ‖rn‖ to obtain

|||u− un+1||| ≤ 2
β∗
√
α∗

√
1− θ2 ‖rn‖φ∗ ≤ 2

β∗
√
α∗

β∗
√
α∗

√
1− θ2 |||u− un||| , (3.6)

as asserted.
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We observe that, as desired, the new error reduction rate

ρ̄(θ) = 2
β∗
√
α∗

β∗
√
α∗

√
1− θ2 (3.7)

can be made arbitrarily small by choosing θ suitably close to 1. This observation was already
made in [6, 7], but we improve it in Section 3.2 upon choosing θ dynamically.

Remark 3.2 (Cardinality of ∂Λn). Since we add a ball of radius J around each point of ∂̃Λn we
get a crude estimate

|∂Λn| ≤ |Bd(0, J) ∩ Zd| |∂̃Λn| ≈ ωdJd|∂̃Λn|, (3.8)

where ωd is the measure of the d-dimensional Euclidean unit ball B(0, 1) centered at the origin.

3.2 Dynamic Dörfler Marking and Adaptive Spectral Algorithm

In this section we improve on the above marking strategy upon making the choice of θ dynamic.
At each iteration n let us select the Dörfler parameter θn such that√

1− θ2
n = C0

‖rn‖φ∗
‖r0‖φ∗

(3.9)

for a proper choice of the positive constant C0 that will be made precise later. This implies

J(θn) = − 1

η̃L
log
‖rn‖φ∗
‖r0‖φ∗

+K1 (3.10)

according to (3.3), where K1 := − 1
η̃L

log
(

1√
α∗α∗

C0

CA−1

)
+ δn and δn ∈ [0, 1).

We thus have the following adaptive spectral Galerkin method with dynamic choice (3.9) of
the marking parameter θn = (1− C2

0‖rn‖2φ∗/‖r0‖2φ∗)1/2:

DYN-GAL(ε)
set r0 := f , Λ0 := ∅, n = −1
do
n← n+ 1

∂Λn := E-DÖRFLER
(
Λn, (1− C2

0‖rn‖2φ∗/‖r0‖2φ∗)1/2
)

Λn+1 := Λn ∪ ∂Λn
un+1 := GAL (Λn+1)
rn+1 := RES (un+1)

while ‖rn+1‖φ∗ > ε ‖r0‖φ∗

where GAL computes the Galerkin solution and RES the residual. The following result shows
the quadratic convergence of DYN-GAL.

Theorem 3.3 (quadratic convergence). Let the constant C0 of (3.9) satisfy C0 ≤ 1
4

√
α∗
α∗

β∗
β∗

and C1 :=
√
α∗

2β∗‖f‖φ∗
. Then the residual rn of DYN-GAL satisfies

‖rn+1‖φ∗
2‖r0‖φ∗

≤
(
‖rn‖φ∗
2‖r0‖φ∗

)2

∀n ≥ 0, (3.11)

and the algorithm terminates in finite steps for any tolerance ε. In addition, two consecutive
solutions of DYN-GAL satisfy

|||u− un+1||| ≤ C1|||u− un|||2 ∀n ≥ 0. (3.12)
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Proof. Invoke (3.6) and (3.9) to figure out that

‖rn+1‖φ∗
‖r0‖φ∗

≤
√
α∗

β∗

|||u− un+1|||
‖r0‖φ∗

≤ 2

√
α∗

α∗

β∗

β∗

√
1− θ2

n

‖rn‖φ∗
‖r0‖φ∗

≤ 2C0

√
α∗

α∗

β∗

β∗

(
‖rn‖φ∗
‖r0‖φ∗

)2

≤ 1

2

(
‖rn‖φ∗
‖r0‖φ∗

)2

,

(3.13)

which implies (3.11). We thus realize that DYN-GAL converges quadratically and terminates
in finite steps for any tolerance ε. Finally, combining (2.28) with (3.13), we readily obtain (3.12)
upon using r0 = f .

Remark 3.4 (super-linear rate). If the dynamic marking parameter θn is chosen so that
√

1− θ2
n =

C0

(
‖rn‖φ∗
‖r0‖φ∗

)σ
for some σ > 0, then we arrive at the rate |||u− un+1||| ≤ C1|||u− un|||1+σ.

It seems to us that the quadratic rate (3.12) is the first one in adaptivity theory. The relation
(3.11) reads equivalently

‖rn+1‖φ∗
2‖r0‖φ∗

≤
(
‖rn+1−k‖φ∗

2‖r0‖φ∗

)2k

0 ≤ k ≤ n+ 1, (3.14)

and implies that ‖rn‖φ∗/‖r0‖φ∗ is within machine precision in about n = 6 iterations. This fast
decay is consistent with spectral methods. Upon termination, we obtain the relative error

|||u− un||| ≤
β∗
√
α∗

β∗
√
α∗
|||u||| ε,

because ‖f‖φ∗ ≤
√
α∗

β∗
|||u|||.

The algorithm DYN-GAL entails exact computation of the residual rn, which in general
has infinitely many terms. We do not dwell here with inexact or feasible versions of DYN-GAL
and refer to [6, 7, 10] for a full discussion which extends to our present setting.

4 Nonlinear Approximation and Gevrey Sparsity Classes

Given any v ∈ V we define its best N -term approximation error as

EN (v) = inf
Λ⊂K, |Λ|=N

‖v − PΛv‖φ .

We are interested in classifying functions v according to the decay law of EN (v) as N → ∞,
i.e., according to the “sparsity” of their expansions in terms of the basis {φk}k∈K. Of special
interest to us is the following exponential Gevrey class.

Definition 4.1 (exponential class of functions). For η > 0 and 0 < t ≤ d, we denote by A
η,t
G

the subset of V defined as

A
η,t
G :=

{
v ∈ V : ‖v‖Aη,tG := sup

N≥0

(
EN (v) exp

(
ηω
−t/d
d N t/d

))
< +∞

}
where ωd is the measure of the d-dimensional Euclidean unit ball Bd(0, 1) centered at the origin.

Definition 4.2 (exponential class of sequences). Let `η,tG (K) be the subset of sequences v ∈
`2(K) so that

‖v‖`η,tG (K) := sup
n≥1

(
n(1−t/d)/2exp

(
ηω
−t/d
d nt/d

)
|v∗n|

)
< +∞ ,

where v∗ = (v∗n)∞n=1 is the non-increasing rearrangement of v.
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The relationship between A
η,t
G and `η,tG (K) is stated in the following [6, Proposition 4.2].

Proposition 4.3 (equivalence of exponential classes). Given a function v ∈ V and the sequence
v = (v̂k

√
dk)k∈K of its coefficients, one has v ∈ A

η,t
G if and only if v ∈ `η,tG (K), with

‖v‖Aη,tG . ‖v‖`η,tG (K) . ‖v‖Aη,tG .

For functions v in A
η,t
G one can estimate the minimal cardinality of a set Λ such that ‖v−PΛv‖φ ≤

ε as follows: since ‖v − PΛ̃v‖φ > ε for any set Λ̃ with cardinality |Λ̃| = |Λ| − 1, we deduce

|Λ| ≤ ωd

(
1

η
log
‖v‖Aη,tG

ε

)d/t
+ 1. (4.1)

For the analysis of the optimality of our algorithm it is important to investigate the sparsity
class of the image Lv for the operator L defined in (2.1), when the function v belongs to the
sparsity class A

η,t
G . Sparsity classes of exponential type for functionals f ∈ V ∗ can be defined

analogously as above, using now the best N -term approximation error in V ∗

E∗N (f) = inf
Λ⊂K, |Λ|=N

‖f − P ∗Λf‖φ∗ .

The following result is based on [6, Proposition 5.2].

Proposition 4.4 (continuity of L in A
η,t
G ). Let L be such that the associated stiffness matrix

A satisfies the decay condition (2.21). Given η > 0 and t ∈ (0, d], there exist η̄ > 0, t̄ ∈ (0, t]
and a constant CL ≥ 1 such that

‖Lv‖
A
η̄,t̄
G
≤ CL‖v‖Aη,tG ∀v ∈ A

η,t
G . (4.2)

Proof. Let A be the stiffness matrix associated with the operator L. In [6] it is proven that if
A is banded with 2p+ 1 non-zero diagonals, then the result holds with η̄ = η

(2p+1)t/d
and t̄ = t;

on the other hand, if A ∈ De(ηL) is dense, but the coefficients ηL and η satisfy the inequality

η < ηLω
t/d
d , then the result holds with η̄ = ζ(t)η and t̄ = t

1+t , where ζ(t) =
(

1+t
2d ω1+t

d

) t
d(1+t)

.

Finally, if η ≥ ηLω
t/d
d , we introduce an arbitrary η̂ > 0 satisfying η̂ < ηLω

t/d
d ; then the result

holds with η̄ = ζ(t)η̂ and t̄ = t
1+t , since ‖v‖

A
η̂,t
G
≤ ‖v‖Aη,tG .

Keeping into account that ζ(t) ≤ 1 for 1 ≤ d ≤ 10 (see again [6]), this result indicates that
the residual is expected to belong to a less favorable sparsity class than the one of the solution.
Counterexamples in [6] show that (4.2) cannot be improved.

Finally, we discuss the sparsity class of the residual r = r(uΛ) for any Galerkin solution uΛ.

Proposition 4.5 (sparsity class of the residual). Let A ∈ De(ηL) and A−1 ∈ De(η̄L), for
constants ηL > 0 and η̄L ∈ (0, ηL] so that (2.22) and (2.23) hold. If u ∈ A

η,t
G for some η > 0

and t ∈ (0, d], then there exist suitable positive constants η̃ ≤ η and t̃ ≤ t such that r(uΛ) ∈ A
η̃,t̃
G

for any index set Λ and
‖r(uΛ)‖

A
η̃,t̃
G

. ‖u‖Aη,tG .

Proof. Proposition 4.4 yields the existence of η̄ > 0 and t̄ ∈ (0, t] such that

‖f‖
A
η̄,t̄
G

= ‖Lu‖
A
η̄,t̄
G

. ‖u‖Aη,tG . (4.3)

In order to bound ‖r(uΛ)‖
A
η̃,t̃
G

in terms of ‖f‖
A
η̄,t̄
G

, let us write

rΛ = A(u− uΛ) = f −AuΛ ,
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then use uΛ = (ÂΛ)−1(PΛf) from (2.30) to get

rΛ = f −A(ÂΛ)−1(PΛf).

Now, assuming just for simplicity that the indices in Λ come first (this can be realized by a
permutation), we have

A =

(
AΛ B

BT C

)
and ÂΛ =

(
AΛ O

OT I

)
, whence (ÂΛ)−1 =

(
(AΛ)−1 O

OT I

)
Setting f = (fΛ fΛc)

T , so that PΛf = (fΛ 0)T , we have

A(ÂΛ)−1(PΛf) =

(
AΛ B

BT C

)(
(AΛ)−1 O

OT I

)(
fΛ

0

)

=

(
AΛ B

BT C

)(
(AΛ)−1fΛ

0

)
=

(
fΛ

BT (AΛ)−1fΛ

)
Then,

rΛ =

(
0

fΛc −BT(AΛ)−1fΛ

)
=

(
O O

−BT (AΛ)−1 I

)(
fΛ

fΛc

)
=: Rf .

Now, since A ∈ De(ηL) and (AΛ)−1 ∈ De(η̄L), it is easily seen that R ∈ De(η̃L) with η̃L = η̄L
if η̄L < ηL, or η̃L < ηL arbitrary if η̄L = ηL.

Finally, we apply Proposition 4.4 to the operator R defined by the matrix R, obtaining the
existence of constants η̃ > 0 and t̃ ∈ (0, t̄ ] such that

‖r(uΛ)‖
A
η̃,t̃
G

. ‖f‖
A
η̄,t̄
G
,

whence the result.

5 Optimality Properties of DYN-GAL

In this section we derive an exponential rate of convergence for |||u−un||| in terms of the number
of degrees of freedom Λn activated by DYN-GAL and assess the computational work necessary
to achieve this rate. This is made precise in the following theorem.

Theorem 5.1 (exponential convergence rate). Let u ∈ A
η,t
G where the Gevrey class A

η,t
G is

introduced in Definition 4.1. Upon termination of DYN-GAL, the iterate un+1 ∈ VΛn+1
and

set of active coefficients Λn+1 satisfy |||u− un+1||| ≤ β∗√
α∗
‖f‖φ∗ε and

|Λn+1| ≤ ωd

 1

η∗
log

C∗
‖u‖

A
η,t
G

‖f‖φ∗

ε


d/t∗

, (5.1)

with parameters C∗ > 0, η∗ < η and t∗ < t. Moreover, if the number of arithmetic operations
needed to solve a linear system scales linearly with its dimension, then the workload Wε of
DYN-GAL upon completion satisfies

Wε ≤ ωd

 1

η∗
log

C∗
‖u‖

A
η,t
G

‖f‖φ∗

ε4| log | log ε||−1
,


d/t∗

(5.2)

where η∗ < η∗ and C∗ > C∗ but t∗ remains the same as in (5.1).
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Proof. We proceed in several steps.

1. Expression of J(θk): Our first task is to simplify the expression (3.10) for J(θk), namely
to absorb the term K1: there is C2 > 1 such that

J(θk) ≤ C2

η̃L

∣∣∣ log
‖rk‖φ∗
2‖r0‖φ∗

∣∣∣. (5.3)

In fact, if C2 is given by C2 = 1 + η̃L max(0,K1)
log 2 , then

K1 ≤
C2 − 1

η̃L
log 2 ≤ C2 − 1

η̃L

∣∣∣∣log
‖rk‖φ∗
2‖r0‖φ∗

∣∣∣∣
because ‖rk‖φ∗ ≤ ‖r0‖φ∗ for all k ≥ 0 according to (3.13). This in turn implies (5.3)

J(θk) ≤ 1

η̃L

∣∣∣∣log
‖rk‖φ∗
2‖r0‖φ∗

∣∣∣∣+
C2 − 1

η̃L

∣∣∣∣log
‖rk‖φ∗
2‖r0‖φ∗

∣∣∣∣ =
C2

η̃L

∣∣∣∣log
‖rk‖φ∗
2‖r0‖φ∗

∣∣∣∣ .
2. Active set Λk: We now examine the output Λk of E-DÖRFLER. Employing the mini-

mality of Dörfler marking and (3.2), we deduce

E∗|∂̃Λk|
(rk) = ‖rk − P ∗∂̃Λk

rk‖φ∗ ≤
√

1− θ2
k‖rk‖φ∗ , (5.4)

which clearly implies E∗
|∂̃Λk|−1

>
√

1− θ2
k‖rk‖φ∗ . The latter inequality, together with the Defi-

nition 4.2 of ‖rk‖Aη̄,t̄G , yields

‖rk‖Aη̄,t̄G >
√

1− θ2
k‖rk‖φ∗ exp

(
η̄ω
−t̄/d
d (|∂̃Λk| − 1)t̄/d

)
.

We note that this, along with |∂̃Λk| ≥ 1, ensures
‖rk‖

A
η̄,t̄
G√

1−θ2
k‖rk‖φ∗

> 1 whence

|∂̃Λk| ≤ ωd

(
1

η̄
log

‖rk‖Aη̄,t̄G√
1− θ2

k‖rk‖φ∗

)d/t̄
+ 1.

We now recall the membership of the residual rk := r(uk) to the Gevrey class A
η̄,t̄
G for all

k ≥ 0, established in Proposition 4.5: there exists C3 > 0 independent of k and u such that

‖rk‖Aη̄,t̄G ≤ C3‖u‖Aη,tG .

Combining this with the dynamic marking (3.9) implies

‖rk‖Aη̄,t̄G√
1− θ2

k‖rk‖φ∗
=
‖f‖φ∗‖rk‖Aη̄,t̄G
C0‖rk‖2φ∗

≤
C4‖f‖φ∗‖u‖Aη,tG

‖rk‖2φ∗
,

with C4 = C3/C0, whence

|∂̃Λk| ≤ ωd

(
1

η̄
log

C4‖f‖φ∗‖u‖Aη,tG
‖rk‖2φ∗

)d/t̄
+ 1.

We let C5 satisfy 1 = ωd
(

1
η̄ logC5

)d/t̄
, and use that t̄ < t ≤ d, to obtain the simpler expression

|∂̃Λk| ≤ ωd

(
1

η̄
log

C4C5‖f‖φ∗‖u‖Aη,tG
‖rk‖2φ∗

)d/t̄
. (5.5)
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On the other hand, in view of (5.3), the enrichment step (3.8) of E-DÖRFLER yields

|∂Λk| ≤ C6ωdJ(θk)d|∂̃Λk| ≤
C6C

d
2ω

2
d

η̃dLη̄
d/t̄

∣∣∣∣log
‖rk‖φ∗
2‖r0‖φ∗

∣∣∣∣d
(

log
C4C5‖f‖φ∗‖u‖Aη,tG

‖rk‖2φ∗

)d/t̄
. (5.6)

We exploit the quadratic convergence (3.11) to write for k ≤ n∣∣∣∣log
‖rk‖φ∗
2‖r0‖φ∗

∣∣∣∣d ≤ 2d(k−n)

∣∣∣∣log
‖rn‖φ∗
2‖r0‖φ∗

∣∣∣∣d = 2d(k−n)

(
log

2‖f‖φ∗
‖rn‖φ∗

)d
. (5.7)

Using the bound ‖f‖φ∗ ≤ ‖f‖Aη̄,t̄G = ‖r0‖Aη̄,t̄G ≤ C3‖u‖Aη,tG in the two previous inequalities yields

log
C4C5‖f‖φ∗‖u‖Aη,tG

‖rk‖2φ∗
≤ 2 log

C7‖u‖Aη,tG
‖rk‖φ∗

and log
2‖f‖φ∗
‖rn‖φ∗

≤ log
2C3‖u‖Aη,tG
‖rn‖φ∗

,

with C7 = (C3C4C5)1/2. Introducing the constants

C8 = max(2C3, C7),
1

η̂
=

2d/t̄C6C
d
2ωd

η̃dLη̄
d/t̄

, t∗ =
t̄

1 + t̄
,

the derived upper bound for |∂Λk| can be simplified as follows:

|∂Λk| ≤ 2d(k−n)ωd
η̂

(
log

C8‖u‖Aη,tG
‖rn‖φ∗

)d/t∗
.

Recalling now that |Λ0| = 0 and for n ≥ 0

|Λn+1| =
n∑
k=0

|∂Λk|

we have

|Λn+1| ≤
ωd
η̂

(
n∑
k=0

2d(k−n)

)(
log

C8‖u‖Aη,tG
‖rn‖φ∗

)d/t∗
.

This can be written equivalently as

|Λn+1| ≤ ωd

(
1

η∗
log

C8‖u‖Aη,tG
‖rn‖φ∗

)d/t∗
(5.8)

with η∗ =
(

η̂∑∞
k=1 2−dk

)t∗/d
. At last, we make use of ‖rn‖φ∗ > ε‖f‖φ∗ to get the desired estimate

(5.1) with C∗ = C8.

3. Computational work: Let us finally discuss the total computational work Wε of DYN-

GAL. We start with some useful notation. We set δn :=
‖rn‖φ∗
‖r0‖φ∗

for n ≥ 0 and ε`+1 = ε2
` for

` ≥ 1 with ε1 = 1
2 . We note that there exists an integer L > 0 such that εL+1 < ε ≤ εL with

ε being the tolerance of DYN-GAL. In addition, we observe that for every iteration n > 0 of
DYN-GAL there exists ` > 0 such that δn ∈ I` := (ε`+1, ε`] and that for each interval I` there
exists at most one δn ∈ I` because δn+1 ≤ 1

2δ
2
n according to (3.11). Finally, to each interval I`

we associate the following computational work W` to find and store un+1

W` =

{
C#|Λn+1| if there exists n such that δn ∈ I`
0 otherwise .
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This assumes that the number of arithmetic operations needed to solve the linear system for
un scales linearly with its dimension and C# is an absolute constant that may depend on the
specific solver. The total computational work of DYN-GAL is bounded by

Wε =

L∑
`=1

W`.

We now get a bound for Wε. In view of (5.1) we have

W` ≤ C#ωd

 1

η∗
log

C∗
‖u‖

A
η,t
G

‖f‖φ∗

ε`+1


d/t∗

= C#ωd

 1

η∗
log

C∗
‖u‖

A
η,t
G

‖f‖φ∗

ε2`
1


d/t∗

.

Therefore, upon adding over ` and using that d/t∗ ≥ 1, we obtain

Wε ≤
C#ωd

η
d/t∗
∗

(
L∑
`=1

logC∗
‖u‖Aη,tG
‖f‖φ∗

+

L∑
`=1

log ε−2`

1

)d/t∗
≤ C#ωd

η
d/t∗
∗

log
LC∗

‖u‖
A
η,t
G

‖f‖φ∗

ε2L+1

1


d/t∗

.

Since ε ≤ εL = ε2L−1

1 , we deduce ε4 ≤ ε2L+1

1 and L ≤ log
| log ε|
log 2

log 2 + 1 ≤ C9 log | log ε|. Inserting
this bound in the preceding expression yields

Wε ≤ ωd

 1

η∗
log

C∗
‖u‖

A
η,t
G

‖f‖φ∗

ε4| log | log ε||−1


d/t∗

. (5.9)

with
η∗ =

η∗

C
t∗/d
#

, C∗ = C9C∗,

which is the asserted estimate (5.2). The proof is thus complete.

Remark 5.2. Note that the bound on the workload, given in (5.2), is at most an absolute multiple
of the bound, given in (5.1), on the number of active coefficients.

Remark 5.3 (super-linear convergence). If
√

1− θ2
n = C0

(
‖rn‖φ∗
‖r0‖φ∗

)σ
with σ > 0, then (5.1) still

holds with the same parameters η∗, t∗.

Remark 5.4 (algebraic class). Let us consider the case when u belongs to the algebraic class

AsB :=
{
v ∈ V : ‖v‖AsB := sup

N≥0
EN (v)

(
N + 1

)s/d
< +∞

}
,

which is related to Besov regularity. We can distinguish two cases:

1. A belongs to an exponential class but the residuals belong to an algebraic class;

2. A belongs to an algebraic class Da(ηL), i.e. there exists a constant cL > 0 such that its
elements satisfy |a`,k| ≤ cL(1 + |`− k|)−ηL , and the residual belongs to an algebraic class.

We now study the optimality properties of DYN-GAL for these two cases. Let us first observe
that whenever the residuals belong to the algebraic class AsB , the bound (5.5) becomes

|∂̃Λk| . ‖u− uk‖−2d/s. (5.10)
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This results from the dynamic marking (3.9) together with (5.4) in the algebraic case.
Let us start with Case 1. Using (5.10) and (5.3), which is still valid here as we assume that

A belongs to an exponential class, the bound (5.6) is replaced by

|∂Λk| . ‖u− uk‖−2d/s
∣∣∣ log

‖rk‖φ∗
2‖r0‖φ∗

∣∣∣d . ‖u− uk‖−2d/s2d(k−n)

(
log

2‖f‖φ∗
‖rn‖φ∗

)d
, (5.11)

where in the last inequality we have employed (5.7). Hence, we have

|Λn+1| =

n∑
k=0

|∂Λk| .
(

log
2‖f‖φ∗
‖rn‖φ∗

)d n∑
k=0

‖u− un‖−2 ds 2k−n2d(k−n)

.

(
log

2‖f‖φ∗
‖rn‖φ∗

)d
‖u− un‖−2 ds

n∑
k=0

2d(k−n)

.

(
log

2‖f‖φ∗
‖rn‖φ∗

)d
‖u− un‖−2 ds .

(
log

2‖f‖φ∗
‖u− un‖

)d
‖u− un+1‖−

d
s

where in the last inequality we have employed the quadratic convergence of DYN-GAL. The
above result implies that DYN-GAL is optimal for Case 1 (up to a logarithmic factor).

Let us now consider Case 2. Since A belongs to an algebraic class, (5.3) is replaced by

J(θk) h ‖u− uk‖−1/s.

Thus, the bound (5.6) is replaced by

|∂Λk| . ‖u− uk‖−3d/s,

which implies

|Λn+1| =
n∑
k=0

|∂Λk| . ‖u− un‖−3 ds . ‖u− un+1‖−
3
2
d
s

where in the last inequality we have again employed the quadratic convergence of DYN-GAL.
This result is not optimal for Case 2, due to the factor 2/3 multiplying s in the exponent. We
recall that the algorithm FA-ADFOUR of [6] is similar to DYN-GAL but with static marking
parameter θ. The theory of FA-ADFOUR requires neither a restriction on θ nor coarsening
and is proven to be optimal in the algebraic case; see [6, Theorem 7.2].
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